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Abstract
Achieving scalability in sparse direct solvers is crucial for
addressing the complexity of real-world systems. This pa-
per proposes SnuSOLVER, a library for sparse direct solvers.
Unlike conventional approaches, which often apply kernel
selection heuristically within supernodal or frontal methods,
the SnuSOLVER adopts a structured, two-phase execution
strategy tailored to the characteristics of each level in the
nested dissection hierarchy. It ensures optimal performance
across all hierarchical levels of computation. We evaluate
SnuSOLVER on an eight-node heterogeneous cluster with
AMD CPUs and NVIDIA GPUs using 31 sparse matrices of
varying sizes and domains. Experimental results demonstrate
that SnuSOLVER outperforms the state-of-the-art solvers Su-
perLU_DIST and STRUMPACK and underscore the scalabil-
ity, efficiency, and adaptability of SnuSOLVER, establishing
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it as a robust solution for sparse direct solvers on modern
heterogeneous computing systems.
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1 Introduction
Solving sparse linear systems is fundamental to improving
our understanding of nature. A well-known example is the
simulation of the time evolution of large-scale systems de-
scribed with partial differential equations (PDEs) in domains
including circuit simulation, computational fluid dynamics,
and structural mechanics. Existing approaches to solving
sparse linear systems can be categorized into two classes:
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direct and iterative. The former computes the matrix inverse
where some pivoting is involved. The latter applies precon-
ditioning iteratively, resembling numerical methods such as
Newton’s method. Iterative methods may reduce the compu-
tational complexity to less than matrix multiplication at the
cost of longer execution times for convergence and stability
issues [30]. Direct methods exhibit some benefits over iter-
ative methods, including predictable behavior in accuracy
and execution time.
LU factorization plays a key role in direct linear solvers

because solving triangular systems of equations is compu-
tationally straightforward. However, one major challenge
in factorizing sparse matrices is the introduction of fill-ins,
new nonzero elements that appear during the process. These
fill-ins increase the number of nonzero elements, leading to
higher computational loads and significant memory usage,
making fill-in minimization a critical objective. To address
this challenge, sparse direct LU solvers often interpret matri-
ces as graphs using adjacency matrices [4].

Dissection heuristics, such as nested dissection, are widely
used to minimize fill-ins by partitioning the graph into two
disconnected subgraphs [9]. By reducing fill-ins, these heuris-
tics improve computational efficiency and memory utiliza-
tion. Despite the heavy computational load of such algo-
rithms, effectively utilizing heterogeneous computing sys-
tems, such as GPU-based systems, is challenging due to the
irregular and sparse nature of the computations in sparse
direct solvers.
Workload imbalance and irregular memory accesses are

two significant challenges in deploying sparse direct solvers
on heterogeneous computing systems. Sparse matrices inher-
ently have an uneven distribution of nonzero elements, mak-
ing it difficult to assign computational tasks evenly across
processing units, leading to performance bottlenecks and re-
source underutilization. As factorization progresses, fill-ins
further exacerbate this imbalance. Additionally, the pointer-
based data structures, such as CSR or CSC formats, used to
represent sparse matrices result in non-sequential memory
accesses, which are inefficient for the memory hierarchies
of modern CPUs and GPUs.
These challenges hinder both workload distribution and

memory bandwidth utilization, particularly in GPU-accelerated
environments. Moreover, sparse direct solvers involve fre-
quent inter-process communication, especially in distributed
systems. Efficiently overlapping computation and communi-
cation is essential to minimize idle time, yet this is compli-
cated by the irregular data dependencies inherent in sparse
matrix computations.
This paper addresses these challenges, such as workload

imbalance, irregular memory accesses, and communication
scheduling, and proposes optimizing techniques for sparse
direct solvers for heterogeneous systems.

The main contributions of this paper are summarized as
follows:

• We propose SnuSOLVER, a library that employs a two-
phase execution strategy based on nested dissection.
Computation progresses from bottom to top in a hier-
archical submatrix tree. Sparse kernels at lower levels
exploit sparsity, while dense kernels at higher levels en-
hance throughput. This structure reduces synchroniza-
tion and communication overhead, offering a novel alter-
native to traditional supernodal and frontal methods.

• SnuSOLVER achieves both high throughput and low over-
head by tailoring computations to the characteristics
of submatrices. Its hierarchical design enables parallel
processing of independent submatrices and minimizes
synchronization. Efficient data transfers between pro-
cesses and across CPU-GPU boundaries further improve
scalability.

• We detail our implementation, including data distribu-
tion, kernel selection, memory layout optimization, and
overlapping computation and communication. Each de-
sign choice contributes to performance gains.

• Evaluation on 31 sparse matrices across diverse domains
shows that SnuSOLVER outperforms previous solvers
on an eight-node heterogeneous cluster (each with one
AMD 32-core CPU and four NVIDIA V100 GPUs). It
achieves up to 10.82× and 2.82× speedups over Su-
perLU_DIST and STRUMPACK, respectively, for factor-
ization and solve phases. It establishes a new benchmark
for heterogeneous sparse solvers.

2 Background and Related Work
This section provides background and discusses related work
to the paper.

2.1 LU Factorization
LU factorization is a fundamental technique for solving sys-
tems of linear equations, performing matrix inversion, and
computing determinants. It decomposes a given matrix 𝐴

into the product of a lower triangular matrix 𝐿 and an upper
triangular matrix𝑈 . This process involves two primary com-
putational tasks: panel factorization and Schur complement
updates. Panel factorization is executed using operations
such as GETRF (GEneral TRiangular Factorization) for the ini-
tial decomposition and TRSM (TRiangular Solve withMultiple
right-hand sides) for triangular solves. Schur complement
updates, which account for the effect of eliminating rows
and columns, are computed using GEMM (GEneral Matrix Mul-
tiply). This sequence is repeated, block by block, until the
entire matrix is factorized [10, 21].
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For dense matrices, LU factorization has been extensively
studied, leading to highly optimized algorithms and libraries.
In the case of sparse matrices, additional complexities arise
due to the need to minimize fill-ins, new non-zero elements
introduced during factorization, to preserve the sparsity of
the matrix. Sparse matrix factorization is crucial for han-
dling large matrices efficiently with limited memory and
computational resources. However, applying dense matrix
techniques directly to sparse matrices often results in ex-
cessive fill-ins and increased computational costs, failing to
exploit the sparsity effectively.

Despite these differences, the core tasks of sparse LU fac-
torization—panel factorization and Schur complement up-
dates, remain fundamentally similar to those in the dense
case. Over the years, numerous specialized methods [8, 11]
have been developed to address the unique challenges of
sparsity, ensuring efficient computation while maintaining
the structural advantages of sparse matrices. However, exist-
ing methods [15, 37] struggle with scalability and efficiency
in modern heterogeneous systems, particularly in address-
ing workload imbalance, irregular memory accesses, and
excessive communication overhead.

2.2 Sparse Direct Solver
Sparse direct LU solvers typically follow a sequence of phases:
analysis, symbolic factorization, numerical factorization, and
solve.

The analysis phase preprocesses the matrix to improve nu-
merical stability and computational efficiency. It determines
the elimination tree and partitions the matrix to optimize
parallel computation. The nested dissection heuristic [19, 20]
is often employed during this phase to minimize fill-ins.
Completely eliminating fill-ins during LU factorization is
generally infeasible. Thus, it is essential to reduce them as
much as possible. Nested dissection is a widely used and
effective strategy for minimizing fill-ins, although the result-
ing ordering is not guaranteed to be optimal. Libraries like
ParMETIS [20] are commonly used to apply the heuristic.
The symbolic factorization phase precomputes the struc-

ture of the factorized matrix without performing numerical
computations. By doing so, it identifies nonzero fill-ins and
allocates memory efficiently in advance. The actual factor-
ization occurs in the numerical factorization phase by filling
the predefined structure with numerical values. This phase
typically involves repeated panel factorization (GETRF, TRSM)
and Schur complement updates (GEMM). Once the matrix is
factorized, triangular solves are performed to compute the
final solution to the system of equations in the solve phase.
Sparse solvers face significant challenges in optimizing

workloads and achieving efficient parallelization, especially
in heterogeneous environments. They need to address two

① densification ② dense kernel
(GEMM)

③ change to
sparse format 

Figure 1: Densification used in supernodal or frontal
methods. The hatched area indicates the modification.
A portion of the sparse matrix is gathered to form a
dense matrix. Dense kernels, such as GEMM, are then ap-
plied to the dense matrix. The results are subsequently
converted back to sparse format and propagated to the
original matrix.

key aspects: high throughput and communication minimiza-
tion. Maximizing computational throughput with multiple
processors is critical for scalability. Techniques like supern-
odal method or frontal method are designed to densify compu-
tations and exploit high-performance dense matrix kernels,
such as BLAS, for efficient numerical factorization. By lever-
aging hierarchical parallelization, methods based on nested
dissection can reduce communication and synchronization
overhead caused by fine-grained parallelization.

2.3 Supernodal and Frontal Methods
The supernodal and frontal methods [3, 11] are two widely
used techniques for sparse matrix factorization. Both meth-
ods enhance computational efficiency by grouping nonzero
elements into dense submatrices, allowing optimized dense
matrix operations.
In the supernodal method, nonzero elements are aggre-

gated into supernodes—blocks of columns treated as dense
matrices during factorization. Similarly, the frontal method
forms dense submatrices (i.e., fronts) during the elimina-
tion process. However, zero elements may also be included
during the formation of dense matrices, which can increase
the computational workload. This introduces a trade-off be-
tween computational cost and throughput, making it critical
to group elements efficiently to prevent excessive computa-
tional overhead. Figure 1 illustrates this densification process,
where nonzero elements are grouped into dense blocks, en-
abling efficient computation through dense kernels, such as
Intel’s oneMKL [18] and NVIDIA’s cuBLAS [27].

2.4 Nested Dissection
Nested dissection [5, 14, 25] is a graph partitioning technique
that provides a matrix ordering beneficial for parallel sparse
matrix computations. It divides an undirected graph 𝐺 =

(𝑉 , 𝐸) into three parts: two disjoint connected subgraphs and
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Figure 2: Graph dissection. (a) A graph𝐺 is dissected to
two disjoint connected subgraphs𝐺1 and𝐺2 by a vertex
separator 𝑉S. (b) The permuted matrix based on nested
dissection.
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Figure 3: Parallelization and data communication of
LU factorization based on nested dissection.

a vertex separator𝑉𝑆 , as shown in Figure 2(a). This recursive
process minimizes the separator size while balancing the
subgraphs, resulting in a hierarchical structure suitable for
divide-and-conquer strategies.

In practice, nested dissection is typically performed using
tools such as ParMETIS, which is designed to compute high-
quality vertex separators efficiently. The effectiveness of
nested dissection improves when the input matrix exhibits
high sparsity, as the separator can more easily isolate large
independent subgraphs. In this paper, we assume that high-
quality partitioning is provided via ParMETIS.

Permuting matrices. The partitions from nested dissec-
tion are used to permute the sparse matrix, as illustrated
in Figure 2(b). The permutation groups rows and columns

corresponding to the vertex separator 𝑉𝑆 at the end, effec-
tively separating the matrix into independent submatrices.
This structure reduces fill-ins and creates sparsity patterns
that can be efficiently exploited during factorization. This
property is commonly utilized in many open-source sparse
solvers, such as SuperLU_DIST, STRUMPACK, and PanguLU.
In addition to reduced fill-ins, the permutation provides

another key advantage. Since no edges exist between the dis-
joint connected submatrices, the corresponding off-diagonal
submatrices in the permuted matrix become entirely zero.
For example, in Figure 2(b), the upper-left 7×7 submatrix
reflects a dissection where the vertex separator {2,4} sepa-
rates {6,8,15} and {1,16}. There are no edges between these
two sets, so the off-diagonal blocks corresponding to their
interaction contain only zeros. When the nested dissection
is applied recursively, many such zero submatrices appear
throughout the matrix. Such a distributed sparsity pattern
of distinguishable zero submatrices can be exploited in the
factorization process to reduce computation and communi-
cation by skipping operations on zero blocks.

Factorization procedure by nested dissection. Factor-
ization using nested dissection follows a hierarchical divide-
and-conquer approach. The result of recursive nested dissec-
tion can be represented as a tree structure, where each node
corresponds to a diagonal submatrix. This tree captures the
dependence between submatrices during the factorization
process.
At each tree level, submatrices can be independently fac-

torized (i.e., panel factorization), while the Schur complement
is computed to propagate and merge the results to upper lev-
els. The detailed steps of this factorization procedure are
illustrated in Figure 3. In the figure, the colored and black
regions within each matrix represent the currently active
computational regions. Each matrix operation corresponds
to a specific step—GETRF, TRSM, or GEMM—being applied to a
particular submatrix.
Since submatrices at the same level are independent and

can be processed concurrently, Figure 3 further illustrates
how different processes are assigned to handle individual
submatrices. The process ID responsible for each submatrix
is indicated below the corresponding matrix. Communica-
tion between processes occurs only when transitioning to
the next level, and rather than requiring all-to-all commu-
nication, it is limited to pairs of dependent processes. This
localized, pairwise communication strategy significantly re-
duces synchronization and communication overhead.

2.5 Existing Sparse Direct Solvers
Numerous efforts have been made to optimize sparse solvers,
especially for distributed memory systems. MUMPS [1] is
an early example that uses an asynchronous multifrontal
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Table 1: Summary of existing sparse direct solvers.

Solver Factorization
method

Parallelization Nested
dissectionfor CPUs for GPUs

MUMPS [1] Multifrontal ✓ ✓
SuperLU_DIST [23] Supernodal ✓
STRUMPACK [35] Multifrontal ✓ ✓

SuperLU_DIST 3D [36] Supernodal ✓ ✓ ✓
STRUMPACK GPU [15] Multifrontal ✓ ✓ ✓

PanguLU [13] Supernodal ✓ ✓ ✓
SnuSOLVER Two-phase ✓ ✓ ✓

method, incorporating pivoting techniques for numerical ro-
bustness. SuperLU_DIST [23, 24, 36] reduces communication
overhead significantly, making it scalable. STRUMPACK [35]
combines sparse direct methods with matrix compression
to exploit low-rank properties. PanguLU [13] introduces a
novel approach to regularize matrix structures, improving
computational efficiency and reducing memory overhead.
However, many existing solvers are limited in their ability to
fully utilize heterogeneous architectures, such as GPU-based
cluster systems.
This paper addresses these limitations by proposing a

new parallelization method with optimization techniques
tailored for modern GPU-based heterogeneous systems. Ta-
ble 1 summarizes the key features of various sparse solvers,
highlighting the distinctions of the proposed method.

3 Motivation & Methodology
This section describes the motivation of SnuSOLVER and its
overall methodology.

3.1 Limitations of Previous Approaches
Supernodal and frontal methods are widely used methods,
but achieving scalability and efficiency in heterogeneous
systems remains challenging due to two major limitations.
One is that they focus on maximizing computational unit
utilization through densification and optimized BLAS li-
braries. However, densification can introduce significant
overhead for highly sparse submatrices. Our evaluation of Su-
perLU_DIST on a CPU using Intel’s oneMKL reveals that, de-
spite the theoretical maximum throughput of 70 GFLOP/sec,
the achieved performance is less than 1 GFLOP/sec. This
inefficiency arises because the supernodal method contin-
ues densification regardless of the submatrix size or struc-
ture. The resulting GFLOPS falls far below the theoretical
performance of a single core, highlighting the limitations
of densification in handling sparse submatrices effectively.
Moreover, the frequent format conversions between sparse
and dense matrices exacerbate these issues, further increas-
ing computational costs.
The other is that their parallelization often suffers from

substantial communication and synchronization overhead.
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Figure 4: The proportion of nonzero elements in the
submatrices at each level for some sparse matrices.
Solid lines show values after factorization, while dotted
lines represent values before factorization.

The uneven distribution of workloads leads to frequent de-
lays and inefficiencies. For example, our analysis shows that
computation accounted for less than 15% of the total execu-
tion time in SuperLU_DIST, with the majority of time spent
on synchronization and communication.

3.2 Observations
Nested Dissection (ND) provides a framework to address the
above limitations by enabling hierarchical partitioning and
parallelization. Our observations reveal its untapped poten-
tial for scalability and performance optimization. Submatri-
ces at different levels of the nested dissection tree exhibit
varying sparsity patterns, enabling adaptive optimization.
By selectively applying sparse or dense kernels based on
the sparsity of each submatrix, performance can be signifi-
cantly improved. As shown in Figure 4, the sparsity pattern
differs across levels. Dotted lines indicate sparsity before
factorization, while solid lines represent the pattern after fac-
torization. Factorization results in a much denser structure,
highlighting opportunities for targeted optimization.
Extending nested dissection to deeper levels allows for

finer partitioning of workloads by balancing the sizes of
submatrices. Although this approach has traditionally been
considered counterproductive due to communication over-
head, our methodology demonstrates that these challenges
can be mitigated through efficient memory layouts. Previous
approaches, such as SuperLU_DIST, have incorporated the
properties of nested dissection (ND), they often fell short of
fully exploiting its hierarchical structure. The SuperLU_DIST
3D [36] asserts that the advantages of nested dissection are
most effective when the matrix is divided into up to four
submatrices (i.e., level 2). This limitation stems from the in-
herent constraints of the supernodal method, which restricts
the number of submatrices that can be effectively processed.
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In contrast, our approach overcomes these limitations by
proposing a new computational method, enabling better uti-
lization of the benefits of ND. This motivates our approach
to redesign ND-based parallelization, allowing for enhanced
scalability and performance.

3.3 Methodology
SnuSOLVER employs a two-phase execution strategy within
an ND-based framework to optimize sparse direct solvers.
Unlike traditional approaches such as the supernodal or
frontal method, SnuSOLVER adopts a distinct factorization
scheme, performing computations in a fundamentally differ-
ent way. First, it partitions the matrix into submatrices based
on ND, ensuring the number of leaf submatrices corresponds
to the number of processes, with each process handling one
leaf submatrix to maximize parallel efficiency (e.g., up to 5
levels for 32 processes). Then, it assigns submatrices at the
lowest level to individual threads for sparse computation,
minimizing synchronization overhead.

Two-phase execution. SnuSOLVER’s two-phase execu-
tion method is described as follows. The first phase is the
sparse phase. At the lowest levels of the tree, computations
are performed using sparse kernels (GETRF, TRSM, and GEMM).
This phase minimizes computational overhead by focusing
on smaller-sized submatrices, processed using a straightfor-
ward implementation with a single thread to process each
submatrix without leveraging parallelization or vector units.
This approach avoids unnecessary overhead while maintain-
ing simplicity for sparse computations.

The second phase is the dense phase. SnuSOLVER performs
a transition to the dense phase for higher levels of the tree.
At these levels, all data (or submatrices) are transformed into
dense data structures resembling dense linear algebra work-
flows, such as High-Performance LINPACK (HPL) [10, 21, 32],
rather than sparse matrix solvers. All kernels (GETRF, TRSM,
and GEMM) are executed using optimized dense libraries, such
as oneMKL [18], cuSOLVER [28], and cuBLAS [27]. Han-
dling all computations within dense data structures enables
seamless GPU offloading. This approach improves GPU uti-
lization by reducing data transfer overhead and achieving
higher computational throughput.
SnuSOLVER employs the two-phase execution strategy

within an ND-based framework to optimize sparse direct
solvers. This approach provides a structured methodology
for organizing computations and defining their execution
order, regardless of the underlying hardware (e.g., CPU or
GPU). The benefits of this strategy are described as follows:

• Reduced synchronization and communication:
The hierarchical structure of ND allows for effective
synchronization, as shown in Table 4. Despite a high

computational workload, the execution time is rela-
tively small, resulting in higher GFLOPS. Its balanced
workload distribution minimizes synchronization de-
lays, enabling efficient parallel computation. It also
eliminates unnecessary format conversions, reducing
additional computational costs.

• Proper usage of computation kernels: It ensures
optimal usage of computational resources for both
sparse and dense regions. Sparse kernels are selected
based on sparsity patterns tomaximize throughput. For
regions with high sparsity, dense kernels are avoided
to reduce unnecessary computation. For regions with
low sparsity, dense matrix processing is leveraged to
achieve higher throughput.

• Efficient GPU offloading: GPU offloading is partic-
ularly effective due to the continuous computation
patterns in higher levels of the ND tree. By perform-
ing consecutive operations (all GETRF, TRSM, and GEMM)
directly on the GPU, redundant data transfer is mini-
mized, further improving performance.

4 Design and Implementation
This section delves into the design and implementation of
our approach. Our optimization target is the factorization
and solve steps. The overall process follows the binary tree
structure depicted in Figure 3. Our target environment is a
GPU-based cluster, in which each node is equipped with
multi-core CPUs and multiple GPUs. We implement the
sparse LU solver using single-threaded multiple MPI pro-
cesses. The libraries used include OpenMPI [16] for message
passing, Intel’s oneMKL [18] for BLAS operations on the
CPUs, and CUDA [27–29] for the GPUs.

4.1 Parallelization for Multi-core CPUs
In our approach, the matrix is well partitioned into subma-
trices by ND. Submatrices at the same level are independent,
so it is beneficial for different MPI processes to handle them
to the maximum extent allowed by the number of available
processes. While partitioning the given matrix into more
submatrices than the number of processes may introduce
more parallelism, it may incur unnecessary parallelization
overhead for each process to handle excessive submatrices.
On the other hand, partitioning the given matrix into fewer
submatrices than the number of processes may not fully uti-
lize parallelism provided by the underlying system. Thus, we
finish the nested dissection when the number of submatrices
in the final level matches the number of processes, assuming
one-to-one mapping between MPI processes and physical
CPU cores.
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Distributing the workload. ND is inherently optimized
for balanced subgraph (i.e., submatrix) sizes. Since subma-
trices are of similar sizes, our process scheduling method
ensures that the execution time of each process is approx-
imately identical, mitigating the workload imbalance. We
make the process that handles a child node to handle its par-
ent node, enabling it to halve the data transferred to the pro-
cess for the parent. Figure 3 illustrates how processes divide
the workload. A different process processes each diagonal
submatrix except the vertex separator at Level 2. Each diag-
onal submatrix at Level 1 is handled by one of the processes
that processed its children; in this case, they are handled
by Process 2 and Process 4. Similarly, the single submatrix
at Level 0 is handled by the process that handled one of its
children, which in this case is Process 4.

4.2 Kernel Selection
The three primary operations—GETRF, TRSM, and GEMM —can
be performed using highly optimized computation kernels
tailored for either sparse or dense matrix formats on CPUs.
Dense matrices are particularly well-suited for GPUs, as they
can fully leverage the GPU’s massively parallel architecture.
In contrast, sparse matrices, due to their irregular distribu-
tion of nonzero elements, are less computationally intensive
and often suffer from low resource utilization on GPUs, mak-
ing them less efficient. As a result, CPUs are typically more
appropriate for processing sparse matrices than GPUs.

While it is possible to convert a sparse matrix into a dense
matrix format to benefit from GPU acceleration, this con-
version increases the number of operations, as previously
zero elements must now be included in the computation.
Therefore, selecting the appropriate matrix format—whether
sparse or dense—and processor type (CPU or GPU) is essen-
tial for maximizing factorization performance.
As sparse matrices undergo nested dissection, their spar-

sity generally decreases progressively at higher levels. This
reduction is caused by the nature of the matrix structure and
the fill-ins introduced during factorization, as submatrices
are aggregated and passed upward. Figure 4 illustrates this
trend for several large, sparse graphs used in our evaluation,
which were processed using nested dissection to produce
a binary tree of height five (up to level 5). The increasing
density at higher levels highlights the benefit of using sparse
kernels at the lower levels and switching to dense kernels for
the higher levels, where the matrices become significantly
denser.
PanguLU [13] takes a similar approach by implementing

various computation kernels and dynamically selecting the
most appropriate kernel for each submatrix via a decision
tree. However, this approach incurs significant overhead
due to matrix format conversions. In contrast, SnuSOLVER

Table 2: Summary of kernel implementations.

Kernel Sparse Dense (CPU) Dense (GPU)
GETRF Custom

implementation
cuSOLVER [28]TRSM oneMKL [18]

GEMM cuBLAS [27]

6
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Figure 5: Memory layout for storing submatrices.

avoids the complexity and overhead of dynamic kernel selec-
tion by structurally determining the appropriate kernel for
each level. This static kernel selectionmakes the computation
flow simpler and more predictable, enabling more efficient
management of the entire computation process, including
operation order, synchronization, and communication. Addi-
tionally, it eliminates the need for data format conversions,
reducing overhead. Table 2 summarizes the kernel imple-
mentations used in SnuSOLVER.

4.3 Matrix Formats for Sparse phase
We store the submatrices at the lowest level in a sparse for-
mat, while those at higher levels are stored in a dense format
(note that level 0 is the highest level). This approach is based
on using appropriate kernels according to the sparsity of
submatrices. Our observations indicate that submatrices be-
come denser as the level goes up. At the lowest level, we
maintain the sparse format and perform GETRF and TRSM.
When executing GEMM, the output of GEMM is converted to
a dense format and passed to the upper level. For all sub-
sequent levels, the operations of the GETRF, TRSM, and GEMM
continue in the dense format.
Dual-sparse formats per submatrix. Sparse matrices

are typically stored using the Compressed Sparse Row (CSR)
format. While CSR is efficient for full matrix operations, it
is less suited for scenarios where submatrices need to be
frequently extracted or manipulated. This limitation arises
because the pointer-based structure of CSR complicates the
extraction and management of submatrices, especially when
these submatrices are stored in non-contiguous memory
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regions. To address this issue, we store each submatrix inde-
pendently in the CSR format. In addition, we introduce the
Compressed Sparse Column (CSC) format as well, storing
indices in both formats. The CSR format facilitates efficient
row-based iteration, while the CSC format excels in column-
based iteration. This dual format approach increases memory
usage by approximately 1.5 times compared to using a single
CSR or CSC format, presenting a trade-off between mem-
ory efficiency and computational speed. However, in the
context of sparse matrices, where speed is often prioritized
over memory usage, this trade-off is generally acceptable.
Moreover, transitioning between formats incurs linear time
complexity in relation to the number of non-zero elements
(nnz). This overhead is negligible compared to the square or
cubic time complexities associated with GEMM operations and
similar computations.

4.4 Memory Layouts for Dense phase
Tomanage dense submatrices efficiently, we merge the dense
submatrices for a process together and allocate a single mem-
ory space for them, as shown in Figure 5(a). It improves
cache locality. However, simply storing the merged matrix
naïvely is inefficient because the actual space allocation is
one-dimensional, leading to parts of a single submatrix being
stored non-contiguously, as shown in Figure 5(b).
To address this problem, we arrange the 2D submatrices

contiguously and then allocate the memory space of the rows
across the submatrices accessed by TRSM (submatrices 5, 6,
and 8) in a contiguous memory block as shown in Figure 5(c).
This approach further reduces memory usage and provides
better access patterns. It avoids cache pollution caused by
accessing unnecessary data. For example, submatrices 5, 6,
8, and 9 are accessed to save the result of GEMM. The naïve
approach may access a part of the submatrix 9 when access-
ing the submatrix 8 during GEMM. In addition, it minimizes
communication overhead. For example, when the submatrix
9 needs to be transferred from Level 1 to Level 0, having
the rows of the submatrix stored contiguously, as shown in
Figure 5(c), simplifies the data transfer process, reducing the
overhead.

4.5 Communication and Computation
Overlapping

During the factorization process, it is possible to hide most
communication time within the computation time. In Fig-
ure 3, the black submatrix for Process 1 represents the result
of GEMM that needs to be transferred to Process 2 to further
process the submatrices at Level 1. Four independent GEMM
must be performed at Level 2. As soon as the GEMM opera-
tion on each submatrix completes, the data is sent to the
appropriate process at Level 1 (i.e., Process 2 or Process 4),

performing the next GEMM operation to overlap computation
and communication.

4.6 Offloading to GPUs
While approaches like SuperLU_DIST [37] only offload GEMM
to the GPUs, PanguLU [13] implements various kernels for
GETRF, TRSM, and GEMM to execute them on GPUs depending
on the size and sparsity of submatrices using a decision tree.
SnuSOLVER differs in that it offloads not just a kernel but
the entire dense phase as a consecutive procedure to GPUs.
Memory space allocation is performed in the same manner
as for the CPU.

Number of processes. For factorization on CPUs, we
make the number of MPI processes equal to the number
of CPU cores. However, the target GPU system typically
has fewer GPUs than CPU cores. Thus, we distribute the
GPUs evenly across the processes. Ideally, each GPU should
handle an equal number of processes. In addition, assigning
processes that frequently communicate with each other to
the same GPU will significantly reduce the communication
overhead. Thus, we prioritize allocating processes closer in
the tree (in Figure 3) to the same GPU, minimizing commu-
nication between GPUs.

GPU offloading. For computational efficiency, the lowest-
level submatrices processed by sparse kernels on the CPUs
are not offloaded to the GPUs, as their high sparsity makes
them unsuitable for GPU acceleration. However, the compu-
tations for submatrices at all subsequent levels are offloaded
to the GPUs. When transferring submatrices to the GPUs,
we keep them in their original sparse format to minimize
communication overhead. The conversion to dense format
is performed on the GPUs.

Submatrices at the lowest level are processed using GETRF
and TRSM in the dual-sparse formats on the CPUs. The subma-
trices from TRSM stored in the sparse format are transferred
to the GPUs. Then, the sparse GEMM kernel is invoked on the
GPUs. Since their sparsity is high enough, using the sparse
GEMM kernel is more efficient than using the dense GEMM ker-
nel. At the subsequent levels, we use GETRF, TRSM, and GEMM
kernels provided by cuBLAS and cuSolver on the GPUs.

Memory layouts. We also use the memory layout shown
in Figure 5(c) for the dense submatrices on the GPUs to
facilitate coalesced memory accesses. For communication
between GPUs, we employ the GPUDirect [29], which en-
ables efficient data transfer by bypassing the CPU. Unlike
other LU factorization libraries that repeatedly offload only
a specific kernel to the GPU, we offload operations at all con-
secutive levels to the GPUs, but the lowest level GETRF and
TRSM, which can fully leverage the GPUDirect mechanism.
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Table 3: Test matrices used in the experiments.

Name N nnz nnz/N Problem Domain Usage in Prior Work

rajat25 87,190 606,489 7.0 Circuit Simulation KLU [7]
ASIC_100ks 99,190 578,890 5.8 Circuit Simulation KLU [7]

thermomech_TC 102,158 711,558 7.0 Thermal ParILUT [2]
lung2 109,460 492,564 4.5 CFD Yilmaz et al. [39]
torso2 115,967 1,033,473 8.9 2D/3D Yilmaz et al. [39]
dc2 116,835 766,396 6.6 Subsequent Circuit Simulation Dufrechou et al. [12]

twotone 120,750 1,206,265 10.0 Frequency Domain Circuit Simulation SuperLU_DIST [23]
xenon2 157,464 3,866,688 24.6 Materials STRUMPACK [15]
c-73 169,422 1,279,274 7.6 Optimization Problem Sequence STRUMPACK [15]

scircuit 170,998 958,936 5.6 Circuit Simulation STRUMPACK [15]
ohne2 181,343 6,869,939 37.9 Semiconductor Device STRUMPACK [15]
hvdc2 189,860 1,339,638 7.1 Power Network Manguoglu et al. [26]

thermomech_dM 204,316 1,423,116 7.0 Thermal ParILUT [2]
thermomech_dK 204,316 2,846,228 13.9 Thermal Manguoglu et al. [26]

ss1 205,282 845,089 4.1 Semiconductor Process Petrushov et al. [33]
HTC_336_4438 226,340 783,496 3.5 Power Network Li et al. [22]

Raj1 263,743 1,300,261 4.9 Circuit Simulation GLU [17, 31]
ASIC_320ks 321,671 1,316,085 4.1 Circuit Simulation GLU [17, 31]

rajat24 358,172 1,946,979 5.4 Circuit Simulation KLU [7]
parabolic_fem 525,825 3,674,625 7.0 CFD Petrushov et al. [33]
ASIC_680ks 682,712 1,693,767 2.5 Circuit Simulation GLU [17, 31]
tmt_sym 726,713 5,080,961 7.0 Electromagnetics ParILUT [2]

tmt_unsym 917,825 4,584,801 5.0 Electromagnetics GLU [17]
ecology1 1,000,000 4,996,000 5.0 2D/3D SuperLU_DIST [36], PanguLU [13]

webbase-1M 1,000,005 3,105,536 3.1 Weighted Digraph Dufrechou et al. [12]
thermal2 1,228,045 8,580,313 7.0 Thermal Problem GLU [17]
G3_circuit 1,585,478 7,660,826 4.8 Circuit Simulation SuperLU_DIST [36], PanguLU [13]
memchip 2,707,524 13,343,948 4.9 Circuit Simulation STRUMPACK [15]
Freescale1 3,428,755 17,052,626 5.0 Circuit Simulation STRUMPACK [15]

circuit5M_dc 3,523,317 14,865,409 4.2 Circuit Simulation Wang et al. [38]
rajat31 4,690,002 20,316,253 4.3 Circuit Simulation Manguoglu et al. [26]

Table 4: Performance comparison of numerical factorization between SnuSOLVER and SuperLU_DIST on
ASIC_680ks matrix using a single 32-core CPU (2.35GHz with AVX512 vector unit). The table presents detailed sta-
tistics of GEMM kernels and total computations across 32 CPU cores. In the GEMM computation section (GEMM),
the number of operations (GFLOPs), the number of GEMM kernel invocations (Number), the execution time
(Time), and the performance (GFLOP/sec) are shown. In the factorization section, the total number of operations
(GFLOPs), the computation time (Compute), the total factorization time (Total), and the performance (GFLOP/sec)
are presented. Additionally, the number of MPI Send/Recv calls (MPI call) is included to indicate the reduction in
synchronization overhead achieved by SnuSOLVER.

GEMM Factorization
GFLOPs Number Time (sec) GFLOP/sec GFLOPs Compute (sec) Total (sec) GFLOP/sec MPI call

SuperLU_DIST 0.07 66,160 0.077 0.85 1.65 0.311 2.292 0.72 3,100,920

SnuSOLVER
Sparse - - - - 0.23 0.024 0.024 9.40 -
Dense 4.23 541 0.067 62.85 4.35 0.043 0.088 49.61 -
Total - - - - 4.58 0.067 0.116 39.62 374

After completing all computations, the final 𝐿 and 𝑈 will be
stored on the GPUs where the solve phase will be performed.

4.7 Solve Phase
After factorization (i.e., 𝐴 = 𝐿𝑈 ), we must perform compu-
tations to solve the target equation 𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏. This
is done in two separate steps, solving 𝐿𝑦 = 𝑏 and 𝑈𝑥 = 𝑦.
Solving 𝐿𝑦 = 𝑏 is similar to factorization since it also finds𝑈 ,
such that 𝐿𝑈 = 𝐴. Removing GETRF and reducing a matrix

operation to a vector operation will lead to solving the equa-
tion. However, solving 𝑈𝑦 = 𝑏 is different because matrix
multiplication is not commutable, and𝑈 ’s position changes
from right to left compared to 𝐿𝑈 = 𝐴. The solve process
for 𝐿 progresses from bottom to top, propagating the results
of GEMV to the higher levels. Conversely, the solve process
for𝑈 progresses from higher to lower levels, delivering the
results of GEMV. Other aspects of the overall process proceed
similarly to factorization. The solve phase accounts for a
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Table 5: Configuration of a node in the eight-node clus-
ter.

CPU 1 × AMD EPYC 7452 32-core 2.35GHz
Main Memory 8 × DDR4-2666 64GB
GPU 4 × NVIDIA Tesla V100 32GB PCIe
NIC Mellanox ConnectX-6 Infiniband HDR
OS Ubuntu 20.04.6 LTS (Kernel 5.4.0-100)
GPU Driver 550.54.15 (CUDA 12.4)

relatively small portion of execution time compared to fac-
torization. Since the factorization results, 𝐿 and 𝑈 , are not
required to be transferred back to the CPU, only the commu-
nication of the target vector 𝑏 and the solution vector 𝑥 is
necessary.

5 Evaluation
In this section, we evaluate the performance of SnuSOLVER
by comparing it with existing methods on a GPU cluster.

5.1 Experimental Setup
Test matrices. Table 3 shows our test sparse matrices

from various application domains. They are all obtained from
the SuiteSparse Matrix Collection [6], formerly known as
the University of Florida Sparse Matrix Collection, a widely
used publicly available real-world sparse matrix benchmark
suite [1, 13, 15, 23, 36]. The test set includes matrices of vari-
ous sizes (N, the number of rows/columns), sparsity levels
(nnz/N, the average number of nonzero elements per row/-
column), and types: symmetric, asymmetric, and symmetric
positive definite. As indicated in Table 3, all the test matrices
are used in previous approaches, which we compare with
the proposed method.

Preprocessing the matrices. To ensure a fair end-to-end
performance comparison of the method with existing ap-
proaches, we preprocess all the test matrices with identi-
cal scaling and maximum weight matching before conduct-
ing the experiments. In addition, we use ParMETIS [20] (or
METIS [19]) to undergo the same fill-in reducing reordering
process, which is the default option of SuperLU_DIST and
STRUMPACK as well. In this manner, we ensure an equiva-
lent experimental setup across all approaches to compare.
Comparison baselines. We set SuperLU_DIST (v8.2.1)

and STRUMPACK (v7.1.0) as comparison baselines. Su-
perLU_DIST and STRUMPACK are state-of-the-art GPU-
accelerated sparse direct solvers targeted for large-scale
distributed memory parallel systems [15, 23]. For Su-
perLU_DIST, we choose an algorithm between 2D and 3D
versions that performs better for each matrix as its baseline
for comparison. The total number of threads, defined as the

product of the number of MPI processes and the number of
OpenMP threads, is kept consistent across all baselines in the
experiments for fair comparison. After trying various com-
binations of the number of MPI processes and the number
of OpenMP threads for all the test matrices in each baseline,
we report the best performance result.

System configurations. We evaluate the proposed
method using a cluster of eight nodes, each node equipped
with a single AMD EPYC 7452 32-core CPU and four NVIDIA
Tesla V100 32GB GPUs connected through PCIe. The details
of our node configuration are shown in Table 5. The im-
plementations, including all the baselines, are configured
with gcc-9.4.0, CMake-3.26.3, OpenMPI-4.1.6, OpenMP-4.5,
METIS-5.1.0, and ParMETIS-4.0.3. CUDA 12.4 is used with
the NVIDIA driver version 550.54.15. Other necessary soft-
ware packages varying from baseline to baseline are installed
faithfully following the respective manuals.

5.2 Single Matrix Case Study
To illustrate the advantages of the proposed two-phase
methodology, we present a performance comparison be-
tween SnuSOLVER and SuperLU_DIST for the ASIC_680ks
matrix. Although this case study focuses on a single ma-
trix, the performance trends observed here are consistent
across diverse matrices, demonstrating the robustness of
SnuSOLVER.
The results in Table 4 highlight two key distinctions

between the two methods. First, SnuSOLVER signifi-
cantly reduces the number of GEMM calls compared
to SuperLU_DIST. While the supernodal method in Su-
perLU_DIST generates numerous kernel calls for small
dense submatrices, leading to inefficient resource utiliza-
tion, SnuSOLVER’s two-phase strategy boosts performance.
The sparse phase minimizes computation at the lower lev-
els of the elimination tree by reducing unnecessary opera-
tions, while the dense phase efficiently handles higher levels
where submatrices become denser. By using sparse kernels
for sparse regions and large dense kernels for denser re-
gions, SnuSOLVER avoids unnecessary fragmentation of
computations and excessive kernel calls, thereby improving
throughput and computational efficiency despite involving
more total operations.
Second, the methods differ notably in terms of overhead.

In SuperLU_DIST, computation accounts for only a small
portion of the total execution time due to synchronization,
communication overhead, and frequent format transitions.
By contrast, SnuSOLVER ’s two-phase execution strategy
minimizes these overheads, allowing most of the total ex-
ecution time to be spent on computation. This is further
supported by the comparison of MPI Send/Recv call counts
shown in Table 4. Since SnuSOLVER performs no additional



SnuSOLVER: Optimizing Sparse Direct Solvers for Heterogeneous Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

2

4

6

8

10

S
p
e
e
d
u
p

10.9 11.0 16.2

2.4

(a) Factorization and solve (Single node, CPU-only)

0

2

4

6

8

10

S
p
e
e
d
u
p

12.410.918.9 15.812.1 15.946.530.010.913.3 16.820.5 23.4

4.4

(b) Factorization and solve (Eight nodes, CPU-only)

0

1

2

3

4

5

S
p
e
e
d
u
p

1.7

(c) End-to-end (Single node, CPU-only)

0

1

2

3

4

5

S
p
e
e
d
u
p SuperLU_DIST STRUMPACK SnuSOLVER

1.4

(d) End-to-end (Eight nodes, CPU-only)

Figure 6: Performance on CPUs. The test matrices are arranged in an ascending order of size from left to right.
STRUMPACK fails factorization on rajat25, HTC_336_4438, and webbase-1M matrices.

synchronization or communication outside ofMPI Send/Recv
during the factorization phase, we use these counts as a rep-
resentative metric for overhead. While SuperLU_DIST incurs
a high number of MPI function calls throughout execution,
the significantly lower number of MPI calls in SnuSOLVER
highlights its efficiency in reducing communication and syn-
chronization costs. This approach reduces computational
costs and outperforms traditional methods like the supern-
odal, which applies a uniform strategy across all levels.

SnuSOLVER achieves an efficiency of 39.62 GFLOP/s, sig-
nificantly outperforming SuperLU_DIST’s 0.72 GFLOP/s.
These results underscore the effectiveness of the two-phase
method in addressing key inefficiencies inherent in the tra-
ditional methods (i.e., supernodal or frontal method).

Advantage of dual-sparse format. We also evaluate the
impact of the dual-sparse format on performance. For the ma-
trix ASIC_680ks, the sparse phase execution time with the
CSR format improves from 0.36 seconds to 0.24 seconds with
the dual-sparse format, representing a 1.5× performance im-
provement. A geometric mean of performance improvement
across all the test matrices is 1.15×, demonstrating consistent
speedup of the dual-sparse format.

5.3 Effect of Memory Layout
Table 6 summarizes the performance of dense submatrix op-
erations, measured using MKL GEMM, CUDA GEMM, and
MPI Send/Recv, across various matrix sizes on our experi-
mental heterogeneous system (comprising AMD CPUs and
NVIDIA GPUs). For the MPI Send/Recv comparison, we used
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Table 6: Effect of memory layout.

Operation Layout Matrix size (N×N)
512 1024 2048

MKL GEMM
(GFLOPS)

Naïve 81.99 86.72 90.86
Proposed 85.23 89.17 91.09

Speedup over Naïve 1.04 1.03 1.00

CUDA GEMM
(TFLOPS)

Naïve 2.78 4.55 5.60
Proposed 2.75 4.96 5.60

Speedup over Naïve 0.99 1.09 1.00

MPI Send/Recv
(GB/s)

Naïve 0.64 1.05 1.03
Proposed 0.86 2.00 1.84

Speedup over Naïve 1.34 1.90 1.79

MPI APIs that support non-contiguous memory communi-
cation in the discontinuous layout to ensure fairness. While
the total data volume remained the same in both cases, the
performance differences stem solely from thememory layout.
The results demonstrate that SnuSOLVER’s contiguous mem-
ory layout improves computational efficiency and reduces
communication overhead compared to the naïve discontinu-
ous layout. This improvement results from enhanced cache
locality and simplified data access patterns, leading to higher
throughput for both computation and communication.

5.4 Performance on CPUs
We evaluate and compare the numerical factorization and
the end-to-end performance on multi-core CPUs.

Factorization and solve. Figure 6(a) and 6(b) show
the speedup of SnuSOLVER and STRUMPACK over Su-
perLU_DIST in numerical factorization and solve phase on
the single node system and eight-node cluster. The numeri-
cal factorization phase is the most compute-intensive part
of a sparse linear solver. The solve phase’s execution time
is relatively small (approximately 10%) compared to the fac-
torization phase. The performance of SnuSOLVER signifi-
cantly outperforms both SuperLU_DIST and STRUMPACK as
shown in Figure 6(a) and Figure 6(b). On the single node sys-
tem with 32 CPU cores, the average speedup of SnuSOLVER
over SuperLU_DIST in numerical factorization and solve
is 2.40, reaching up to 16.21. The average speedup on the
eight-node cluster with 256 CPU cores increases to 4.42, with
a maximum of 46.51. Similarly, the average speedup over
STRUMPACK is 2.40 on the single node and 1.42 on the
eight-node cluster. For xenon2 and ohne2, SnuSOLVER is
worse than SuperLU_DIST due to the relatively high density
of these matrices. Such relatively dense matrices typically re-
sult in larger vertex separators during nested dissection [34].
SnuSOLVER, which performs sparse computations only at
the lowest level while handling the rest with the dense for-
mat, becomes less efficient when the size of the vertex sepa-
rator is large. However, as SnuSOLVER scales effectively, the
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Figure 7: Scalability of the numerical factorization and
solve on multi-core CPUs. The 𝑥-axis shows the num-
ber of CPU cores. For example, 8×32 denotes a total of
256 CPU cores from eight nodes (single 32-core CPU
per node) participating in parallel computation.

performance gap between SnuSOLVER and SuperLU_DIST
on those two matrices narrows down when running them
on the 8-node cluster.

End-to-end time. The end-to-end time refers to the total
execution time of the solver, including analysis, symbolic
factorization, numerical factorization, and solve phases, ex-
cluding the time spent on scaling and maximum weight
matching, which are the preprocessing steps for numerical
stability. Despite being a crucial performance comparison
metric, the end-to-end execution time of the solver has not
been showcased as an evaluation result in the previous stud-
ies [13, 15, 23].

To this end, we also evaluate the end-to-end performance
of the solvers. Figure 6(c) and 6(d) summarize the end-to-
end performance comparison results. The results show that
SnuSOLVER achieves average speedups of 1.67 and 1.96
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on the single node over SuperLU_DIST and STRUMPACK,
respectively. In addition, average speedups of 1.35 over Su-
perLU_DIST and 1.18 over STRUMPACK are observed on
the 8-node cluster.
The end-to-end speedups are lower than those observed

in the numerical factorization phase because the analysis
step—performed identically across all solvers using an exter-
nal library (ParMETIS)— accounts for a significant portion
of the total execution time, sometimes more than half. Since
our optimizations focus exclusively on the factorization and
solve phases (with solve being negligible), the overall benefit
is naturally bounded by the cost of the analysis phase (i.e.,
ParMETIS). Furthermore, the smaller speedups observed in
end-to-end comparison for multi-node settings compared to
single-node configurations are primarily due to fixed costs
such as process spawning, GPU initialization, and analysis
time, which remain constant regardless of the number of
nodes. As the factorization time decreases with more nodes,
these fixed components become more dominant, limiting the
scalability visible in the end-to-end measurements.

The speedup of SnuSOLVER mainly comes from avoiding
unnecessary matrix conversions, using optimal computation
kernels, and using efficient memory layouts. It is particularly
noteworthy that SnuSOLVER proves to be particularly effec-
tive for the most time-consuming, large-scale, high-sparsity
matrices (e.g., memchip, Freescale1, circuit5M_dc, and
rajat31), which are inherently difficult to process and com-
pute, and are not well-handled by the previous approaches.

5.5 Scalability on CPUs
Figure 7 shows SnuSOLVER’s scalability of the numerical
factorization and solve phases on the 8-node cluster using up
to 256 CPU cores. In this experiment, we intentionally select
the eight largest matrices from our test set, with sizes (N, the
number of rows/columns) ranging from 0.7M to 4.7M. We ex-
clude webbase-1M because STRUMPACK fails to factorize it.
We also leave out Thermal2 as all baselines demonstrate poor
scalability due to Thermal2’s low computational intensity.
We see that SnuSOLVER scales much better than base-

lines on multi-core CPUs. SnuSOLVER exhibits consistently
better scalability in most cases, while others suffer from
workload imbalance and communication overhead. The pro-
posed method demonstrates significantly improved speedup
on the eight nodes, especially for large matrices, such as
rajat31. The behavior for matrices tmt_sym, ecology1, and
G3_circuit appear unusual. The speedup decreases when
the number of processes increases from 16 to 128 and then
increases again on 256 processes. This is because relatively
large vertex separators used by nested dissection for them
make sparse GEMM more efficient than dense GEMM at higher

Table 7: Numerical factorization and solve’s speedup
comparison of GPU offloading on the eight-node
cluster. SLD and STP refer to SuperLU_DIST and
STRUMPACK, respectively.

Matrix
Factorization and solve on 32 GPUs
Over SLD

on the GPUs
Over the solver itself

on the CPUs
SLD STP SnuSOLVER SLD STP SnuSOLVER

tmt_sym 1.00 1.43 3.07 0.92 0.90 1.64
tmt_unsym 1.00 1.64 3.18 0.95 1.01 1.64
ecology1 1.00 2.01 3.80 0.87 1.03 1.85

webbase-1M 1.00 Failure 17.50 1.07 Failure 2.07
thermal2 1.00 2.57 6.17 0.89 0.75 1.82
G3_circuit 1.00 3.55 6.79 0.96 1.90 2.71
memchip 1.00 6.98 32.21 0.97 0.73 1.04
Freescale1 1.00 10.52 42.39 0.98 0.74 0.89

circuit5M_dc 1.00 8.62 48.28 1.01 0.87 0.87
rajat31 1.00 4.03 12.25 0.99 1.20 2.91

GEOMEAN 1.00 3.63 10.82 0.96 0.95 1.64

Table 8: End-to-end speedup comparison of GPU of-
floading on the eight-node cluster. SLD and STP refer
to SuperLU_DIST and STRUMPACK, respectively.

Matrix
End-to-end on 32 GPUs

Over SLD
on the GPUs

Over the solver itself
on the CPUs

SLD STP SnuSOLVER SLD STP SnuSOLVER
tmt_sym 1.00 1.38 1.43 0.84 0.92 1.04

tmt_unsym 1.00 1.38 1.45 0.87 0.94 1.10
ecology1 1.00 1.62 1.28 0.82 1.04 1.05

webbase-1M 1.00 Failure 1.37 0.98 Failure 1.02
thermal2 1.00 1.35 2.08 0.87 0.96 1.07
G3_circuit 1.00 1.56 2.06 0.91 1.18 1.26
memchip 1.00 1.60 3.13 0.94 0.97 0.96
Freescale1 1.00 1.62 3.27 0.95 0.97 1.03

circuit5M_dc 1.00 1.61 3.98 0.98 0.98 1.10
rajat31 1.00 1.64 4.10 0.96 1.03 1.26

GEOMEAN 1.00 1.52 2.20 0.91 1.00 1.08

levels. This issue could be solved by applying sparse GEMM at
even higher levels for these specific matrices.

5.6 GPU Offloading
We evaluate the performance of SnuSOLVER when compu-
tations are offloaded to 32 GPUs on the target eight-node
cluster. Similar to the scalability experiments on CPUs, we
conduct GPU offloading experiments using the ten largest
matrices from our test set, as largermatrices typically achieve
higher GPU offloading efficiency. We observe that GPU of-
floading becomes more efficient when fewer nodes are used,
as each GPU is tasked with handling a larger computational
load. That is, fewer nodes show high GPU utilization.
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Factorization and solve. In Table 7, SuperLU_DIST and
STRUMPACK exhibit trivial or even worse performance im-
provements in their GPU versions compared to their cor-
responding CPU versions for some matrices (e.g., tmt_sym,
thermal2, memchip). The CPU version represents solvers
running on the eight nodes, each equipped with a single 32-
core CPU. This is attributed to the overhead associated with
communication to the GPUs, which offsets the reduction in
factorization time.
However, SnuSOLVER achieves an average speedup of

1.64 over its CPU version. Moreover, SnuSOLVER outper-
forms SuperLU_DIST with an average speedup of 10.82 and
STRUMPACKwith 2.82. The speedup mainly comes from the
better utilization of GPU resources by offloading consecutive
procedures, reducing communication overhead through pro-
cess placement, and minimizing data transfer overhead by
leveraging sparse-to-dense conversion directly on the GPUs.

End-to-end execution time. Table 8 compares the end-
to-end performance when offloading the workload to GPUs.
SnuSOLVER achieves an average speedup of 2.20 over Su-
perLU_DIST and 1.52 over STRUMPACK. The speedup of
SnuSOLVER’s GPU version over its CPU version is 1.08,
which is slightly higher than that of SuperLU_DIST (0.91) or
STRUMPACK (1.00), but the difference is marginal. This is
because the CPU version of SnuSOLVER is better optimized
than that of SuperLU_DIST or STRUMPACK.

Indirect comparison with PanguLU. PanguLU [13] is
excluded from the baseline for two reasons: One is that an
end-to-end performance measurement for PanguLU cannot
be performed because it saves the intermediate result to files
before computation, causing a significant delay in the end-
to-end execution time. The other is that it does not include
the implementation of the solve phase, which presents a
considerable challenge in verifying the correctness.

Although the experimental setups differ, we carry out an
indirect performance comparison by examining the results
reported in the literature using the same benchmark matrices
(e.g., ecology1 and G3_circuit) used in both experiments.
According to the performance reported by PanguLU [13], it
demonstrates 2–3× performance improvement in the numer-
ical factorization step over SuperLU_DIST on ecology1 and
G3_circuitmatrices on GPUs. PanguLU’s target machine is
a multi-node GPU cluster where each node has four NVIDIA
A100 GPUs and two Intel Xeon 8180 2.5 GHz CPUs, similar
to our system configuration. However, SnuSOLVER achieves
a speedup of about 4–7 over SuperLU_DIST on the same ma-
trices. This comparison highlights the superior performance
of SnuSOLVER, even when considering the differences in
the experimental setup.

6 Conclusion
This paper presents SnuSOLVER, a sparse direct LU solver
optimized for GPU-based heterogeneous clusters, implement-
ing the two-phase method based on nested dissection. By
leveraging nested dissection and the hierarchical structure
of partitioned subgraphs, SnuSOLVER addresses key limi-
tations of the traditional supernodal and frontal methods.
The two-phase method introduces optimizations, including
balanced workload distribution across MPI processes, mem-
ory layouts optimized for cache and communication effi-
ciency, and efficient overlapping of computation and com-
munication. Our evaluation demonstrates SnuSOLVER’s con-
sistent and significant performance gains of sparse matrix
factorization on 31 test matrices. Specifically, in the numer-
ical factorization and solve phases using 256 CPUs, Snu-
SOLVER achieves average speedups of 4.42× and 1.42× over
SuperLU_DIST and STRUMPACK, respectively. Using 32
GPUs, it achieves average speedups of 10.82× and 2.82×,
respectively. In terms of the end-to-end performance using
256 CPUs, SnuSOLVER achieves average speedups of 1.35
and 1.18, and using 32 GPUs, it achieves 2.20 and 1.52, re-
spectively, highlighting its scalability and efficiency.

Acknowledgments
This work was partially supported by the National Re-
search Foundation of Korea (NRF) under Grant No. RS-2023-
00222663 (Center for Optimizing Hyperscale AI Models and
Platforms), and by the Institute for Information and Commu-
nications Technology Promotion (IITP) under Grant No. 2018-
0-00581 (CUDA Programming Environment for FPGA Clus-
ters) and No. RS-2025-02304554 (Efficient and Scalable Frame-
work for AI Heterogeneous Cluster Systems), all funded by
the Ministry of Science and ICT (MSIT) of Korea. Additional
support was provided by the BK21 Plus Program for Innova-
tive Data Science Talent Education (Department of Data Sci-
ence, SNU, No. 5199990914569) and the BK21 FOUR Program
for Intelligent Computing (Department of Computer Science
and Engineering, SNU, No. 4199990214639), both funded by
the Ministry of Education (MOE) of Korea. This work was
also partially supported by Samsung Display Co., Ltd. and
the Artificial Intelligence Industrial Convergence Cluster
Development Project, funded by the MSIT and Gwangju
Metropolitan City. Research facilities were provided by ICT
at Seoul National University.



SnuSOLVER: Optimizing Sparse Direct Solvers for Heterogeneous Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

References
[1] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster.

2000. MUMPS: a general purpose distributed memory sparse solver.
In International Workshop on Applied Parallel Computing. Springer,
121–130.

[2] Hartwig Anzt, Edmond Chow, and Jack Dongarra. 2018. ParILUT—A
New Parallel Threshold ILU Factorization. SIAM Journal on Scien-
tific Computing 40, 4 (2018), C503–C519. https://doi.org/10.1137/
16M1079506

[3] C. Cleveland Ashcraft, Roger G. Grimes, John Gregg Lewis, Barry W.
Peyton, Horst D. Simon, and Petter E. Bjørstad. 1987. Progress in Sparse
Matrix Methods for Large Linear Systems On Vector Supercomputers.
International Journal of High Performance Computing Applications 1
(1987), 10 – 30. https://api.semanticscholar.org/CorpusID:62698847

[4] Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and
Kiran Gullapalli. 2020. State-of-the-Art Sparse Direct Solvers. Springer
International Publishing, Cham, 3–33. https://doi.org/10.1007/978-3-
030-43736-7_1

[5] Thang Nguyen Bui and Curt Jones. 1993. A Heuristic for Reducing
Fill-In in Sparse Matrix Factorization. In Proceedings of the Sixth SIAM
Conference on Parallel Processing for Scientific Computing, PP 1993,
Norfolk, Virginia, USA, March 22-24, 1993, Richard F. Sincovec, David E.
Keyes, Michael R. Leuze, Linda R. Petzold, and Daniel A. Reed (Eds.).
SIAM, 445–452.

[6] Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse
matrix collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

[7] Timothy A. Davis and Ekanathan Palamadai Natarajan. 2010. Algo-
rithm 907: KLU, ADirect Sparse Solver for Circuit Simulation Problems.
ACM Trans. Math. Softw. 37, 3 (2010). https://doi.org/10.1145/1824801.
1824814

[8] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xi-
aoye S. Li, and Joseph W. H. Liu. 1999. A Supernodal Ap-
proach to Sparse Partial Pivoting. SIAM J. Matrix Anal. Appl.
20, 3 (1999), 720–755. https://doi.org/10.1137/S0895479895291765
arXiv:https://doi.org/10.1137/S0895479895291765

[9] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. 2007. Weighted
graph cuts without eigenvectors a multilevel approach. IEEE transac-
tions on pattern analysis and machine intelligence 29, 11 (2007), 1944–
1957.

[10] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The LIN-
PACK Benchmark: past, present and future. Concurrency and Compu-
tation: Practice and Experience 15 (08 2003), 803–820. https://doi.org/
10.1002/cpe.728

[11] I. S. Duff and J. K. Reid. 1983. The Multifrontal Solution of Indefinite
Sparse Symmetric Linear. ACM Trans. Math. Softw. 9, 3 (sep 1983),
302–325. https://doi.org/10.1145/356044.356047

[12] Ernesto Dufrechou and Pablo Ezzatti. 2018. A New GPU Algorithm
to Compute a Level Set-Based Analysis for the Parallel Solution of
Sparse Triangular Systems. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 920–929. https://doi.org/
10.1109/IPDPS.2018.00101

[13] Xu Fu, Bingbin Zhang, Tengcheng Wang, Wenhao Li, Yuechen Lu,
Enxin Yi, Jianqi Zhao, Xiaohan Geng, Fangying Li, Jingwen Zhang,
et al. 2023. PanguLU: A scalable regular two-dimensional block-cyclic
sparse direct solver on distributed heterogeneous systems. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–14.

[14] Alan George. 1973. Nested Dissection of a Regular Finite Element
Mesh. SIAM J. Numer. Anal. 10, 2 (1973), 345–363. https://doi.org/10.
1137/0710032

[15] Pieter Ghysels and Ryan Synk. 2022. High performance sparse multi-
frontal solvers on modern GPUs. Parallel Comput. 110 (2022), 102897.
https://doi.org/10.1016/j.parco.2022.102897

[16] William Gropp, Ewing Lusk, and Anthony Skjellum. 1999. Using MPI:
portable parallel programming with the message-passing interface. Vol. 1.
MIT press.

[17] Kai He, Sheldon X. D. Tan, Hai Wang, and Guoyong Shi. 2016. GPU-
Accelerated Parallel Sparse LU Factorization Method for Fast Circuit
Analysis. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 24, 3 (2016), 1140–1150. https://doi.org/10.1109/TVLSI.2015.
2421287

[18] Intel. 2024. Intel OneAPI Math Kernel Library (MKL). https://www.
intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
Accessed: 2024-07-30.

[19] George Karypis and Vipin Kumar. 1998. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal
on Scientific Computing 20, 1 (1998), 359–392. https://doi.org/10.1137/
S1064827595287997

[20] George Karypis and Vipin Kumar. 1998. A Parallel Algorithm for
Multilevel Graph Partitioning and Sparse Matrix Ordering. J. Parallel
and Distrib. Comput. 48, 1 (1998), 71–95. https://doi.org/10.1006/jpdc.
1997.1403

[21] Jinpyo Kim, Hyungdal Kwon, Jintaek Kang, Jihwan Park, Seungwook
Lee, and Jaejin Lee. 2022. SnuHPL: high performance LINPACK for
heterogeneous GPUs. In Proceedings of the 36th ACM International
Conference on Supercomputing. 1–12.

[22] Ang Li, Radu Serban, and Dan Negrut. 2015. A Hybrid GPU-CPU
Parallel CM Reordering Algorithm for Bandwidth Reduction of Large
Sparse Matrices. Technical Report.

[23] Xiaoye S. Li and James W. Demmel. 2003. SuperLU_DIST: A Scalable
Distributed-Memory Sparse Direct Solver for Unsymmetric Linear
Systems. ACM Trans. Math. Softw. 29, 2 (jun 2003), 110–140. https:
//doi.org/10.1145/779359.779361

[24] Xiaoye S. Li, Paul Lin, Yang Liu, and Piyush Sao. 2023. Newly Released
Capabilities in the Distributed-Memory SuperLU Sparse Direct Solver.
ACM Trans. Math. Softw. 49, 1, Article 10 (mar 2023), 20 pages. https:
//doi.org/10.1145/3577197

[25] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. 1979. Gen-
eralized Nested Dissection. SIAM J. Numer. Anal. 16, 2 (1979), 346–358.
https://doi.org/10.1137/0716027

[26] Murat Manguoglu. 2011. A domain-decomposing parallel sparse linear
system solver. J. Comput. Appl. Math. 236, 3 (2011), 319–325. https:
//doi.org/10.1016/j.cam.2011.07.017 Aspects of Numerical Algorithms,
Parallelization and Applications.

[27] NVIDIA. 2024. cuBLAS. https://developer.nvidia.com/cublas Accessed:
2024-07-30.

[28] NVIDIA. 2024. cuSOLVER. https://developer.nvidia.com/cusolver
Accessed: 2024-07-30.

[29] NVIDIA. 2024. GPUDirect. https://developer.nvidia.com/gpudirect
Accessed: 2024-07-30.

[30] Richard Peng and Santosh Vempala. 2021. Solving sparse linear systems
faster than matrix multiplication. In Proceedings of the 2021 ACM-SIAM
symposium on discrete algorithms (SODA). SIAM, 504–521.

[31] Shaoyi Peng and Sheldon X.-D. Tan. 2020. GLU3.0: Fast GPU-based
Parallel Sparse LU Factorization for Circuit Simulation. IEEE Design &
Test 37, 3 (2020), 78–90. https://doi.org/10.1109/MDAT.2020.2974910

[32] Antoine Petitet, R. Clint Whaley, Jack J. Dongarra, and Andy Cleary.
2004. HPL-A portable implementation of the high-performance Lin-
pack benchmark for distributed-memory computers. http://www. netlib.
org/benchmark/hpl/ (2004).

[33] Andrey Petrushov and Boris Krasnopolsky. 2023. Automated tuning
for the parameters of linear solvers. J. Comput. Phys. 494 (2023), 112533.

https://doi.org/10.1137/16M1079506
https://doi.org/10.1137/16M1079506
https://api.semanticscholar.org/CorpusID:62698847
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/1824801.1824814
https://doi.org/10.1145/1824801.1824814
https://doi.org/10.1137/S0895479895291765
https://arxiv.org/abs/https://doi.org/10.1137/S0895479895291765
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1145/356044.356047
https://doi.org/10.1109/IPDPS.2018.00101
https://doi.org/10.1109/IPDPS.2018.00101
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1016/j.parco.2022.102897
https://doi.org/10.1109/TVLSI.2015.2421287
https://doi.org/10.1109/TVLSI.2015.2421287
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1006/jpdc.1997.1403
https://doi.org/10.1006/jpdc.1997.1403
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/3577197
https://doi.org/10.1145/3577197
https://doi.org/10.1137/0716027
https://doi.org/10.1016/j.cam.2011.07.017
https://doi.org/10.1016/j.cam.2011.07.017
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/gpudirect
https://doi.org/10.1109/MDAT.2020.2974910


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA C. Kim, J. Lee, J. Kim, D. Kim, K. Ahn, H. Cho, S. Baek, and J. Lee

https://doi.org/10.1016/j.jcp.2023.112533
[34] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. 1990. Partitioning

Sparse Matrices with Eigenvectors of Graphs. SIAM J. Matrix Anal.
Appl. 11, 3 (1990), 430–452. https://doi.org/10.1137/0611030

[35] François-Henry Rouet, Xiaoye S Li, Pieter Ghysels, and Artem Napov.
2016. A distributed-memory package for dense hierarchically semi-
separable matrix computations using randomization. ACM Transac-
tions on Mathematical Software (TOMS) 42, 4 (2016), 1–35.

[36] Piyush Sao, Xiaoye Sherry Li, and Richard Vuduc. 2018. A
communication-avoiding 3D LU factorization algorithm for sparse
matrices. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 908–919.

[37] Piyush Sao, Richard Vuduc, and Xiaoye Sherry Li. 2014. A Distributed
CPU-GPU Sparse Direct Solver. In Euro-Par 2014 Parallel Processing,
Fernando Silva, Inês Dutra, and Vítor Santos Costa (Eds.). Springer
International Publishing, Cham, 487–498.

[38] Tengcheng Wang, Wenhao Li, Haojie Pei, Yuying Sun, Zhou Jin, and
Weifeng Liu. 2023. Accelerating Sparse LU Factorization with Density-
Aware Adaptive Matrix Multiplication for Circuit Simulation. In 2023
60th ACM/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1109/DAC56929.2023.10247767

[39] Buse Yilmaz. 2021. Graph Transformation and Specialized Code
Generation For Sparse Triangular Solve (SpTRSV). arXiv preprint
arXiv:2103.11445 (2021).

https://doi.org/10.1016/j.jcp.2023.112533
https://doi.org/10.1137/0611030
https://doi.org/10.1109/DAC56929.2023.10247767
https://doi.org/10.1109/DAC56929.2023.10247767

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LU Factorization
	2.2 Sparse Direct Solver
	2.3 Supernodal and Frontal Methods
	2.4 Nested Dissection
	2.5 Existing Sparse Direct Solvers

	3 Motivation & Methodology
	3.1 Limitations of Previous Approaches
	3.2 Observations
	3.3 Methodology

	4 Design and Implementation
	4.1 Parallelization for Multi-core CPUs
	4.2 Kernel Selection
	4.3 Matrix Formats for Sparse phase
	4.4 Memory Layouts for Dense phase
	4.5 Communication and Computation Overlapping
	4.6 Offloading to GPUs
	4.7 Solve Phase

	5 Evaluation
	5.1 Experimental Setup
	5.2 Single Matrix Case Study
	5.3 Effect of Memory Layout
	5.4 Performance on CPUs
	5.5 Scalability on CPUs
	5.6 GPU Offloading

	6 Conclusion
	Acknowledgments
	References

