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Abstract
Full-state quantum circuit simulation requires exponen-
tially increased memory size to store the state vector as
the number of qubits scales, presenting significant limi-
tations in classical computing systems. Our paper intro-
duces BMQSim, a novel state vector quantum simulation
framework that employs lossy compression to address the
memory constraints on graphics processing unit (GPU) ma-
chines. BMQSim effectively tackles four major challenges
for state-vector simulation with compression: frequent com-
pression/decompression, high memory movement overhead,
lack of dedicated error control, and unpredictable memory
space requirements. Our work proposes an innovative strat-
egy of circuit partitioning to significantly reduce the fre-
quency of compression occurrences. We introduce a pipeline
that seamlessly integrates compression with data movement
while concealing its overhead. Additionally, BMQSim incor-
porates the first GPU-based lossy compression technique
with point-wise error control. Furthermore, BMQSim fea-
tures a two-level memory management system, ensuring
efficient and stable execution. Our evaluations demonstrate
that BMQSim can simulate the same circuit with over 10
times less memory usage on average, achieving fidelity over

∗Co-corresponding authors.

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725747

0.99 and maintaining comparable simulation time to other
state-of-the-art simulators.

CCS Concepts
• Theory of computation → Data compression; • Com-
puting methodologies→ Quantum mechanic simula-
tion.

Keywords
Quantum simulation, GPU, lossy compression, memory foot-
print.

ACM Reference Format:
Boyuan Zhang, Bo Fang, Fanjiang Ye, Luanzheng Guo, Fengguang
Song, Nathan Tallent, and Dingwen Tao. 2025. BMQSim: Over-
coming Memory Constraints in Quantum Circuit Simulation with
a High-Fidelity Compression Framework. In 2025 International
Conference on Supercomputing (ICS ’25), June 08–11, 2025, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3721145.3725747

1 Introduction
Quantum computing has emerged as a significant paradigm
within the High Performance Computing (HPC) commu-
nity. Its unique characteristics have drawn considerable at-
tention. In recent years, quantum computing has proven
effective in addressing key problems across various fields,
such as machine learning [4, 36, 47], quantum chemistry
[1], optimization problems [13], and financial modeling [45].
The advancement of quantum hardware aligns with the in-
creasing impact of quantum computing. For instance, the
state-of-the-art (SOTA) IBM Condor quantum system now
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supports 1,121 qubits, more than double of the 433 qubits sup-
ported by last year’s Osprey quantum system [15]. Executing
quantum algorithms on real quantum computers, however,
faces fundamental challenges. First, in the current Noisy
Intermediate-Scale Quantum (NISQ) era [44], noise inter-
ference in the hardware results in inaccurate measurement
distribution. Second, designing new quantum algorithms
requires iterative trials to verify, which is impractical on
quantum computer platforms. Third, publicly available quan-
tum computers (specifically those with a large number of
qubits, e.g., > 16) are much less resourceful and usually reside
in cloud services; hence, access to those machines is limited.
Thus, quantum circuit simulation has become an essential
approach for realizing the full potential of quantum comput-
ing [25]. Running a full-state quantum circuit simulation (i.e.,
state-vector simulation) presents a formidable challenge: as
the number of simulated qubits increases, the memory re-
quirement grows exponentially. Several significant issues are
associated with this: (1) Simulating large quantum systems
requires extensive memory capacity in classical systems. For
instance, simulating a 48-qubit circuit would fully occupy the
entire memory of Frontier (4.6 petabytes of DDR4 memory),
the most advanced HPC machine currently available [2]. (2)
Even when the memory capacity requirement is met, access-
ing such HPC systems requires dedicated allocation, which is
usually quite competitive due to high demand. Consequently,
researchers in quantum computing are often constrained to
work with much smaller machines, such as personal comput-
ers or local workstations that typically have only dozens of
gigabytes of memory. This reliance severely restricts the abil-
ity to simulate large quantum systems, hindering scientific
discovery.
While recent developments in state-vector simulators

have made significant strides in performance improvement
[11, 27, 65, 66], optimizing memory usage remains a largely
overlooked area. Tensor network simulation is expected to
address this issue [38, 42] by representing the quantum cir-
cuit using tensor structures and employing tensor contrac-
tion to compute the final state vector amplitudes. However,
tensor network simulators face significant limitations when
simulating highly entangled quantum circuits [41, 57]. For
entanglement-heavier circuits, both the computational and
memory overhead of tensor network simulators grow sub-
stantially. This restricts their applicability primarily to cir-
cuits that are shallow and exhibit low entanglement between
qubits. For instance, using tensor network simulators to ex-
ecute the Quantum Approximate Optimization Algorithm
(QAOA) [13] and the Variational Quantum Eigensolver (VQE)
[43], the most representative quantum algorithms in the
NISQ era, faces significant limitations. In QAOA, tensor net-
works can only efficiently manage a limited number of layers

[37], while an arbitrary number of operational layers is essen-
tial to increase effectiveness [12, 20]. For VQE, the enormous
number of gates and the level of qubit entanglement [54]
create impractical scenarios for tensor networks to solve.
That said, state vector-based quantum circuit simulation

offers generality and universal benefits for simulating com-
plex quantum algorithms. To this end, relaxing the mem-
ory constraint for state vector simulation is the top priority
task. In the classical HPC domain, data compression has
proven effective in multiple scientific areas for memory re-
duction. Broadly speaking, compression techniques can be
classified into lossy and lossless, based on the trade-offs be-
tween the error and compression ratio they introduce to the
data. Compared to lossless compression, lossy compression
tends to provide better compression rates [63, 64], making it
more suitable for high-memory burden scenarios like quan-
tum simulation. Recent studies [6, 23, 56, 63] have devel-
oped error-bounded lossy compressors on GPUs, achieving
a balance between compression ratios, high-quality data
reconstruction, and performance. Incorporating these ad-
vanced compression algorithms into quantum simulation
holds considerable promise for significantly reducing mem-
ory demands, thereby addressing the fundamental challenge
in the field.
However, the direct application of a compression tech-

nique on state-vector simulations is inefficient and may re-
sult in low simulation fidelity. A prior study [58] introduces
a workflow that addresses this integration. The workflow
starts with compressing the entire state vector. For each gate
in the circuit, it breaks the compressed elements into blocks,
decompresses each block, updates the state elements in the
block, and then re-compresses it until all blocks are processed.
This design introduces several potential complications, par-
ticularly concerning the performance of the simulation and
the fidelity of the quantum state. These issues encompass
five primary domains:

Challenge ❶: Frequent Compression. Since the entire
state vector needs to be updated when simulating each quan-
tum gate, a large quantum system would require frequent
compression and decompression operations on the critical
path of the state vector simulation, introducing significant
performance overhead. Moreover, lossy compression inher-
ently introduces errors into the reconstructed data. When
simulating deep quantum circuits, these errors accumulate
and degrade the fidelity of the final results.

Challenge ❷: Memory Movement Overhead. To maxi-
mize the number of qubits supported by simulation and im-
prove the simulation performance, the involvement of large
memory space such as CPU memory and high-parallelism
computing resources like GPUs is necessary. However, the
data movement between the CPU and GPU to take advantage
of computation acceleration incurs significant overhead.
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Challenge ❸: Lack of Dedicated Error Control
Scheme. Effective error control in lossy compression is es-
sential, particularly for the point-wise relative error control
scheme for state-vector simulation [58]. The GPU-based com-
pression processes would outperform their CPU-based alter-
natives and eliminate potential additional memory transfers
between the CPU and GPU. However, current GPU-based
lossy compressors do not incorporate such a scheme.

Challenge ❹: Unpredictable Memory Consumption
of Compressed State Vectors. When handling large input
data, lossy compressors often divide the data into smaller
chunks for independent compression. However, the memory
footprints of the compressed state vector chunks depend on
the properties of the state vector, complicating the accurate
assessment of whether the available memory will suffice for
the simulation.

In response to these challenges, we introduce a novel state
vector quantum simulation framework, BMQSim, by effi-
ciently integrating lossy compression techniques. This frame-
work can break the memory limit to support the robust sim-
ulation of more qubits on GPU machines while maintaining
high fidelity in simulation results by significantly reducing
the frequency of compression with a novel circuit partition
scheme. BMQSim is adaptable, allowing for easy integration
into various simulators, enhancing its utility across different
simulation backends.

Our paper makes the following contributions:
• We introduce a novel circuit partitioning strategy, ef-
fectively addressing low-fidelity and low-performance
concerns of the compression-integrated simulation. This
method divides the simulation process into discrete sub-
tasks, each involving a partition of the circuit and cor-
responding elements of the state vector. This approach
significantly reduces the frequency of compression and
decompression operations, thereby maintaining excep-
tionally high simulation fidelity and significantly improv-
ing simulation time.

• We propose an innovative workflow pipeline that con-
currently executes (de)compression operations and data
movement. This approach minimizes the perceived over-
head in the simulation process by effectively hiding these
operations within the data transfer time frames.

• We develop the first GPU-based point-wise error control
mechanism in a lossy compressor. It offers adaptability
to other compressors requiring absolute error control,
marking a significant advancement in GPU-accelerated
data compression.

• We propose a two-level memory management system
to address the challenge of unpredictable compressed
state vector block sizes. It dynamically manages memory
(de)allocation and uses the GPUDirect Storage technique

to create an effective secondary memory buffer in an
SSD, ensuring efficient memory utilization and enhanced
operational stability.

• Evaluations on various circuits demonstrate that BMQSim
significantly enhances the capabilities of SOTA state-
vector simulators by enabling the simulation of up to 14
additional qubits (on average 10 additional qubits) under
the same memory constraints, while maintaining compa-
rable simulation times to SOTA simulators.
This paper is organized as follows: §2 provides background

information. §3 analyzes the problem and discusses the issues
of basic solutions. §4 details our design. Evaluation results
are presented in §5. Finally, §8 summarizes our findings and
discusses future research directions.

2 Background
In this section, we introduce state-vector simulation, floating-
point data compression, and CUDA architecture.

2.1 Principles of State-Vector Simulation
In quantum computing, a qubit, like a bit in classical com-
puting, is the fundamental unit for computing. Unlike bits
in traditional computing, a qubit can have many more states
besides 0 and 1. A qubit |𝜓 ⟩ is a two-level state that can be
expressed as:

|𝜓 ⟩ = 𝑎0 |0⟩ + 𝑎1 |1⟩
Here, 𝑎0 and 𝑎1 represent two complex amplitudes, where
|𝑎0 |2 + |𝑎1 |2 = 1. The quantum state with 𝑛 qubits can be
described as a state vector containing 2𝑛 complex amplitudes:

|𝜓 ⟩ = 𝑎0· · ·00 |0 · · · 00⟩ + 𝑎0· · ·01 |0 · · · 01⟩ + · · · + 𝑎1· · ·11 |1 · · · 11⟩
This state also adheres to the condition

∑
𝑖 |𝑎𝑖 |2 = 1. The

subscripts of 𝑎 are the indices in binary format. In the com-
putation of simulation, the state vector is often denoted as a
column vector: 

𝑎0· · ·00
𝑎0· · ·01

...
𝑎1· · ·11


A quantum gate represents a unitary operation applied

to qubit(s), and a series of quantum gates operating on a
set of qubits forms a quantum circuit. Applying a gate to
a qubit is equivalent to conducting a matrix multiplication
of the gate unitary matrix and the elements in the state
vector. Thesematricesmodify the elements of the state vector
corresponding to the target qubit(s). The most common types
of gates are single-qubit gates and double-qubit gates. For
a single-qubit gate (a 2 × 2 matrix) applied to qubit 𝑘 , the
operation is to multiply the matrix with two elements whose
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indices differ only in the 𝑘 bit:[
𝑎′
𝑒12𝑛−1 · · ·01𝑘 · · ·𝑒10
𝑎′
𝑒22𝑛−1 · · ·12𝑘 · · ·𝑒20

]
=

[
𝑢11 𝑢12
𝑢21 𝑢22

] [
𝑎𝑒12𝑛−1 · · ·01𝑘 · · ·𝑒10
𝑎𝑒22𝑛−1 · · ·12𝑘 · · ·𝑒20

]
,

∀
[
𝑎𝑒1
𝑎𝑒2

]
, 𝑒1𝑖 = 𝑒2𝑖 for 0 ≤ 𝑖 < 2𝑛 and 𝑖 ≠ 𝑘

where
[
𝑎∗
]
are the state vector amplitudes and

[
𝑢∗
]
is the

unitary matrix of the applied gate. Similarly, for a double-
qubit gate (a 4 × 4 matrix) applied to qubits 𝑞 and 𝑘 , the
matrix operation is:
𝑎′
𝑒12𝑛−1 · · ·01𝑞 · · ·01𝑘 · · ·𝑒10
𝑎′
𝑒22𝑛−1 · · ·02𝑞 · · ·12𝑘 · · ·𝑒20
𝑎′
𝑒32𝑛−1 · · ·13𝑞 · · ·03𝑘 · · ·𝑒30
𝑎′
𝑒42𝑛−1 · · ·14𝑞 · · ·14𝑘 · · ·𝑒40


=


𝑢11 𝑢12 𝑢13 𝑢14
𝑢21 𝑢22 𝑢23 𝑢24
𝑢31 𝑢32 𝑢33 𝑢34
𝑢41 𝑢42 𝑢43 𝑢44



𝑎𝑒12𝑛−1 · · ·01𝑞 · · ·01𝑘 · · ·𝑒10
𝑎𝑒22𝑛−1 · · ·02𝑞 · · ·12𝑘 · · ·𝑒20
𝑎𝑒32𝑛−1 · · ·13𝑞 · · ·03𝑘 · · ·𝑒30
𝑎𝑒42𝑛−1 · · ·14𝑞 · · ·14𝑘 · · ·𝑒40


,

∀ [
𝑎∗
]
, 𝑒1𝑖 = 𝑒2𝑖 = 𝑒3𝑖 = 𝑒4𝑖 for 0 ≤ 𝑖 < 2𝑛 and 𝑖 ≠ 𝑘, 𝑖 ≠ 𝑞

An important requirement for both single-qubit gates and
double-qubit gates is that simulating a gate operation re-
quires iterating through the entire state vector.

2.2 Floating-Point Lossy Compression
In the field of data compression, there are two main types:
lossless and lossy compression. Lossless compression retains
the original data perfectly, while lossy compression, in ex-
change for a higher compression ratio, incurs some loss of
accuracy. The latter is suitable for scenarios where a certain
level of data degradation is acceptable.
Recently, there have been significant advancements in

lossy compression algorithms, particularly for floating-point
scientific data[5, 10]. Prominent examples are SZ [9, 31, 33,
53, 60], ZFP [34], MGARD [17, 32], and TTHRESH [3]. These
algorithms are distinct from traditional lossy compressors
for images/videos, as they feature precise error-controlling
schemes. These schemes allow for control over the level of
accuracy in reconstructed data and further data analysis.

With the rise of GPU-based systems, compatible versions
of these compressors, such as cuSZ [7, 56], cuSZ-i[35], cuZFP
[8], and MGARD-GPU [6], have been developed using CUDA
[46]. Furthermore, new GPU-oriented lossy compressors
like FZ-GPU [63], bitcomp [39], and cuSZp [22, 23] have
emerged. These GPU versions typically offer higher com-
pression throughputs than their CPU counterparts, enabling
their application to a wide range of scenarios, such as deep
learning training acceleration [14] and communication ac-
celeration [21]. Other platforms have also been explored for
similar reasons, such as Cerebras [49, 50].

However, a gap remains in current GPU compressors: most
only support absolute error control or fixed-rate modes. The
former keeps the maximum error within a user-defined limit,

while the latter targets a specific compression ratio. A critical
missing feature is a point-wise relative error control scheme,
vital for state-vector simulation to ensure high fidelity [58].

2.3 CUDA Memory Architecture
The increasing adoption of GPUs as the main accelerators
of high-performance computing tasks is primarily due to
their superior parallel computation capabilities. Within the
CUDA architecture [46], a widely used programming model
for GPUs, processing units are organized into threads. These
threads are grouped into blocks and then organized as a grid
structure. GPUs typically feature on-chip memory, or device
memory, which is usually much less abundant compared to
CPU memory or main memory.

Most applications initialize memory allocation on the CPU
and then copy the data to the GPU for computation through
PCIe. Therefore, asynchronous memory copy operations are
crucial for reducing data transfer latency between the CPU
and GPU. Such operations enable GPU kernels (GPU pro-
cesses) to run concurrently withmemory copy tasks, optimiz-
ing data transfer efficiency. Recently, data copying can occur
directly between SSDs and GPU memory. For the movement
of data between SSDs and GPUs, the GPUDirect Storage
(GDS) technique is vital. This technique allows GPUs to di-
rectly access data stored on SSDs, bypassing the CPU thus
enhancing performance.

3 Feasibility Analysis
In this section, we provide a detailed analysis of the solution
developed in SC19-Sim [58] to integrate data compression
with state vector simulation and identify its shortcomings.
For simplicity, from now on, we use single-qubit gates and
binary representation of indices in all the following examples.

The prior work [58] proposed a basic solution of applying
compression techniques in state vector simulation. This so-
lution consists of two key designs: state vector partitioning
and state vector updating.
State Vector Partitioning. To maximize flexibility and

enable parallel execution of compression and simulation,
SC19-Sim divides the state vector into blocks, which we term
SV blocks. A demonstration of the state vector partition is
illustrated in Figure 2. Assume that the state vector is divided
into 2𝑐 SV blocks, and each SV block contains 2𝑏 state vector
elements (i.e., amplitudes). Given an 𝑛-qubit system, where
𝑛 = 𝑏+𝑐 , the higher 𝑐 bits in the qubit index space are referred
to as the global index, while the lower 𝑏 bits are referred to
as the local index. A clear observation is that within each SV
block, the global index remains the same, but the local index
varies. Different SV blocks have different global indices.

State Vector Updates.At the beginning of the simulation,
the state vector (SV) blocks are compressed and stored in the
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Figure 1: An example of how SV blocks are involved based on target
global index changes. The same alphabet denotes the same 0 or 1.

01..101 00..000
01..101 00..001

01..101 11..111
…

State Vector Block

DifferentSame

Global Index Bits
Local Index Bits

State Vector of n Qubits
2n elements 

Equally Cut Into

0 1 … i … 2c-1 Binary Representation01

Figure 2: An illustration of SV partitioning. We refer to the higher 𝑐
bits as the global index and the lower 𝑏 bits as the local index.

system memory. During the simulation, each gate updates
the entire state vector once (as discussed in §2.1). This pro-
cess involves decompressing every SV block, updating the
amplitudes within it, and then recompressing it back into
the system memory. Depending on whether the target qubit
of the quantum gate is located in the global index or the local
index, the updating process may involve either two separate
SV blocks or a single SV block, as illustrated in Figure 3. We
summarize the updating rules as an observation.
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illustrated in Figure 1. Assume that the state vector is divided
into 2𝑐 SV blocks, and each SV block contains 2𝑏 state vector
elements (i.e., amplitudes). Given an 𝑛-qubit system, where
𝑛 = 𝑏+𝑐 , the higher 𝑐 bits in the qubit index space are referred
to as the global index, while the lower 𝑏 bits are referred to
as the local index. A clear observation is that within each SV
block, the global index remains the same, but the local index
varies. Different SV blocks have different global indices.

State Vector Updates.At the beginning of the simulation,
the state vector (SV) blocks are compressed and stored in the
system memory. During the simulation, each gate updates
the entire state vector once (as discussed in §2.1). This pro-
cess involves decompressing every SV block, updating the
amplitudes within it, and then recompressing it back into
the system memory. Depending on whether the target qubit
of the quantum gate is located in the global index or the local
index, the updating process may involve either two separate
SV blocks or a single SV block, as illustrated in Figure 2. We
summarize the updating rules as an observation.

Observation: If the target qubit 𝑡𝑖 is in the local index
set, the amplitudes needed for matrix-vector multi-
plication are within the same block. Otherwise, the
amplitudes are in different SV blocks, where their
exact positions depend on the target qubit.

Issues of the Basic Solution. Based on this observation,
the order of processing SV blocks in the simulation process
may vary due to the order of the different target qubits of
the gates in the circuit. Therefore, without careful design,
SC19-Sim applies each gate sequentially to the state vector,
requiring decompression and compression before and after
updating the state vector amplitudes.

This design exposes several issues:❶ Since (de)compression
is executed on a per-gate basis, fully decompressing all SV
blocks for every gate operation significantly lowers perfor-
mance. Moreover, as the circuit length (number of gates)
increases, the number of lossy compression operations esca-
lates, leading to an accumulation of errors and degradation of
state fidelity. ❷ The GPU is not leveraged, as the entire state
vector is processed only by the CPU. Leveraging the paral-
lel computing capability of GPUs can significantly improve
performance. However, the intensive data transfer between
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Figure 2: A demonstration of how the target qubit location influences
amplitude updates. The same alphabet denotes the same value.

CPU and GPU will heavily impact simulation efficiency. ❸
The compression-introduced error is not controlled. Random
errors introduced by compression will result in unguaran-
teed fidelity. Therefore, we need a specialized error control
scheme to bound the fidelity. ❹ The compression ratio is
unpredictable during the simulation process. The simulation
may halt midway due to insufficient memory space, neces-
sitating a backup memory management system to prevent
such interruptions.

4 Design of BMQSim
Overview of BMQSim’s Design. BMQSim is designed to
simulate full-state quantum circuits with a smaller memory
footprint to support more qubit systems. Figure 3 summa-
rizes the key techniques implemented in BMQSim and the
respective sections where they are discussed. Specifically,
we introduce a specialized circuit partition approach (§4.1)
to minimize the (de)compression frequency hence signifi-
cantly improve the performance and increase the fidelity,
addressing ❶. We include a workflow design (§4.2) to over-
lap compression/decompression, data movement between
CPUs and GPUs, and computation, addressing ❷. An error-
controlled GPU compressor (§4.3) is proposed to mitigate ❸.
Finally, we present a two-level memory management system
(§4.4) to solve issue ❹.

4.1 Optimal-Compression Circuit Partition
As analyzed in Section 3, the basic solution will lead to fre-
quent (de)compression because gates in the circuit require
different access patterns on SV blocks due to different tar-
get qubits. This issue significantly impacts the simulation
performance.

Insight from the Analysis. To solve this issue, we care-
fully analyze Observation in §3 and obtain two important
findings. (1) For multiple gates targeting the local index set,
we can apply them all after decompressing the correspond-
ing SV block because every amplitude in this block can find
its corresponding pair within the same block. (2) For multiple

Issues of the Basic Solution. Based on this observation,
the order of processing SV blocks in the simulation process
may vary due to the order of the different target qubits of
the gates in the circuit. Therefore, without careful design,
SC19-Sim applies each gate sequentially to the state vector,
requiring decompression and compression before and after
updating the state vector amplitudes.
This design exposes several issues: ❶ Since

(de)compression is executed on a per-gate basis, fully
decompressing all SV blocks for every gate operation
significantly lowers performance. Moreover, as the circuit
length (number of gates) increases, the number of lossy
compression operations escalates, leading to an accumula-
tion of errors and degradation of state fidelity. ❷ The GPU
is not leveraged, as the entire state vector is processed only
by the CPU. Leveraging the parallel computing capability of
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amplitude updates. The same alphabet denotes the same value.

GPUs can significantly improve performance. However, the
intensive data transfer between CPU and GPU will heavily
impact simulation efficiency. ❸ The compression-introduced
error is not controlled. Random errors introduced by
compression will result in unguaranteed fidelity. Therefore,
we need a specialized error control scheme to bound the
fidelity. ❹ The compression ratio is unpredictable during
the simulation process. The simulation may halt midway
due to insufficient memory space, necessitating a backup
memory management system to prevent such interruptions.

4 Design of BMQSim
Overview of BMQSim’s Design. BMQSim is designed to
simulate full-state quantum circuits with a smaller memory
footprint to support more qubit systems. Figure 4 summa-
rizes the key techniques implemented in BMQSim and the
respective sections where they are discussed. Specifically,
we introduce a specialized circuit partition approach (§4.1)
to minimize the (de)compression frequency hence signifi-
cantly improve the performance and increase the fidelity,
addressing ❶. We include a workflow design (§4.2) to over-
lap compression/decompression, data movement between
CPUs and GPUs, and computation, addressing ❷. An error-
controlled GPU compressor (§4.3) is proposed to mitigate ❸.
Finally, we present a two-level memory management system
(§4.4) to solve issue ❹.

4.1 Optimal-Compression Circuit Partition
As analyzed in Section 3, the basic solution will lead to fre-
quent (de)compression because gates in the circuit require
different access patterns on SV blocks due to different tar-
get qubits. This issue significantly impacts the simulation
performance.

Insight from the Analysis. To solve this issue, we care-
fully analyze Observation in §3 and obtain two important
findings. (1) For multiple gates targeting the local index set,
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Figure 5: An example of the proposed circuit partition process.

we can apply them all after decompressing the correspond-
ing SV block because every amplitude in this block can find
its corresponding pair within the same block. (2) For multiple
gates targeting the global index set, since different gates may
require pairs of different SV blocks, we can involve a few
more SV blocks to make the multi-gate application possible
and balance the far-reach of pairs. An example of this is
shown in Figure 1: when two gates targeting different global
indices are applied, we can include more SV blocks to ensure
that the pairs of amplitudes needing updating can still be
found within these SV blocks. The number of SV blocks in-
volved is two to the power of the number of targeted global
indices. Insight is drawn from above findings:
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Figure 4: An example of how SV blocks are involved based on target
global index changes. The same alphabet denotes the same value (0
or 1).

gates targeting the global index set, since different gates may
require pairs of different SV blocks, we can involve a few
more SV blocks to make the multi-gate application possible
and balance the far-reach of pairs. An example of this is
shown in Figure 4: when two gates targeting different global
indices are applied, we can include more SV blocks to ensure
that the pairs of amplitudes needing updating can still be
found within these SV blocks. The number of SV blocks in-
volved is two to the power of the number of targeted global
indices. Insight is drawn from above findings:

Insight: If all the gates in the circuit target the local
index or a few specific global indices, then the state
vector update can be done for all the gates with one
decompression.

How to make the circuit consist only of gates target-
ing certain indices? We find that if we partition the circuit
into multiple stages where the number of global indices tar-
geted by the involved gates in a stage is limited, then within
such stage, all the gate operations can be performed using
the same SV block access pattern. Therefore, we propose a
circuit partition algorithm to partition the circuit into stages
given a pre-defined limit of number of global indices. Details
of this approach can be found in Algorithm 1. Specifically,
we define global indices that appear within a stage as inner
indices and other global indices that do not as outer indices.
After the user specifies the SV block size and the inner size,

Local = 0, 1

Inner = 3, 5

Outer= 2, 4

Given a circuit:Set parameters:

SV block size = 22

Inner size = 2

Partition to stages:

Combine state vector blocks into groups:

0 0 0 0

0 0 1 0

1 0 0 0

1 0 1 0

0 0 0 1

0 0 1 1

1 0 0 1

1 0 1 1

0 1 0 0

0 1 1 0

1 1 0 0

1 1 1 0

0 1 0 1

0 1 1 1

1 1 0 1

1 1 1 1

5   4   3   2     1   0 5   4   3   2     1   05   4   3   2     1   05   4   3   2     1   0

Group 0 Group 1 Group 2 Group 3

For each 
stage:

Alg 1

For example

State Vector Block All Combinations Inner

q0
q1
q2
q3
q4
q5

q0
q1
q2
q3
q4
q5

q1

q2

q3

q4

q5

Figure 5: An example of the proposed circuit partition process.

the algorithm runs offline for a given circuit. For each stage,
we add one gate at a time from the input circuit (Line 11)
until the number of global indices in the stage reaches a
threshold (Lines 7-9). We repeat this process until the circuit
is fully traversed (Line 4). Note that the minimum number of
inner indices must be two (Line 3). This requirement stems
from the structure of quantum circuits, consisting of single-
and double-qubit gates. Ensuring at least two inner indices is
crucial for effective circuit partitioning when a double-qubit
gate’s target qubits both fall within the global indices.
An example of this process is depicted in Figure 5. In

this example, we partition the circuit into four stages with
Algorithm 1. For this 6-qubit (𝑛 = 6) circuit, the local index
size is 2 (𝑏 = 2), and the global index size is 4 (𝑐 = 4). In the
example stage from the step 4 in Figure 5, indices 3 and 5 are
the inner indices of this stage, while 2 and 4 are the outer
indices. All the gate operations in this stage only involve the
SV blocks with the same outer indices. We call this set of
SV blocks an SV group; there are a total of 4 groups in this
example. Each group can be updated independently.
With this design, each stage requires only one compres-

sion and one decompression operation, significantly reduc-
ing the frequency of compression. For instance, in the simu-
lation of a 33-qubit QFT circuit, our approach can decrease
the number of compression occurrences from 2,673 (i.e., the
number of gates) to just 28 (i.e., the number of stages). This

How to make the circuit consist only of gates target-
ing certain indices? We find that if we partition the circuit
into multiple stages where the number of global indices tar-
geted by the involved gates in a stage is limited, then within
such stage, all the gate operations can be performed using the
same SV block access pattern. Therefore, we propose a circuit
partition algorithm to partition the circuit into stages given a
pre-defined limit of number of global indices. Details of this

approach can be found in Algorithm 1. Specifically, we de-
fine global indices that appear within a stage as inner indices
and other global indices that do not as outer indices. After
the user specifies the SV block size and the inner size, the
algorithm runs offline for a given circuit. For each stage, we
add one gate at a time from the input circuit (Line 11) until
the number of global indices in the stage reaches a threshold
(Lines 7-9). We repeat this process until the circuit is fully
traversed (Line 4). Note that the minimum number of inner
indices must be two (Line 3). This requirement stems from
the structure of quantum circuits, consisting of single- and
double-qubit gates. Ensuring at least two inner indices is
crucial for effective circuit partitioning when a double-qubit
gate’s target qubits both fall within the global indices.
An example of this process is depicted in Figure 5. In

this example, we partition the circuit into four stages with
Algorithm 1. For this 6-qubit (𝑛 = 6) circuit, the local index
size is 2 (𝑏 = 2), and the global index size is 4 (𝑐 = 4). In the
example stage from the step 4 in Figure 5, indices 3 and 5 are
the inner indices of this stage, while 2 and 4 are the outer
indices. All the gate operations in this stage only involve the
SV blocks with the same outer indices. We call this set of
SV blocks an SV group; there are a total of 4 groups in this
example. Each group can be updated independently.

Algorithm 1 Proposed circuit partition method.
Input: circuit, SV block size, inner size
Output: stages
1: stages = []
2: current stage = []
3: threshold = max(inner size, 2) ⊲ 2 for double-qubit gates
4: while i < number of gates in circuit do
5: current gate = circuit[i]
6: query the global indices in [current stage + current gate]
7: if exceed the threshold then ⊲ Partition current stage
8: add current stage to stages
9: current stage = [] ⊲ Clear current stage
10: end if
11: add current gate to current stage
12: i++
13: end while
14: if current stage not empty then
15: add current stage to stages
16: end if
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With this design, each stage requires only one compres-
sion and one decompression operation, significantly reduc-
ing the frequency of compression. For instance, in the simu-
lation of a 33-qubit QFT circuit, our approach can decrease
the number of compression occurrences from 2,673 (i.e., the
number of gates) to just 28 (i.e., the number of stages). This
substantially increases the final result’s fidelity and also im-
proves overall performance.

4.2 Transfer-Concealed Workflow
On one hand, to maximize qubit support, it is beneficial to
store compressed state-vector (SV) blocks in the larger CPU
memory (e.g., 16GB to 512GB) compared to GPU memory
(e.g., 4GB to 80GB). On the other hand, GPU-based simulators
outperform CPU-based ones due to high parallelism ideal for
matrix multiplication. Therefore, BMQSim leverages both
CPU and GPU: compressing SV blocks in CPU memory and
assigning state vector updates to GPUs. This design, however,
requires frequent CPU-GPU memory transfers, complicating
block-wise state vector updates.

Pipeline design. To resolve this issue, we propose a mem-
ory transfer and computation overlapping pipeline. As de-
scribed in §4.1, the simulation is divided into discrete, in-
dependent tasks called SV groups, allowing for more mod-
ular and efficient processing. This characteristic is utilized
to overlap kernel executions with data transfers (as men-
tioned in §2.3, GPUs can perform memory copy operations
and kernel execution concurrently). A demonstration of this
pipeline design is shown in Figure 6: each SV group un-
dergoes a sequence of operations including host-to-device
memory copy, decompression, state vector updating, com-
pression, and device-to-host memory copy. These operations
are scheduled on the same CUDA stream to maintain the
correct execution order. Additionally, operations for different
SV groups are scheduled to each CUDA stream repeatedly,
facilitating the overlap of overall processes. Moreover, kernel
executions can also be overlapped by the GPU scheduler to
fully leverage the computing resources in the GPUs. This
strategy efficiently overlaps memory operations and kernel
execution, enhancing overall performance.

Multi-GPUparallelization. Since the simulation process
is divided into independent tasks by our circuit partition, dif-
ferent GPUs can simultaneously process distinct SV groups
of SV blocks. This enables native support for concurrency
at the inter-GPU level in BMQSim. As shown in Figure 6,
each GPU handles partial SV groups and processes them
locally without GPU-to-GPU communication. Note that the
throughput of multi-GPU parallelization is bounded by the
PCIe bandwidth, as all data transfer between the CPU and
GPUs occurs through PCIe. When memory movement is
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Figure 6: A demonstration of our multi-stream pipeline design.

intensive, it can cause a starvation problem for GPUs (evalu-
ated in Section 5.8).
Note that in the beginning of the simulation, the state

vector is initialized to a standard base state (the first element
is 1, all the others are 0) as a common practice [28]. When
the initial state differs from this standard as the simulation
proceeds, a few quantum gates can be used to establish the
desired initial state. After partitioning the state vector, all SV
blocks, except the first one, consist only of zeros. Therefore,
there is no need to compress the same SV block multiple
times. During the initial compression, we only need to com-
press the block with the first element set to one and another
block containing all zeros. Then, we can copy the compressed
SV block with all zeros multiple times. This approach reduces
the (de)compression overhead by one instance.

4.3 Point-wise Error Control for GPU
Compression

We introduce our proposed GPU point-wise compression er-
ror control to ensure that the compression-error propagation
in simulation can be bounded in the final results.

It has been proven that GPU lossy compression has much
better performance and similar compression ratios compared
to CPU compression. To this end, we employ GPU lossy com-
pression in BMQSim to minimize the compression overhead.
Previous work has demonstrated a lower bound on the fi-
delity of the state vector when applying a point-wise relative
error bound [58]. Unfortunately, to our knowledge, current
SOTA GPU lossy compressors do not support the point-wise
relative error bound mode. To address this, we propose the
GPU Point-wise Error Compression algorithm. Drawing on
previous work by Liang et al. [30], we use a logarithmic
transformation to convert point-wise relative error bounds
to absolute error bounds.
Specifically, let 𝑓 (𝑥) = log2 (𝑥) be a bijective transforma-

tion of the original data point 𝑥 . Applying an absolute error
bound 𝑏𝑎 to 𝑓 (𝑥) results in the original data being bounded
by a point-wise relative error 𝑏𝑟 , as shown by the equation:

|𝑓 −1 (𝑓 (𝑥) + 𝑏𝑎) − 𝑥 |
|𝑥 | ≤ 𝑏𝑟 (1)
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The relationship between 𝑏𝑎 and 𝑏𝑟 can be expressed as:
𝑏𝑎 = 𝑔(𝑏𝑟 ) = log2 (1 + 𝑏𝑟 ) (2)

As a result, we can achieve point-wise relative error bounds.
Challenges. Note that the log2 transformation in Equa-

tion (2) requires positive input values, but satisfying this
requirement is a non-trivial task. A common method is to
convert negative values to absolute values before applying
the log2 transformation and use an array to record their in-
dices. However, this approach would significantly lower the
overall compression ratio due to the extra space for the index
array, potentially even leading to data size inflation.
Our solution. To address this challenge, we propose an

algorithm that avoids using an index array to record the
negative values. We detail this algorithm in Algorithm 2 (the
decompression process is simply the inverse). Specifically,
we use a bitmap to store the sign of each number in the
original array (Line 1), designating 0 for positive values and
zeros (Line 8), and 1 for negative values (Line 5). Then, we
convert the negative values to their additive inverse (Line 6)
and apply the log transformation (Line 10). Subsequently, we
apply lossy compression with absolute error-bounded mode
to the data to achieve point-wise error control (Line 15).
Note that based on our observations, bitmaps frequently

exhibit long sequences of repeated 0-bits or 1-bits, indicat-
ing that the sign of the state vector is often repeated over
extensive distances. To address this redundancy, we propose
a pre-scan of the bitmap (Line 16). Specifically, the bitmap is
partitioned into chunks, within which CUDA’s warp-level
fast scan functions, __ballot_any and __ballot_all, are em-
ployed. These functions, optimized by register direct data
exchange, rapidly assess large bitmap chunks to determine
if all bits within a chunk are all-0 or all-1. The results are
recorded, and redundant all-0 or all-1 chunks are removed.
The remaining data is finally compressed using an additional
lossless encoding method (Line 17). This approach not only
increases the compression ratio but also enhances overall
compression performance.

4.4 Two-Level Memory Management
The point-wise error-bounded lossy compression introduced
in BMQSim raises a potential issue: no sufficient memory
guarantee for simulation due to variable compression ratios
during the simulation. To address this, we propose a two-
level memory management system. Specifically, if the main
memory is insufficient, the machine’s storage component is
employed as a fallback strategy to support the simulation.

Challenges. A couple of reasons make this solution chal-
lenging: 1. Data transfer from the storage to the GPU requires
an intermediate step of involving CPU memory, needing ad-
ditional memory space as a temporary buffer for SV blocks
from the storage. 2. Moving SV blocks from the storage to

Algorithm 2 GPU point-wise relative error control compression.
Input: SV blocks
Output: compressed SV blocks, compressed bitmap
1: bitmap = []
2: while i < number of SV blocks do ⊲ Pipelined in Section 4.2
3: while j < number of elements in SV block do
4: if SV block[i][j] < 0 then
5: add 1-bit to bitmap ⊲ 1 denotes a negative number
6: SV block[i][j] = -SV block[i][j] ⊲ Convert to positive
7: else
8: add 0-bit to bitmap ⊲ 0 denotes a non-negative number
9: end if
10: SV block[i][j] = 𝑙𝑜𝑔2(SV block[i][j]) ⊲ Convert to log scale
11: j++
12: end while
13: i++
14: end while
15: lossy encode (SV block)
16: pre-scan(bitmap)
17: lossless encode (bitmap)

CPUmemory and then to GPUmemory generates significant
latency, degrading the overall simulation performance.

Our solution. To address these challenges, we employ the
GDS technology (as introduced in §2.3) to enable direct mem-
ory access between GPU and storage, leveraging the Direct
Memory Access (DMA) engine. This method bypasses the
potential CPU bounce buffer that traditionally is used as an
intermediary for transferring memory between the storage
and GPU global memory. Utilizing GDS not only conserves
CPU memory—heavily employed for storing compressed SV
blocks—but also minimizes CPU overhead. This application
of GDS in our design thus enhances BMQSim’s capacity to
handle larger quantum simulations more robustly.
During the simulation, if BMQSim detects that there is

insufficient memory for an upcoming compressed SV block,
it calls the cuFile APIs [16] to directly save this chunk to the
storage via GDS. Our evaluation (§ 5) indicates that the per-
formance drop with two-level management is not significant
(i.e., 0.7% on average), highlighting our efficient design.

5 Experimental Evaluation
5.1 Experimental Setup
Machines. Due to the administrative privileges required
for driver support for the GDS technique, we conduct our
evaluation primarily using the following two machines:

Machine 1: A workstation equipped with a 28-core Intel
Xeon Gold 6238R CPU at 2.20GHz and two NVIDIA GTX
A4000 GPUs (40 SMs, 16 GB each), along with 128 GB DDR4
memory. This workstation runs Ubuntu 20.04.5 and CUDA
12.3.107. It also includes a Samsung 870 EVO MZ-77E4T0E
SSD with a capacity of 4 TB and a SATA 6Gb/s interface. The
GPUs in this workstation are connected via PCI Express 4.0.
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Machine 2: To evaluate multi-GPU performance speedup,
we also include a node from an HPC cluster, which includes
a 64-core AMD EPYC 7713 CPU at 2.00GHz and four NVIDIA
Ampere A100 GPUs (108 SMs, 40GB each). This system has
256 GB DDR4 memory and runs CentOS 7.4 with CUDA
12.2.91. The GPUs are interconnected using NVLink.

Software. We implement BMQSim based on SV-Sim [27],
primarily because SV-Sim (already merged into NWQSim
[51]) is an open-source platform with active maintenance.
Furthermore, we base our compression on bitcomp from
NVCOMP [39], as bitcomp excels among GPU lossy com-
pressors for its exceptional compression throughput and
ratio. Bitcomp integrates both lossless mode and lossy mode.
We use lossless mode for bitmap and lossy mode for data.
We use a point-wise relative error bound of 10−3, as this
provides a balanced compression ratio and fidelity.

Baselines.We compare BMQSim with the following base-
lines: SV-Sim [27], Qiskit-Aer [24], cuQuantum Appliance
[40], and HyQuas [65]. Each of these supports GPU-based
state-vector simulation. Additionally, we include a compar-
ison with another state-vector simulation work utilizing
compression, referred to as SC19-Sim [58]. However, as the
implementation of SC19-Sim is not publicly available, we
developed a prototype of SC19-Sim with SV-Sim and SZ2
[31, 52]. A detailed comparison is presented in Table 1.

Table 1: Comparison of Different State Vector Simulators

Existing State State Vector GPU Use
Vector Simulators Location Updating? Compression?

Qiskit CPU+GPU ✓ ✗
SV-Sim GPU ✓ ✗
HyQuas GPU ✓ ✗
cuQuantum GPU ✓ ✗
SC19-Sim CPU ✗ ✓
BMQSim CPU ✓ ✓

Benchmark Circuits. We select eight quantum algo-
rithms from NWQBench [28]. This suite includes quantum
circuits with qubit numbers ranging from 23 to 33 and gate
numbers from 24 to 3010. The selected circuits are cat_state,
cc, ising, qft, bv, qsvm, ghz_state, and qaoa.

5.2 Evaluation of Supported Qubit Number
We begin by assessing the maximum supported number of
qubits across different simulators on Machine 1, as shown in
Table 2. Our evaluations indicate that BMQSim can support
up to 42 qubits, significantly exceeding other counterparts,
which support an average of 30 qubits. This capacity goes
beyond some entire HPC clusters under normal simulation
conditions. Note that with the help of an SSD (assuming SSDs
as an extral external storage space), BMQSim can reach up to

Table 2: Maximum Qubit Numbers for Different Simulators on Ma-
chine 1.

Algorithm Qiskit cuQuantum SV-Sim HyQuas BMQSim

cat_state 33 31 26 29 42
cc 30 N/A 26 29 37
ising 33 31 26 29 35
qft 33 31 26 29 36
bv 33 31 26 29 42
qsvm 33 31 26 29 35
ghz 33 31 26 29 42
qaoa 29 31 26 29 35

47 qubits, which is close to the capacity of the Frontier HPC
cluster at 48 qubits [2], and 14 more than other simulators.
Note that the supported number of qubits varies due to the
unpredictable compression ratio.

5.3 Comparison with SC19-Sim
We then compare BMQSim with another compression-based
state-vector simulation, SC19-Sim [58], to demonstrate the
high-performance and high-fidelity advantages of our work.

Since SC19-Sim is not open-source, we implemented a pro-
totype based on SV-Sim [27] with the fastest compression
technique, solution B, in their paper [58]. For a fair com-
parison, we implemented both a CPU version as described
in the SC19-Sim [58] paper and a GPU version using the
same compression technique but utilizing GPUs to update
the state vectors. We ran this evaluation on Machine 1.

Simulation Time.We begin by comparing the simulation
time. The results are shown in Figure 7. Our findings indi-
cate that BMQSim outperforms both versions of SC19-Sim
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Figure 8: Fidelity of SC19-Sim and BMQSim (higher values better
fidelity).

under all configurations. The average speedup of BMQSim
compared to SC19-Sim (CPU) and SC19-Sim (GPU) is 1385×
and 539×, respectively. This significant performance boost is
attributed to the low compression frequency, finely pipelined
workflow, and high-performance GPU compression. Note
that in some cases, the SC19-Sim CPU version outperforms
the SC19-Sim GPU version. This anomaly is due to the basic
solution implemented in SC19-Sim that does not overlaps
the data transfer and kernel execution. This results a huge
overhead in the memory movement between the CPU and
GPU. In contrast, our work leverages a pipeline design to
minimize the overhead of data transfer and gain significant
performance improvement (evaluated in Section 5.6).
Fidelity. Next, we evaluate the fidelity of simulation re-

sults. Fidelity is the most important metric for determining
the authenticity of final quatum state. It indicates the simi-
larity between the ideal output state and the simulated state,
with values ranging from 0 to 1, where higher is better. The
fidelity of our simulations is calculated using the equation:
𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 = |⟨𝜓𝑖𝑑𝑒𝑎𝑙 |𝜓𝑠𝑖𝑚⟩|, where 𝜓𝑖𝑑𝑒𝑎𝑙 is the ideal output
state from SV-Sim and𝜓𝑠𝑖𝑚 is the state produced by the tested
lossy-compression enabled simulation. Our results show that
BMQSim achieves a fidelity greater than 0.99 across all con-
figurations, which is higher than SC19-Sim, particularly for
deep circuits. For instance, BMQSim achieves 1.35× higher
fidelity on average compared to SC19-Sim in the qft circuit.

5.4 Evaluation of Memory Consumption
We present a memory consumption comparison between
BMQSim and the standard for state vector simulation, which
is 2𝑛+4 bytes, where𝑛 denotes the number of qubits, as shown

in Figure 9. The (de)compression is performed once for each
circuit stage. We consider the maximum memory consump-
tion across all stages in the circuit as the final memory con-
sumption of the simulation. Extremely low memory usage is
observed for cat_state, bv, and ghz_state, with average mem-
ory reductions of 678.61 times for cat_state, 424.77 times for
bv, and 678.52 times for ghz_state. Other circuits also main-
tain significant memory reductions, averaging 15.50 times
for cc and 10.54 times for qft.
Note that in most cases, system memory is sufficient for

simulation. Thus, to evaluate the two-level memory man-
agement design that uses SSD storage as a backup plan for
simulation, we limit the memory space of Machine 1 to 8 GB
and run the same evaluation. We find that the SSD is lever-
aged only when the qubit number is larger than 32 qubits
for some circuits. For example, the ising circuit stores 39%
and 70% of its SV blocks in the SSD with qubit numbers 32
and 33, respectively.

5.5 Evaluation of Simulation Time
Next, we evaluate the simulation time of BMQSim compared
with other baselines on Machine 1, as shown in Figure 10.

Compared to SV-Sim, BMQSim offers significant perfor-
mance improvements. When NVLink is not available, SV-Sim
experiences substantial overhead from GPU-to-GPU com-
munication, resulting in the longest simulation times across
all settings. In contrast, BMQSim partitions the circuit into
stages, dividing the simulation into independent local jobs
on GPUs, which eliminates the GPU-to-GPU communication,
resulting in an average performance speedup of 75×.

In most cases, BMQSim achieves similar simulation times
to the Qiskit-Aer GPU simulator. For instance, the simula-
tion time ratio of BMQSim to Qiskit-Aer is 0.99 and 1.05 for
qsvm and qft on average, respectively. This demonstrates
that BMQSim has optimized the simulation process to per-
form on par with the SOTA GPU simulator from industry. It
is important to note that Qiskit-Aer utilizes both CPU and
GPU memory for storing the state vector and prioritizes
GPU memory based on our evaluation. Consequently, there
is a significant drop in performance when the qubit num-
ber increases from 30 to 31, as the GPU memory becomes
insufficient, causing a fallback to combined memory.

Despite the improvements, both cuQuantum and HyQuas
still outperform BMQSim in most cases. This performance
disparity is primarily due to the SV-Sim backend on which
BMQSim is based. HyQuas, with its series of performance
optimizations, achieves the best performance among all sim-
ulators, being 12× faster than BMQSim on average. However,
this performance comes at the cost of higher memory con-
sumption, which limits HyQuas’s supported qubit number
compared to other GPU simulators. CuQuantum, tested using
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Figure 9: Memory consumption of BMQSim compared to the memory required for normal state vector simulation.
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Figure 10: Simulation time on various quantum circuits and qubit numbers (missing bars indicate memory allocation errors).

the backend integrated in qsim [55], achieves approximately
9× speedup compared to BMQSim. However, cuQuantum is
not an open-source tool and only supports the float32 data
type. This inherent characteristic renders it faster than all
the other evaluated simulators using float64 data points.
Compared to these well-optimized works, the advantage

of BMQSim lies in its ability to support a considerable larger
number of qubits. Given the popularity and acceptance in
the community, BMQSim offers comparable simulation time
with industry-level simulators like Qiskit with significantly
more supported qubits.

5.6 Compression Overhead Analysis
We further evaluate the compression overhead of our de-
sign by comparing it with the version of BMQSim without
compression, as shown in Figure 11. For this evaluation, we
use a single A4000 GPU in Machine 1 to reduce the impact
of other overhead on the evaluation results. The results il-
lustrate that, thanks to our circuit partitioning and pipeline
design optimizations, the compression overhead is minimal
compared to the version without compression. Notably, in
some cases, BMQSim even outperforms the no-compression
version. This is because, although compression adds over-
head to the simulation process, it also reduces memory copy
time due to the smaller size of the compressed SV blocks.

When the compression ratio is high, as in the cases of the
cat_state, bv, and ghz algorithms, the data copy overhead
becomes negligible, enabling BMQSim to outperform the
version without compression. Overall, the compression tech-
nique contributes positively to the simulation time and leads
to a 9% speedup on average. In comparison, compression
accounts for approximately 61% on average of the SC19-Sim
simulation time, demonstrating that our work significantly
lifts compression overhead. Note that we also evaluate the
overhead introduced by the logarithmic transformation in
our compression design, and it is negligible in both compres-
sion and decompression time (less than 5%).

5.7 Pipeline Design Analysis
We also evaluate the impact of different CUDA stream num-
bers and present the results on Machine 1 in Figure 12. We
fix other parameters, such as the SV block size and inner
size, to isolate the impact of the stream number. When the
CUDA stream number is set to 1, it represents the version of
BMQSim without pipeline optimization. Our findings indi-
cate that, inmost cases, the highest speedup is achievedwhen
the stream number is set to 2. Although the speedup is not
as significant with a stream number of 4, some improvement
is still observed. However, when the stream number reaches
8, the pipeline version becomes slower than the sequential
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Figure 11: Compression overhead of BMQSim with different numbers of qubits.

version. This is due to the stream context switch overhead
outweighing the benefits brought by pipeline speedup.
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Figure 12: Impact of CUDA stream number in our pipeline design.

5.8 Other Evaluations
Finally, we evaluate other settings, including the GPU num-
ber, inner size, SV block size, and circuit partition overhead.
Multi-GPU Speedup. To evaluate the scalability of our

work, we test it on up to 4 A100 GPUs from Machine 2 with
different circuits of 28 qubits, as shown in Figure 13. In the
qft, our work achieves a speedup of 1.7× and 2.3× for 2
GPUs and 4 GPUs, respectively, thanks to the independent
SV groups design in BMQSim. While the speedup is not
significant when the number of GPUs rise from 2 to 4 in
some cases due to the CPU and GPU memory transfer rate
bounded by the PCIe (as mentioned in Section 4.2) and the
high overhead of GPU operation launches.
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Figure 13: Scalability of BMQSim on different algorithms.

Evaluation of Circuit Partition Overhead. To demon-
strate the overhead of the extra circuit partition strategy, we
evaluate the percentage of the circuit partition time com-
pared to the end-to-end latency of the simulation process, as

shown in Figure 14. The results indicate that the partition
time is negligible compared to the overall simulation time.
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Figure 14: Circuit partition time as a percentage of overall simulation
time.

Parameter Tuning. To evaluate the influences of the in-
ner size and SV block size, we assess the simulation time and
compression ratio (the ratio of standard memory to practical
memory) with different settings for the 30-qubit qaoa algo-
rithm, as shown in Figure 15. Our findings indicate that the
compression ratio does not vary significantly with different
inner sizes and SV block sizes. However, the simulation time
is shorter with higher inner sizes and SV block sizes. This is
because a larger inner size and SV block size result in fewer
stages and, consequently, fewer kernel launches.

Compression Ratio

Simulation Time (s)

Figure 15: The impact of two system parameters (i.e., inner size and
SV block size) on compression ratio (left) and simulation time (right).

Fidelity Evaluation. To demonstrate the high-fidelity
performance of BMQSim, we include results for larger num-
bers of qubits, as shown in Table 3. The results show that
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Table 3: Algorithm fidelity across qubit counts 24 to 30.

Algorithm 24 25 26 27 28 29 30
cat_state 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995
cc 0.9996 0.9998 0.9987 0.9988 0.9997 0.9998 0.9993
ising 0.9992 0.9997 0.9987 0.9993 0.9992 0.9997 0.9998
qft 0.9998 0.9993 0.9988 0.9983 0.9998 0.9993 0.9988
bv 0.9985 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995
qsvm 0.9992 0.9997 0.9987 0.9993 0.9992 0.9997 0.9998
ghz 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995
qaoa 0.9986 0.9999 1.0000 0.9994 0.9990 1.0000 0.9998

BMQSim consistently achieves fidelity above 0.99 across all
algorithms and qubit counts, highlighting its robustness and
accuracy. It also indicates that BMQSim is suitable for a wide
range of algorithms, with minimal impact from varying en-
tanglement patterns.

6 Discussion
In the previous sections, we introduce BMQSim and show
that it can achieve up to 14 more qubits for state-vector sim-
ulation. A follow-up question is can one apply it to density-
matrix and tensor-network simulations? Unlike the state-
vector approach, the density-matrix and tensor-network
approaches represent quantum states using matrices and
tensors, respectively. Lossy compression can be applied to
arrays of any dimension, including 1D vectors, 2D matrices,
and 3D/4D tensors, where typically a higher dimension al-
lows for a higher compression ratio. However, the strategy
for updating elements in the density matrix differs from that
in the state vector and includes irregular access, which neces-
sitates a different partition strategy. In contrast, computation
in the tensor network requires the simultaneous reuse of the
same part of a tensor, creating a dependency between com-
pression and tensor updates. Addressing these challenges to
enable BMQSim in these issues remains an area for future
work.

Regarding integration with other state-vector simulators,
BMQSim is designed to be independent of both the simula-
tor’s front and back end. We propose techniques like gate
remapping to implement our work as a separate plugin. How-
ever, there are still some challenges when integrating with
other simulators. For example, in combination with HyQuas,
the unique circuit partition pattern of this work must be rec-
onciled with our partition strategy. When integrating with
cuQuantum, the closed-source nature of its backend impacts
the implementation of our pipeline design, as we cannot
specify the execution CUDA stream.

7 Related Work
The field of quantum simulation, particularly based on state
vectors, has been a significant area of research in recent years.

Various quantum computing machines provide their own
simulators, with notable examples including Qiskit [24], Cirq
[18] and cuQuantum SDK [40]. These machines, supported
by specialized development teams, prioritize stability and
versatility in their simulation tools. In recent years, there
has been an extensive body of work in state-vector simula-
tion, such as Atlas[59], QX [26], qHiPSTER [48], IQS [19],
HiSVSIM [11], Hyquas [65], UniQ [66], SV-Sim [27]. These
simulators primarily focus on improving the simulation per-
formance by enhancing memory locality and communication
efficiency.
Atlas [59] abstracts the quantum simulation communica-

tion optimization problem as a linear programming problem.
By solving this problem offline, Atlas achieves improved
simulation performance. However, the offline analysis is
time-consuming and can significantly exceed the simulation
time, rendering it impractical for small-scale problems.
QX [26] enhances the efficiency of quantum operations

through optimization techniques such as instruction-level
parallelism (e.g., SSE, AVX, and FMA instructions) and mul-
tithreading. It also performs gate-specific optimization by
leveraging the reduction of floating-point operations and
swap-based implementation.

qHiPSTER [48], designed by Intel, is a distributed quantum
simulation system capable of simulating up to 42 qubits using
1,000 nodes. It introduces a methodology wherein half of
the required data is communicated to a corresponding peer
node during amplitude updating for each gate on high-order
qubits. After computation, the results are sent back to the
original nodes. IQS [19] is an upgraded version of qHiPSTER,
focusing on reducing global communication in distributed
simulations through strategic qubit mapping.
Zhang et al. developed HyQuas [65], an advanced quan-

tum circuit simulator that automatically selects the most
efficient simulation methods for different sections of a quan-
tum circuit, based on their patterns. HyQuas integrates two
highly optimized methods and a GPU-centric communica-
tion pipelining approach to enhance performance. Building
on this, Zhang et al. also introduced UniQ [66], a program-
ming model for high-performance and portable state-vector
simulation, offering unified application-level and hardware-
level abstractions.
Li et al. developed SV-Sim, a scalable PGAS-based state-

vector simulator [27]. This simulator employs direct peer
access for intra-node communication and SHMEM for inter-
node communication, enhancing simulation efficiency. SV-
Sim is adept at abstracting various quantum gates across a
range of heterogeneous backends, such as CPUs, GPUs, and
Xeon Phi. Its compatibility with higher-level quantum pro-
gramming environments, including IBM Qiskit, Microsoft
Q#, and Google Cirq, adds to its versatility. An extension of
SV-Sim, NWQSim [51], integrates it with a density-matrix
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simulator [29] for advanced capabilities. In addition, Fang et
al. proposed HiSVSIM [11] which designs efficient hierarchi-
cal circuit partition (i.e. acyclic graph partition) to achieve
faster simulation.

An earlier study [58] (SC19-Sim) explored the use of data
compression techniques to reduce the memory footprint in
state-vector simulation, focusing on CPU-only approaches.
Comp-QSim simply applies compression to segments of state
vectors and decompresses them for updates. However, it does
not fully integrate compression into the overall computation
workflow, serving primarily as a proof of concept for the po-
tential memory reduction ratio achievable with the proposed
compression techniques.

8 Conclusion and Future Work
In this paper, we introduced BMQSim to address memory
limitations in quantum simulation. We propose four designs:
Circuit Partition, Workflow Pipeline, Point-wise Relative
Error Control and Two-level Memory to employ lossy com-
pression creatively and effectively tackling challenges such
as low simulation fidelity and high compression overhead,
BMQSim has successfully enabled the simulation of up to 14
(on average 10) additional qubits under memory constraints,
with fidelity over 0.999 in almost all cases.

BMQSim has undergone multiple iterations and has con-
tinuously evolved toward higher performance and scalabil-
ity [61, 62]. In future work, we plan to integrate BMQSim
with other state-vector simulators, such as cuQuantum and
Qiskit, to improve performance and usability. Furthermore,
we aim to extend this work to multi-node scenarios for large-
scale simulation.
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