
SparsePIM: An Efficient HBM-Based PIM Architecture
for Sparse Matrix-Vector Multiplications

Taewoon Kang
Computer Science and

Engineering
Korea University

Seoul, Republic of Korea
taewoon_kang@korea.ac.kr

Geonwoo Choi
Computer Science and

Engineering
Korea University

Seoul, Republic of Korea
hnts03@korea.ac.kr

Taeweon Suh
Computer Science and

Engineering
Korea University

Seoul, Republic of Korea
suhtw@korea.ac.kr

Gunjae Koo
Computer Science and

Engineering
Korea University

Seoul, Republic of Korea
gunjaekoo@korea.ac.kr

Abstract
Sparse matrix-vector multiplication (SpMV) is a fundamental
operation across diverse domains, including scientific com-
puting, machine learning, and graph processing. However,
its irregular memory access patterns necessitate frequent
data retrieval from external memory, leading to significant
inefficiencies on conventional processors such as CPUs and
GPUs. Processing-in-memory (PIM) presents a promising so-
lution to address these performance bottlenecks observed in
memory-intensive workloads. However, existing PIM archi-
tectures are primarily optimized for dense matrix operations
since conventional memory cell structures struggle with the
challenges of indirect indexing and unbalanced data distri-
butions inherent in sparse computations.
In order to address these challenges, we propose

SparsePIM, a novel PIM architecture designed to acceler-
ate SpMV computations efficiently. SparsePIM introduces
a DRAM row-aligned format (DRAF) to optimize mem-
ory access patterns. SparsePIM exploits K-means-based col-
umn group partitioning to achieve a balanced load distri-
bution across memory banks. Furthermore, SparsePIM in-
cludes bank group (BG) accumulators to mitigate the per-
formance burdens of accumulating partial sums in SpMV
operations. By aggregating partial results across multiple
banks, SparsePIM can significantly improve the through-
put of sparse matrix computations. Leveraging a combina-
tion of hardware and software optimizations, SparsePIM can
achieve significant performance gains over cuSPARSE-based
SpMV kernels on the GPU. Our evaluation demonstrates
that SparsePIM achieves up to 5.61× speedup over SpMV on
GPUs.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3735111

CCS Concepts
• Computer systems organization→ Special purpose sys-
tems.

Keywords
Processing-in-Memory, SpMV, Near-Data Processing

ACM Reference Format:
Taewoon Kang, Geonwoo Choi, Taeweon Suh, and Gunjae Koo.
2025. SparsePIM: An Efficient HBM-Based PIM Architecture for
Sparse Matrix-Vector Multiplications. In 2025 International Confer-
ence on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City,
UT, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.
1145/3721145.3735111

1 Introduction
Sparse matrix-vector multiplication (SpMV) is a fundamen-
tal kernel used in a wide range of applications, including
scientific computing, machine learning, graph analytics, and
circuit simulation [6, 24, 29, 34, 50, 54, 82, 86, 87]. SpMV
kernels exhibit extremely low efficiency on general paral-
lel processor architectures and matrix processing engines
since those kernels handle large matrices with many zero
elements that unnecessarily occupy processing units and
storage space. Researchers have proposed specific proces-
sor architectures and data compression formats for sparse
matrices. However, existing solutions often provoke heavy
irregular accesses to the memory hierarchy, thus, the perfor-
mance of SpMV kernels is significantly restricted by limited
memory bandwidth.

Processing-in-memory (PIM) is an emerging approach that
can mitigate the performance hurdles caused by constrained
memory bandwidth. PIM architectures are implemented by
integrating computing units near or within memory cell ar-
rays, thus PIM can exploit high internal bandwidth within
a memory package. Moreover, PIM can reduce data move-
ment between processors and off-chip memory modules by
offloading computations to memory. Several memory ven-
dors presented PIM solutions, such as HBM-PIM [31, 39, 44]

https://orcid.org/0009-0005-7097-2125
https://orcid.org/0009-0004-6412-5352
https://orcid.org/0000-0002-6377-5482
https://orcid.org/0000-0003-1706-6850
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3721145.3735111
https://doi.org/10.1145/3721145.3735111
https://doi.org/10.1145/3721145.3735111

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

and GDDR6-AiM [37, 38, 45], demonstrating that PIM solu-
tions are effective for general matrix operations frequently
observed in neural network applications. However, the ex-
isting PIM solutions cannot handle sparse matrix operations
effectively since those solutions rely on regularly structured
2-dimensional memory cell arrays. Note that general repre-
sentations of sparse matrices include many zero elements,
wasting memory space significantly. Furthermore, existing
PIM solutions cannot handle compressed sparse matrices
efficiently due to the indirect indexing and unbalanced data
allocations observed in compressed sparse matrices.
In this paper, we propose SparsePIM, an efficient PIM ar-

chitecture for accelerating SpMV kernels on 3D-stacked high-
bandwidth memory (HBM). SparsePIM features a hardware
architecture tailored for SpMV and incorporates software-
level optimizations to achieve a significant speedup in SpMV
operations on PIM. First, SparsePIM employs a data com-
pression and allocation format aligned with the DRAM row
structure to leverage row-buffer locality and reduce the over-
head of indirect indexing. SparsePIM also applies K-means-
based column grouping to evenly distribute non-zero ele-
ments across multiple memory banks and mitigate bank-
level load imbalance. Additionally, the software optimization
groups matrix columns that include the same row indices,
thus SparsePIM can improve computational efficiency by
exploiting data parallelism more efficiently. By combining
these hardware and software techniques, SparsePIM can sig-
nificantly improve the performance of SpMV computations
on HBM-based PIM.

We evaluate SparsePIM using a modified DRAMSim3 [48]
simulator. Our evaluation results exhibit that SparsePIM
achieves up to 5.61× speedup compared to SpMV kernels us-
ing the cuSPARSE library on a GPU. In addition, the proposed
DRAM row-based compression format reduces memory us-
age by up to 29.82% compared to the conventional coordinate
(COO) format. The computation engines in SparsePIM can
efficiently parallelize the computations of non-zero elements
with the proposed DRAM row-based data allocation format.
We also estimate the power and area overhead of SparsePIM.
The estimated dynamic power consumption of SparsePIM
is 31.85 𝜇𝑊 , which meets the thermal design power (TDP)
requirements of the existing HBM-PIM.

The following are the contributions of our work.

• We propose SparsePIM, an efficient software/hardware
approach for accelerating SpMV computations on
HBM-based PIM architecture. SparsePIM’s software
optimizations and hardware design are specifically tai-
lored to the hierarchical structure of an HBM stack.
• We present efficient software optimization techniques
that ensure load balancing in PIM operations and en-
able effective accumulation of partial results.

• We propose an effective sparse compression format
tailored to the memory cell structures of DRAM.
• We propose an efficient and lightweight hardware ar-
chitecture and instruction set to support SpMV in
HBM-based PIM architecture.
• We implement SparsePIM using a cycle-accurate
DRAM simulator to evaluate the effectiveness of the
proposed software/hardware co-design approach.

2 Background
2.1 Sparse compression formats
Although compression formats are widely deployed for re-
ducing the memory footprint of sparse datasets containing
a large fraction of zero values, compressed data structures
work as critical performance hurdles in parallel architectures.
For large-scale applications that rely on SpMV computations,
sparse data are represented as large matrices where most ele-
ments are zero. Since zero elements waste storage space and
computational resources for multiplications, sparse matrices
can be efficiently represented by storing only non-zero values
and their corresponding indices using compression formats.
Modern applications that handle sparse data typically employ
compression formats such as coordinate (COO), compressed
sparse row (CSR), and compressed sparse column (CSC) for-
mats to represent sparse matrices [71]. Using these compres-
sion formats, only non-zero elements are stored along with
two-dimensional coordinates in a matrix (i.e., COO) or index
pointers to the starting positions of column/row indices (i.e.,
CSR/CSC formats). Note that processors fetch non-zero ele-
ments using the corresponding indices for computing sparse
data structures. Hence, computing kernels that handle com-
pressed sparse matrices often create heavy irregular memory
accesses to provoke extremely low utilization in processing
units and memory systems [36, 90, 91].

In order to handle such performance hurdles by the com-
monly used sparse data structures, researchers have pro-
posed more efficient compression formats specifically tai-
lored for target processors such as GPUs [4, 14, 51, 60, 79]
and domain-specific architectures [47, 52, 53, 68]. Such com-
pression formats can offer more optimized memory access
patterns and/or enhanced parallel computations. However,
sparse compression formats are not well-explored for PIM
architectures that rely on two-dimensional data cell struc-
tures.

2.2 SpMV computation methods
SpMV computation can be performed using two different
approaches, inner product and outer product, as depicted in
Figure 1. The inner product approach performs a conven-
tional dot-product operation between each matrix row and
an input vector. By the inner product method, each element

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(a) Inner product

(b) Outer product

Figure 1: Comparison of SpMV computation

of a result vector is computed by accumulating partial prod-
ucts computed from elements in a single matrix row and
the corresponding elements in an input vector, as shown in
Figure 1a. For dense matrix operations, the inner product
approach can exploit efficient data-level parallelism in a ma-
trix row and an input vector, and the input vector elements
can be reused in local buffers. However, when sparse data
structures are involved, the inner product method requires
complex index matching with the input vector. Furthermore,
since each row of a sparse matrix contains a different number
of non-zero elements, the number of multiplications and ac-
cumulations varies for each output element. Such irregular
processing in SpMV computations can lead to significant
performance degradation in regularly organized processing
engines [8, 15, 61].

On the other hand, the outer product approach performs a
vector-scalar multiplication between a matrix column and a
single element of an input vector to compute a partial result
vector as depicted in Figure 1b. The partial output vectors
computed from the matrix columns are accumulated to gen-
erate the final result vector. For SpMV operations, the outer
product approach can perform multiplications between non-
zero elements in a matrix column and a single element in an
input vector to generate partial results associated with the
row indices of the corresponding non-zero elements. Then,
the partial results associated with the same row indices are
accumulated to generate the element in the final result vec-
tor. Unlike the inner product approach, which requires index
matching between non-zero elements in a row and an input
vector, the outer product approach performs simple element-
wise multiplications between a non-zero vector and a scalar.
The generated partial results associated with row indices can
be accumulated immediately once generated. However, the
outer product approach requires additional memory space
for storing the intermediate partial results. Thus, efficient
dataflows and buffer management mechanisms are essen-
tial to mitigate the storage overhead of the outer product
method [25, 65].

BG 12

BG 14

BG 15

BG 13

TSV

pChannel 3

BG 0

BG 2 BG 3

BG 1

TSV

…

…
B1

B0

B3

B2

pChannel 0

Logic die

DRAM die

DRAM die

DRAM die

DRAM die

xPU

TSV

Micro bump

R
o

w
 d

ec
o

d
er

Column decoder

Cell array

InterposerRow buffer

Figure 2: HBM architecture and organization

2.3 High bandwidth memory
High bandwidth memory (HBM) is an advanced memory
technology that employs 3D-stacked memory dies mounted
on a silicon interposer and vertically connected data channels
to provide higher data bandwidth and energy efficiency com-
pared to traditional DRAM [7, 9, 23, 40–43, 56, 57, 63, 67, 76].
As illustrated on the right side of Figure 2, the multiple mem-
ory dies in HBM are interconnected using through-silicon
vias (TSVs), which allow high-speed data communication
between layers [23, 32]. In HBM, multiple memory dies are
stacked on a logic die (also called a base die) that includes
peripheral circuits such as I/O drivers, data buffers, and a
physical interface (PHY). The logic die interfaces with pro-
cessors (xPU in the figure) through the silicon interposer
by managing data transfers from the stacked memory dies.
A memory die includes DRAM cells that store data. Each
memory die works like a traditional DRAM chip.

The left side of Figure 2 depicts the hierarchical structure
of HBM. A single HBM stack includes multiple channels,
and each channel supports 128-bit wide data transfers. Each
channel is logically divided into two 64-bit pseudo-channels
(denoted as pChannel in the figure) to increase parallelism in
memory operations. The two pseudo-channels within a phys-
ical channel have separate command and address buses but
share the same 128-bit data channel. Each pseudo-channel
covers several bank groups (BG in the figure), and each bank
group includes multiple banks (B in the figure).

A bank is a basic data cell unit that operates independently
by memory read and write commands. Each bank includes
data cells organized into multiple rows as shown in Figure 2.
During a read operation, a specific row is activated using a
row address, and then the data in the activated row is loaded
into the row buffer (i.e., sense amplifiers) via bit lines. The
data in the row buffer is further multiplexed by a column
address, then the selected column data is read out. Namely,
a row represents the basic access granularity within a bank.
In HBM2, the size of a single row is 1 KB [57].

2.4 HBM-based PIM
Processing-in-memory (PIM) is an architectural idea that
integrates computation capabilities into memory compo-
nents to reduce the performance overhead caused by data

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

SIMD multiplierSIMD adder

CMD registerData register

Register file

SIMD FPU

BG 0 BG 1

TSV

pChannel 0

Row buffer
R

o
w

 d
ec

o
d

er

Column decoder

Cell array

BG 3

B1

B0

B3

B2

BG2

Figure 3: HBM-PIM architecture

transfers from external memory. Recently, a memory ven-
dor demonstrated an HBM-based PIM solution, called HBM-
PIM [31, 39, 44]. In order to implement a PIM-enabled die,
HBM-PIM integrates SIMD-like processing units and register
files into a memory die as shown in Figure 3. Note that these
processing elements occupy the die area, thus, half of the
rows in a DRAM bank are replaced with the logic elements
on a PIM die.
HBM-PIM supports two distinct operation modes, a

single-bank (SB) mode and an all-bank (AB) mode. In SB
mode, HBM-PIM behaves like conventional memory devices,
namely, memory commands are issued to only a single tar-
get bank specified by a bank address. In contrast, AB mode
is designed to facilitate PIM operations in HBM-PIM to ex-
ploit parallel operations by activating multiple banks. In AB
mode, a bank address is ignored, thus, memory commands
are broadcast to all banks simultaneously. To initiate PIM
operations of HBM-PIM, a host processor transfers a spe-
cial command sequence to change the operation mode of
HBM-PIM to AB mode. Then, the PIM dies in HBM-PIM can
concurrently execute PIM instructions triggered by column
commands.
HBM-PIM supports several RISC-type instructions to

perform PIM operations. The instruction set of HBM-PIM
includes control, arithmetic, and data movement instruc-
tions [44]. Since HBM-PIM is primarily designed to support
general matrix-vector operations, HBM-PIM does not in-
clude instructions that can support indirect indexing, which
is observed frequently in sparse data processing.

3 Related work
SpMV on PIM: SpMV operations are memory-intensive
kernels since SpMV can create many irregular memory trans-
actions from its indirect indexing mechanisms. Several re-
searchers have explored PIM-based solutions that can ac-
celerate SpMV computations by leveraging high internal
bandwidth and parallel computation capabilities of PIM ar-
chitectures.
SpaceA is a PIM solution for accelerating SpMV opera-

tions on hybrid memory cube (HMC) [88]. SpaceA employs

two-level content-addressable memories (CAMs) to perform
cache tag matching more efficiently in processing engines.
SpaceA also utilizes software optimizations to distribute non-
zero elements evenly across multiple memory banks. SpaceA
assigned the row data of sparse matrices to rows in a bank to
optimize row data accesses. SpaceA exploits a unique feature
of HMC that allows internal data movement across memory
dies. However, currently, HMC is not a standardized memory
device, thus, the impacts of SpaceA may be limited.
pSyncPIM is an HBM-based approach that can accel-

erate SpMV and sparse triangular solve (SpTRSV) opera-
tions [5]. pSyncPIM proposes a partial synchronous exe-
cution mode that can accommodate irregular accesses and
computations more efficiently. pSyncPIM employs semi-
independent bank operations to minimize idle times of PIM
operations. pSyncPIM tackles the synchronous executions in
HBM-PIM, however, pSyncPIM does not address the ineffi-
cient indexing caused by conventional compression formats.
SpDRAM [27] is a DRAM-based SpMV acceleration ap-

proach that exploits bit-serial operations [74]. SpDRAM
leverages in-DRAM bitwise computations to perform arith-
metic operations. SpDRAMpresents a data allocationmethod
that can support bit-serial operations efficiently. However,
SpDRAM requires complex bit-level control mechanisms to
fully exploit the bit-serial operations.
PIM architectures: PIM is an emerging research area ac-
tively explored by both industry and academia. Major mem-
ory vendors have demonstrated their PIM solutions based
on existing memory technology. Samsung presented HBM-
based PIM solutions [31, 39, 44]. AiM is a PIM architecture im-
plemented on GDDR6 [16, 37, 38, 45]. UPMEM is a commer-
cialized PIM solution based on DRAM [10, 64]. Academic re-
searchers have also presented PIM architectures based on 3D-
stackedmemory technology [1–3, 11, 21, 25, 58, 69, 81, 89, 92–
96]. PIM solutions have been further investigated for modern
large-scale AI systems [18, 64, 73].
SpMV computations: As SpMV is a core compute kernel
for a wide range of applications, researchers have presented
efficient hardware/software solutions for SpMV. In order to
exploit data locality in SpMV kernels, researchers have pro-
posed software optimizations such as tiling [8, 12, 15, 46, 59,
61] and reordering [12]. Several researchers have worked on
hardware accelerator architectures that can handle irregular
computations and memory accesses in SpMV kernels more
efficiently [13, 19, 19, 28, 33, 47, 49, 53, 65, 68, 72, 77, 78, 83].

4 Motivation
The performance overhead of SpMV kernels becomes more
critical as modern applications employ large-scale sparse
data structures. In order to handle the storage overhead of
numerous zero elements, SpMV kernels typically employ

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

1,000

2,000

3,000

4,000

2048 4096 8192 16384 32768

Ex
ec

ut
io

n
cy

cle
(K

)

Matrix size(N x N)

Figure 4: Execution cycle of SpMV on HBM-PIM by the
size of a sparse matrix

sparse compression formats. However, as described in Sec-
tion 2.1, compressed sparse data structures include index
information along with non-zero elements (NZEs), thus, the
indirect indexing in compressed sparse matrices causes sig-
nificant inefficiency in both processing units and memory
systems [26, 35]. Furthermore, non-zero elements are not
uniformly distributed across columns/rows in a sparse ma-
trix, leading to significant load imbalance in computations
in columns/rows. For example, graph data structures used in
graph analytics and neural network applications often follow
power-law distributions in the number of non-zero elements
per row or column. Note that the overall performance of
SpMV kernels is usually determined by the row/column that
includes a large number of non-zero elements. As a result,
such applications experience serious performance degrada-
tion when processing rows or columns in parallel [22, 30]
In particular, the performance issues caused by load im-

balance in SpMV should be addressed seriously when SpMV
kernels are executed on PIM-based architectures since the
processing units in PIM architectures are tightly coupled
with banks or bank groups in a memory package. Note that
the row/column data in a large sparse matrix are allocated
across multiple banks (or bank groups) in a memory package
and data communications across banks (or bank groups) are
typically restricted. Hence, if non-zero elements are non-
uniformly allocated in multiple banks, it causes significant
performance drops due to imbalanced computations among
bank-level processing engines. In order to mitigate such is-
sues, software-based optimizations are required to balance
the distribution of non-zero elements across banks (or bank
groups) associated with the processing units.
To accommodate SpMV computations efficiently on PIM

platforms, the hardware architectures in PIM or logic dies
are specifically designed to support sparse data structures.
However, commodity PIM solutions such as HBM-PIM and
GDDR6-AiM are primarily tailored for general matrix-vector
operations. In order to investigate the performance burdens
by large-scale sparse matrix operations, as shown in Figure 4

we measure the performance of SpMV formatted in a gen-
eral matrix structure using a DRAMsim3-based HBM-PIM
simulator [48]. Our experiment results exhibit that the ex-
ecution cycles of the SpMV kernel increase exponentially
as the matrix size grows. Our analysis reveals that the cur-
rent HBM-PIM architecture is significantly inefficient for
computing large-scale sparse matrices.

5 SparsePIM
In this paper, we propose SparsePIM, an efficient PIM ar-
chitecture optimized for SpMV computations. As discussed
in the previous section, PIM solutions require software-
based optimizations and specific hardware architectures
to tackle the performance overhead of large-scale SpMV
kernels. SparsePIM employs software approaches that can
distribute non-zero elements evenly across multiple banks
and bank groups. For this purpose, SparsePIM utilizes a K-
means-based simple partitioning algorithm. We also propose
a new sparse data compression format, called a DRAM row-
aligned format (DRAF), tailored to the data cell structures of
DRAM. Our proposed compression format minimizes data
movement between DRAM data cells and processing en-
gines to improve processing efficiency for generating partial
results of outer product computation for SpMV. Moreover,
SparsePIM incorporates partial result accumulators asso-
ciated with bank groups to reduce the number of partial
products quickly. By combining both software and hardware
approaches, SparsePIM can perform large-scale SpMV com-
putations efficiently within an HBM stack.

SparsePIM performs SpMV operations using an outer prod-
uct approach, as described in Section 2.2. The outer product-
based SpMV computations by SparsePIM are executed hier-
archically based on the hierarchical structures in an HBM
stack (see Section 2.3. A SIMD floating-point unit (FPU) as-
sociated with two neighboring banks (i.e., even/odd banks
within a bank group) computes vector-scalar multiplications
using non-zero elements in a matrix column and a single
element from an input vector. The corresponding bank group
includes a bank group accumulator (BGA) that accumulates
partial results generated from the banks within the bank
group.

5.1 Software optimizations
SparsePIM performs vector-scalar multiplications for the
outer product operation of SpMV using processing engines
in multiple banks. Hence, as described in Section 4, non-zero
elements in a sparse matrix should be loaded evenly across
banks. Furthermore, SparsePIM’s efficiency can be improved
if non-zero elements associated with the same row indices
are grouped within a single bank group. Note that SparsePIM
performs accumulations of partial results using bank group

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

0 1 3 4 5 6 8 972 10

Centroid
column

Long
distance

No. of NZEs met
à Finish grouping

0 2

BG 0

BG 4 BG 3

BG 1

pChannel

G0

Short distance
à Grouped

Pick
centroid

Check distance (feature)
for clustering

Check No. of
NZEs in group

10 0 20

Clustering
columns

Figure 5: Simplified execution flow of grouping
columns based on row index similarity.

accumulators. Consequently, SparsePIM employs software-
based optimizations to achieve higher computational effi-
ciency.
Figure 5 depicts how SparsePIM’s software-based opti-

mization clusters the columns of a sparse matrix. In this
example, we assume the size of the sparse matrix is 10×10
and the colored blocks represent non-zero elements (NZEs)
in the matrix. First, SparsePIM selects a reference column
randomly as a centroid column (column 0 in the figure). Then,
SparsePIM computes the row-index similarity (i.e., the num-
ber of NZEs that share the same row indices with NZEs in
the reference column) of a different column based on the
centroid column. In this example, column 1 and column 2
have row-index similarities of 1 and 3, respectively, when
compared to column 0. As a result, column 2 is grouped with
the centroid column (i.e. column 0) and assigned to the same
bank group. Note that the grouped columns include more
NZEs that share the same row indices, thus, more partial
results generated by the outer product operation can be effi-
ciently accumulated by a bank group accumulator (BGA).
We choose K-means as the base clustering algorithm for

sparse matrices [75]. K-means clustering exhibits low com-
putation cost compared to other clustering algorithms [20,
70, 85]. Since SparsePIM incorporates a fixed number of
bank groups associated with processing units, we set the
number of clusters equivalent to the number of PIM bank
groups when K-means clustering is applied. However, simple
K-means clustering cannot guarantee an even distribution of
non-zero elements across bank groups. In order to address
this issue, SparsePIM employs a modified clustering algo-
rithm, referred to as bounded cap K-means, and an additional
refinement step for balancing the distribution of non-zero
elements further.

SparsePIM’s software optimization algorithm is described
in Algorithm 1. The algorithm receives the data structures,
nNZE(c) and fmap(c), of each column in the sparse matrix.
nNZE(c) denotes the number of non-zero elements (NZEs) in
the column c, and fmap(c) is a feature map that represents the
mapping information of non-zero elements. The behavior
of the algorithm is controlled using the hyperparameters.

Algorithm 1 Software optimizations based on K-means
Input: col.nz[] (each c has nNZE(c), fmap(c)), k, maxIter,
refineIter, delta, th
Output: col.bg[] (where col.bg[c] = assigned bg index
(0...k-1))

1: 𝑡𝑜𝑡𝑎𝑙𝑁 =
∑

𝑐 𝑛𝑁𝑍𝐸 (𝑐)
2: 𝑚𝑖𝑛𝐶𝑎𝑝 = (𝑡𝑜𝑡𝑎𝑙𝑁 /𝑘) · (1 − 𝑑𝑒𝑙𝑡𝑎)
3: 𝑚𝑎𝑥𝐶𝑎𝑝 = (𝑡𝑜𝑡𝑎𝑙𝑁 /𝑘) · (1 + 𝑑𝑒𝑙𝑡𝑎)
4:
5: Bounded cap K-means (iteration no. = maxIter):
6: Initialize centroids[]← random columns
7: for each column c in col.nz[] do
8: for each bgIdx = 0 . . . 𝑘 − 1 do
9: if 𝑛𝑁𝑍𝐸 (𝑐𝑜𝑙 .𝑏𝑔[bgIdx]) + 𝑛𝑁𝑍𝐸 (𝑐) ≤ 𝑚𝑎𝑥𝐶𝑎𝑝

then
10: 𝑐𝑜𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑓𝑚𝑎𝑝 (𝑐), 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 [bgIdx])
11: if 𝑛𝑁𝑍𝐸 (𝑏𝑔) < 𝑚𝑖𝑛𝐶𝑎𝑝 then
12: 𝑐𝑜𝑠𝑡 ← 0.5 × 𝑐𝑜𝑠𝑡 (discount cost)
13: end if
14: end if
15: assign c to the col.bg[bgIdx] with the smallest cost
16: end for
17: if no suitable cluster found then
18: assign c to the smallest 𝑛𝑁𝑍𝐸 (𝑐𝑜𝑙 .𝑏𝑔[bgIdx])
19: end if
20: end for
21: Update centroids (avg. each cluster’s fmap(c))
22:
23: Refinement (iteration no. = refineIter):
24: Identify "big cluster" and "small cluster" in col.bg[]
25: for each column c do
26: if moving c from big cluster to small cluster and

distance change < th then
27: Move c to small cluster
28: end if
29: end for
30: if no improvement then
31: break
32: end if
33:
34: return col.bg[]

k specifies the number of partitions, corresponding to the
total number of bank groups for PIM operations in the HBM
stack. delta adjusts the min/max boundary condition (i.e.,
minCap and maxCap) of the number of NZEs in each clus-
ter. Namely, delta adjusts the deviations from the average
number of NZEs in each cluster. Note that all clusters should
contain the same number of NZEs to ensure balanced PIM
operations across clusters (i.e., bank groups). However, en-
forcing this constraint may reduce the row-index similarity

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

within a cluster. SparsePIM utilizes delta to trade off the load
balancing of PIM operations and row-index similarity. th
sets the distance threshold for balancing the distribution of
NZEs across clusters. Finally, maxIter and refineIter define
the number of iterations for the bounded cap K-means and
refinement steps, respectively.

Bounded cap K-means: SparsePIM exploits a K-means
clustering algorithm to group sparse matrix columns that
share the same row index values. Note that a traditional
K-means algorithm clusters elements based on Euclidean dis-
tance between elements. SparsePIM’s bounded cap K-means
algorithm computes the Euclidean distance between columns
using the feature maps (i.e., fmap), which represent the row
indices of NZEs in the column. The clustering process begins
by randomly selecting a centroid column for each cluster.
Similar to traditional K-means, SparsePIM iteratively updates
the centroid of each cluster based on the computed Euclidean
distances from the centroid. SparsePIM uses the row-index
similarity calculated using the feature maps of the sparse
matrix columns as distances. However, traditional K-means
cannot guarantee the even distribution of non-zero elements
across clusters since each column includes a divergent num-
ber of non-zero elements, and the algorithm only considers
the distances between feature maps. Hence, SparsePIM sets
the constraints (i.e., minCap and maxCap) that define the
allowable range of NZEs per cluster. The bounded-cap K-
means process terminates either when the maximum num-
ber of iterations is reached or when the centroids no longer
change.

Refinement: SparsePIM further leverages the refinement
process to guarantee load balancing in PIM operations per
bank group. Since the K-means-based clustering algorithm
primarily considers the row-index similarity from the cen-
troids, the clusters may exhibit significant variation in the
number of NZEs. SparsePIM applies the refinement step to
reduce imbalances in NZE distribution among bank groups.
In each iteration, SparsePIM picks a big cluster (i.e., the clus-
ter containing NZEs more than the average) and a small
cluster (i.e., the cluster containing fewer NZEs). SparsePIM
tries to move an arbitrary column from the big cluster to the
small cluster and evaluate the distance change. If the distance
change is less than the threshold (th), SparsePIM allows the
move of the selected column. The refinement process con-
tinues until the maximum number of iterations (refineIter) is
reached, or no further improvements can be made.
One of the main reasons SparsePIM employs a K-means-

based clustering approach is its relatively fast execution
time compared to other methods. In order to evaluate this
advantage, we compare our proposed software optimization
methodology with the preprocessing technique presented
in SpaceA [88]. Whereas SparsePIM performs the column-
based grouping, SpaceA clusters rows of a sparse matrix.

Column index (7)

Row 1KB

28B 448B

Row index (7 x 16) Partial result buffer

288B

Rsvd

4B 224B

NZEs (7 x 16)

14B

Vector (7) Rsvd

18B

Figure 6: DRAM row-aligned format for a DRAM row

SpaceA proposes a preprocessing strategy that improves
computational efficiency through data reuse by organizing
partitioned rows such that their internal non-zero elements
share similar column indices. This preprocessing consists of
two stages: assignment of rows to logical PEs and assignment
of logical PEs to physical PEs. Among these, the first stage
dominates the overall execution time, resulting in a time
complexity of 𝑂 (𝑁𝑃𝐸 × 𝑁𝑁𝑍𝐸 × log𝑁𝑁𝑍𝐸).
In contrast, SparsePIM’s optimization technique assigns

columns to clusters during the bounded cap K-means process
by comparing all data points (n) based on the total average
number of non-zero elements (same as 𝑁𝑁𝑍𝐸), (d) based on
the average number of non-zero elements per column, and
iterating over the k clusters. This results in a time complex-
ity of 𝑂 (𝑛𝑘𝑑). Since the clustering process is repeated for t
iterations, the overall complexity becomes 𝑂 (𝑛𝑘𝑑𝑡). For the
refinement process, all clusters are evaluated to identify a
big cluster and a small cluster, and the columns within the
selected big cluster are traversed to determine whether they
should be reassigned. Repeating this process for refineIter
iterations (r) yields a complexity of 𝑂

(
𝑘 × 𝑛

𝑘
× 𝑟

)
= 𝑂 (𝑛𝑟).

Since both the K-means iterations (t) and the refinement
iterations (r) are much smaller than n (i.e., t, r ≪ n), the
final time complexity is dominated by 𝑂 (𝑛𝑘𝑑). In conclu-
sion, the time complexities of the preprocessing strategies in
SpaceA and SparsePIM depend on the relative magnitudes
of d and log(𝑁𝑁𝑍𝐸), and may vary depending on the distri-
bution of non-zero elements in the matrix. As a result, the
two approaches exhibit different performance characteristics
across varying sparsity patterns.

5.2 DRAM row-aligned format
SparsePIM employs a column-oriented sparse compression
format designed to align with DRAM’s row structure. Note
that the existing sparse compression formats include index in-
formation that represents the positions of non-zero elements
in a sparse matrix. However, such indexing mechanisms re-
quire indirect accesses, which are significantly inefficient
for DRAM’s two-dimensional data cell structures. In order
to address such issues, SparsePIM adopts the outer prod-
uct approach for SpMV and an efficient compression format
aligned with DRAM rows. We call this sparse compression
format DRAF (DRAM row-aligned format).

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

Figure 6 exhibits the data organization formatted by DRAF.
In each data field, the number in brackets indicates the num-
ber of elements. We assume that the size of a single element
in matrices and vectors is 2 bytes (i.e., FP16 precision) and a
single column/row index occupies 4 bytes. Since SparsePIM
implements its PIM architecture on HBM2, we assume that
DRAF is applied based on 1 KB of DRAM row size [57]. Based
on DRAF, SparsePIM assigns necessary operands and indices
within the data field of a single DRAM row as shown in the
figure. Note that SparsePIM performs an outer product oper-
ation between non-zero elements (NZEs) in a matrix column
and a single element in a vector (see Section 2.2). In order to
support the outer product operations using the data in a row
buffer, SparsePIM encapsulates a column index, NZEs, and
the corresponding row indices from a matrix column. Under
the HBM2 configuration, SparsePIM can store up to seven
matrix columns within a single DRAM row, and each column
can contain a maximum of 16 NZEs. If a single matrix col-
umn includes more than 16 NZEs, the remaining NZEs are
assigned to a new column data group that retains the same
column index. Following the DRAF structure, SparsePIM also
allocates a data field for storing the computed partial results
(i.e., partial result buffer in Figure 6). Unlike the prior outer
product-based SpMV accelerators, SparsePIM utilizes the
DRAM row buffer to store the partial results, thus, SparsePIM
does not require additional storage space. Note that DRAF
already includes the row indices field, thus, SparsePIM does
not store row indices associated with the partial results. The
partial result field can also hold up to 112 partial results. The
scalar elements from the input vector are stored in the vector
field. Since a single DRAM row includes seven columns in
the matrix, SparsePIM also stores the corresponding seven
vector elements with DRAF. DRAF includes reserved fields
(marked as Rsvd) to align with the 32-byte DRAM column
access granularity.

5.3 Hardware architecture

In order to support the vector-scalar multiplications and
the accumulations of partial results, SparsePIM incorporates
processing units such as SIMD FPU and bank group accumu-
lators (BGAs). The left side of Figure 7 describes the hard-
ware components added to a bank group in an HBM stack.
As explained in Section 2.3, a single bank group of HBM2
consists of four banks. Similar to prior HBM-PIM, SparsePIM
relies on a register file and a 16-lane SIMD FPU that sup-
ports FP16 multiplications and additions associated with a
bank [31, 39, 44]. Note that the number of lanes in the SIMD
FPU is designed to align with the 32-byte DRAM column ac-
cess granularity. As shown in the figure, a single SIMD FPU
is shared by two banks (i.e., even and odd banks). SparsePIM
stores the PIM instructions generated from a microkernel in

Even bank

Odd bank

Register

Register

SIMD FPU

Even bank

Odd bank

Register

Register

SIMD FPU
BG

accumulator

TSV area

PIM mode controller

Reg Odd bankOdd bank Reg

Index comparator

Adder
controller

Index queue

Reg R/W
unit

Comparator

Reg R/W
unit

Index queue

Reg Even bankEven bank Reg

… …

Flush controller

BG Accumulator

Figure 7: Hardware architecture of processing units in
a bank group

Table 1: PIM instructions added in SparsePIM

(a) SparsePIM instructions

Operation Source A Source B Destination
BACC Row buffer Data register BGA
BMOV Row buffer - Scalar register

(b) Instruction format

31 30 29 28 27 26 25 24 23 22 21 ... 8 7 6 5 4 3 2 1 0
BACC OPCODE Unused SRC0 Unused SRC0 Idx Unused
BMOV OPCODE Unused

command registers, and these instructions are triggered by
memory commands like HBM-PIM. As a result, SparsePIM
can operate using conventional DRAM command sequences.
5.3.1 SparsePIM instructions.

SparsePIM adds two PIM instructions, BMOV and BACC,
to the base instruction set of HBM-PIM [44]. Table 1 presents
the instruction formats and target components of the newly
added instructions. BMOV moves the selected element from
the vector field of the row buffer data (see Figure 6) into
the scalar register. Note that SparsePIM performs vector-
scalar multiplications for outer product operations using a
column of a matrix and an input vector element. BMOV reads
the target vector element selected by SRC0Idx from the row
buffer and stores the read element in the scalar register. BACC
is used for accumulating partial results with the bank group
accumulator (BGA). When BACC is executed, SparsePIM
reads eight index values from the row indices field in the row
buffer, then transfers the index values to the row index queue
in BGA. BACC selects the target index data using SRC0Idx.
The corresponding partial results in the data register are
also transferred to the index queue simultaneously. Once
the index queue is filled, BGA can initiate the accumulation
process.
5.3.2 Bank group accumulator (BGA).

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

The right side of Figure 7 depicts the architecture of a
BGA. SparsePIM exploits BGAs to accumulate the partial
results associated with the same row index, thus, SparsePIM
can reduce the number of partial results effectively. Since all
banks within the same bank group share a single BGA, the
partial results computed by these banks are aggregated in the
BGA. Note that SparsePIM relies on software optimizations
to allocate columns with high row-index similarity to the
same group, as described in Section 5.1. Hence, the BGA
within a bank group can find the partial products associated
with the same row index with a higher probability.

A BGA incorporates two index queues where each entry
contains a partial result along with the corresponding row
index. When SparsePIM executes the BACC instruction, the
row index values in the row indices field in a row buffer and
the partial results in the data registers are transferred to
the entries in the index queue. Note that the size of a single
DRAM column is 32 bytes, thus, SparsePIM fills eight entries
per BACC instruction. In this paper, we set the depth of each
index queue to 16, considering the power constraint of an
HBM stack.
The BGA performs the accumulation process using an

index comparator unit composed of a comparator, a flush
controller, register read/write units, and an adder controller.
In order to accumulate partial results within a bank group,
the BGA matches row index values one by one from the
index queues and executes the corresponding accumulation
operations [17, 55, 72, 84]. The index comparator inspects
the head entries of the index queues to compare the row in-
dex values. If the index values match, BGA accumulates the
partial results associated with the row index. Then, the accu-
mulated result is assigned to one of the register read/write
units, and zero is allocated to another register read/write
unit. The register read/write units write the accumulated
result and zero back to the target data registers, thus one
of the data registers can contain the merged partial result.
If the index values in the head entries are not equivalent,
BGA dequeues the head entry that has a smaller index value.
Note that row indices are pre-sorted by SparsePIM’s soft-
ware optimization while the elements of a sparse matrix are
compressed and encapsulated using the DRAM row-aligned
format (DRAF). This accumulation process is repeated until
the index queues are empty.
To prevent overflows of the index queues, the BGA in-

cludes a flush controller that can clear the index queues.
Since the accumulation process of BGA performs the index
matching one-by-one, consecutive BACC instructions may
cause the index queues to overflow. To address this, the BGA
flushes the index queues if one of the index queues includes
more than nine valid entries and a BACC instruction is exe-
cuted. This flushing mechanism is required to maintain the
sorted order of row indices within the index queues. The

adder controller in the BGA is designed to utilize the SIMD
adder in HBM-PIM more efficiently. The adder controller
transfers operands from the register read/write units to the
FP adders. Note that the SpMV microkernel of SparsePIM
uses only the SIMD multiplier for vector-scalar multiplica-
tions of the outer product approach, thus, the SIMD adder
remains idle. The adder controller utilizes this idle resource
by allocating partial results to the SIMD adder when the
BACC instruction is executed.

5.4 Execution flow
We now describe the overall execution flow of SparsePIM.
Initially, HBM is set to single-bank (SB) mode to operate the
HBM stack as a standard memory device. SparsePIM per-
forms the software optimizations to partition the columns of
a sparse matrix and balance the number of non-zero elements
across the bank groups in the target HBM stack. SparsePIM
compresses the sparse matrix and the input vector using
the DRAM row-aligned format (DRAF) as described in Sec-
tion 6.5. Then, SparsePIM stores the formatted data to the
target bank groups on PIM dies of the HBM stack.
In order to enable the PIM operations of HBM-PIM,

SparsePIM switches the operation mode to all-bank (AB)
mode. Then, SparsePIM programs the compiled PIM instruc-
tions for SpMV operations to the command registers in the
bank groups. SparsePIM initiates the execution of the PIM
instructions by issuing DRAM commands for PIM operations.
Since the HBM stack is set to AB mode, all PIM operations
of the bank groups on PIM dies are synchronized.
SparsePIM performs the vector-scalar multiplications of

the outer product SpMV computation as follows. Using the
BMOV instructions, SparsePIM reads one of the vector ele-
ments in the vector field in the row buffer of the bank and
stores it in the scalar register. Then, SparsePIM performs
vector-scalar multiplications with the SIMD multipliers us-
ing the 16 non-zero elements from the NZEs field in the row
buffer and the vector element in the scalar register. The 16
partial results are stored in the data register.

Next, SparsePIM performs the partial result accumulations
using the bank group accumulator (BGA). SparsePIM initi-
ates the accumulation process using the BACC instruction.
Then, the row index values in the row index field in a row
buffer are transferred to the index queues in the BGA. Since
the size of a single index value is 4 bytes, SparsePIM issues
two DRAM column commands to load 64 bytes of the row
index data. The BGA operates in a pipelining manner as
explained in the previous section. The accumulated partial
results are then written back to the data register.
SparsePIM repeats the vector-scalar multiplication and

accumulation process seven times since a DRAF encapsulates
seven columns of the sparse matrix. Finally, the accumulated

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

Table 2: Configurations of SparsePIM and baseline

Component Configuration
SparsePIM

Memory type HBM2
No. of pChannels 16
No. of BG / pChannel 4
No. of banks / BG 4
No. of DRAM rows 16,384
No. of DRAM columns 64
No. of SIMD FPU / BG 2
No. of BGA / BG 1
Clock frequency 1 GHz
Timing parameters 𝑡𝐶𝐶𝐷𝑆 = 1, 𝑡𝐶𝐶𝐷𝐿 = 2, 𝑡𝑅𝐴𝑆 = 34,

𝑡𝑅𝑃 = 14, 𝑡𝑅𝐶𝐷𝑅𝐷/𝑊𝑅 = 14,
𝑡𝑅𝑅𝐷𝑆 = 4, 𝑡𝑅𝑅𝐷𝐿 = 6

Baseline (NVIDIA RTX3090)
No. of CUDA cores 10,496
Clock frequency 1,395 MHz / 1,695 MHz
Memory bandwidth 935.8 GB/s
Device memory 24 GB GDDR6X

partial results are stored in the partial result buffer field in
the row buffer using the MOV instruction.

6 Evaluation
6.1 Methodology
For performance evaluation, we employ a cycle-accurate
simulator modified from DRAMSim3 [48]. Detailed system
parameters are summarized in Table 2. In order to align
with the thermal design power (TDP) and logic area assump-
tions of prior work [31, 39, 44], processing logic is placed on
only four DRAM dies, while the remaining four dies contain
no logic circuits. The simulator is configured to accurately
measure the number of execution cycles consumed by both
memory transactions and computation.
To evaluate SpMV performance, we implement a micro-

kernel in assembly based on the custom instruction set de-
scribed in Section 5.3.1. The kernel is loaded throughmemory
write commands into the command register, enabling the
simulator to model realistic instruction execution. Since each
vector-scalar multiplication produces 16 partial results per
oneMUL command, the kernel is written to issue two consec-
utive BACC instructions, each processing eight row indices
from the DRAM row buffer.
For comparison, we also evaluate SpMV execution on an

NVIDIA RTX3090 GPU using cuSPARSE [62] as the baseline.
The RTX3090, based on the Ampere architecture, is used
to ensure architectural consistency with the RTX3080 eval-
uated in pSyncPIM [5]. RTX3090’s specifications are also
included in Table 2. GPU performance is measured using cu-
daEvent, recording the elapsed time from host-to-device data

Table 3: Workload

Workload Domain Size Ratio of NZEs
(w1) cant SE 62,451 5.218E-04
(w2) crankseg_2 SE 63,838 1.744E-03
(w3) lhr71 Chem 70,304 3.092E-04
(w4) pdb1HYS CB 36,417 1.652E-03
(w5) rma10 CFD 46,835 1.082E-03
(w6) soc-sign-epinions SNA 131,828 4.841E-05
(w7) Stanford WGA 281,903 2.910E-05
(w8) bcsstk32 SE 44,609 5.174E-04
(w9) consph SE 83,334 4.387E-04
(w10) ct20stif SE 52,329 5.023E-04
(w11) ohne2 SDS 181,343 3.364E-04
(w12) pwtk SE 217,918 1.248E-04
(w13) shipsec1 SE 140,874 2.004E-04
(w14) ASIC_100k CS 99,340 9.669E-05
(w15) xenon2 MS 157,464 1.559E-04
(w16) webbase-1M WGA 1,000,005 3.106E-06

transfer to host-side retrieval of computation results. The
reported execution time is the average of five independent
runs conducted on a real system to account for execution
time variability inherent in real-world environments. For
SparsePIM, we measure the time from kernel programming
into the command register and initialization to computation
completion and result retrieval.

For power and area analysis, we synthesize the SystemVer-
ilog code using Synopsys Design Compiler. Given that DRAM
manufacturing nodes such as 1ynm, 1znm, and 1anm are fab-
ricated using sub-14nm technology [66, 80], we adopt the
SAED 14nm FinFET process to evaluate the hardware char-
acteristics of our design.

6.2 Workload
The sparse matrix suite used for evaluation is summarized in
Table 3. Each matrix is categorized by its application domain,
number of dimensions, and the Ratio of non-zero elements
(Ratio of NZEs), which is computed as the ratio of the number
of non-zero elements to the total number of matrix elements.
For compact representation, domain names are abbreviated
as follows: SE denotes structural engineering, Chem refers
to chemical process simulation, WGA corresponds to web
graph analysis, CB to computational biology, SNA to social
network analysis, CFD to computational fluid dynamics, SDS
to semiconductor device simulation, CS to circuit simulation,
and MS to material science. Using this benchmark suite,
we evaluate the performance of the proposed architecture,
highlighting the benefits of applying software optimization
and employing the DRAF compression format.

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1.6
9 2.1

6

0

2

4

6

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 GMeanNo
rm

ali
ze

d
pe

rfo
rm

an
ce

Matrix ID

GPU SparsePIM SparsePIM + Opt.

Figure 8: Performance

6.3 Performance
Figure 8 presents the performance evaluation results in terms
of execution time, normalized to the baseline performance of
the GPU using cuSPARSE. The results indicate that standard
deviation, Jaccard similarity score, and DRAF-related over-
head jointly influence the observed performance. SparsePIM
without software optimization (SparsePIM + Opt.) achieves
a geometric mean speedup of 1.69× over the GPU baseline,
and this increases to 2.16× when software optimization is ap-
plied. The maximum speedup observed is 5.61× when both
SparsePIM and software optimization are used. However,
performance degrades slightly in the case of workload w16.
For workloads such as w6, w7, w14, and w16, which ex-

hibit a fraction of non-zero elements smaller than 10−5, the
performance gain compared to the GPU is relatively lim-
ited. This is because the computational cost associated with
zero-padding in DRAF, illustrated in Figure 11, becomes less
dominant as the number of non-zero elements increases. In
particular, workload w16 shows improved standard devia-
tion, as seen in Figure 10, and improved Jaccard similarity
score, shown in Figure 9. However, performance degrada-
tion is observed regardless of software optimization. This is
attributed to the relatively high overhead of converting the
compressed format to DRAF, which increases both memory
usage and the number of operations due to the characteris-
tics of SparsePIM. Since SparsePIM performs synchronous
column access across all banks, an increase in padded zero
elements directly translates to increased computational load
and memory latency.
An analysis of the sparse matrix structure shows that,

except for workloads w1, w6, w7, w9, w14, and w16, all
other workloads contain more than one non-zero element
per column. Among these, w6 has 30.05% of its columns with
only one non-zero element, while in w1, w7, w9, and w14,
approximately 3.75% of columns contain a single non-zero
element. In contrast, w16 exhibits an extreme case in which
91.94% of the columns contain only one non-zero element.
This structure significantly increases the number of padded
zeros required to align the number of values per group to
16 in DRAF, thereby causing substantial overhead in both
memory and computation.

In the case of w7 and w8, the application of software opti-
mization results in a notable performance improvement com-
pared to their unoptimized performance. This improvement
arises because software optimization significantly reduces
memory usage when converting the matrix to DRAF, in con-
trast to the conventional tiling-based approach. Since the
amount of zero padding in DRAF depends on the placement
of matrix columns, the memory footprint and access time
are reduced when column placement is optimized.
For other workloads, SparsePIM outperforms the GPU

baseline, but the additional performance gains from software
optimization are negligible or even negative. This is mainly
due to increased latencywhen the number of rows in a cluster
is not divisible by four, requiring all bank groups to wait until
the remaining rows are processed. In such cases, the benefits
of optimization diminish. Moreover, for workloads where
DRAF memory usage is already low or lower than that of
COO, the added benefit of software optimization is minimal.
Ultimately, SparsePIM performance is highly sensitive to
the number of non-zero elements and the extent of zero
padding, as these factors significantly affect both the number
of memory accesses and the time required to retrieve partial
results.

6.4 Evaluation of software optimization
6.4.1 Row Index Similarity.

In this section, we describe the effects of applying the soft-
ware optimization methodology introduced in Section 5.1
to input matrix clustering. To evaluate the performance im-
provement, we use as our baseline a naive clustering method
that partitions the original sparse matrix into K clusters
by dividing the column vectors sequentially such that each
cluster contains an equal number of columns. This baseline
approach resembles the 1D-partitioning scheme proposed
in [15].
Due to the architectural characteristics of SparsePIM,

higher row index similarity among the non-zero elements
processed within each BG accumulator leads to improved
parallelism and, consequently, enhanced computational ef-
ficiency. To verify this effect, we evaluated the row index
similarity of columns within each cluster using a score based

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

0

1

2

3

4

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16

No
rm

ali
ze

d
Ja

cc
ar

d
sim

ila
rit

y s
co

re

Matrix ID

delta=0.2 delta=0.1 delta=0.05 delta=0.025
Over 72x Over 21x

Figure 9: Jaccard similarity

0

1

2

3

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16

No
rm

ali
ze

d
st

an
da

rd
 d

ev
iat

io
n

Matrix ID

delta=0.2 delta=0.1 delta=0.05 delta=0.025

Figure 10: Standard deviation

on Jaccard similarity. The Jaccard similarity between two
columns 𝐴 and 𝐵 is defined as 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |

|𝐴∪𝐵 | , where 𝐴

and 𝐵 represent the sets of row indices containing non-zero
elements in each column within the same cluster. To assess
overall similarity within a cluster, the Jaccard similarity is
computed for all possible pairs of columns, and the aver-
age of these values is used. This per-cluster average is then
further averaged across all clusters to obtain a final Jaccard
similarity score.
Figure 9 shows the Jaccard similarity score after apply-

ing software optimization, normalized to the unoptimized
baseline. Based on preliminary experiments, the hyperpa-
rameters maxIter, refineIter, and threshold were heuristically
set to 30, 5, and 0.2, respectively. We varied the delta param-
eter, which is an essential hyperparameter controlling load
imbalance, and visualized its impact on the Jaccard similarity
score.
Experimental results show that, across nearly all work-

loads and delta values, row index similarity significantly im-
proves compared to the baseline. In particular, workloads w7
and w16 exhibit up to 72× and 21× increases, respectively, in
Jaccard similarity score across all delta values. These results
indicate that the clustering methodology effectively groups
columns with highly overlapping row indices. Consequently,
when each cluster is mapped to a BG and accumulation is
performed using the BGA, the throughput of accumulation
operations can be substantially improved.
6.4.2 Load Imbalance.
Our software optimization methodology reduces the im-

balance in the number of non-zero elements across clusters
by first applying bounded cap K-means and then refining
the distribution through an additional Refinement phase. We

10.45 12.48 10.79 33.04

0

2

4

6

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16No
rm

ali
ze

d
m

em
or

y u
sa

ge

Matrix ID

SpaceA DRAF

Figure 11: Memory usage of COO, SpaceA’s method,
and DRAF

use the standard deviation of the number of non-zero ele-
ments across clusters as the evaluation metric to quantify the
effectiveness of this approach. A lower standard deviation
indicates that the clusters’ number of non-zero elements is
closer to the mean, signifying a more uniform data distribu-
tion. Figure 10 illustrates the results normalized against the
baseline for the case where Refinement is applied. Across all
of the sparse suite workload inputs, the software optimiza-
tion shows a normalized standard deviation of less than 1
when hyperparameter delta is smaller than 0.05, indicating
that each cluster’s number of non-zero elements is more
evenly distributed compared to the baseline. As the number
of non-zero element balanced clusters is fed into the BGAs
for accumulation, the runtime discrepancy among accumula-
tors diminishes, enhancing resource utilization and reducing
idle time overall.

6.5 Evaluation of DRAF
Figure 11 compares the memory usage of the proposed DRAF
format with the conventional COO format and the mapping

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

method previously proposed by SpaceA [88]. The sparse
suites are arranged in the same order as Table 3. For DRAF,
we include the memory space used for storing vectors and
sparse matrices, including the empty area, while exclud-
ing only the space reserved for partial result storage. In
most cases, except for w3, w6, w7, w14, and w16, DRAF
reduces memory usage by an average of 21.28% compared
to COO, with the most significant reduction observed in
w2, where memory usage decreases by up to 29.82%. How-
ever, in the case of w16, DRAF increases memory usage by
up to 3.7× compared to COO. This overhead occurs when
many columns contain fewer than 16 non-zero values or
when the number of values per column is not divisible by 16.
Nonetheless, since DRAF aligns data according to the access
granularity required for computation, it can tolerate such
overhead in a limited number of cases.
In contrast, the mapping method proposed by SpaceA

stores matrix values by mapping each DRAM row to one
matrix row, and under the configuration assumed in this
work (1KB row buffer, 2B data, and 4B for each row and
column index), this approach can waste up to 1,014 bytes of
space per row. In the worst case, only a single data element
can reside in a DRAM row, resulting in severe inefficiency. As
a result, SpaceA’s mapping method increases memory usage
by between 1.2× and 33.0× compared to COO. In particular,
w6, w7, w14, andw16 exhibit more than 10× overhead, which
correlates with their high fraction of non-zero elements. In
contrast, DRAF achieves significantly better efficiency and
reduces overhead by a geometric mean of 4.34× compared
to SpaceA, demonstrating its practicality and suitability for
DRAM-based sparse matrix storage.

6.6 Power and area
Wemeasured the power consumption and area of the BGA us-
ing Synopsys Design Compiler. Specifically, we evaluated the
area of the newly added components, such as the index queue
pair, comparator, register read/write unit, adder controller,
and flush controller, while excluding the SIMD FPU from
the measurement. The result shows that the BGA consumes
31.85 𝜇𝑊 of dynamic power. For comparison, we designed
a 16-lane SIMD multiplier identical to the one embedded in
HBM-PIM, using the same 14nm process. The measurement
result shows that the SIMD multiplier consumes 34.51 𝜇𝑊 ,
which is 8% higher than the BGA. Based on these results and
existing HBM-PIM power data, we conclude that SparsePIM
can operate without exceeding the thermal design power
(TDP) limit of HBM2.

For the area comparison, we used a 14nm process for the
BGA, in contrast to the different technology node used in
HBM-PIM. Therefore, instead of comparing physical cell
area, we compared gate counts with the HBM-PIM design. In

SparsePIM, a bank group consisting of four banks shares one
processing unit, whereas HBM-PIM assigns one processing
unit to every two banks. As a result, the BGA increases
the gate count by only 2.2% compared to the original HBM-
PIM processing unit. In contrast, pSyncPIM [5] increases the
area by 35.8% over HBM-PIM. SparsePIM achieves SpMV
acceleration while occupying less area and staying within
thermal constraints, demonstrating both area and power
efficiency.

7 Conclusion
In this paper, we propose SparsePIM, an HBM-based PIM
architecture for accelerating SpMV kernels. SparsePIM in-
cludes a software optimization approach, a new sparsematrix
compression format, and an efficient processing in-memory
architecture to perform SpMV operations. By applying the
proposed software optimization, SparsePIM improves the
parallel computations by increasing the row index similarity
within a column group to solve the load imbalance issues.
In addition, we propose a new compressed format, called
DRAF, to facilitate operations according to data access gran-
ularity. In the case of the proposed SparsePIM, we enable
SpMV, a sparse operation, in existing PIMs that only support
dense BLAS operations, such as existing matrix-vector or
vector-scalar multiplication, through the BGA. The standard
deviation results show that the load imbalance problem is
improved through SW optimization, and the Jaccard similar-
ity scores show that the row index similarity is increased for
most workloads, which increases parallelism when accumu-
lating partial results. According to the experimental results,
the performance was improved by an average of 2.16× and
up to 5.61× speedup compared to the cuSPARSE-based GPU.
In addition, the TDP and logic area met the requirements
of HBM2 despite efficiently processing SpMV operations.
Our approach lays a foundation for future PIM architectures
capable of efficiently handling irregular data patterns.

Acknowledgments
This work was supported in part by the National Research
Foundation of Korea (NRF) funded by Korea government
(MSIT) (NRF-2021R1C1C1012172), and in part by the Insti-
tute of Information & Communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (IITP-2025-RS-2020-II201819, ICT Creative
Consilience Program / No. RS-2024-00459774, RISC-V based
system software development for open ecosystem of SDR).
The EDA tool was supported by the IC Design Education
Center (IDEC), Korea. Gunjae Koo is the corresponding au-
thor.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

References
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-

oung Choi. 2015. A scalable processing-in-memory accelerator for par-
allel graph processing. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (Portland, Oregon) (ISCA ’15).
Association for Computing Machinery, New York, NY, USA, 105–117.
https://doi.org/10.1145/2749469.2750386

[2] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015.
PIM-enabled instructions: a low-overhead, locality-aware processing-
in-memory architecture. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (Portland, Oregon) (ISCA ’15).
Association for Computing Machinery, New York, NY, USA, 336–348.
https://doi.org/10.1145/2749469.2750385

[3] Berkin Akin, Franz Franchetti, and James C. Hoe. 2015. Data reorgani-
zation in memory using 3D-stacked DRAM. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’15). Association for Computing Machinery, New York,
NY, USA, 131–143. https://doi.org/10.1145/2749469.2750397

[4] Arash Ashari, Naser Sedaghati, John Eisenlohr, and P. Sadayappan.
2015. A model-driven blocking strategy for load balanced sparse
matrix–vector multiplication on GPUs. J. Parallel and Distrib. Comput.
76 (2015), 3–15. https://doi.org/10.1016/j.jpdc.2014.11.001 Special
Issue on Architecture and Algorithms for Irregular Applications.

[5] Daehyeon Baek, Soojin Hwang, and Jaehyuk Huh. 2024. pSyncPIM:
Partially Synchronous Execution of Sparse Matrix Operations for All-
Bank PIM Architectures. In 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). 354–367. https://doi.org/
10.1109/ISCA59077.2024.00034

[6] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and ISDN Systems
30, 1 (1998), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X
Proceedings of the Seventh International World WideWeb Conference.

[7] Kwanyeob Chae, Jaegeun Song, Yoonjae Choi, Jiyeon Park, Billy Koo,
Jihun Oh, Shinyoung Yi, Won Lee, Dongha Kim, Kyeongkeun Kang,
Eunsu Kim, Juyoung Kim, Sanghune Park, Sungcheol Park, Mijung
Noh, Hyo Gyuem Rhew, and Jongshin Shin. 2024. A 4-nm 1.15 TB/s
HBM3 Interface With Resistor-Tuned Offset Calibration and In Situ
Margin Detection. IEEE Journal of Solid-State Circuits 59, 1 (2024),
231–242. https://doi.org/10.1109/JSSC.2023.3330485

[8] Yuedan Chen, Guoqing Xiao, Fan Wu, Zhuo Tang, and Keqin Li. 2020.
tpSpMV: A two-phase large-scale sparse matrix-vector multiplication
kernel for manycore architectures. Information Sciences 523 (2020),
279–295. https://doi.org/10.1016/j.ins.2020.03.020

[9] Jin Hee Cho, Jihwan Kim, Woo Young Lee, Dong Uk Lee, Tae Kyun
Kim, Heat Bit Park, Chunseok Jeong, Myeong-Jae Park, Seung Geun
Baek, Seokwoo Choi, Byung Kuk Yoon, Young Jae Choi, Kyo Yun
Lee, Daeyong Shim, Jonghoon Oh, Jinkook Kim, and Seok-Hee Lee.
2018. A 1.2V 64Gb 341GB/S HBM2 stacked DRAM with spiral point-
to-point TSV structure and improved bank group data control. In 2018
IEEE International Solid-State Circuits Conference - (ISSCC). 208–210.
https://doi.org/10.1109/ISSCC.2018.8310257

[10] Fabrice Devaux. 2019. The true Processing In Memory accelerator . In
2019 IEEE Hot Chips 31 Symposium (HCS). IEEE Computer Society, Los
Alamitos, CA, USA, 1–24. https://doi.org/10.1109/HOTCHIPS.2019.
8875680

[11] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and
Nam Sung Kim. 2015. NDA: Near-DRAM acceleration architecture
leveraging commodity DRAM devices and standard memory modules.
In 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA). 283–295. https://doi.org/10.1109/HPCA.
2015.7056040

[12] Xiang Fei and Youhui Zhang. 2021. Regu2D: Accelerating Vector-
ization of SpMV on Intel Processors through 2D-partitioning and
Regular Arrangement. In Proceedings of the 50th International Confer-
ence on Parallel Processing (Lemont, IL, USA) (ICPP ’21). Association
for Computing Machinery, New York, NY, USA, Article 77, 11 pages.
https://doi.org/10.1145/3472456.3472479

[13] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and
Greg Stitt. 2014. A High Memory Bandwidth FPGA Accelerator for
Sparse Matrix-Vector Multiplication. In 2014 IEEE 22nd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines.
36–43. https://doi.org/10.1109/FCCM.2014.23

[14] Jianhua Gao, Weixing Ji, Jie Liu, Senhao Shao, Yizhuo Wang, and
Feng Shi. 2021. AMF-CSR: Adaptive Multi-Row Folding of CSR for
SpMV on GPU. In 2021 IEEE 27th International Conference on Parallel
and Distributed Systems (ICPADS). 418–425. https://doi.org/10.1109/
ICPADS53394.2021.00058

[15] Christina Giannoula, Ivan Fernandez, Juan Gómez Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. 2022. SparseP: Towards
Efficient Sparse Matrix Vector Multiplication on Real Processing-In-
Memory Architectures. Proc. ACM Meas. Anal. Comput. Syst. 6, 1,
Article 21 (Feb. 2022), 49 pages. https://doi.org/10.1145/3508041

[16] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho
Kim, Il Park, Mithuna Thottethodi, and T. N. Vijaykumar. 2020. New-
ton: A DRAM-maker’s Accelerator-in-Memory (AiM) Architecture
for Machine Learning. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 372–385. https://doi.org/10.
1109/MICRO50266.2020.00040

[17] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal
Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W.
Fletcher. 2019. ExTensor: An Accelerator for Sparse Tensor Alge-
bra. In Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). As-
sociation for Computing Machinery, New York, NY, USA, 319–333.
https://doi.org/10.1145/3352460.3358275

[18] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi, Sanghyeon
Lee, Hyungkyu Ham, Gwangsun Kim, Divya Mahajan, and Jongse
Park. 2024. NeuPIMs: NPU-PIM Heterogeneous Acceleration for
Batched LLM Inferencing. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 722–737.
https://doi.org/10.1145/3620666.3651380

[19] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. 2020. A
Streaming Dataflow Engine for Sparse Matrix-Vector Multiplication
Using High-Level Synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 6 (2020), 1272–1285.
https://doi.org/10.1109/TCAD.2019.2912923

[20] Anil K. Jain. 2010. Data clustering: 50 years beyond K-means. Pattern
Recognition Letters 31, 8 (2010), 651–666. https://doi.org/10.1016/j.
patrec.2009.09.011 Award winning papers from the 19th International
Conference on Pattern Recognition (ICPR).

[21] Hai Jin, Dan Chen, Long Zheng, Yu Huang, Pengcheng Yao, Jin Zhao,
Xiaofei Liao, and Wenbin Jiang. 2023. Accelerating Graph Convolu-
tional Networks Through a PIM-Accelerated Approach. IEEE Trans.
Comput. 72, 9 (2023), 2628–2640. https://doi.org/10.1109/TC.2023.
3257514

[22] Yong-Yeon Jo, Myung-Hwan Jang, Sang-Wook Kim, and Sunju Park.
2019. RealGraph: A Graph Engine Leveraging the Power-Law Dis-
tribution of Real-World Graphs. In The World Wide Web Conference
(San Francisco, CA, USA) (WWW ’19). Association for Computing
Machinery, New York, NY, USA, 807–817. https://doi.org/10.1145/
3308558.3313434

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/2749469.2750397
https://doi.org/10.1016/j.jpdc.2014.11.001
https://doi.org/10.1109/ISCA59077.2024.00034
https://doi.org/10.1109/ISCA59077.2024.00034
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1109/JSSC.2023.3330485
https://doi.org/10.1016/j.ins.2020.03.020
https://doi.org/10.1109/ISSCC.2018.8310257
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1109/HPCA.2015.7056040
https://doi.org/10.1109/HPCA.2015.7056040
https://doi.org/10.1145/3472456.3472479
https://doi.org/10.1109/FCCM.2014.23
https://doi.org/10.1109/ICPADS53394.2021.00058
https://doi.org/10.1109/ICPADS53394.2021.00058
https://doi.org/10.1145/3508041
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3620666.3651380
https://doi.org/10.1109/TCAD.2019.2912923
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1109/TC.2023.3257514
https://doi.org/10.1109/TC.2023.3257514
https://doi.org/10.1145/3308558.3313434
https://doi.org/10.1145/3308558.3313434

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[23] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook
Kim, Hanho Jin, and Keith Kim. 2017. HBM (High Bandwidth Memory)
DRAM Technology and Architecture. In 2017 IEEE International Mem-
ory Workshop (IMW). 1–4. https://doi.org/10.1109/IMW.2017.7939084

[24] E.F. Kaasschieter. 1988. Preconditioned conjugate gradients for solving
singular systems. J. Comput. Appl. Math. 24, 1 (1988), 265–275. https:
//doi.org/10.1016/0377-0427(88)90358-5

[25] Hongju Kal, Chanyoung Yoo, and Won Woo Ro. 2023. AESPA: Asyn-
chronous Execution Scheme to Exploit Bank-Level Parallelism of
Processing-in-Memory. In Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture (Toronto, ON, Canada)
(MICRO ’23). Association for Computing Machinery, New York, NY,
USA, 815–827. https://doi.org/10.1145/3613424.3614314

[26] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Gian-
noula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha
Shahroodi, Juan Gomez Luna, and Onur Mutlu. 2019. SMASH: Co-
designing Software Compression and Hardware-Accelerated Indexing
for Efficient Sparse Matrix Operations. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture (Colum-
bus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 600–614. https://doi.org/10.1145/3352460.3358286

[27] Jieui Kang, SoeunChoi, Eunjin Lee, and Jaehyeong Sim. 2024. SpDRAM:
Efficient In-DRAM Acceleration of Sparse Matrix-Vector Multiplica-
tion. IEEE Access 12 (2024), 176009–176021. https://doi.org/10.1109/
ACCESS.2024.3505622

[28] Srinidhi Kestur, John D. Davis, and Eric S. Chung. 2012. Towards a
Universal FPGA Matrix-Vector Multiplication Architecture. In 2012
IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines. 9–16. https://doi.org/10.1109/FCCM.2012.12

[29] Marat F. Khairoutdinov and David A. Randall. 2001. A cloud resolving
model as a cloud parameterization in the NCAR Community Climate
System Model: Preliminary results. Geophysical Research Letters 28, 18
(2001), 3617–3620. https://doi.org/10.1029/2001GL013552

[30] Inje Kim, Jonghyun Jeong, Yunho Oh, Myung Kuk Yoon, and Gunjae
Koo. 2022. Analyzing GCN Aggregation on GPU. IEEE Access 10 (2022),
113046–113060. https://doi.org/10.1109/ACCESS.2022.3217222

[31] Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woong-
jae Song, Yuhwan Ro, Seungwon Lee, David Wang, Hyunsung Shin,
Bengseng Phuah, Jihyun Choi, Jinin So, YeonGon Cho, JoonHo Song,
Jangseok Choi, Jeonghyeon Cho, Kyomin Sohn, Youngsoo Sohn,
Kwangil Park, and Nam Sung Kim. 2021. Aquabolt-XL: Samsung
HBM2-PIM with in-memory processing for ML accelerators and be-
yond. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1–26. https:
//doi.org/10.1109/HCS52781.2021.9567191

[32] Jung-Sik Kim, Chi Sung Oh, Hocheol Lee, Donghyuk Lee, Hyong-Ryol
Hwang, Sooman Hwang, Byongwook Na, Joungwook Moon, Jin-Guk
Kim, Hanna Park, Jang-Woo Ryu, Kiwon Park, Sang-Kyu Kang, So-
Young Kim, Hoyoung Kim, Jong-Min Bang, Hyunyoon Cho, Minsoo
Jang, Cheolmin Han, Jung-Bae Lee, Kyehyun Kyung, Joo-Sun Choi, and
Young-Hyun Jun. 2011. A 1.2V 12.8GB/s 2Gb mobile Wide-I/O DRAM
with 4×128 I/Os using TSV-based stacking. In 2011 IEEE International
Solid-State Circuits Conference. 496–498. https://doi.org/10.1109/ISSCC.
2011.5746413

[33] Whijin Kim, Hana Kim, Jihye Lee, Hyunji Kim, and Ji-Hoon Kim.
2023. Multi-Mode SpMV Accelerator for Transprecision PageRank
With Real-World Graphs. IEEE Access 11 (2023), 6261–6272. https:
//doi.org/10.1109/ACCESS.2023.3237079

[34] Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked envi-
ronment. J. ACM 46, 5 (Sept. 1999), 604–632. https://doi.org/10.1145/
324133.324140

[35] Gunjae Koo, Hyeran Jeon, and Murali Annavaram. 2015. Revealing
Critical Loads and Hidden Data Locality in GPGPU Applications. In
2015 IEEE International Symposium on Workload Characterization. 120–
129. https://doi.org/10.1109/IISWC.2015.23

[36] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. 2008. Op-
timizing sparse matrix-vector multiplication using index and value
compression. In Proceedings of the 5th Conference on Computing Fron-
tiers (Ischia, Italy) (CF ’08). Association for Computing Machinery,
New York, NY, USA, 87–96. https://doi.org/10.1145/1366230.1366244

[37] Daehan Kwon, Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong
Park, Gi-Moon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park,
Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee
Kwon, Vladimir Kornijcuk, Woojae Shin, Jongsoon Won, Minkyu Lee,
Hyunha Joo, Haerang Choi, Guhyun Kim, Byeongju An, Jaewook Lee,
Donguc Ko, Younggun Jun, Ilwoong Kim, Choungki Song, Ilkon Kim,
Chanwook Park, Seho Kim, Chunseok Jeong, Euicheol Lim, Dongkyun
Kim, Jieun Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2023. A
1ynm 1.25V 8Gb 16Gb/s/Pin GDDR6-Based Accelerator-in-Memory
Supporting 1TFLOPS MAC Operation and Various Activation Func-
tions for Deep Learning Application. IEEE Journal of Solid-State Circuits
58, 1 (2023), 291–302. https://doi.org/10.1109/JSSC.2022.3200718

[38] Yongkee Kwon, Kornijcuk Vladimir, Nahsung Kim, Woojae Shin, Jong-
soon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Guhyun Kim,
Byeongju An, Jeongbin Kim, Jaewook Lee, Ilkon Kim, Jaehan Park,
Chanwook Park, Yosub Song, Byeongsu Yang, Hyungdeok Lee, Seho
Kim, Daehan Kwon, Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joon-
hong Park, Gimoon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje
Park, Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Myeongjun Lee,
Minyoung Shin, Minhwan Shin, Jaekyung Cha, Changson Jung, Ki-
joon Chang, Chunseok Jeong, Euicheol Lim, Il Park, Junhyun Chun,
and Sk Hynix. 2022. System Architecture and Software Stack for
GDDR6-AiM. In 2022 IEEE Hot Chips 34 Symposium (HCS). 1–25.
https://doi.org/10.1109/HCS55958.2022.9895629

[39] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon,
Je Min Ryu, Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee,
Soo Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-
Sung Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun
Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David
Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song,
Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. 25.4 A
20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a
1.2TFLOPS Programmable Computing Unit Using Bank-Level Par-
allelism, for Machine Learning Applications. In 2021 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), Vol. 64. 350–352. https:
//doi.org/10.1109/ISSCC42613.2021.9365862

[40] Dong Uk Lee, Ho Sung Cho, Jihwan Kim, Young Jun Ku, Sangmuk Oh,
Chul Dae Kim, HyunWoo Kim,Woo Young Lee, Tae Kyun Kim, Tae Sik
Yun, Min Jeong Kim, SeungGyeon Lim, Seong Hee Lee, Byung Kuk
Yun, Jun Il Moon, Ji Hwan Park, Seokwoo Choi, Young Jun Park,
Chang Kwon Lee, Chunseok Jeong, Jae-Seung Lee, Sang Hun Lee,
Woo Sung We, Jong Chan Yun, Doobock Lee, Junghyun Shin, Se-
ungchan Kim, Junghwan Lee, Jiho Choi, Yucheon Ju, Myeong-Jae
Park, Kang Seol Lee, Youngdo Hur, Daeyong Shim, Sangkwon Lee,
Junhyun Chun, and Kyo-Won Jin. 2020. 22.3 A 128Gb 8-High 512GB/s
HBM2E DRAM with a Pseudo Quarter Bank Structure, Power Dis-
persion and an Instruction-Based At-Speed PMBIST. In 2020 IEEE
International Solid-State Circuits Conference - (ISSCC). 334–336. https:
//doi.org/10.1109/ISSCC19947.2020.9062977

[41] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim,
Ju Young Kim, Young Jun Park, Jae Hwan Kim, Dae Suk Kim, Heat Bit
Park, Jin Wook Shin, Jang Hwan Cho, Ki Hun Kwon, Min Jeong
Kim, Jaejin Lee, Kun Woo Park, Byongtae Chung, and Sungjoo Hong.

https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1016/0377-0427(88)90358-5
https://doi.org/10.1016/0377-0427(88)90358-5
https://doi.org/10.1145/3613424.3614314
https://doi.org/10.1145/3352460.3358286
https://doi.org/10.1109/ACCESS.2024.3505622
https://doi.org/10.1109/ACCESS.2024.3505622
https://doi.org/10.1109/FCCM.2012.12
https://doi.org/10.1029/2001GL013552
https://doi.org/10.1109/ACCESS.2022.3217222
https://doi.org/10.1109/HCS52781.2021.9567191
https://doi.org/10.1109/HCS52781.2021.9567191
https://doi.org/10.1109/ISSCC.2011.5746413
https://doi.org/10.1109/ISSCC.2011.5746413
https://doi.org/10.1109/ACCESS.2023.3237079
https://doi.org/10.1109/ACCESS.2023.3237079
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140
https://doi.org/10.1109/IISWC.2015.23
https://doi.org/10.1145/1366230.1366244
https://doi.org/10.1109/JSSC.2022.3200718
https://doi.org/10.1109/HCS55958.2022.9895629
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/ISSCC19947.2020.9062977
https://doi.org/10.1109/ISSCC19947.2020.9062977

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

2014. 25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth mem-
ory (HBM) stacked DRAM with effective microbump I/O test meth-
ods using 29nm process and TSV. In 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC). 432–433.
https://doi.org/10.1109/ISSCC.2014.6757501

[42] Jinhyung Lee, Kyungjun Cho, Chang Kwon Lee, Yeonho Lee, Jae-
Hyung Park, Su-Hyun Oh, Yucheon Ju, Chunseok Jeong, Ho Sung Cho,
Jaeseung Lee, Tae-Sik Yun, Jin Hee Cho, Sangmuk Oh, Junil Moon,
Young-Jun Park, Hong-Seok Choi, In-Keun Kim, Seung Min Yang,
Sun-Yeol Kim, Jaemin Jang, Jinwook Kim, Seong-Hee Lee, Younghyun
Jeon, Juhyung Park, Tae-Kyun Kim, Dongyoon Ka, Sanghoon Oh,
Jinse Kim, Junyeol Jeon, Seonhong Kim, Kyeong Tae Kim, Taeho
Kim, Hyeonjin Yang, Dongju Yang, Minseop Lee, Heewoong Song,
Dongwook Jang, Junghyun Shin, Hyunsik Kim, Changki Baek, Hajun
Jeong, Jongchan Yoon, Seung-Kyun Lim, Kyo Yun Lee, Young Jun Koo,
Myeong-Jae Park, Joohwan Cho, and Jonghwan Kim. 2024. 13.4 A
48GB 16-High 1280GB/s HBM3E DRAM with All-Around Power TSV
and a 6-Phase RDQS Scheme for TSV Area Optimization. In 2024 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 67. 238–240.
https://doi.org/10.1109/ISSCC49657.2024.10454440

[43] Jong Chern Lee, Jihwan Kim, KyungWhan Kim, Young Jun Ku, Dae Suk
Kim, Chunseok Jeong, Tae Sik Yun, Hongjung Kim, Ho Sung Cho,
Yeon Ok Kim, Jae Hwan Kim, Jin Ho Kim, SangmukOh, Hyun Sung Lee,
Ki Hun Kwon, Dong Beom Lee, Young Jae Choi, Jeajin Lee, Hyeon Gon
Kim, Jun Hyun Chun, Jonghoon Oh, and Seok Hee Lee. 2016. 18.3 A
1.2V 64Gb 8-channel 256GB/s HBM DRAM with peripheral-base-die
architecture and small-swing technique on heavy load interface. In
2016 IEEE International Solid-State Circuits Conference (ISSCC). 318–319.
https://doi.org/10.1109/ISSCC.2016.7418035

[44] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin
Lee, Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim,
Hyunsung Shin, Jinhyun Kim, O Seongil, Anand Iyer, David Wang,
Kyomin Sohn, and Nam Sung Kim. 2021. Hardware Architecture
and Software Stack for PIM Based on Commercial DRAM Technol-
ogy : Industrial Product. In 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA). 43–56. https:
//doi.org/10.1109/ISCA52012.2021.00013

[45] Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon
Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang,
Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Korni-
jcuk Vladimir, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo,
Haerang Choi, Jaewook Lee, Donguc Ko, Younggun Jun, Keewon Cho,
Ilwoong Kim, Choungki Song, Chunseok Jeong, Daehan Kwon, Jieun
Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2022. A 1ynm 1.25V
8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting
1TFLOPS MAC Operation and Various Activation Functions for Deep-
Learning Applications. In 2022 IEEE International Solid-State Circuits
Conference (ISSCC), Vol. 65. 1–3. https://doi.org/10.1109/ISSCC42614.
2022.9731711

[46] Min Li, Yulong Ao, and Chao Yang. 2021. Adaptive SpMV/SpMSpV
on GPUs for Input Vectors of Varied Sparsity. IEEE Transactions on
Parallel and Distributed Systems 32, 7 (2021), 1842–1853. https://doi.
org/10.1109/TPDS.2020.3040150

[47] Shiqing Li, Di Liu, and Weichen LiuDi Liu. 2023. Efficient FPGA-Based
Sparse Matrix–Vector Multiplication With Data Reuse-Aware Com-
pression. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 42, 12 (2023), 4606–4617. https://doi.org/10.1109/
TCAD.2023.3281715

[48] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce
Jacob. 2020. DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM
Simulator. IEEE Computer Architecture Letters 19, 2 (2020), 106–109.
https://doi.org/10.1109/LCA.2020.2973991

[49] Bowen Liu and Dajiang Liu. 2023. Towards High-Bandwidth-
Utilization SpMV on FPGAs via Partial Vector Duplication. In Proceed-
ings of the 28th Asia and South Pacific Design Automation Conference
(Tokyo, Japan) (ASPDAC ’23). Association for Computing Machinery,
New York, NY, USA, 33–38. https://doi.org/10.1145/3566097.3567839

[50] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-
anna Pensky. 2015. Sparse Convolutional Neural Networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[51] Marco Maggioni and Tanya Berger-Wolf. 2016. Optimization tech-
niques for sparse matrix–vector multiplication on GPUs. J. Parallel
and Distrib. Comput. 93-94 (2016), 66–86. https://doi.org/10.1016/j.
jpdc.2016.03.011

[52] Sharad Malik and Pareesa Ameneh Golnari. 2019. Sparse Matrix to
Matrix Multiplication: A Representation and Architecture for Acceler-
ation. In 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), Vol. 2160-052X. 67–70.
https://doi.org/10.1109/ASAP.2019.00-28

[53] Uditnarayan Mandal and Arighna Deb. 2023. ReMCOO: An Efficient
Representation of Sparse Matrix-Vector Multiplication. In 2023 IEEE
Guwahati Subsection Conference (GCON). 01–06. https://doi.org/10.
1109/GCON58516.2023.10183488

[54] Anirudh Maringanti, Viraj Athavale, and Sachin B. Patkar. 2009. Ac-
celeration of conjugate gradient method for circuit simulation using
CUDA. In 2009 International Conference on High Performance Comput-
ing (HiPC). 438–444. https://doi.org/10.1109/HIPC.2009.5433184

[55] SusumuMashimo, ThiemVan Chu, and Kenji Kise. 2017. Cost-Effective
and High-Throughput Merge Network: Architecture for the Fastest
FPGA Sorting Accelerator. SIGARCH Comput. Archit. News 44, 4 (Jan.
2017), 8–13. https://doi.org/10.1145/3039902.3039905

[56] JEDEC Standard High Bandwidth Memory DRAM Memory. 2015.
Dram specification. Standard JESD235A (2015).

[57] JEDEC Standard High Bandwidth Memory DRAM Memory. 2021.
Dram specification. Standard JESD235D (2021).

[58] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, and Hyesoon Kim. 2017. GraphPIM: Enabling Instruction-
Level PIM Offloading in Graph Computing Frameworks. In 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 457–468. https://doi.org/10.1109/HPCA.2017.54

[59] Naveen Namashivavam, Sanyam Mehta, and Pen-Chung Yew. 2021.
Variable-Sized Blocks for Locality-Aware SpMV. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
211–221. https://doi.org/10.1109/CGO51591.2021.9370327

[60] B. Neelima and Prakash S. Raghavendra. 2011. CSPR: Column Only
SPARSE Matrix Representation for Performance Improvement on GPU
Architecture. In Advances in Parallel Distributed Computing, Dhinaha-
ran Nagamalai, Eric Renault, andMuruganDhanuskodi (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 581–595.

[61] Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and
Guangming Tan. 2021. TileSpMV: A Tiled Algorithm for Sparse Matrix-
Vector Multiplication on GPUs. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 68–78. https://doi.org/10.
1109/IPDPS49936.2021.00016

[62] CUDA Nvidia. 2025. Cusparse library. NVIDIA Corporation, Santa
Clara, California (2025).

[63] Chi-Sung Oh, Ki Chul Chun, Young-Yong Byun, Yong-Ki Kim, So-
Young Kim, Yesin Ryu, Jaewon Park, Sinho Kim, Sanguhn Cha, Dong-
hak Shin, Jungyu Lee, Jong-Pil Son, Byung-Kyu Ho, Seong-Jin Cho,
Beomyong Kil, Sungoh Ahn, Baekmin Lim, Yongsik Park, Kijun Lee,
Myung-Kyu Lee, Seungduk Baek, Junyong Noh, Jae-Wook Lee, Se-
ungseob Lee, Sooyoung Kim, Botak Lim, Seouk-Kyu Choi, Jin-Guk
Kim, Hye-In Choi, Hyuk-Jun Kwon, Jun Jin Kong, Kyomin Sohn,

https://doi.org/10.1109/ISSCC.2014.6757501
https://doi.org/10.1109/ISSCC49657.2024.10454440
https://doi.org/10.1109/ISSCC.2016.7418035
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISSCC42614.2022.9731711
https://doi.org/10.1109/ISSCC42614.2022.9731711
https://doi.org/10.1109/TPDS.2020.3040150
https://doi.org/10.1109/TPDS.2020.3040150
https://doi.org/10.1109/TCAD.2023.3281715
https://doi.org/10.1109/TCAD.2023.3281715
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1145/3566097.3567839
https://doi.org/10.1016/j.jpdc.2016.03.011
https://doi.org/10.1016/j.jpdc.2016.03.011
https://doi.org/10.1109/ASAP.2019.00-28
https://doi.org/10.1109/GCON58516.2023.10183488
https://doi.org/10.1109/GCON58516.2023.10183488
https://doi.org/10.1109/HIPC.2009.5433184
https://doi.org/10.1145/3039902.3039905
https://doi.org/10.1109/HPCA.2017.54
https://doi.org/10.1109/CGO51591.2021.9370327
https://doi.org/10.1109/IPDPS49936.2021.00016
https://doi.org/10.1109/IPDPS49936.2021.00016

SparsePIM: An Efficient HBM-Based PIM Architecture for Sparse Matrix-Vector Multiplications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Nam Sung Kim, Kwang-Il Park, and Jung-Bae Lee. 2020. 22.1 A 1.1V
16GB 640GB/s HBM2E DRAM with a Data-Bus Window-Extension
Technique and a Synergetic On-Die ECC Scheme. In 2020 IEEE In-
ternational Solid-State Circuits Conference - (ISSCC). 330–332. https:
//doi.org/10.1109/ISSCC19947.2020.9063110

[64] Cristobal Ortega, Yann Falevoz, and Renaud Ayrignac. 2024. PIM-
AI: A Novel Architecture for High-Efficiency LLM Inference.
arXiv:2411.17309 [cs.AR] https://arxiv.org/abs/2411.17309

[65] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. 2018. OuterSPACE: An Outer
Product Based Sparse Matrix Multiplication Accelerator. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 724–736. https://doi.org/10.1109/HPCA.2018.00067

[66] Jaewon Park, Jae Hoon Lee, Sang-Kil Park, Ki Chul Chun, Kyomin
Sohn, and Sungho Kang. 2021. An In-DRAM BIST for 16 Gb DDR4
DRAM in the 2nd 10-nm-Class DRAM Process. IEEE Access 9 (2021),
33487–33497. https://doi.org/10.1109/ACCESS.2021.3061349

[67] Myeong-Jae Park, Jinhyung Lee, Kyungjun Cho, Jihwan Park, Junil
Moon, Sung-Hak Lee, Tae-Kyun Kim, Sanghoon Oh, Seokwoo Choi,
Yongsuk Choi, Ho Sung Cho, Taesik Yun, Young Jun Koo, Jae-Seung
Lee, Byung-Kuk Yoon, Young-Jun Park, Sangmuk Oh, Chang Kwon
Lee, Seong-Hee Lee, Hyun-Woo Kim, Yucheon Ju, Seung-Kyun Lim,
Kyo Yun Lee, Sang-Hoon Lee, Woo Sung We, Seungchan Kim, Se-
ung Min Yang, Keonho Lee, In-Keun Kim, Younghyun Jeon, Jae-
Hyung Park, Jong Chan Yun, Seonyeol Kim, Dong-Yeol Lee, Su-
Hyun Oh, Jung-Hyun Shin, Yeonho Lee, Jieun Jang, and Joohwan
Cho. 2023. A 192-Gb 12-High 896-GB/s HBM3 DRAM With a TSV
Auto-Calibration Scheme and Machine-Learning-Based Layout Op-
timization. IEEE Journal of Solid-State Circuits 58, 1 (2023), 256–269.
https://doi.org/10.1109/JSSC.2022.3193354

[68] Michail Pligouroudis, Rafael Angel Gutierrez Nuno, and Tom Kazmier-
ski. 2020. Modified Compressed Sparse Row Format for Acceler-
ated FPGA-Based Sparse Matrix Multiplication. In 2020 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). 1–5. https:
//doi.org/10.1109/ISCAS45731.2020.9181266

[69] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,
Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei
Li. 2014. NDC: Analyzing the impact of 3D-stacked memory+logic de-
vices on MapReduce workloads. In 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 190–200.
https://doi.org/10.1109/ISPASS.2014.6844483

[70] Mayra Z. Rodriguez, Cesar H. Comin, Dalcimar Casanova, Odemir M.
Bruno, Diego R. Amancio, Luciano da F. Costa, and Francisco A.
Rodrigues. 2019. Clustering algorithms: A comparative approach.
PLOS ONE 14, 1 (01 2019), 1–34. https://doi.org/10.1371/journal.pone.
0210236

[71] Yousef Saad. 2011. Numerical methods for large eigenvalue problems:
revised edition. SIAM.

[72] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe, Larry Pileggi,
and Franz Franchetti. 2019. Efficient SpMV Operation for Large and
Highly SparseMatrices using ScalableMulti-wayMerge Parallelization.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 347–358. https://doi.
org/10.1145/3352460.3358330

[73] Minseok Seo, Xuan Truong Nguyen, Seok Joong Hwang, Yongkee
Kwon, Guhyun Kim, Chanwook Park, Ilkon Kim, Jaehan Park, Jeong-
bin Kim, Woojae Shin, Jongsoon Won, Haerang Choi, Kyuyoung
Kim, Daehan Kwon, Chunseok Jeong, Sangheon Lee, Yongseok Choi,
Wooseok Byun, Seungcheol Baek, Hyuk-Jae Lee, and John Kim. 2024.

IANUS: Integrated Accelerator based on NPU-PIM Unified Mem-
ory System. In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, Volume 3 (La Jolla, CA, USA) (ASPLOS ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, 545–560.
https://doi.org/10.1145/3620666.3651324

[74] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan,
Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu,
Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: in-memory accel-
erator for bulk bitwise operations using commodity DRAM technology.
In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture (Cambridge, Massachusetts) (MICRO-50 ’17). As-
sociation for Computing Machinery, New York, NY, USA, 273–287.
https://doi.org/10.1145/3123939.3124544

[75] Kristina P. Sinaga and Miin-Shen Yang. 2020. Unsupervised K-Means
Clustering Algorithm. IEEE Access 8 (2020), 80716–80727. https:
//doi.org/10.1109/ACCESS.2020.2988796

[76] Kyomin Sohn,Won-Joo Yun, ReumOh, Chi-Sung Oh, Seong-Young Seo,
Min-Sang Park, Dong-Hak Shin,Won-Chang Jung, Sang-Hoon Shin, Je-
Min Ryu, Hye-Seung Yu, Jae-Hun Jung, Hyunui Lee, Seok-Yong Kang,
Young-Soo Sohn, Jung-Hwan Choi, Yong-Cheol Bae, Seong-Jin Jang,
and Gyoyoung Jin. 2017. A 1.2 V 20 nm 307 GB/s HBMDRAMWith At-
Speed Wafer-Level IO Test Scheme and Adaptive Refresh Considering
Temperature Distribution. IEEE Journal of Solid-State Circuits 52, 1
(2017), 250–260. https://doi.org/10.1109/JSSC.2016.2602221

[77] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. 2022. Serpens: a
high bandwidth memory based accelerator for general-purpose sparse
matrix-vector multiplication. In Proceedings of the 59th ACM/IEEE
Design Automation Conference (San Francisco, California) (DAC ’22).
Association for Computing Machinery, New York, NY, USA, 211–216.
https://doi.org/10.1145/3489517.3530420

[78] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David
Albonesi, and Zhiru Zhang. 2020. Tensaurus: A Versatile Accelerator
for Mixed Sparse-Dense Tensor Computations. In 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
689–702. https://doi.org/10.1109/HPCA47549.2020.00062

[79] Wai Teng Tang, Wen Jun Tan, Rick Siow Mong Goh, Stephen John
Turner, and Weng-Fai Wong. 2015. A Family of Bit-Representation-
Optimized Formats for Fast Sparse Matrix-Vector Multiplication on
the GPU. IEEE Transactions on Parallel and Distributed Systems 26, 9
(2015), 2373–2385. https://doi.org/10.1109/TPDS.2014.2357437

[80] Yanzhe Tang, Zhongming Liu,Weibing Shang, Fengqin Zhang, Bernard
Wu, Zhong Kong, Hongwen Li, Hong Ma, and Kanyu Cao. 2021. Pitch
Device Design in 10nm-Class DRAM Process through DTCO. In 2021
IEEE 14th International Conference on ASIC (ASICON). 1–4. https:
//doi.org/10.1109/ASICON52560.2021.9620445

[81] Boyu Tian, Qihang Chen, and Mingyu Gao. 2023. ABNDP: Co-
optimizing Data Access and Load Balance in Near-Data Process-
ing. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Associa-
tion for Computing Machinery, New York, NY, USA, 3–17. https:
//doi.org/10.1145/3582016.3582026

[82] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2008. Random
walk with restart: fast solutions and applications. Knowledge and In-
formation Systems 14 (2008), 327–346. https://doi.org/10.1007/s10115-
007-0094-2

[83] Yaman Umuroglu and Magnus Jahre. 2014. An energy efficient
column-major backend for FPGA SpMV accelerators. In 2014 IEEE
32nd International Conference on Computer Design (ICCD). 432–439.
https://doi.org/10.1109/ICCD.2014.6974716

[84] Takuma Usui, Thiem Van Chu, and Kenji Kise. 2016. A Cost-Effective
and Scalable Merge Sorter Tree on FPGAs. In 2016 Fourth International

https://doi.org/10.1109/ISSCC19947.2020.9063110
https://doi.org/10.1109/ISSCC19947.2020.9063110
https://arxiv.org/abs/2411.17309
https://arxiv.org/abs/2411.17309
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/ACCESS.2021.3061349
https://doi.org/10.1109/JSSC.2022.3193354
https://doi.org/10.1109/ISCAS45731.2020.9181266
https://doi.org/10.1109/ISCAS45731.2020.9181266
https://doi.org/10.1109/ISPASS.2014.6844483
https://doi.org/10.1371/journal.pone.0210236
https://doi.org/10.1371/journal.pone.0210236
https://doi.org/10.1145/3352460.3358330
https://doi.org/10.1145/3352460.3358330
https://doi.org/10.1145/3620666.3651324
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1109/ACCESS.2020.2988796
https://doi.org/10.1109/ACCESS.2020.2988796
https://doi.org/10.1109/JSSC.2016.2602221
https://doi.org/10.1145/3489517.3530420
https://doi.org/10.1109/HPCA47549.2020.00062
https://doi.org/10.1109/TPDS.2014.2357437
https://doi.org/10.1109/ASICON52560.2021.9620445
https://doi.org/10.1109/ASICON52560.2021.9620445
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1109/ICCD.2014.6974716

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA T. Kang et al.

Symposium on Computing and Networking (CANDAR). 47–56. https:
//doi.org/10.1109/CANDAR.2016.0023

[85] Sheng Wang, Yuan Sun, and Zhifeng Bao. 2020. On the efficiency of
K-means clustering: evaluation, optimization, and algorithm selection.
Proceedings of the VLDB Endowment 14, 2 (Oct. 2020), 163–175. https:
//doi.org/10.14778/3425879.3425887

[86] Shih-Hung Weng, Quan Chen, and Chung-Kuan Cheng. 2012. Time-
Domain Analysis of Large-Scale Circuits by Matrix Exponential
Method With Adaptive Control. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 31, 8 (2012), 1180–1193.
https://doi.org/10.1109/TCAD.2012.2189396

[87] Shih-Hung Weng, Quan Chen, Ngai Wong, and Chung-Kuan Cheng.
2012. Circuit simulation via matrix exponential method for stiff-
ness handling and parallel processing. In Proceedings of the Interna-
tional Conference on Computer-Aided Design (San Jose, California) (IC-
CAD ’12). Association for Computing Machinery, New York, NY, USA,
407–414. https://doi.org/10.1145/2429384.2429469

[88] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling
Liang, Xing Hu, and Yuan Xie. 2021. SpaceA: Sparse Matrix Vector
Multiplication on Processing-in-Memory Accelerator. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 570–583. https://doi.org/10.1109/HPCA51647.2021.00055

[89] Weidong Yang, Yuqing Yang, Shuya Ji, Jianfei Jiang, Naifeng Jing, Qin
Wang, Zhigang Mao, and Weiguang Sheng. 2024. RecPIM: Efficient
In-Memory Processing for Personalized Recommendation Inference
Using Near-Bank Architecture. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 43, 10 (2024), 2854–2867.
https://doi.org/10.1109/TCAD.2024.3386117

[90] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas.
2020. Speeding Up SpMV for Power-Law Graph Analytics by En-
hancing Locality & Vectorization. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–15.
https://doi.org/10.1109/SC41405.2020.00090

[91] Chi Zhang, Paul Scheffler, Thomas Benz, Matteo Perotti, and Luca
Benini. 2024. Near-Memory Parallel Indexing and Coalescing: Enabling
Highly Efficient Indirect Access for SpMV. In 2024 Design, Automation
& Test in Europe Conference & Exhibition (DATE). 1–6. https://doi.org/
10.23919/DATE58400.2024.10546797

[92] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.
Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM:
throughput-oriented programmable processing in memory. In Pro-
ceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing (Vancouver, BC, Canada) (HPDC
’14). Association for Computing Machinery, New York, NY, USA, 85–98.
https://doi.org/10.1145/2600212.2600213

[93] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yong-
wei Wu, Kang Chen, Christos Kozyrakis, and Xuehai Qian. 2018.
GraphP: Reducing Communication for PIM-Based Graph Process-
ing with Efficient Data Partition. In 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). 544–557.
https://doi.org/10.1109/HPCA.2018.00053

[94] Qiuling Zhu, Berkin Akin, H. Ekin Sumbul, Fazle Sadi, James C. Hoe,
Larry Pileggi, and Franz Franchetti. 2013. A 3D-stacked logic-in-
memory accelerator for application-specific data intensive computing.
In 2013 IEEE International 3D Systems Integration Conference (3DIC).
1–7. https://doi.org/10.1109/3DIC.2013.6702348

[95] Qiuling Zhu, Tobias Graf, H. Ekin Sumbul, Larry Pileggi, and Franz
Franchetti. 2013. Accelerating sparse matrix-matrix multiplication
with 3D-stacked logic-in-memory hardware. In 2013 IEEE High Perfor-
mance Extreme Computing Conference (HPEC). 1–6. https://doi.org/10.
1109/HPEC.2013.6670336

[96] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu,
Yanzhi Wang, and Xuehai Qian. 2019. GraphQ: Scalable PIM-Based
Graph Processing. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 712–725. https://doi.org/10.1145/3352460.3358256

https://doi.org/10.1109/CANDAR.2016.0023
https://doi.org/10.1109/CANDAR.2016.0023
https://doi.org/10.14778/3425879.3425887
https://doi.org/10.14778/3425879.3425887
https://doi.org/10.1109/TCAD.2012.2189396
https://doi.org/10.1145/2429384.2429469
https://doi.org/10.1109/HPCA51647.2021.00055
https://doi.org/10.1109/TCAD.2024.3386117
https://doi.org/10.1109/SC41405.2020.00090
https://doi.org/10.23919/DATE58400.2024.10546797
https://doi.org/10.23919/DATE58400.2024.10546797
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1109/HPCA.2018.00053
https://doi.org/10.1109/3DIC.2013.6702348
https://doi.org/10.1109/HPEC.2013.6670336
https://doi.org/10.1109/HPEC.2013.6670336
https://doi.org/10.1145/3352460.3358256

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse compression formats
	2.2 SpMV computation methods
	2.3 High bandwidth memory
	2.4 HBM-based PIM

	3 Related work
	4 Motivation
	5 SparsePIM
	5.1 Software optimizations
	5.2 DRAM row-aligned format
	5.3 Hardware architecture
	5.4 Execution flow

	6 Evaluation
	6.1 Methodology
	6.2 Workload
	6.3 Performance
	6.4 Evaluation of software optimization
	6.5 Evaluation of DRAF
	6.6 Power and area

	7 Conclusion
	Acknowledgments
	References

