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Abstract
The increasing scale and complexity of integrated circuit

design have led to increased challenges in Electronic De-

sign Automation (EDA). Graph Neural Networks (GNNs),

have emerged as a promising approach to assist EDA de-

sign as circuits can be naturally represented as graph. While

GNNs offer a foundation for circuit analysis, they often fail
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to capture the full complexity of EDA designs. Heteroge-

neous Graph Neural Networks (HGNNs) can better interpret

EDA circuit graphs as they capture both topological rela-

tionships and geometric features. However, the improved

representation capability comes at the cost of even higher

computational complexity and processing cost due to their se-

rial module-wise message-passing scheme, creating a signif-

icant performance bottleneck. In this paper, we propose DR-
CircuitGNN, a fast GPU kernel design by leveraging row-

wise sparsity-aware Dynamic-ReLU and optimizing SpMM

kernels during heterogeneous message-passing to accelerate

HGNNs training on EDA-related circuit graph datasets. To

further enhance performance, we propose a parallel opti-

mization strategy that maximizes CPU-GPU concurrency

by concurrently processing independent subgraphs using

multi-threaded CPU initialization and GPU kernel execu-

tion via multiple cudaStreams. Our experiments show that

on three representative CircuitNet designs (small, medium,

large), the proposed method can achieve up to 3.51× and 4.09
× speedup compared to the SOTA for forward and backward
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propagation, respectively. On full-size CircuitNet and sam-

pled Mini-CircuitNet, our parallel design enables up to 2.71×
speed up over the official DGL implementation cuSPARSE

with negligible impact on correlation scores and error rates.
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Electronic Design Automation, Heterogeneous Graph Neural

Network, Sparse Matrix Multiplication kernels, congestion

prediction
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1 Introduction
The growing demand for semiconductor Integrated Circuits

(ICs) and the slowdown of Moore’s Law have driven in-

creased interest in leveraging Machine Learning (ML) to

enhance Electronic Design Automation (EDA) tools and pro-

cesses [4, 5, 21]. Given that electronic circuits inherently

consist of interconnected components, they are well-suited

for graph-based representations. Consequently, Graph Neu-

ral Networks (GNNs) have been effectively employed for

tasks such as predicting links between circuit components

and optimizing circuit placement, demonstrating substan-

tial improvements in critical design phases[3, 7, 13, 16, 23].

Among various GNNs, Heterogeneous GNNs (HGNNs) are

particularly significant for circuit graph modeling, as they

capture both topological relationships (e.g., wire routing) and

geometric features (e.g., cell placements), offering a unified

framework for circuit design optimization.

The increasing complexity of modern IC design has caused

EDA datasets [1, 5] to expand exponentially, with training

sets now including tens of thousands of designs and het-

erogeneous graphs reaching terabyte-scale sizes[6, 33]. This

dual expansion in scale and complexity introduces efficiency

bottlenecks in HGNN training.

Through comprehensive profiling analysis, we have iden-

tified three major bottlenecks. (i) At the kernel level, Sparse

Matrix-Matrix Multiplication (SpMM) serves as the core

message-passing mechanism in HGNNs, as illustrated in

the architecture shown in Figure 1. Crucially, SpMM is recog-

nized as the primary performance bottleneck [14]. SpMM is a

fundamental linear algebra operation where a sparse matrix

(matrix with mostly zero elements) is multiplied by a dense

matrix (matrix with mostly non-zero elements), producing a

dense output matrix. The architecture in Figure 1 consists of

three sub-modules (from left to right: SageConv, SageConv,
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Figure 1: HGNN architecture. AHeteroConv block com-
prises three GNNmodules (i.e., two SageConv modules
and one GraphConv module).

and GraphConv), each handling a specific type of edge, re-

spectively. Figure 2 underscores the performance impact,

revealing that during inference, SpMM accounts for a signif-

icant portion of the forward overhead: approximately 62.4%,

64.5%, and 25.4% of the runtime within these respective mod-

ules. Furthermore, the backward-pass SpMM also contributes

significantly to the overall overhead, highlighting the per-

vasive impact of SpMM inefficiencies across both forward

and backward propagation. (ii) At the workload schedule

level, the training pipeline suffers from inefficiencies due

to workload imbalance and underutilized parallelism. The

irregular distribution of node degrees – where certain nodes

exhibit significantly higher connectivity than others – causes

a critical performance bottleneck [12]. (iii) Furthermore, the

system design and optimization of heterogeneous graphs

remain underexplored. For example, current GNN libraries

and implementations, e.g., Deep Graph Library (DGL) [10],

sequentially process different subgraphs despite their com-

putational independence until the final aggregation phase.

This coarse-grained scheduling incurs unnecessary synchro-

nization overhead, leading to a significant underutilization

of GPU resources. These inefficiencies collectively hinder

the scalability of HGNNs for large-scale EDA-related appli-

cations.

These challenges underscore the need for efficient kernel

optimization, an optimized workload mapping method, and

better scheduling strategy for training an HGNN using large-

scale heterogeneous circuits. To address these challenges,

in this paper, we propose DR-CircuitGNN, an acceleration

framework that leverages row-wise sparsity-aware Dynamic-

ReLU for heterogeneous circuit GNN training.

The contributions of the paper are summarized as follows:

• We introduce a novel inter and intra subgraph-level

Dynamic ReLU (D-ReLU) mechanism specifically de-

signed for heterogeneous graphs. By dynamically thresh-

olding node embeddings on a per-row basis, thismethod

injects balanced row sparsity during training, which

effectively reduces workload imbalance on GPU.

https://doi.org/10.1145/3721145.3734528
https://doi.org/10.1145/3721145.3734528
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Figure 2: Three modules in one HeteroConv layer’s
training time breakdown on the CircuitNet dataset [6].

• We design a specialized forward-pass SpMM kernel

(DR-SpMM forward) that targets the irregular adja-

cency patterns in circuit sub-graphs. By mapping row-

sparsity directly onto each edge type and node type,

DR-SpMMsignificantly accelerates themessage-passing

stage under heterogeneous circuit constraints.

• For the backward pass, we introduce a DR-SpMM back-

ward kernel customized to circuit graph gradients. This

kernel promptly leverages column-major neighbor in-

dexing – explicitly accommodating net-to-cell and cell-

to-net connections – to achieve fast and efficient gra-

dient aggregation in large-scale circuit training.

• We develop a parallel scheduling mechanism that con-

currently processes all subgraph updates originating

from the same circuit design. We parallelize the pro-

cessing of subgraphs both on the CPU side and GPU

side, with multi-threads and multiple cudaStream sep-

arately. Such maximizes CPU-GPU concurrency and

GPU resource utilization, further boosting overall train-

ing efficiency.

Experimental results show that DR-CircuitGNN achieves

3.21× and 2.75× speedup on forward propagation, as well as

3.51× and 4.09× speedup on backward propagation with no

accuracy loss in congestion prediction tasks when compared

to DGL [10] and GNNAdvisor [29], respectively. Further-

more, our optimal parallel message-passing pipeline yields

on average 2.69× forward and 2.70× backward acceleration

over cuSPARSE [9], as well as 11.06× forward and 11.07×
backward acceleration over GNNA.

2 Background and Motivation
2.1 Message-passing in Graph Neural

Networks
The message-passing (MP) mechanism in GNNs operates by

updating node embeddings based on the structural informa-

tion encoded in the adjacency matrix. This process can be

formulated as:
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Figure 3: Circuit graph generation process: (a) Circuit
Layout; (b) Topological Link; (c) Geometrical Link; (d)
Circuit Graph.
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where 𝑙 denotes the 𝑙-th number of iterations of the message-

passing process, the message function𝑀𝑆𝐺 defines the trans-

formation of node features from source to destination nodes,

while the aggregation function 𝐴𝐺𝐺 specifies how the trans-

formed features are processed at destination nodes. In homo-

geneous graphs, where connections exist only between nodes

of the same type, 𝑁 = 𝑀 represents the number of nodes

serving as both sources and targets. However, heterogeneous

graphs typically involve𝑀 source nodes and 𝑁 target nodes,

where 𝑁 ≠ 𝑀 due to varying node type quantities. Owing

to the highly sparse nature of the adjacency matrix and the

dense matrix of node embedding, the product between𝐴 and

𝑋 becomes the Sparse Matrix Multiplication (SpMM), which

is the backbone of the message-passing process.

2.2 Representing Circuit Design with
Heterogeneous Graph Neural Networks

The circuit graph construction process is depicted in Figure

3. CircuitNet first directly extracts physical encoded features

from the layout in (𝑎) and then builds topological links be-

tween cells and nets, which can be read from the netlist using

the estimation method [30], as shown in step (𝑏). Meanwhile,

in step (𝑐), a shifting window technique is applied to capture

the geometrical connectivity among cells [20]. Finally, in

step (𝑑), the circuit graph is designed with topological and

geometrical links.

As the core of the CircuitNet[6], circuit designs can be

effectively represented through a combination of heteroge-

neous graph structures, incorporating both topological and

geometric information. This representation of the dataset

exhibits several distinctive characteristics:

1) The CircuitNet dataset organizes raw data by design

units, with each design partitioned evenly in general to keep

roughly 10,000 nodes per graph: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(D) = {𝐺1,𝐺2, . . . ,𝐺𝑛};
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Figure 4: Node degree distribution of three subgraphs,
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𝑝𝑖𝑛𝑛𝑒𝑑 respectively. The subgraphs are from an exam-
ple of CircuitNet[6].

2) Under each design, each graph 𝐺𝑖 incorporates three

edge types (𝑝𝑖𝑛, 𝑝𝑖𝑛𝑛𝑒𝑑 , and 𝑛𝑒𝑎𝑟 ) representing interactions

between two node types (𝑐𝑒𝑙𝑙 and 𝑛𝑒𝑡 ): 𝐹𝑜𝑟 𝑔𝑟𝑎𝑝ℎ : 𝐺𝑖 =

(𝑉𝑖 , 𝐸𝑖 ), there are 𝑉𝑖 = 𝑉 cell

𝑖 ∪𝑉 net

𝑖 and 𝑉 cell

𝑖 ∩𝑉 net

𝑖 = ∅, with
𝐸𝑖 = 𝐸

near

𝑖 ∪ 𝐸pin
𝑖
∪ 𝐸pinned

𝑖
;

3) 𝑝𝑖𝑛𝑠 and 𝑝𝑖𝑛𝑛𝑒𝑑 are edges starting from 𝑐𝑒𝑙𝑙 to ’net’

and the opposite way, respectively, making their adjacency

matrices the transposition of each other; 𝑛𝑒𝑎𝑟 describes the

geometrical links between cells. With these various node

types and edge types within an individual graph, the graphs

become ’heterogeneous’, which is: 𝐸𝑛𝑒𝑎𝑟𝑖 ⊆ 𝑉 𝑐𝑒𝑙𝑙
𝑖 ×𝑉 𝑐𝑒𝑙𝑙

𝑖 as

cell-to-cell edge, 𝐸
𝑝𝑖𝑛

𝑖
⊆ 𝑉 𝑐𝑒𝑙𝑙

𝑖 ×𝑉 𝑛𝑒𝑡
𝑖 as cell-to-net edge, and

𝐸
𝑝𝑖𝑛𝑛𝑒𝑑

𝑖
⊆ 𝑉 𝑛𝑒𝑡

𝑖 ×𝑉 𝑐𝑒𝑙𝑙
𝑖 as net-to-cell edge.

The cardinality of node sets is defined as: |𝑉 𝑐𝑒𝑙𝑙
𝑖 | = 𝑁𝑖

and |𝑉 𝑛𝑒𝑡
𝑖 | = 𝑀𝑖 , annotating the number of cells and nets,

respectively.

In the post-partitioning stage, each circuit graph contains

5,000 to 10,000 nodes of both types, resulting in varying

neighbor densities across different edge types. As illustrated

in Figure 4, the𝑛𝑒𝑎𝑟 edges exhibit a concentrated distribution

of neighbor counts per node, peaking around 50 neighbors

and then rising to slightly over 250 per node. Whereas, 𝑝𝑖𝑛𝑠

and 𝑝𝑖𝑛𝑛𝑒𝑑 edges show a more sparse connectivity pattern,

with neighbor counts per node concentrated below 100. Com-

bined with the observation of the varying embedding dimen-

sions between 𝑐𝑒𝑙𝑙 and 𝑛𝑒𝑡 nodes, this necessitates careful

consideration with respect to SpMMworkloads derived from

adjacency matrices and node embeddings. This heteroge-

neous structure demands specialized non-linear function

with sparsification and SpMM acceleration techniques to

optimize the message-passing process effectively.

2.3 Motivation
2.3.1 SpMM is the bottleneck. As the profiler result given
in Figure 2 shows, SpMM methods take up the majority of

the runtime during heterogeneous message-passing. While

the commonly observed power-law distribution of numbers

of neighbors per node [12] always brings out "evil rows",

incurring serious workload imbalance when trying to pro-

cess node-level neighbor aggregation in parallel [29], which

greatly lowers the efficiency of SpMM methods. Following

the observation, Figure 4 shows that a typical circuit graph

contains multiple edge types, which leads various adjacency

matrices, and all of them generally are subject to the power-

law distribution with spiking at different regions, the edge

type 𝑛𝑒𝑎𝑟 surges in neighbor numbers around 100 per node,

while the other two edges sharing the same connection but

different directions, 𝑝𝑖𝑛𝑠 and 𝑝𝑖𝑛𝑛𝑒𝑑 concentrate at as low

as 3 and 4, meaning not only the "evil rows" obviously exist

only in one adjacency matrix, but also, varied groups of "evil

rows" across all adjacency matrices need to be handled at

one time, posing serious challenge to address the inherent

bottleneck of SpMM.

Workload Imbalance byGraph characteristics should
be addressed. As we delved into implementing message-

passing in terms of SpMM for bottleneck solutions. It is no-

ticed that SpMM utilizes row-wise product [29] to finish the

neighbor aggregation. This method, on one hand, processes

extremely sparse adjacency matrix serially by iterating on

the indices of either Compressed Sparse Row (CSR) or the

Compressed Sparse Column (CSC), while loading the relative

neighbor node embedding indexed by the fetched neighbor

connection (edge) using parallelized warps of threads.

W𝑖 = |N (𝑖) | × 𝐷

W𝑖 represents the workload for node 𝑖 , |N (𝑖) | denotes the
number of neighbors for node 𝑖 , and 𝐷 is the dimension of

the node embeddings.

For the maximum number of row-wise products com-

puted in parallel, considering workload imbalance due to

"evil rows":

P𝑚𝑎𝑥 = min

(
𝑇𝑎𝑣𝑎𝑖𝑙

max𝑖 |N (𝑖) | × 𝐷
,𝑉

)
Where P𝑚𝑎𝑥 is the maximum number of row-wise products

computable in parallel, 𝑇𝑎𝑣𝑎𝑖𝑙 represents the total available

parallel threads, max𝑖 |N (𝑖) | captures the "evil row" [12]

problem (the node with maximum neighbors), 𝑉 is the total

number of nodes in the graph. This shows that workload is a

crucial metric defining the bottleneck of efficiency of a row-

wise product SpMM kernel. Combined with our observation,

it is seriously needed that a dynamic, adaptive approach to

allocate a suitable proportion of hardware resources in terms

of threads, so that not only for in-edge message-passing,

SpMM kernels suffer less from waiting for the evil rows to

finish their row-wise product to synchronize, cutting down

the tail lag and achieving overall shorter runtime.

Irregular Memory Access Exacerbated in HGNN. In
order to reduce the workload imbalance, one straightforward
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measure is to promptly reduce the number of non-zero node

embeddings per neighbor 𝐷 that should be passed to the

current node.

This can be implemented through non-linear function

applied to fully dense embeddings before the SpMM-based

neighbor aggregation, such as Rectified Linear Unit (ReLU)

[2], mapping all negative neurons to zeros in the output.

However, owing to the random, non-deterministic distribu-

tion of values of embedding, even its threshold-aware variant

FATReLU [17] easily leaves irregular, unbalanced sparsity.

This irregular sparsity makes the CUDA kernel perform an

irregular memory access pattern, harming the parallelism of

the GPU. SpMM kernels do not have the pre-knowledge of

non-zero distribution in the sparsified embeddings, nor do

they have a fully dynamic scheduling scheme that perfectly

processes randomly and irregularly distributed non-zeros

without extra cost. Such a scenario calls for an adaptive,

dynamic, non-linear function producing regular sparsity to

enable a more efficient SpMM.

2.3.2 HGNNs Need More parallelism. The sequential

message-passing scheme currently adpoted by DGL and PyG

keeps the whole-graph dataflow to wait for all types of sub-

graphs to be updated. However, the computing of updating of

different types of subgraphs is totally independent, and each

single workload most of times cannot full fill GPU computing

resources. Furthermore, the frequent synchronization after

each updating can significantly harm the GPU parallelism.

Therefore, such a sequential manner has caused a lot of waste

of GPU time and resources. While some recent approaches

work on building a parallel HGNN framework, their focus

is confined to the graph reconstruction of semantic graphs,

with designs of accelerators dedicated to their reconstruction

methods [18, 31, 32], where system optimization from the

scheduling aspect is absent. Considering the extremely large

scale of the EDA dataset, parallel processing for subgraphs

can further improve the performance of HGNN.

3 Design of DR-CircuitGNN
In order to address our motivations, we design a Dynamic
ReLU (D-ReLU) non-linear function with sparsification for

GNN , a framework of SpMM kernels based on output from

D-ReLU, with heterogeneous forward and backward pass

functionality, and a parallel pipeline enabling parallelized

message-passing for all edges to accelerate the HGNN train-

ing flow fundamentally. The overview of our proposed DR-

CircuitGNN framework is shown in Figure 5. DR-CircuitGNN

first accommodates varying embedding dimensions across

node types, with different K-values applied to 𝑛𝑒𝑡 and 𝑐𝑒𝑙𝑙

nodes’ embedding to generate type-specific values and in-

dices. After the D-ReLU’s sparsification by the K-values, in

the heterogeneous message-passing phase, node embeddings

are passed along the corresponding edges to perform for-

wardDynamic ReLU Sparse Matrix Multiplication (DR-SpMM)

using relative indices generated by D-ReLU. With a pipeline

design, all three edges are capable of message-passing in

parallel until the 𝑐𝑒𝑙𝑙 node merges its updated embeddings

transmitted from two types of edges, 𝑝𝑖𝑛𝑛𝑒𝑑 and 𝑛𝑒𝑎𝑟 . When

it comes to the backward pass, DR-CircuitGNN reuses the in-

dices gain from the D-ReLU to apply Sampled-Sparse Matrix

Multiplication (SSpMM) on the incoming gradient to com-

pute and pass the gradients backward to the source nodes,

finishing one whole training cycle of DR-CircuitGNN.

3.1 Hetero-Dynamic ReLU and DR-SpMM
To facilitate efficient SpMM, we introduce a Dynamic ReLU
operator that selectively preserves the most significant ele-

ments of node embeddings through row-wise binary search.

This approach differs fundamentally from conventional non-

linear activations in GNNs, as illustrated in Figure 6, from

left to right, there are illustrations of Sigmoid Linear Unit

(SiLU) [11], ReLU, and our D-ReLU, respectively. While SiLU

employs a sigmoid-based function (𝑥 ∗ 𝜎 (𝑥)) that maintains

density, and standard ReLU [2] introduces irregular spar-

sity through zero-thresholding, our D-ReLU implements dy-

namic, row-wise thresholding to achieve balanced sparsity

patterns.

The D-ReLU operation can be formally defined for matrix

elements 𝐴𝑖 𝑗 , where 𝜏𝑖 represents the row-wise threshold

determined by the minimum of 𝑘 maximal elements selected

from row 𝑖 . This approach ensures balanced sparsity across

output node embeddings while preserving the most signifi-

cant features. The output comprises both the preserved ele-

ment values and their relative positional indices within the

embedding, enabling efficient DR-SpMM operations across

different edge types during message passing.

th
𝜙𝑠

𝑖
= min(topk(𝑋𝜙𝑠

𝑖,:
, 𝑘𝜙𝑠
)) (2)

𝑓 (𝑋𝜙𝑠

𝑖,𝑑
) =

{
𝑋
𝜙𝑠

𝑖,𝑑
, 𝑋

𝜙𝑠

𝑖,𝑑
≥ th

𝜙𝑠

𝑖

0, 𝑋
𝜙𝑠

𝑖,𝑑
< th

𝜙𝑠

𝑖

(3)

Given there are𝜓 types of edges, and 𝜙𝑠 types of nodes, 𝑡ℎ is

the row-wise threshold defining row-sparsity. For example,

in Circuitnet,𝜓 ∈ {𝑝𝑖𝑛𝑠, 𝑛𝑒𝑎𝑟, 𝑝𝑖𝑛𝑛𝑒𝑑} contains all available
types of edges, while 𝜙𝑠 ∈ {𝑐𝑒𝑙𝑙, 𝑛𝑒𝑡} refers to all node types

available.

From the output of D-ReLU, including the values of pre-

served elements and the relative indices of their positions in

the embedding, DR-SpMM can efficiently perform balanced

and rapid row-wise multiplication between the adjacency

matrix per edge type and the corresponding node embed-

dings for the aggregation of MP.
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Figure 5: The overview of Message Passing of one layer of heterogeneous Graph Neural Network on circuit graph
dataset.

Figure 6: D-ReLU (ours) vs. other non-linear activations, including SiLU (leftmost) and ReLU (middle),
where D-ReLU generates row-wise balanced sparsity with top-k elements preserved in each row.

Our redesignedDR-SpMM implementation leverageswarp-

level row-major and column-major encoding of adjacency

matrices for forward-pass and backward-pass within ker-

nel computations, facilitating both intra-node homogeneous

SpMM and cross-type heterogeneous SpMM operations. As

a simplified example shown in Figure 5, the framework first

accommodates varying embedding dimensions across node

types, with different K-values applied to 𝑛𝑒𝑡 and 𝑐𝑒𝑙𝑙 nodes

to generate respective CBSR (Compressed Balanced Sparse

Row) encoded values and indices. Two types of node embed-

ding in CBSR format, as well as the respective edge relations

in adjacency matrices, are both leveraged during the forward

pass and the backward pass.

3.2 DR-SpMM Forward-Pass for HGNN
Our heterogeneous forward-pass General Sparse Matrix Mul-

tiplication (GeSpMM) kernel design follows the row-wise

product style as in [26] and the general format:

𝑌𝜙𝑡 =
∑︁

𝜓 ∈Ψ𝜙𝑠→𝜙𝑡

𝐴𝜓 · 𝑋𝜙𝑠 ·𝑊𝜓 ,

Where 𝐴𝜓 ∈ R𝑀𝜙𝑡 ×𝑁𝜙𝑠 , 𝑋𝜙𝑠 ∈ R𝑁𝜙𝑠 ×𝐷𝜙𝑠 ,

𝑊𝜓 ∈ R𝐷𝜙𝑠 ×𝐷𝜙𝑡

(4)

Note that there are 𝜙𝑠 types of source nodes. 𝜓 types of

edges, 𝑁𝜙𝑠
denotes the number of source nodes,𝑀 denotes

the number of destination nodes, 𝑌 is the updated node

embedding, 𝐴 means the adjacency matrix, and 𝑋 is the

node embedding from the last iteration. The step-by-step

neighbor aggregation bore within the forward pass has the

form:

𝑌
𝜙𝑡

𝑖
=

∑︁
𝜓 ∈Ψ𝜙𝑠→𝜙𝑡

∑︁
𝑗∈N𝜓 (𝑖 )

𝐴
𝜓

𝑖,𝑗
· 𝑋𝜙𝑠

𝑗
·𝑊𝜓

(5)

WhereN𝜓 (𝑖) = { 𝑗 | 𝐴𝜓

𝑖,𝑗
≠ 0} represents the neighbor group

(NG) of the node 𝑖 , 𝐴
𝜓

𝑖,𝑗
∈ R+ (Edge) represents the adja-

cency connection (edge) from source node 𝑗 to destination

node 𝑖 . 𝑋
𝜙𝑠

𝑗
∈ R𝐷 is the corresponding embedding of source

node 𝑗 to be aggregated onto the destination node 𝑖 . When

the equations are applied to circuit graphs from CircuitNet:

𝑌 cell

𝑖 =
∑︁

𝜓 ∈{pinned,near}

∑︁
𝑗∈N𝜓 (𝑖 )

𝐴
𝜓

𝑖,𝑗
· 𝑋𝜙𝑠

𝑗
·𝑊𝜓

(6)

𝑌 net

𝑘
=

∑︁
𝜓 ∈{pins}

∑︁
𝑗∈N𝜓 (𝑘 )

𝐴
𝜓

𝑘,𝑗
· 𝑋𝜙𝑠

𝑗
·𝑊𝜓

(7)
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Figure 7: DR-CircuitGNN forward SpMM kernel implementation, from left to right, including adjacency matrices
preprocessing at stage 1, dynamic warp partitioning at stage 2, type-specific feature aggregation at stage 3, the
relative scheduling scheme, and the output processing at stage 4.

Where 𝜙𝑠 = 𝜙𝑡 ∈ {𝑐𝑒𝑙𝑙, 𝑛𝑒𝑡}. The detailed algorithm with

a simple example is given in Alg. 1.

Practically, for the case where node type 𝑐𝑒𝑙𝑙 will receive

two pieces of updated node embedding from 𝑐𝑒𝑙𝑙 itself and

𝑛𝑒𝑡 along edge types 𝑛𝑒𝑎𝑟 and 𝑝𝑖𝑛𝑠 , respectively, the form

of forward-pass message-passing then becomes:

𝑌 cell = max

(
𝐴near · 𝑋 cell, 𝐴pinned · 𝑋 net

)
(8)

𝑌 net = 𝐴pin · 𝑋 cell
(9)

In Alg. 1, the kernel implementation is further illustrated

in Figure 7. We created an example of a heterogeneous graph

where type-1 nodes pass their features along two edge re-

lations in terms of adjacency matrices to type-2 nodes and

themselves, respectively. In the first stage, the adjacency ma-

trices will be encoded into a compressed sparse row format

and further partitioned into warp-level, where each warp

is responsible for one row’s neighbor information, namely,

the neighbor group. This step as the stage 1 refers to the

line 2 to line 7 in Alg.1. In the next stage shown at line 9 in

Alg.1, all neighbor groups are then divided into three cases in

this scenario: low degree (two neighbors per node), medium

degree (three neighbors per node), and large degree (four

neighbors per node). Concerning the size of the neighbor

group, a neighbor-size-aware scheduling technique is ap-

plied: After analysis of the NG size distribution for every

edge type of every graph, D-ReLU will apply respective K-

values to the NGs with respect to their sizes. Their relative

warps will be partitioned accordingly. The more neighbors

the NGs have, the fewer features per neighbor are required to

pass, which corresponds to smaller K-values and thus fewer

values per row of node features to load, and more parts per

warp will be partitioned into and handle the embeddings

linked to the NGs. In this manner, the need for warps does

not grow linearly with the size of NGs, reducing repeated

calls of the same warp from the same block of threads to

process other rows’ message-passing and curtail the tail lag

effect caused by unadjusted, uniform warp size if applied

to large-degree NGs. For example, in Figure 7, during the

stage when each warp loads the neighbors’ information and

the relative embeddings, the workload of neighbor loading

(red block) matches the number of neighbors for each NG,

given varied sizes of NGs: 2 neighbors for small degree NG

2○, 4○, 5○, 7○, 8○; 3 neighbors for medium degree NG 1○, 3○;

4 neighbors for high-degree NG 6○. Knowing the needed

information of NGs’ sizes, D-ReLU adjusts the K-values, in-

dicating the preserved number of embeddings per neighbor

to
2

3
for medium-sized NGs, and

1

3
for large-sized NGs of

the biggest allowed K-value 3. According to the K-values ad-

justed, the loading of the sparsified embedding (blue block)

are divided into 2 parts, even 4 parts when the NG has 3 and

4 neighbors respectively, so that their assigned warps only

need to be called one time to handle the row-wise product
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Algorithm 1 DR-SpMM Forward-Pass

1: function DR-SpMM Forward-Pass

2: Stage 1: Adjacency Matrix Preprocessing
3: Encode adjacency matrices {𝐴𝜓 } for all edge types
𝜓 ∈ Ψ𝜙𝑠→𝜙𝑡

into CSR

4: Partition CSR into warp-level neighbor groups:

5: for each edge type𝜓 and row 𝑟 in CSR do
6: Assign warp𝑊

𝜓
𝑟 ← row 𝑟 ’s neighbors for rela-

tion𝜓

7: end for
8: Stage 2: Dynamic Warp Partitioning
9: Classify neighbor groups by degree with warp size

32, 𝐾1>𝐾2>𝐾3:

• Low degree : No partition or into ⌈32/𝐾1⌉ parts
• Medium degree : Partition into ⌈32/𝐾2⌉ parts
• High degree : Partition into ⌈32/𝐾3⌉ parts

10: Stage 3: Type-specific Feature Aggregation
11: for each target node type 𝜙𝑡 ∈ Φ do
12: for each edge type𝜓 ∈ Ψ𝜙𝑠→𝜙𝑡

connecting to 𝜙𝑡
do

13: for each warp𝑊 in partitioned warps for𝜓

do
14: Load features 𝑋

𝜙𝑠

𝑗
from HBM with CBSR

idx

15: Compute: 𝑌
𝜙𝑡

𝑖
+ =

∑
𝑗∈N𝜓 (𝑖 ) 𝐴

𝜓

𝑖,𝑗
· (𝑋𝜙𝑠

𝑗
·

𝑊𝜓 )
16: end for
17: end for
18: end for
19: Stage 4: Output Processing
20: for each target node type 𝜙𝑡 ∈ Φ do
21: Write 𝑌𝜙𝑡

to HBM

22: end for
23: Preserve type-specific CBSR indices for backward

pass

24: end function

and neighbor aggregation with fetched neighbor informa-

tion, including row indices and the values indexed, as well

as the corresponding rows of node embeddings. After the

neighbor aggregation (as shown at the stage 3, line 11 to

line 18), the DR-SpMM forward kernel stores the result in

shared memory, which is then written back to the output

on HBM (High Bandwidth Memory) with information of

rows’ pointers of the target node, finishing the Forward Pass.

Note that the indices of CBSR-encoded node features will

be preserved and reused for the backward pass. This stage

corresponds from line 19 to line 24 in Alg.1.

Algorithm 2 DR-SpMM Backward-Pass

1: function DR-SpMM Backward-Pass

2: Stage 1: Gradient Preparation
3: for each edge type𝜓 ∈ Ψ𝜙𝑠→𝜙𝑡 do
4: Transpose 𝐴𝜓

to CSC format

5: Reuse preserved type-specific CBSR indices from

forward pass

6: end for
7: Stage 2: Type-specific Reverse Aggregation
8: for each source node type 𝜙𝑠 ∈ Φ do
9: for each edge type𝜓 ∈ Ψ𝜙𝑠→𝜙𝑡 do
10: for each warp𝑊 as partitioned in forward

do
11: Load gradients

𝜕𝐿

𝜕𝑌𝜙𝑡
from HBM

12:
𝜕𝐿

𝜕𝑋
𝜙𝑠
𝑗

+ = ∑
𝑖∈N𝜓 ( 𝑗 ) 𝐴

𝜓

𝑖,𝑗
· 𝜕𝐿

𝜕𝑌
𝜙𝑡
𝑖

· (𝑊𝜓 )𝑇

13: end for
14: end for
15: end for
16: Stage 3: Gradient Accumulation
17: for each source node type 𝜙𝑠 ∈ Φ do
18: for each source node 𝑗 of type 𝜙𝑠 do
19: Atomically add:

𝜕𝐿

𝜕𝑋
𝜙𝑠
𝑗

← ∑
𝜓

𝜕𝐿

𝜕𝑋
𝜙𝑠
𝑗

𝜓

20: end for
21: end for
22: end function

3.3 DR-SpMM Backward-Pass
Following the forward pass, the corresponding backward

pass, supplementing the training flow is defined by kernel

implementation in Alg. 2 with a general form:

𝜕𝐿

𝜕𝑋𝜙𝑠
=

∑︁
𝜓 ∈Ψ𝜙𝑠→𝜙𝑡

(𝐴𝜓 )⊤ · 𝜕𝐿

𝜕𝑌𝜙𝑡
· (𝑊𝜓 )⊤,

Where (𝐴𝜓 )⊤ ∈ R𝑁𝜙𝑠 ×𝑀𝜙𝑡

(10)

Where 𝐿 is the loss function, and 𝑋 and 𝑌 are the node

embedding from the last iteration and the current iteration,

respectively. 𝐴⊤ implies the transposed edge connections

defined by the relative adjacency matrix, with the dimension

𝑁 ×𝑀 , which corresponds to the opposite direction of gradi-

ent passing to the forward pass. If step by step, the backward

gradient aggregation takes the form:

𝜕𝐿

𝜕𝑋
𝜙𝑠

𝑗

=
∑︁
𝜙𝑡

∑︁
𝜓 ∈Ψ𝜙𝑠→𝜙𝑡

∑︁
𝑖∈N𝜓 ( 𝑗 )

𝜕𝐿

𝜕𝑌
𝜙𝑡

𝑖

· 𝐴𝜓

𝑖,𝑗
· (𝑊𝜓 )⊤ (11)

Following the annotations used and practically, in the

forward-pass, DR-CircuitGNN already adopted element-wise

𝑚𝑎𝑥 () to merge the two updated node embedding of node
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Figure 8: DR-SpMM Backward kernel.

type 𝑐𝑒𝑙𝑙 along edge type 𝑝𝑖𝑛 and𝑛𝑒𝑎𝑟 from 𝑐𝑒𝑙𝑙 and𝑛𝑒𝑡 com-

bined, the corresponding backward-pass message-passing

becomes:

𝜕𝐿

𝜕𝑋 cell

= (𝐴near)⊤ ·
(
𝑀 ⊙ 𝜕𝐿

𝜕𝑌 cell

)
+
(
𝐴pin

)⊤
· 𝜕𝐿

𝜕𝑌 net
(12)

𝜕𝐿

𝜕𝑋 net
=

(
𝐴pinned

)⊤
·
(
(1 −𝑀) ⊙ 𝜕𝐿

𝜕𝑌 cell

)
(13)

Where:

𝑀𝑖,𝑑 =

{
1 if (𝐴near · 𝑋 cell)𝑖,𝑑 ≥ (𝐴pinned · 𝑋 net)𝑖,𝑑
0 otherwise

(14)

at the stage 2, line 7 to line 15 in Alg.2, unchanged in con-

tent. On the other hand, the target node gradient values are

indexed by the CBSR’s indices preserved in the forward pass.

At the stage 2, line 8 to line 15 of Alg. 2, when the kernel is

traversing NG’s column-major row indices and their relative

edge values, per each edge value, warps meanwhile are re-

sponsible for loading the corresponding rows of gradients

from both types of target nodes to perform the column-wise

product, and mapping the resulting values to the output

rows using the row indices of edge values indicated in line

16 to line 21 of Alg. 2. Note that at during this stage, the

NGs, node features, CBSR indices, and the results are stored

on HBM while the interim product results are placed on

shared memory. Similarly to the forward pass case, warps

have bigger partitions for small NGs, while smaller partitions

are assigned to warps handling large NGs to mitigate the

tail lag throughout the process. In addition, as the source

type-1 nodes receive two gradient results, they go through

post-processing provided by torch, which is unrelated to the

design.

(a) Timeline of HGNN

(b) Timeline of our parallel design

Figure 9: The final parallelism effects in DR-
CircuitGNN. The initialization of subgraphs is handled
in parallel by three CPU threads. The GPU kernels for
different subgraphs are put into different cudastreams
and then launched at the same time. The CUDA run-
time automatically controls GPU resource scheduling.

3.4 Parallel Optimization
As illustrated in Figure 5, the circuit graph consists of two

distinct node types—Net and Cell—and two edge types: undi-
rected edges between Cells and directed edges connecting

Net and Cell. To effectively model these heterogeneous rela-

tionships during HGNN training, three separate adjacency

matrices (denoted as 1○, 2○, and 3○ in Figure 5) are derived

from the original graph. These matrices, which encode the

topological relationships among different node and edge

types, are preprocessed and stored as three independent

subgraphs prior to training. Notably, each partition of the

full circuit graph generates its own set of three subgraphs,

ensuring that the heterogeneous structural information is

preserved at both the global and partition levels.

The Fig. 9a shows the timeline of the original HGNN

workflow. After the activation layer, the program sequen-

tially loads the three subgraphs into GPU via Unified Vir-

tual Memory(UVM)[15], so that the data transfer will be

automatically handled by CUDA runtime and overlap with

computing, and then performs forward and backward com-

putations on each of them. All initialization tasks, including

data loading, memory allocation, and host-to-device data

transfer, are handled by the CPU. Crucially, both the CPU-

side initialization and GPU-side kernel execution for the

three subgraphs are entirely independent. Leveraging this
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inherent parallelism, we employ a multi-threaded CPU im-

plementation to concurrently initialize the three subgraphs,

followed by the use of three separate cudaStreams to man-

age their corresponding GPU kernels. Figure 9b shows the

timeline of our parallel design. These kernels are launched

concurrently, with their execution overlapping fully when

GPU resources are available or partially when resource con-

tention occurs. Even in the worst-case scenario, where the

three workloads are executed sequentially due to each fully

utilizing the GPU’s computing units, the use of cudaStreams
still reduces unnecessary explicit system synchronization

overhead, which has been shown to significantly degrade

GPU efficiency[19, 22, 25].

4 Experiments and Analysis
We evaluate DR-CircuitGNN through comprehensive bench-

marking, focusing on runtime performance analysis of the

DR-SpMM kernel (both forward and backward passes) across

varying K-values and embedding dimensions of different

node types of various graphs in the dataset. Our analysis

also examines the impact of K-values on training efficiency

and accuracy metrics to determine optimal configurations

for heterogeneous graph datasets.

4.1 Experimental Setup
Platform: All experiments were conducted on an AMD

EPYC 7763 64-Core Processor server with 504GB RAM and a

single NVIDIA A6000-48GB GPU, using CUDA toolkit 12.6.

The GPU kernels are coded in CUDA C. The DGL toolkit

version is 2.2.1 with Pytorch 2.1.2, and Python 3.10.

Datasets: In order to evaluate DR-CircuitGNN on the

large-scale EDA graph dataset, we first implement SpMMper-

formance assessment with size-stratified CircuitNet samples

(Table 1); and comprehensive testing on CircuitNet [6, 33, 34],

an open-source, extensive EDA dataset encompassing over

10,000 circuit designs. For comparative analysis with canoni-

cal GNN architectures, we constructed Mini-CircuitNet, com-

prising 120 randomly sampled designs (100 training, 20 test-

ing) from CircuitNet, processed according to the protocol

from [6]. More importantly, to further investigate hetero-

geneous K-values with regard to the two node types’ em-

beddings plus the relative edges and the performance of

DR-CircuitGNN, we use all of the designs on full-size Cir-

cuitNet and profile the performance in correlation scores.

This dataset features enhanced representation of circuit de-

signs dedicated to EDA and computer-aided design (CAD)

based on very large-scale integration (VLSI) [6, 33, 34]. With

more than 10,000 samples extracted from commercial de-

sign tools and six open-source RISC-V designs, these designs

can be applied to typical cross-stage prediction tasks, such

as routability prediction and IR drop prediction, where in

this work we focus on the routability or congestion predic-

tion that again highlights rank correlation among graphs

over absolute error in value prediction. Owing to the mem-

ory constraint to generalize the network-wise test to other

canonical homogeneous GNNs, we randomly sample a small

subset of 120 designs from the full CircuitNet to make a

Mini-CircuitNet, where 100 of them are used for training

and the rest 20 designs are used for testing. The dataset

pre-preprocessing follows [6] to fit in both formats of homo-

geneous graphs and heterogeneous graphs.

Models and Configurations: The SpMM kernel bench-

marking is compared against the DGL implementation cuS-

PARSE [24], and the SpMMkernel fromGNNAdvisor (GNNA)

[29], which was optimized specifically for GNN. We pro-

filed the optimal K-value for each subgraph in preprocessing,

which will take about 20 minutes for the whole dataset, while

the end-to-end training time is dozens of hours. According

to our performance breakdown in Section 4.4, our DR-SpMM

can bring up to 39% time saving, which is about 1 - 4 hours

in end-to-end training, far exceeding the cost of profiling.

Besides, the profiling is a one-time effort for one dataset. The

detail about how to profile the optimal 𝐾 is illustrated in

Section 4.3.

For CircuitNet evaluation, we implemented both heteroge-

neous (two layers of HeteroGraphConv with Graph Convolu-

tion Network (GCN) and dual GraphSAGE submodules) and

homogeneous (three-layer GraphSAGE, GCN, and Graph

Attention Network (GAT) [27]) approaches. With the ho-

mogenous GNN model for the CircuitNet dataset, Graph-

SAGE, GCN, and GAT [27] will be applied to compare with

DR-CircuitGNN’s performance. Three metrics are mainly

referred to, Pearson, Kendall, and Spearman scores, which

weigh more in rank correlation recognition and are more

favored in EDA design applications [34]. We followed the

optimal hyperparameter setup[34] for GraphSAGE, GCN,

and GAT on the CircuitNet dataset. Specifically, all the base-

line models are trained with three layers for 50 epochs using

a learning rate of 0.001 and weight decay of 0.0002. The

GraphSAGE will be adjusted to the ’mean’ mode. Our DR-

CircuitGNNwas configured with two layers, using a learning

rate 0.0002 and weight decay of 0.00001, which was the op-

timal setup on the CircuitNet dataset in our experiments.

Notably, it contains approximately twice as many param-

eters as GAT, SAGE, and GCN, with training time scaling

proportionally.

4.2 DR-SpMM Forward and Backward
Kernels on Heterogeneous Circuit
Graphs

The profiled results of our DR-SpMM forward and backward

kernels in comparison with cuSPARSE and GNNA are shown
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Table 1: Statistics of three representative circuit designs of different sizes (i.e., small, medium, large).

graph id nodes-net nodes-cell edges-pinned edges-near edges-pins total nodes total edges

Design 9282-zero (Small)

0 4628 7767 10013 338050 10013 12395 358076

1 3269 7347 7580 282216 7580 10616 297376

Design 2216-RISCY (Medium)

0 5331 9493 12382 432187 12382 14824 456951

1 7271 9733 18814 444258 18814 17004 481886

2 6461 9590 19227 409581 19227 16051 448035

Design 7598-zero (Large)

0 5883 9816 16605 455383 16605 15699 488593

1 6183 9399 17394 449466 17394 15582 484254

2 9100 9579 34748 440481 34748 18679 509977

3 7146 9341 22056 483638 22056 16487 527750
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Figure 10: Experimental results of training with varying 𝐾𝑛𝑒𝑡 and 𝐾𝑐𝑒𝑙𝑙 on Mini-CircuitNet. The first row is the
correlation scores results and the second row shows the training speedup over baselines.

Table 2: Congestion prediction results comparison be-
tween Homogeneous and our DR-CircuitGNN on Mini-
CircuitNet.

Model Pearson Spear. Ken. MAE RMSE

GCN 0.347 0.493 0.372 0.027 0.033
SAGE 0.347 0.494 0.373 0.027 0.033
GAT 0.347 0.494 0.373 0.027 0.033
DR-CircuitGNN (ours) 0.442 0.511 0.384 0.043 0.098

in Figure 11. Analysis of kernel performance, comparing DR-

SpMM against cuSPARSE and GNNAdvisor (Figure 11), re-

veals consistent acceleration patterns when dimensionality,

namely, the K value, remains below the warp thread limit

of 32. The most significant gains manifest in module-wise

acceleration. When the original dimension of embedding

is 64, our approach has sped up in forward and backward

pass by 2.75× and 4.09× respectively over GNNA, 3.21× and

3.51× over cuSPARSE. When the original dimension of the

embedding is 128, our approach achieves 3.64× and 5.28×
improvements in forward and backward passes, respectively,

compared to GNNAdvisor, and 3.55× and 3.98× improve-

ments versus cuSPARSE. Performance characteristics vary

Design Name Graph ID Dim Speedup vs. cuSPARSE Speedup vs. GNNA
Forward Backward Forward Backward

2216-RISCY

graph0

64 2.61 2.63 10.43 10.50

128 2.35 2.45 9.89 10.29

graph1

64 2.84 2.88 12.08 12.24

128 2.54 2.53 10.80 10.75

graph2

64 2.96 3.09 12.12 12.64

128 2.39 2.41 10.19 10.27

7598-zero-riscy

graph0

64 2.64 2.56 10.74 10.42

128 2.28 2.29 9.75 9.79

graph1

64 2.63 2.62 10.74 10.67

128 2.45 2.46 10.37 10.41

graph2

64 2.89 2.89 11.77 11.77

128 2.73 2.82 11.52 11.93

graph3

64 2.62 2.51 10.64 10.20

128 2.48 2.52 10.36 10.54

9282-zero-riscy

graph0

64 2.59 2.57 10.76 10.67

128 2.33 2.43 9.95 10.38

graph1

64 2.57 2.62 10.66 10.85

128 2.40 2.48 10.05 10.36

Average Performance -

64 2.71 11.10
128 2.44 10.42

Table 3: End-to-End performance comparison across
2 different embedding dimensions (Dim=64 and
Dim=128) on 3 representative circuit designs.

notably across edge types. For example, when the dimen-

sion of embedding is 64, the best edge-wise case is on 𝑝𝑖𝑛𝑠 ,

where our DR-SpMM kernels obtain the highest speed up

of 3.21× in forward, and 3.51× in backward over cuSPARSE,

and 2.75× in forward and 4.09× in backward over GNNA.

when the edge type is 𝑛𝑒𝑎𝑟 , which most closely resembles
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Figure 11: DR-SpMM kernels runtime speed-up under varying K against cuSPARSE and GNNA across 3 representa-
tive example circuit designs (i.e., 9282-zero, 2216-RISCY and 7598-zero) with node embedding = 64 and 128.
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canonical SpMM with square adjacency matrices, our DR-

SpMM kernels has the highest speed up of 1.73× and 2.16×
over cuSPARSE, 1.97× and 2.53× over GNNA, while such

speed up ratio generally stays the same for cuSPARSE on

edge type 𝑝𝑖𝑛𝑛𝑒𝑑 whose adjacency matrix has more columns

than rows, the speed up over GNNA goes down to 1.47× in

forward, 2.03× in backward. These results show our meth-

ods’ consistently enhanced performance against established

baselines. In addition, under comparable numbers of vertices

that shape the dimensions of all three types of edges, the

speed up performance present obvious variance, meaning

our kernels are more in favor of adjacency matrices that

has more rows than columns instead of the opposite. This

shows our kernel design can benefit more from heteroge-

neous graphs whose source nodes are more than the target

nodes.

4.3 DR-CircuitGNN Evaluation on
CircuitNet

Evaluation of DR-CircuitGNN on congestion prediction tasks

shows its effectiveness over homogeneous GNN baselines.

On Mini-CircuitNet, our model achieves enhanced correla-

tion metrics with Pearson, Spearman, and Kendall scores of

0.442, 0.511, and 0.384, respectively. The full-scale CircuitNet

implementation further validates these results, showing im-

proved Spearman and Kendall scores of 0.68 and 0.535, with a

marginal decrease in Pearson to 0.387. Performance analysis

in varying 𝐾 values, as illustrated in Figure 10, has revealed

optimal acceleration in the range between 𝑘𝑛𝑒𝑡 = 2 and

𝑘𝑛𝑒𝑡 = 8. The model maintains stable performance through-

out the K-value range, where the acceleration reaches up

to 1.65×/1.88× and 1.54×/1.75× versus DGL implementation

and GNNAdvisor, which can be translated into a reduction

in training time by 38.27%/46.81% and 35.1%/42.86% in for-

ward/backward. Although the acceleration ratio decreases

as values approach 32, these results demonstrate consistent

performance advantages while maintaining metric stability

across different configurations. Note that the rise in RMSE

and MSE indicates more absolute values shifted from the

original ones, yet acceptable given the great increase in rank

correlation scores. To further maximize the end-to-end ac-

celeration of training, we exhaustively search graph-specific

optimal K-values: 𝑘𝑝𝑖𝑛𝑛𝑒𝑑 , 𝑘𝑛𝑒𝑎𝑟 , and 𝑘𝑝𝑖𝑛𝑠 , and run parallel

message-passing SpMM under the given graph of the se-

lected three designs. Due to the influence of graph topology,

the optimal 𝐾 value varies for each subgraph from differ-

ent designs. Therefore, during the preprocessing phase, we

profile the DR-SpMM kernel performance with different 𝐾

values on each subgraph. In the CircuitNet dataset, since

the dimension of node embeddings for each subgraph is ei-

ther 64 or 128, and we need to ensure that the number of

non-zero elements remaining in node embeddings after acti-

vation functions is a power of two to maximize GPU parallel

resource utilization, the candidate𝐾 values are selected from

powers of 2 smaller than 64, specifically 2, 4, 8, 16, 32, and

64. We measure the performance of the DR-SpMM kernel

under each 𝐾 value, select the optimal 𝐾 value that deliv-

ers the best performance for each subgraph, and apply it

to the end-to-end training. Table. 3 shows that with paral-

lelism enabling message passing on all edges in parallel, our

kernels have at best 2.71× of end-to-end acceleration over

cuSPARSE, and 11.1× speedup over GNNA. When extended

to the 100 training designs, the overall runtime acceleration

can be at best 3.11× and 11.58× over cuSPARSE and GNNA,

respectively.

4.4 Breakdown of the Optimizations
To further understand the details of the performance im-

provement in End-to-End workflow, we use DR-ReLU sav-
ings to represent the optimization brought by our optimized

kernel, and Parallel savings to represent the benefits of our
parallel processing of three types of subgraphs. We use the

results of cuSPARSE as the baseline. We explicitly disable

parallel processing of subgraphs to measure the sole perfor-

mance impact of our DR-ReLU SpMM kernel and activate

the parallel scheme to measure how much improvement can

be achieved from it. Figure 12 shows the breakdown of the

performance gain on randomly selected 9 graphs from the

CircuitNet dataset.

The experimental results show that our kernel optimiza-

tion leads to an average of 19.3% execution time reduction.

However, the actual performance gain varies across different

graphs due to two key factors: (1) the optimal sparsification

threshold is graph-dependent, and (2) the inherent topo-

logical characteristics of each graph significantly influence

kernel efficiency. In the best-case scenario (Graph 3), our

optimization achieves a 39% execution time reduction, in-

dicating the effectiveness of our profiling-based threshold

selection strategy. Conversely, the performance gain drops to

9% for Graph 2, the worst-case scenario. Further profiling and

topological analysis reveal that Graph2 exhibits a relatively

uniform degree distribution, which limits the opportunities

for our DR-ReLU optimization to exploit workload balance

scheduling in the kernel computing.

Our parallel scheme achieves an average end-to-end exe-

cution time reduction of 49.6%, with consistent performance

gains across different graphs. Notably, the end-to-end evalu-

ation encompasses not only kernel execution time but also

system-level overheads, including data loading, initialization,

memory allocation, and possible resource scheduling. To

minimize these overheads, our design parallelizes data load-

ing and initialization on the CPU side using three dedicated
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Figure 12: Breakdown of the optimization benefits on
randomly selected 9 graphs in the CircuitNet dataset.

threads, each handling a separate subgraph. On the GPU

side, we leverage three independent cudaStream to launch

kernels concurrently. Since these cudaStream have no data

dependencies, they can be issued simultaneously and exe-

cuted in parallel by GPU computing units. However, perfect

parallelism is rarely achieved due to resource contention:

when one or two kernels fully utilize GPU resources, the

remaining kernels execute concurrently but with only par-

tial overlap. Additionally, CUDA runtime scheduling and

context switching introduce further overhead, preventing

ideal parallel execution among the three cudaStream. If a

fine-grained memory consistency scheme and fine-grained

scheduling API were available to GPUs, e.g., CXL[8], a better

cudaStream scheduling is possible, we leave it for our future

work.

5 Related Work
The application of GNN to circuit-related tasks has been

paid attention to for a long time. Previous efforts addressed

distributed circuit design[35] of resonators in order to re-

place a traditional electromagnetic (EM) simulator. However,

homogenous GNNs present less satisfying capability of in-

terpreting EDA-related design netlists to obtain better ex-

pressiveness and thus the learning performance. Owing to

the status quo, [28] has applied heterogeneous graph neural

networks (HGNNs) with lattice-based graph interpretation

of netlist data to EDA problems. [33] introduces CircuitNet

as an open-source dataset for machine learning in VLSI CAD,

offering improved domain-specific evaluation metrics and

learning strategies, thereby providing a common platform for

evaluating HGNN approaches in circuit analysis. Zhou[36]

et al. proposed an HGNN-based imitation learning approach

for gate sizing acceleration that leverages heterogeneous cir-

cuit representations to predict candidate gates for resizing,

demonstrating significant runtime reductions in iterative

Lagrangian relaxation methods.

6 Conclusion
In this paper, we propose DR-CircuitGNN, a specialized

framework for heterogeneous circuit graphs that integrates

a Dynamic-ReLU mechanism, which efficiently sparsifies

multiple types of node embeddings within heterogeneous

graphs to inject balanced regular sparsity, customized SpMM

kernels accelerating multi-edge message-passing for for-

ward/backward passes, and parallel subgraph scheduling

to accelerate end-to-end HGNN workflow. DR-CircuitGNN

achieves up to 3.51× and 4.09× speedups in forward and

backward propagation, respectively, while delivering up to

2.7× end-to-end training improvements over state-of-the-art

methods, all with minimal accuracy loss on large-scale EDA

benchmarks. These results highlight the effectiveness of dy-

namic embedding sparsification and CPU-GPU concurrency

in addressing the computational demands of next-generation

circuit design automation.
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