
A Global Perspective on Supercomputer Power
Provisioning: Case Studies from United States and

Europe
Tapasya Patki

Lawrence Livermore National
Laboratory

Livermore, USA
patki1@llnl.gov

Barry Rountree
Lawrence Livermore National

Laboratory
Livermore, USA

rountree4@llnl.gov

Torsten Wilde
Hewlett-Packard Enterprise

Munich, Germany
wilde@hpe.com

Andrea Bartolini
University of Bologna

Bologna, Italy
a.bartolini@unibo.it

Stephanie Brink
Lawrence Livermore National

Laboratory
Livermore, USA
brink2@llnl.gov

Esa Heiskanen
CSC IT Center for Science Ltd.

Kajaani, Finland
esaheiskanen@gmail.com

Sachin Idgunji
NVIDIA Corporation
Santa Clara, USA

sidgunji@nvidia.com

Matthias Maiterth
Oak Ridge National Laboratory

Oak Ridge, USA
maiterthm@ornl.gov

James Rogers
Oak Ridge National Laboratory

Oak Ridge, USA
jrogers@ornl.gov

Ermal Rrapaj
Lawrence Berkeley National

Laboratory
Berkeley, USA

ermalrrapaj@lbl.gov

Ralf Schneider
HLRS High Performance

Computing Center Stuttgart
Stuttgart, Germany

ralf.schneider@hlrs.de

Woong Shin
Oak Ridge National Laboratory

Oak Ridge, USA
shinw@ornl.gov

Kathleen Shoga
Lawrence Livermore National

Laboratory
Livermore, USA
shoga1@llnl.gov

Christian Simmendinger
Hewlett-Packard Enterprise

Munich, Germany
christian.simmendinger@hpe.com

Nicholas J. Wright
Lawrence Berkeley National

Laboratory
Berkeley, USA

njwright@lbl.gov

Zhengji Zhao
Lawrence Berkeley National

Laboratory
Berkeley, USA
zzhao@lbl.gov

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only. Request permissions from
owner/author(s).
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

Abstract
Electrical provisioning in high performance computing is
transitioning from simple nameplate Thermal Design Power
(TDP) models to more nuanced approaches based on ex-
pected electrical load. This paper captures current power
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provisioning strategies across six international supercom-
puting centers and seven systems, three of which (Lumi, Sum-
mit, Sierra) were in the top 10 of the Top500 list at the time
of data collection1. We present longitudinal and summary
data of actual power consumption as well as a discussion
of how each site approached the question of provisioning.
We conclude with a discussion on future directions of hard-
ware overprovisioning and its implications for machine and
electrical utilization.
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1 Introduction
It has been just over fifteen years since power was expected
to become a “first-order design constraint" [38] for high
performance computing (HPC). Having now entered the
exascale era2, the reality is more nuanced than expected. The
Thermal Design Power (TDP, the theoretical maximum power
draw, measured in Watts) of new systems has increased as
expected, with nameplate TDP (the sum of all components’
TDP values) reaching tens of megawatts. However, much
as sustained floating point operations per second (FLOPS)
have diverged from theoretical or peak FLOPS, actual power
consumption on recent systems often fails to reach 50% of
nameplate TDP for scientific applications.

When nameplate TDP was still under a megawatt for new
systems, provisioning power to that value (referred to as
worst-case provisioning) was a reasonable choice. While ap-
plications may not have been able to reach theoretical max-
imum power, there was not that much additional cost in
ensuring that any application that did could execute success-
fully. This paper captures a snapshot of the HPC community
moving away from conservative nameplate TDP provision-
ing and taking up hardware overprovisioning [59]. We present
a longitudinal study of power consumption and power pro-
visioning from some of the world’s fastest supercomputers.
We discuss the impact of nameplate TDP and worst-case
1Several months to years worth of data was collected across seven super-
computers through December 2023.
2Supercomputers that can perform up to 1018 floating point operations per
second are referred to as exascale systems.

provisioning and provide diverse perspectives on power pro-
visioning. The supercomputers considered at each site, iden-
tified by their name and associated Top500 rank at the time
of data collection, are:

(1) Perlmutter (#12) and Cori (#60), at National Energy Re-
search Scientific Computing Center (NERSC), United
States

(2) Summit (#7), Oak Ridge National Laboratory (ORNL),
United States

(3) Sierra (#10), Lawrence Livermore National Laboratory
(LLNL), United States

(4) Marconi-100 (#35), CINECA, Italy
(5) Lumi (#5), CSC IT Center for Science Ltd., Finland
(6) Hawk (#42), High-Performance Computing Center Stuttgart

(HLRS), Germany

Table 1 shows a high-level overview of the systems pre-
sented in this paper and associated datasets. Datasets com-
prise the computational power usage data collected at the
HPC system-level, inclusive of the network and rack-level
components. Every effort has been made to make these avail-
able publicly for reproducibility. However, two of the seven
datasets from this paper will not be publicly available due to
privacy policies of the collaborating supercomputing centers.
Figure 1 shows an overview of power usage across all

seven systems using a box-and-whiskers plot, which captures
the minimum, maximum and the quartile power consumed
as a percentage of the nameplate TDP. The shaded region in-
dicates the provisioned power (actual power obtained during
system procurement).In four of the seven systems (Perlmut-
ter, Cori, Sierra and Lumi), the provisioned power and the
nameplate TDP are the same value (worst-case provisioning).
For the remainder three systems (Summit, Marconi-100, and
Hawk), the provisioned power was deliberately less than the
nameplate TDP, resulting in a hardware overprovisioned sys-
tem. As we observe from this overview graph, the maximum
power consumed on all seven systems was well under the
provisioned power for the timeframes presented in Table 1.
Adding tens of megawatts of new capacity is a signifi-

cant effort for any site, particularly if much of that capacity
remains stranded. As we show across several case studies,
supercomputing centers are beginning to move away from
provisioning against nameplate TDP. This new approach
raises questions about how to handle the risk of applications
that consume more power than is currently available; we
detail how these risks are mitigated using existing power
capping and scheduling capabilities.
To the best of our knowledge, this is the first paper to

present a uniquely coordinated effort that discusses the state-
of-the-practice in power provisioning across six international
supercomputing centers and seven top-tier HPC systems.
Given the diversity of the sites and their associated policies,
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Figure 1: A summary of the quartile data for power consumed as a percentage of Nameplate Thermal Design
Power (TDP) for seven HPC systems: Permultter and Cori at National Energy Research Scientific Computing
Center (United States), Summit at Oak Ridge National Laboratory (United States), Sierra at Lawrence Livermore
National Laboratory (United States), Marconi-100 at CINECA (Italy), Lumi at CSC IT Center for Science Ltd.
(Finland) and Hawk at High-Performance Computing Center Stuttgart (Germany) The shaded area provides a
visual guideline to represent the provisioned power. For four of the seven systems (Perlmutter, Cori, Sierra and
Lumi), the provisioned power is the same as the TDP. Three of the seven systems (Summit, Marconi-100, and Hawk)
are hardware-overprovisioned. The maximum power consumed for all systems is always significantly lesser than
the provisioned power. Subsequent tables and figures in the paper provide granular detail.

System (Site)

Top500
Rank
Nov. 2023
(Highest)

Year
Installed Architecture

Nameplate
TDP
(MW)

Provisioned
Power
(MW)

Dataset
Begin
Date

Dataset
End
Date

Sampling
Rate

Dataset
Publicly
Available

Perlmutter (LBNL) 12 (5) 2021 HPE Cray EX 235n 6.9 6.9 1/1/23 12/31/23 60 sec. Yes
Cori (LBNL) 60 (5) 2016 Cray XC40 5.7 5.7 6/1/22 5/31/23 30 sec. Yes
Summit (ORNL) 7 (1) 2018 IBM AC922 15.022 14.4 1/1/21 12/31/21 15 sec. No
Sierra (LLNL) 10 (2) 2018 IBM AC922 11 11 - 4.85 yrs. 3 hrs. No
Marconi-100 (CINECA) 35 (9) 2019 IBM AC922 2.254 1.698 3/19/21 9/28/22 60 sec. Yes
Lumi (CSC) 5 (3) 2023 HPE Cray EX235a 7.973 7.973 11/7/23 3/14/24 10 min. Yes
Hawk (HLRS) 42 (16) 2020 HPE Apollo 9000 4.49 3.45 3/1/23 12/31/23 15 min. Yes

Table 1: Description of the systems and the associated datasets. We show the Top500 rank of the systems from
November 2023, which reflects their ranking at the time of data collection. Note that as of January 2025, three of
these systems (Summit, Cori and Marconi-100) have been decommissioned. The remaining four systems are still in
the Top500, with Lumi ranked at #8, Sierra ranked at #14, Perlmutter ranked at #19, and Hawk ranked at #66 (as of
November 2024). Datasets are available at https://github.com/LLNL/LAST/tree/main/Power-Provisioning-Dataset

we focus on capturing the experiences and lessons learned
from each site, as opposed to presenting a preferred or fa-
vored power provisioning or power management approach.
We believe that such case studies can help supercomputing
centers and the HPC community make sustainable future
procurement decisions by reflecting on existing longitudi-
nal data and learning from provisioning, management, and
system software experiences across peer sites.
The remainder of this paper is organized as follows. Sec-

tion 2 provides a background on hardware overprovisioning
and dynamic power management. Section 3 presents the var-
ious challenges faced during telemetry and data collection.

Sections 4–9 comprise case studies across six HPC sites lo-
cated across United States and Europe. Section 10 presents a
discussion on the current best practices with industry per-
spectives, as well as challenges faced in adoption of available
power management solutions at scale. We summarize the
paper in Section 11. Where possible, we provide total system
longitudinal power consumption as well as a histogram of
power measurements, along with power provisioning details.

2 Motivation
Energy efficiency and power-aware supercomputing research
has been underway since the early 2000s. Several disruptive
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approaches, such as hardware overprovisioning [59], variable
electricity provisioning [83], advanced cooling [6], dynamic
power capping with runtime systems and schedulers [20, 25],
and co-scheduling [12, 13, 31, 67] have been proposed. While
the benefits from these research approaches are significant
and have been demonstrated repeatedly, their adoption in
Top500 supercomputing systems has been limited.

Concerns from facilities and system administrator teams
include: (1) lack of confidence in the electrical safety of tech-
niques such as hardware overprovisioning, (2) limited un-
derstanding of system reliability with newer cooling tech-
nologies, and (3) lack of techniques to address security for
dynamic power management. For users, the impact on the
performance of their production workloads is not adequately
understood. These issues, when combined with diverse en-
ergy efficiency priorities across geographies, have led to a
large body of fragmented energy efficiency research in the
community that does not get deployed at larger scales.
A key goal of this paper is to facilitate sharing of power

provisioning and power management approaches with case
studies from some of the world’s fastest production super-
computers. We expect these case studies to enable mean-
ingful reflections on past procurement decisions, encourage
open communication between peer supercomputing centers,
and bring the community together to learn from each others’
experiences for future procurements. We believe that such
case studies can help mitigate some of the barriers to adop-
tion of existing (and upcoming) power provisioning research
at production scales in the future.

2.1 Hardware Overprovisioning
To the best of our knowledge, Kondo’s 2007 work [38] con-
tains the first declaration that “power is a first-order design
constraint” in parallel computing, and that there was a sub-
stantial gap (and opportunity) between nameplate TDP and
the power consumed by production workloads. The intro-
duction of Running Average Power Limit technology [63]
allowed for hardware-enforced power capping at the pro-
cessor level, which made cluster-level power control more
reliable. Hardware overprovisioning was then reintroduced
into the HPC community [59], with subsequent work cover-
ing SLURM plugins for power control [68], explorations of
control algorithms and power capping techniques [69], eco-
nomic analysis of hardware overprovisioning [60], and the
intersection of overprovisioning and job malleability [12].
Hardware overprovisioning was independently discov-

ered in the datacenter and cloud community, where it goes
by the name of “power oversubscription.” Early work like-
wise recognized the gap between nameplate TDP and the
power required for production [26, 82]. Examples of more

recent work focus on power oversubscription of large lan-
guage models [54] and opaque virtual machines[41] as well
as infrastructural work [43].
A note on definitions. Hardware overprovisioning has

generally been used to describe adding more hardware in an
environment with a fixed amount of power. Power oversub-
scription tends to describe reducing power for a fixed amount
of hardware. The definitions have not been used precisely
in the literature. The results are the same, of course, and the
design and provisioning of new systems will likely adjust
both parameters simultaneously.

2.2 Noteworthy Community Efforts
The HPC PowerStack Initiative started in 2017 with the goal
of bringing together experts from academia, research labora-
tories and industry in order to design a holistic and extensible
dynamic power management framework [20]. PowerStack
explores hierarchical interfaces for dynamic power manage-
ment at three levels: batch job schedulers, job-level runtime
systems, and node-level managers. Two open-source imple-
mentations of the PowerStack have been developed. The first
was sponsored by the Argo project within the DOE’s Exas-
cale Computing Project (ECP), and the latter came out of the
European REGALE project funded by the EuroHPC Joint Un-
dertaking. A parallel industry effort came from Intel, with the
development of the open-source runtime system, GEOPM (In-
tel Global Extensible Open Power Manager) [25]. As part of
the ECP PowerStack, the 2023 R&D100-winner Variorumwas
developed, which interfaces with the resource manager Flux,
GEOPM, and LDMS [10]. As part of the REGALE project,
the resource manager OAR and a runtime system EAR were
developed, along with ExaMon and DCDB [8, 14, 49].
A complementary effort is PowerAPI, a portable vendor-

neutral API for power measurement and control. It provides
multiple levels of abstractions to satisfy the requirements of
multiple types of users. The latest specification document is
available at the PowerAPI Community website [30]. Vendor-
specific implementations of PowerAPI have been deployed
across some large-scale supercomputing sites.

The ExaDigiT Group [19, 75] is developing a community-
driven digital twin framework of data centers and supercom-
puters. The primary goal of this effort is to gather experts in
modeling, simulation, operational data analytics, telemetry,
and AI to advance the development of digital twins of data
centers. This includes modeling of cooling systems, electrical
supply, and the compute systems hosted in the data centers
themselves, along with power-aware job schedulers.
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Several other researchers have also studied critical-path
optimization under power constraints and power-aware sched-
uling. Notable research work includes application-level run-
time optimization techniques such as Adagio [64] and Con-
ductor [46], dynamic power scheduling policies such as
PShifter [28], PERQ [55], DPS [24], Market-based Power Re-
duction (MPR) [34], window-based data-driven power sched-
uling [80], variable capacity scheduling [85] and leverag-
ing wasted green power [83]. Several dynamic power-aware
scheduling extensions for production-grade resource man-
agers such as SLURM [68, 69, 71, 78] and Flux [40] have also
been proposed, along with coordinated power management
across components [27]. A detailed survey of power-aware
scheduling techniques is presented in [45].

3 Dataset collection challenges
Measuring power and other system-level data at scale on
some of the world’s fastest supercomputers can pose sev-
eral engineering challenges [50, 52]. First, power teleme-
try occurs at different levels in a supercomputer’s machine
room, and often includes measurements taken at different
granularities from multiple sources such as wall meters,
rack-level sensors, PDUs, as well as vendor-specific low-
level dials such as Intel or AMD’s Running Average Power
Limit (RAPL) registers, IBM’s Open Power Abstraction Layer
(OPAL), or NVIDIA’s Management Library (NVML). Col-
lating coarse-grained and fine-grained measurements from
different sources to obtain a meaningful picture of the en-
tire system’s power consumption can take significant post-
processing effort [29]. Furthermore, different sites account
for different components of the system during provision-
ing and for telemetry. For example, some sites account for
cooling power as part of provisioned power, while others
only consider compute power. There are also differences
among the components considered when reporting provi-
sioned power and the components considered for telemetry.
Many sites do not provide explicit information on whether
network and storage power was included in the telemetry
data. Table 2 shows the components included in the pro-
visioned and telemetry data for the systems in this paper.

Sites often rely on a combination of vendor-provided op-
erational data analytics frameworks and site-level solutions
for post-processing. Some examples of such frameworks in-
clude Lightweight Distributed Metric System (LDMS) [11],
ExaMon [14], Data Center Database (DCDB) [49], OSISoft
PI [51], IBM’s Cluster System Management (CSM) [36, 57],
Splunk [77] and Redfish [47].

While vendor-provided frameworks come with many ad-
vantages, these solutions are not portable, making it chal-
lenging to compare data from different HPC systems hosted

System
(Site)

Provisioned
Power Components

Telemetry
Components

Perlmutter
(LBNL)

CPUs, GPUs, CDUs,
Service Cabinets,
& Storage

CPUs, GPUs,
& CDUs

Cori
(LBNL)

CPUs, CDUs,
Service Nodes,
& Storage

CPUs, CDUs,
& Service Nodes

Summit
(ORNL)

All
(switchboard-level)

All
(switchboard-level)

Sierra
(LLNL)

CPUs, GPUs, Storage,
Service Cabinets

CPUs, GPUs,
Storage,
Service Cabinets

Marconi100
(CINECA) CPUs & GPUs only CPUs & GPUs only

Lumi
(CSC)

Lumi-G GPU
partition & network

Lumi-G GPU
partition,
& network

Hawk
(HLRS)

CPUs, GPUs, CDUs,
Service Cabinets,
& Storage

CPUs, GPUs,
CDUs, Service
Cabs., & Storage

Table 2: Summary table of components reported in
provisioned power and telemetry data.

by the same site. Additionally, maintaining the data collec-
tion framework reliably when physical sensors wear out or
when meters fail can involve significant delays, resulting in
some time windows with inconsistent data. Accurate data
collection on high priority systems can be challenging when
misconfigurations of specialized hardware require full sys-
tem downtimes coordinated with outside vendor support to
fix issues. Power is often considered a lower-priority metric
for monitoring, so a long downtime that needs extra coordi-
nation can get deprioritized. Another challenge lies in the
area of long-term data storage services. Standardized and
portable vendor solutions in this domain are lacking.

Power readings are also influenced to some extent by the
ambient machine-room temperature and available cooling
solutions at the site.While sitesmake every effort tomaintain
a standard temperature and cooling setup in their machine
rooms, minor seasonal or load-based variations may occur
during the course of a system’s operation. Also, different
sites may choose different cooling and ambient temperature
strategies, making it challenging to compare power readings
from different sites. Currently, these thermal and cooling
effects cannot be easily captured or distinguished in the
datasets that measure power independently.

Policies around releasing collected data publicly at a fine
granularity vary, and often depend on the workload char-
acteristics at the site and the constraints on the site-level
administrators. As an example, in this paper, we observe data
collection granularities ranging from 30 seconds to three
weeks, and were able to make only five of the seven datasets
available for reproducibility.
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Community efforts to share insights on expected work-
loads, electrical provisioning decisions, and power manage-
ment software are lacking. This paper presents a significant
collaboration effort across six top-tier global supercomputing
sites and is a first step toward encouraging community-level
discussions on electrical power provisioning.

Equipment Quantity Total (kW)
GPU Cabinets 14 3869.04
CPU Cabinets 12 2528.40
Cooling Units (CDUs) 8 141.12
Services Cabinets 5 79.32
Storage Cabinets 16 290.61
System TDP - 6908.49

Table 3: Perlmutter TDP breakdown by components.

4 Perlmutter and Cori Supercomputers
4.1 System Overview
The National Energy Research Scientific Computing Center
(NERSC) at the Lawrence Berkeley National Laboratory is the
home for Perlmutter [7], an HPE Cray EX system. Perlmutter
consists of 1,792 GPU accelerated nodes each with one AMD
EPYC 7763 processor (codename: Milan) and four NVIDIA
A100 GPUs as well as 3,072 CPU-only nodes with two AMD
EPYC 7763 processors each, interconnected with the HPE
Slingshot network. Perlmutter has 90 non-compute nodes
(service and I/O nodes) and 35 petabytes (PB) of an all flash
file system.

NERSC also housed Cori, a Cray XC40 system, which was
retired on May 31, 2023, after nearly seven years of service.
Cori had 9,688 single-socket 68-core Intel Xeon Phi Processor
7250 ("Knights Landing") nodes and 2,388 dual-socket 16-
core Intel Xeon Processor E5-2698 v3 ("Haswell") nodes. Cori
nodes were interconnected with Cray’s Aries network with
Dragonfly topology.

4.2 Workload Characteristics
NERSC supports a broad range of science disciplines for the
US Department of Energy (DOE) Office of Science. Workload
characteristics are diverse, and include applications from
physics, chemistry, biosciences, materials science, fusion en-
ergy and many others. A detailed analysis of NERSC work-
loads, with their parallelism, compute and I/O characteristics
is available at [48].

4.3 Power Provisioning and Telemetry
Perlmutter’s nameplate TDP is 6.9 MW. This number was
provisioned by summing up the component TDPs. See Ta-
ble 3 for the TDP breakdown by components (last column).

Figure 3.I (upper panel) shows the power usage of Perl-
mutter in 2023 (from January 1, 2023 to December 31, 2023)
and Figure 4.I (left top panel) shows its power distribution
histogram. The power data was read from the revenue-grade
meters every 60 seconds. During this period, there were no
hardware upgrades. The measured power includes GPU cab-
inets, CPU cabinets and cooling units. The power usage of
the storage, and service racks is not included. As shown in
the figure, power usage of Perlmutter is at about 50% of TDP
most of the time.

Similarly, Figure 3.II (middle panel) shows the power usage
of Cori, a retired Cray XC40 system, during its last produc-
tion year (June 1, 2022 to May 31, 2023). The power data
was read from the revenue-grade meters every 30 seconds.
The measured power includes compute cabinets, including
I/O and service nodes, as well as cooling units. Cori’s TDP
was 5.7 MW. Figure 4.II (top right panel) shows its power
distribution histogram. Cori’s power usage was at about 68%
of TDP most of the time. Detailed analyses on power usage
of Perlmutter and Cori are available in [65], [86], and [16].

NERSC procures a new HPC system approximately every
5 years. NERSC upgrades the facility to accommodate the
increasing power requirements for new systems. Usually,
NERSC hosts two supercomputers simultaneously, e.g., Cori
and Perlmutter had about two years of overlap before Cori
was retired. NERSC was at 12.5 MW power before Perlmutter.
An additional 12.5 MW power was added for Perlmutter. The
provisioned power for NERSC is 25 MW as of this writing,
with 20 MW dedicated to HPC loads.

4.4 Power Management
No power management techniques, static or dynamic, were
utilized.

5 Summit Supercomputer
5.1 System Overview
The Summit supercomputer at ORNL was a leadership-class
system that debuted in 2018 as the fastest system in the world
and has recently been decommissioned. It had a hybrid ar-
chitecture with 4,608 compute nodes. Each node contained
two IBM POWER9 CPUs and six NVIDIA Volta GPUs. Each
node had over half a terabyte of coherent memory address-
able by all CPUs and GPUs, plus 1.6TB of non-volatile RAM
that could be used as a burst buffer or as extended memory.
The nodes were connected in a non-blocking fat-tree using
a dual-rail Mellanox EDR InfiniBand interconnect [9].

5.2 Workload Characteristics
Summit was designed to support open science and artifi-
cial intelligence applications. It has been used for research
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and development for advanced genomics, earthquake simu-
lations, extreme weather and climate simulations, materials
science and physics studies [33].

5.3 Power Provisioning and Telemetry
The TDP for Summit was 15.022 MW, and provisioned power
was 14.4 MW, making it a hardware overprovisioned system.

5.3.1 Infrastructure and Power Provisioning. ORNL stipu-
lates strict requirements for their unit substations. These sub-
stations, typically consisting of a 3000/4000 Kilovolt-amperes
(kVA) 3 liquid-insulated 3-phase 60Hz substation distribution
transformer and an integrated 480 Volt (V) 5000 Ampere (A)
secondary, must meet specific requirements that include the
use of FR3 as the immersion fluid, external forced-air-cooling
(KNAF), and a K-4 rating to handle any additional stress (and
winding loss) imposed by harmonics [2]. These considera-
tions, along with generally favorable ambient temperature
conditions, allows ORNL to comfortably budget power dis-
tribution to 90% of the transformer nameplate. Brief excur-
sions above 90% that may be experienced based on load from
the HPC systems are well tolerated without impact to the
longevity of the transformer.

For Summit, each 3000/4000 kVA unit substation was bud-
geted to provide 4,000 kVA*90% or 3,600 kVA. Four unit sub-
stations were provisioned specifically for the HPC load, pro-
viding an aggregate of 4*3,600 kVA or 14,400 kVA (equivalent
to 14.4 MW). Line losses from the four unit substations to
the main switchboards were small.

5.3.2 Nameplate TDP and Expected Load. From Summit’s
perspective, the rating of the nodes installed is at 3.36 kVA,
with a maximum power consumption at 3,260 W as provided
by the Machine Unit Specification by IBM [3]. The original
design installed 4608 nodes, fully subscribing the four switch-
boards. This design gave a total specified capacity rating of
15.483 MVA or a TDP of 15.022 MW.

From experience with previous systems, normal high load
operation at 60% of TDPwas expected, while High-Performance
Linpack (HPL) could briefly reach up to 80%. The compute
load at 80% TDP was matched with the 90% of transformer
capacity. The combination of 80% HPL and 90% transformer
rating provided a comfortable margin, where short periods
of high-demand could be absorbed by the surge capacity
above 90% on the transformer. In practice, ORNL has never
experienced conditions that would cause the unit substation
breaker to open due to excessive demand.

3kVA is a measure for apparent power, which is a combination of true (or
working) power and reactive power in a circuit. On the other hand, kW is a
measure of true power.Power factor is the ratio between the true power and
apparent power, and is a measure of electrical efficiency. In a system with
100% electrical efficiency, kVA and kW are the same [2].

Applying these expectations to the TDP of 15.022MW
resulted in an expected load of 12.018MW. With an added
safety margin of 5% this was increased to 12.8MW. The
expected maximum load for the system was advertised at
13.0MW, which was observed by one highly tuned applica-
tion at acceptance that utilized both CPUs and GPUs with
mixed precision capabilities. [37]. The HPL power consump-
tion had a peak of 10.8MW (including the filesystem), av-
eraging to 10.1MW. High-Performance Conjugate Gradient
(HPCG) had an average power consumption of 6.1MW. Addi-
tional data for system behavior can be found in [73] and [74].
For budgetary considerations, ORNL uses 75% of the mea-
sured HPL average. This generated an initial estimate for
7.58MW. Historically, this has tracked well, with actual av-
erage consumption through five years of service at 6.5MW.

5.3.3 One year of Summit power data: 2021. Figure 3.III
presents power data for the Summit system of the year 2021
in normal operation. The measurements are taken at the
main switch boards, and sampled on a 15-second interval.
The figure shows that the expected maximum load of

12.8MW (green dashed line) was not exceeded during the
year, while normal operation reached into 70% to 80% of TDP.
A notable artifact of the plot is when observing high loads
close to 12MW (blue dots), in general, the running average
goes down (black line). This is due to the fact that before a
large scale run on the full system, the scheduler has to make
room for such job resulting in a lower running averaged
power, even if observed loads during the run are very high.
The histogram in Figure 4.III shows that while the majority
of samples are in the 5000-6000 kW range, the full range of
the system was used, as measurements are present in the
11500 - 12000 kW range. The system is a capability system
(prioritized for jobs that use no less that 20% of the system),
and codes capable of running at full scale were able to use
the full potential of the machine without compromises.

5.4 Power Management
The system is hardware overprovisioned. Frequency selec-
tion, throttling and other software power management fea-
tures were discussed, but not put into production as the
system should be able to run at full performance if needed
by applications, while guaranteeing reliable operation.

6 Sierra Supercomputer
6.1 System Overview
The Sierra supercomputer at Lawrence Livermore National
Laboratory is a 125-petaflop system and is the 14th fastest su-
percomputer in the world as of November 2024. The Sierra su-
percomputer was installed in 2018 as part of the the CORAL
partnership [79]. It is built by IBM in partnershipwithNVIDIA
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Corporation and Mellanox technologies and is a hetero-
geneous supercomputer that uses IBM Power9 CPUs and
NVIDIA Tesla V100 Tensor Core GPUs.
Sierra has a total of 4,320 compute nodes with 190,080

total cores and 17,280 GPUs. Each node has two 22-core, 3.45
GHz IBM POWER9 processors and four NVIDIA V100 GPUs.
Two of the cores on each socket are reserved for system use,
leaving 40 usable compute cores per node. Each node also
has 256 GB of system memory and 64 GB of GPU memory.
The nodes are connected by Mellanox EDR InfiniBand at 100
gigabits per second [4].

6.2 Workload Characteristics
Scientists and engineers use Sierra to assess the performance
of nuclear weapon systems. These calculations are necessary
to understand key issues of physics. This work on Sierra has
important implications for other global and national chal-
lenges such as nonproliferation and counterterrorism [5].

6.3 Power Provisioning and Telemetry
Figure 2 (left panel) shows a timeline of the power consump-
tion data from the Sierra supercomputer, collected at three
week intervals from over 1,765 days (~4.85 years). In the
dataset, the median power consumption was 3.186 MW and
the maximum power consumption was 4.091 MW. Figure
2 (right panel) shows a histogram of the power consump-
tion data from the Sierra supercomputer, collected at three
hour intervals over 1,779 days (~4.85 years). The data in the
histogram (right panel) is finer grained than the timeline
data presented in the left panel. In the histogram, the median
power consumption was 2.888 MW and the maximum power
consumption was 4.301 MW. Note that the finer grained
dataset was used for the overview figure and table (Figure 1
and Table 1). The provisioned power for Sierra, which is the
same as the nameplate TDP in this case, was 11 MW. As can
be observed from the data in Figure 2, the system always con-
sumed less than 50% (less than 5.5 MW) of the provisioned
power during its operation over multiple years [66].

6.4 Power Management
No power management techniques, static or dynamic, were
utilized.

7 Marconi-100 Supercomputer
7.1 System Overview
TheMarconi-100 (M100) systemwas installed at the CINECA
datacenter located in Casalecchio di Reno, Italy in early 2020.
It was made available on April 20, 2020, with its production
use starting onMay 4, 2020. The systemwas decommissioned
in late 2023.

Marconi-100 featured 980 IBM Power 9 AC922-GTH com-
putes nodes (with NVIDIA Volta V100 GPUs) assembled in
55 racks. The network was Mellanox Infiniband EDR Drag-
onFly+ at 100 Gb/s. In addition to air cooling, the racks also
had cold water-cooled rear-door heat exchangers (RDHx).
Roughly half of the heat being removed was from the RDHx
and the other half with air-cooling. The room was cooled
with six air-conditioning units (CDUs), four of which could
operate in free cooling due to their spatial location. The cold
water for the RDHx was provided by an external chiller.

7.2 Workload Characteristics
The workloads on Marconi-100 were mostly classical HPC
simulations and artificial intelligence applications.

7.3 Power Provisioning and Telemetry
The nameplate power consumption, according to IBM docu-
mentation, was 2,300 W for a single node, which sums up to
2,254 kW for the system. The room’s provisioned power was
configured with an estimated load of 1698 kW for compute
and 404 kW for the cooling.
Marconi-100 featured the ExaMon holistic monitoring

system[14], which, in the case of the power measurements
of the compute cluster, includes two sources: Intelligent Plat-
form Management Interface (IMPI) with out-of-band node-
level power measurements and Logics switchboard power
measurements. The former reports power data at the com-
pute node level and includes per-component instantaneous
power sampled every 20 seconds. Logics, on the other hand
reports energy measurements from switchboards including
IT and cooling equipment every minute[18]. Figure 3.IV and
Figure 4.IV show the computation power usage data with
roughly 60-second samples from March 19, 2021 to Septem-
ber 28, 2022. As can be observed, the median power con-
sumption was significantly lower than the nameplate TDP
as well as the provisioned power.

7.4 Power Management
The system is hardware overprovisioned. However, no power
management techniques, static or dynamic, were utilized.

8 LUMI Supercomputer
8.1 System Overview
The LUMI system is based on the Hewlett Packard Enter-
prise (HPE) Cray EX architecture. It is the fastest supercom-
puter in Europe and has a sustained computing power of
380 petaflops. The largest partition of the system is LUMI-
G, which consists of 2,978 GPU nodes. Each node has one
64-core AMD Trento CPU and four AMD MI250X GPUs.
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Figure 2: Timeline and histogram of the LLNL Sierra supercomputer. Provisioned power is 11 MW.

Each GPU node features four 200 Gbit/s network intercon-
nect cards and has an 800 Gbit/s injection bandwidth. The
MI250X GPU comes with a total of 128 GB of HBM2e mem-
ory, offering over 3.2 TB/s of memory bandwidth.

8.2 Workload Characteristics
LUMI has wide user base from different European countries,
resulting in a diverse workload. It is one of the world’s lead-
ing platforms for artificial intelligence applications.

8.3 Power Provisioning and Telemetry
The nameplate TDP of the LUMI-G system is 7,973 kW. Pro-
curement design basis power for provisioning was slightly
over the nameplate TDP at 8,000 kW. For the purposes of
this paper, we assume the TDP and provisioned power to
be 7,973 kW. The maximum power for direct liquid cooled
IT-load was 9,300 kW. The latter number also includes the
CPU partition, LUMI-C. The TDP of the MI250X GPU (also
known as Total Graphics Power, or TGP) is 560 W.

In November 2023, the performance of High-Performance
Linpack (HPL) on LUMI-G was 379.7 petaflops and the aver-
age power was 7,106.82 kW. For the High-Performance Con-
jugate Gradient (HPCG) benchmark, the maximum power
draw was 7,405.56 kW.
Figures 3.V and 4.V show six months of LUMI-G power

usage. The data depicted starts from November 2023, and
captures the time after the HPL runs for the Top500 list took
place and after the last maintenance break for LUMI ended.
Data is collected every 10 minutes. All liquid cooled cabinet
components are captured in these measurements, including
the high speed slingshot network. The median power con-
sumption was observed to be 3,767 kW, and the maximum
power consumption was 5,808 kW. With the exception of

HPL and HPCG, the user-level applications and workloads
did not consume beyond 73% of provisioned power.

8.4 Power Management
In order to avoid feed breakers from tripping when the GPUs
are fully utilized and to fully populate the cabinet to meet
the 400 V per distribution line requirement in Europe, the
GPUs have to be capped at 500 W each (TGP was 560 W).

9 Hawk Supercomputer
9.1 System Overview
The Hawk supercomputer is the flagship system at HLRS
and is one of Europe’s fastest computing systems. The main
computing partition of the Hawk system is composed of 44
HPE Apollo 9000 racks, each hosting four chassis with eight
compute blades. Each blade has four two-socket compute
nodes equipped with 256 GB of DDR4 memory and two 64-
core AMD Epyc Rome 7742 processors. Additional four racks
with 24 Apollo 6500 compute nodes with eight NVIDIA A100
GPUs are deployed for the evaluation and development of
hybrid HPC-AI workflows. The system’s components and
nameplate TDP are specified in Table 4.

9.2 Workload Characteristics
HLRS delivers over 94% of its computing time to academic
users for research and development in the engineering do-
main. The rest is consumed by commercial customers, nearly
all of which are deploying simulation applications in Com-
putational Fluid Dynamics (CFD) and structural mechanics.
Over 50% of the computing cycles are consumed by CFD
applications [32]. Over 75% of these applications can be con-
sidered memory-bound, and only a small fraction of these
have been ported to a GPU. Based on experience from the
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Figure 3: Timeline (blue dots) and the moving average (black line) data from six supercomputers: Perlmutter, Cori,
Summit, Marconi-100, Lumi and Hawk. The gray shaded area represents unused power and the red line indicates
provisioned power.

operation of Hawk’s predecessors, the performance of these
applications is not significantly impacted by changing clock
frequencies or setting power caps. As a result, a hardware
overprovisioned system can successfully deliver the required
sustained performance for Hawk’s users.

9.3 Power Provisioning and Telemetry
HLRS decided to provision power for Hawk based on the per-
formance and energy requirements of typical user workloads,
resulting in a hardware overprovisioned system. The main
computing partition’s nameplate TDP (4,491 kW) exceeds
the provisioned 3,450 kW power of HLRS-II by 21.2%.

Power at HLRS is supplied by two different sources: HLRS-
I (1 MW) and HLRS-II (3.45 MW). The main computing par-
tition of Hawk is connected to the HLRS-II power supply.
Other components such as the administration and system-
infrastructure storage servers and cooling components are
connected to HLRS-I. This main partition is organized in
three rack-sets with three fly-wheel uninterrupted power
supply (UPS) systems. Each rack-set is power capped and
the capping factor is shown in Table 5.

Hawk’s power data is collected at various levels with dif-
ferent granularities, as follows:

• Per UPS, at the outlets of the three fly-wheel UPS;
• At the sub-distributor level for the administration, stor-
age and Apollo 6500 parts;
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Figure 4: Histograms showing the distribution of power usage from six HPC systems (Sierra shown in Figure 2).

Component #Racks Power per Total
rack [kW] power [kW]

Administration & access servers 6 8.3 49.8
In-row chillers 2 1.0 2.0
Storage 7 9.3 65.0
Cooling (CDU) 6 12.0 72.0
Compute Apollo 6500 4 30.6 122.4
Subtotal HLRS I 311.2
Compute Apollo 9000 (HLRS II) 44 95.0 4180.0
Total 4491.2

Table 4: Nameplate TDP of Hawk’s components.

Component #Racks Total Available Capping
power [kW] power [kW] factor [-]

rack-set 01-16 16 1520.0 1200.0 0.789
rack-set 17-30 14 1330.0 1125.0 0.846
rack-set 31-44 14 1330.0 1125.0 0.846

Table 5: Power capping of compute racks.

• At the rack level, per power distribution unit (PDU)
for all racks and cooling devices; and

• At the node level, by the chassis management con-
troller (CMC) in the Apollo 9000 compute part.

Figures 3.VI and 4.VI show Hawk’s power usage between
March 1, 2023 and December 31, 2023, reported every 15
minutes. The zero timeframe at the beginning of the time-
series is explained by the UPS systems being bypassed and
powered down in winter time outside of the thunderstorm
season to save energy. The four drops in power consumption
visible in the time series also result from bypass mode of
the UPS systems due to infrastructure maintenance tasks. As
we observe from this dataset, the workloads never exceed
the provisioned power, and can be managed well through
dynamic power management.

9.4 Power Management
Of the supercomputers discussed in this paper, Hawk is the
only system using software provided by HPE for dynamic
power management in production.

PowerSched is a proof-of-concept prototype from HPE de-
ployed at HLRS [76]. It implements a reliable, robust, trans-
parent and extensible framework for in-band, application-
aware power and energy management. It can manage hard-
ware overprovisioned systems while simultaneously steering

11



App. Capping Power limit Measured power Perf.
Mode per node [W] consumption [kW] [GFlop/s]

HPL UC 742 44.5 2.05E+05
HPL SPC 585 36.8 1.27E+05
HPL DPC 521-649 38.4 1.56E+05
HPCG UC 742 40.6 2515
HPCG SPC 585 35.1 2401
HPCG DPC 521-649 33.6 2402

Table 6: Impact of power capping on two benchmarks,
HPL and HPCG. UC refers to uncapped mode, SPC
refers to static power capping, and DPC refers to dy-
namic power capping.

HPC workloads toward a chosen optimization goal, such as
an energy efficiency or a total cost of ownership (TCO) goal.

PowerSched records CPU profiling data while dynamically
changing system runtime parameters, such as the available
power per CPU package. One key element of working to-
ward an optimization goal is the idea of a steady state. A
steady state denotes a near time-constant footprint in profil-
ing counters, similar to the state being used in performance
projections, albeit on smaller timescales. PowerSched can
measure these steady-state footprints transparently with
minimal impact on application performance and without
user intervention. From this steady state, PowerSched clas-
sifies workloads with unsupervised machine learning algo-
rithms or uses a direct optimization strategy for a given
energy-runtime metric. The latter approach has been shown
to deliver high application performance with minimal energy
without requiring extensive training data. It is also extensible
for hybrid architectures and is able to handle complex and
load-imbalanced applications.
We now demonstrate the effects of the power capping

applied to the Hawk system, including the usage of dynamic
power capping from HPE’s PowerSched. We present in Ta-
ble 6 the average power consumption along with the perfor-
mance in FLOPs for the HPL (compute-bound) and HPCG
(memory-bound) benchmarks, collected across 64 nodes. For
each benchmark, we show three operating modes: uncapped
execution mode (UC), statically power capped mode at 585
W per node (SPC), and dynamically power capped (DPC
mode. We consider these two applications as representatives
of compute-bound and memory-bound applications respec-
tively. As can be seen, static power capping has a major
impact on the performance of HPL, where static power cap-
ping by 21.2% per node reduces performance by 38.0%. On
the other hand, minimal impact is observed on HPCG, where
the performance reduces only by 4.5% for the same static
power cap. The results illustrate that naive static power cap-
ping can result in significant slowdowns in compute-bound

applications. In order to remedy this situation, HPE’s Power-
Sched framework has been deployed on Hawk since January
2024. This framework distributes the available power budget
per power domain (rack-set) in an optimal manner, allowing
for maximum performance under minimal power for both
frequency bound as well as memory bound applications, as
can be observed from DPC rows in Table 6. This is also re-
flected in Figure 5, which shows the HPCG timeline data.
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Figure 5: HPCG with Uncapped Execution (UC), Static
(SPC) and Dynamic Power Capping (DPC) modes.

10 Discussion
In the previous sections, we presented case studies from
seven supercomputers across six sites. In this section, we
reflect on the common observations and lessons learned.

10.1 Supercomputers are unique
Supercomputers are procured with different purposes and
at different scales across sites as well as within a single site.
Some systems are designed for capacity, where the goal is to
support a large number of diverse workloads with various
job geometries (small-scale to large-scale jobs with a broad
distribution of durations). Other systems, such as leadership-
class capability systems, are designed for full-scale mission-
critical use cases, supporting a more selective set of high-
priority applications. On such systems, the goal is to run as
fast as possible without necessarily optimizing for system
efficiency metrics such as energy consumption or resource
utilization. In this paper, we presented examples of both these
system types. Summit and Sierra supercomputers were more
capability-focused, whereas the other five supercomputers
were more capacity-focused.

The purpose of a system drives the type of workloads
and jobs that execute on it—ranging from mission-critical
applications on capability systems, to open-science applica-
tions on capacity systems. The power draw is dependent on
the workload, and as a result, it is not particularly useful to
compare absolute power values or ranges across different
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supercomputers and sites. Workloads can also vary across
time and across the machine lifetime, making it challeng-
ing to categorize the overall usage characteristics. Often, a
mix of jobs are executed on a system, making it difficult
to draw universal conclusions about workload behavior. In
short, comparing measurements across system should be
done with care.

10.2 Most HPC applications are not
power-hungry

A key observation from this paper is that regardless of the
site-specific workloads differences and the type (capability
or capacity) and scale of the system, none of the supercom-
puters ran at TDP. This is primarily because the most HPC
applications are not as power-hungry. It is often incorrectly
assumed that giving more power to an application will al-
ways improve its performance, and that enforcing a power
cap will always slow an application down. While this is true
for frequency-bound and computationally intense applica-
tions such as HPL, it does not apply to most scientific work-
flows and applications, e.g., the HPCG example in Section 9.
Similar results have been widely presented, where setting
power caps or changing frequencies have had little to no
effect on the performance of the application [59, 64, 66, 71].
Even as workloads shift toward using AI/ML and multi-

binary science workflows [23, 44], similar trends have been
observed [39]. A study done to understand performance,
power and energy scaling of Large-Language Models (LLMs)
on NVIDIA Volta (V100) and Ampere (A100) GPUs shows
that the TGP was not reached for either GPU [70]. A bioin-
formatics study on the Hopper H100 GPU demonstrated
that while performance improved by 20x compared to an
FPGA implementation, only 550W of the 700W TGPwas uti-
lized [72]. A longitudinal study on LLMs at the Acme datacen-
ter of Shanghai AI Laboratory with over 4,000 GPUs shows a
similar result [35]. Another example of an AI-based workflow
is the Multi-scale Machine-Learned Modeling Infrastructure
(MuMMI). It is a large-scale, multi-binary and award-winning
workflow for cancer research [17]. Capping the per-GPU
power from 300 W (peak) to 175 W had no impact on the
GPU component (ddCMD molecular dynamics) performance
within MuMMI [58]. With some LLM applications, periodic
power swings are observed, where the applications reach
TDP for a short amount of time and then operate signifi-
cantly below TDP for majority of the time [53]. Strategies to
mitigate such swings with dynamic power management and
overprovisioning are being actively researched [53].

Compute-bound applications are likely to consume more
power. However, many applications exhibit specific dynamic
phase behaviors and tend to be bound by memory, I/O (in-
put/output), and network usage instead. Data transfers across

nodes (and between CPUs and GPUs) as well as data stag-
ing contribute to significant non-compute time during an
application’s execution. Similar considerations apply to GPU-
based applications. In many cases, only a small portion of
the entire workflow can be delegated to the GPU. Also, many
GPU-based applications that simulate real-world use cases
have branch instructions due to the nature of the underlying
problem. This greatly limits the way in which they can utilize
a GPU, making the application less compute bound [35, 84].

10.3 Dynamic power management can be
successful at production-scale

Under-utilizing servers due to the overestimation of power
needs has several consequences. The upfront costs associated
with building a high-capacity data center or supercomputer
are often significant. Excess infrastructure, including cool-
ing systems and backup generators, represent a substantial
financial investment that may not be fully utilized for years,
if ever. That excess infrastructure also increases the carbon
footprint of such data centers. Maintaining such a center
can be more expensive than necessary. Large, underutilized
floor spaces in the machine room can present challenges in
cooling, potentially leading to wasted energy and higher op-
erational costs. From a user perspective, this leads to limited
scalability, where applications cannot run a larger simulation
even when enough power is available.

As a result, moving toward a dynamicallymanaged hardware-
overprovisioned system may be beneficial, especially for sys-
tems that are designed for capacity. In this paper, the Hawk
supercomputer demonstrates how a dynamic power man-
agement solution can be successful in production. Similarly,
the Summit and the Marconi-100 supercomputers demon-
strate that hardware overprovisioning can be accomplished
while ensuring electrical safety and without compromising
on performance, even for leadership-class capability systems.
We hope these demonstrations encourage more sites in the
Top500 list to consider adopting hardware overprovisioning
and dynamic power management techniques.

10.4 Geographic location matters
Electricity pricing as well as local environmental policies
can influence power provisioning decisions. As a result, the
geographic location of a site can play a role in adoption
of hardware overprovisioning and dynamic power manage-
ment strategies. The relationships and contracts between the
electricity service providers and the site determine which
power management solutions can be considered.

The Energy-Efficient High Performance ComputingWork-
ing Group (EEHPC WG) was established to encourage the
implementation of energy conservation measures, energy ef-
ficient design, and share related ideas in HPC [1]. It has over
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900 members worldwide, 50% of which are supercomputing
sites, 30% are vendors, and 20% are academic partners. Teams
within EEHPC WG have studied the impact of contractual
relationships between electricity service providers and su-
percomputing centers and have surveyed sites across US and
Europe to better understand their electricity pricing models.
These papers have indicated that the price of electricity is
often significantly higher in Europe than it is within United
States, and also determined that the overall awareness to
establish an efficient energy contract is higher in the United
States [15, 22, 56, 62].

Overall, many supercomputing centers are moving toward
more sustainable choices. In this paper, all three systems lo-
cated in Europe (Marconi-100, Lumi, and Hawk) were open
to power management solutions. Marconi-100 was hardware
overprovisioned, Lumi had GPU power capping enabled dur-
ing full utilization, and Hawk was both hardware overprovi-
sioned and deploying a dynamic power-aware scheduler. In
the United States, only the Summit supercomputer was hard-
ware overprovisioned. None of the systems in the United
States used dynamic power management.

10.5 Meaningful energy-efficiency metrics
are needed

Traditional metrics for datacenter energy efficiency include
floating-point-operations-per-second (FLOPS) per watt and
Power-Usage Effectiveness (PUE). Metrics such as Total Cost
of Ownership (TCO) are also used to determine the capital
and operational expenditures, of which power procurement
and energy costs are a significant component. These metrics,
while necessary, are not sufficient to evaluate energy effi-
ciency [21]. For example, FLOPS per watt often does not cap-
ture the inherent costs of data transfers, storage, networking
and I/O. Similarly, average PUE data across an entire super-
computer’s lifetime or a large time window is not effective—
dynamic and instantaneous PUE metrics are needed.
A correlated and often overlooked metric for energy effi-

ciency is utilization: if all the procured components (CPUs,
GPUs, memory, network, I/O subsystem) are highly utilized,
the system is expected to maximize throughput per watt.
Current systems do not measure per-component utilization;
and many user workloads either leave GPUs idle or several
compute cores idle [57]. Metrics such as Total Usage Effec-
tiveness, TUE, which considers entire IT center [61], and
Data center Workload Power Efficiency, DWPE [81], which
considers the site-specific workload, have been proposed but
are not utilized as often. None of the existing metrics capture
carbon footprint or electricity pricing [42], which are also
crucial from the perspective of energy efficiency and power

provisioning. Designing and utilizing better metrics will al-
low us to compare and evaluate energy efficiency during
provisioning of future systems.

10.6 Testbeds for disruptive research
approaches are needed

Testing hardware overprovisioning, power-aware schedul-
ing, and modern cooling infrastructure at scale is necessary
for adoption in production systems. Better understanding of
electrical safety, system reliability, security, and performance
impact can be gained from simulation and longitudinal anal-
ysis. Digital twins for supercomputers, such as the one pro-
posed by ExaDigIT [19] can provide a safe and necessary
testbed for disruptive energy efficiency research, allowing
the community to easily adopt solutions such as hardware
overprovisioning in production.

11 Conclusions: Lessons for Future Systems
System design is the art of picking where the bottlenecks
will be in a new machine. Infrastructural bottlenecks are the
most expensive to remediate. What we have demonstrated
in this paper, first and foremost, is that nameplate TDP is
a poor estimate of power requirements, and limiting a new
system to what can fit within nameplate TDP results in a
machine that is likely half the size it could have been. More
heterogeneity within a system will make nameplate TDP
even less relevant: HPC applications are not designed to be
maximally taxing every aspect of the system simultaneously,
and those that do are unable to sustain that for very long.
Hardware-enforced power caps that slow execution to

stay within a power bound were first introduced into HPC
with Intel’s Sandy Bridge architecture around 2010, and this
capability is now available in all server-class CPUs and GPUs.
System software that allows safe execution up to a predefined
power limit has been mostly limited to research prototypes,
with the notable exceptions of Intel’s GEOPM (and, perhaps,
the HPE system used in Hawk). This kind of software will be
most trusted if it originates with the system integrator, but
the assumption that machines must be designed to nameplate
TDP prevented any demand for this feature. Based on our
survey here, those assumptions are changing.
Sustainability is also becoming a significant concern in

future machine design [42], and at first glance that goal
appears to conflict with the “Use all the power!” approach
we advocate here. In the case where better estimates of power
consumption lead to provisioning more compute resources,
the result is indeed a larger supercomputer that uses more
resources. We suspect, though, that the more common case
will be users who find they can fit new machines within the
existing limits of their power infrastructure without needing
to bring in additional power to the site.
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Finally, as a community, we have a generations-deep un-
derstanding of how to make code run fast. We are now, how-
ever, entering a regime where minimizing execution time
(and thus maximizing peak power) forces us to accept ma-
chines that would be smaller than we would like. Dynamic
power management allows us to (mostly) avoid this trade-
off: power is routed to where it does the most good in the
moment (be that optimizing for speedup, problem size, accu-
racy, or throughput) while the total system power remains
under the provisioned power bound. Designing machines
to run under static power caps is the simple, easy win. The
largest gains will require rethinking power as just another
schedulable and dynamic resource.
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