
ghZCCL: Advancing GPU-aware Collective
Communications with Homomorphic Compression

Jiajun Huang∗
University of South Florida

Tampa, FL, USA
jiajun.huang.cs@gmail.com

Sheng Di
Argonne National Laboratory

Lemont, IL, USA
sdi1@anl.gov

Yafan Huang
University of Iowa
Iowa City, IA, USA

yafan-huang@uiowa.edu

Zizhong Chen
University of California,

Riverside
Riverside, CA, USA
chen@cs.ucr.edu

Franck Cappello
Argonne National Laboratory

Lemont, IL, USA
cappello@mcs.anl.gov

Yanfei Guo
Argonne National Laboratory

Lemont, IL, USA
yguo@anl.gov

Rajeev Thakur
Argonne National Laboratory

Lemont, IL, USA
thakur@anl.gov

Abstract
In the exascale computing era, collective communication has
emerged as a significant bottleneck for GPU-based applica-
tions, as network bandwidth lags behind rapid GPU advance-
ments. While traditional GPU-aware approaches employ
error-bounded lossy compression to mitigate this issue, they
incur substantial decompression-operation-compression
(DOC) overhead. To overcome these limitations, we intro-
duce ghZCCL, a first-ever GPU-aware homomorphic com-
pression-accelerated collective communications library that
enables direct computation and communication on com-
pressed data, eliminating the DOC workflow. We design the
first GPU homomorphic compressor, surpassing the fastest
existing GPU lossy compressor, cuSZp2, by 3.47–3.89× for
DOC workloads. We also propose co-design strategies to fur-
ther optimize GPU-aware collective communications with
homomorphic compression. Experiments on up to 512
NVIDIA A100 GPUs show that ghZCCL outperforms three
state-of-the-art communication libraries—gZCCL, NCCL, and
Cray MPI—by achieving speedups of up to 2.29×, 5.81×, and
188×, respectively, while maintaining high data accuracy.

CCS Concepts
• Computing methodologies → Distributed computing
methodologies; Parallel computing methodologies; •
General and reference → Performance.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3733642

Keywords
GPU, Collective Communications, Compression

ACM Reference Format:
Jiajun Huang, Sheng Di, Yafan Huang, Zizhong Chen, Franck Cap-
pello, Yanfei Guo, and Rajeev Thakur. 2025. ghZCCL: Advancing
GPU-aware Collective Communications with Homomorphic Com-
pression. In 2025 International Conference on Supercomputing (ICS
’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3721145.3733642

1 Introduction
As network bandwidth struggles to keep pace with the rapid
growth of GPU computing power, the efficiency of collec-
tive communication has become a critical bottleneck for
exascale distributed and parallel GPU applications. This bot-
tleneck is particularly prominent in scientific computing and
deep learning tasks, where extensive data processing and ex-
change are required [1, 2, 4, 5, 16]. For example, the Allreduce
collective communication alone consumes 73.2% of the train-
ing time for the GPT-2-Large model [9]. This inefficiency in
GPU-aware collective communication leads to considerable
resource wastage, including computing power, energy, and
financial costs. Therefore, optimizing GPU-aware collective
communication, particularly for large message sizes, is an
urgent priority [7, 10].

1.1 Motivation for Compression-
Accelerated Collectives

The internode collective communication performance is of-
ten the major bottleneck for the efficiency of collective com-
munications because of the limited network bandwidth.With
the vast amounts of data processed and exchanged in the
large-scale applications, the network is easily saturated,
which significantly limits the efficiency of collective com-
munications and the scalability of these applications. To

https://orcid.org/0000-0001-5092-3987
https://orcid.org/0000-0002-9935-5674
https://orcid.org/0000-0001-7370-6766
https://orcid.org/0000-0003-2578-4940
https://orcid.org/0000-0002-7890-3934
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-5532-3048
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3733642
https://doi.org/10.1145/3721145.3733642

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

facilitate the saturated networks, in the past, researchers pro-
posed different bandwidth-optimized collective algorithms
to decrease the overall collective communication volume [3,
37, 39]. However, these algorithms have already approached
their limits in enhancing the collective performance and
have limited space for further optimization. With the recent
development of GPU-based ultra-fast error-bounded lossy
compression [24, 25, 46], it is now possible to utilize error-
bounded lossy compression to significantly reduce message
sizes and accelerate collective communications while pre-
serving high data quality.

1.2 Limitations of Existing Works and Goal
Recently, researchers have proposed several compression-
accelerated collective communication libraries that achieve
sound speedups over the previous approaches without com-
pression support while maintaining high data accuracy as
shown in Table 1. However, the existing state-of-the-art
communication libraries all demonstrate certain limitations.
The HPE Cray-MPI [17] is a GPU-aware MPI that reaches
high performance in Cray Systems (two out of three US ex-
ascale supercomputers communicate with Cray MPI [41]).
Although its collectives are GPU-aware, they still rely on
intermediate CPU buffers, which leads to suboptimal perfor-
mance [42]. NCCL [12] is another high-performance collec-
tive communications library on systems with NVIDIA GPUs.
It is GPU-centric but lacks compression support, which signif-
icantly limits its collective performance. The state-of-the-art
C-Coll [21, 22] and gZCCL [19] utilize error-bounded lossy
compression to accelerate collective communications on
CPU and GPU clusters, respectively. However, they are sub-
jected to time-consuming Decompression-Operation-Comp-
ression (DOC) workflow, in which each process has to de-
compress the compressed data before applying operations
and then recompress the operated data.

Collective Commu.
Libraries

GPU-centric
Design?

Compression
Support?

Accuracy
Control?

Co-designed
Compression?

Homomorphic
Capability?

Cray-MPI ✗ ✗ — ✗ ✗

NCCL ✓ ✗ — ✗ ✗

C-Coll ✗ ✓ ✓ ✗ ✗

gZCCL ✓ ✓ ✓ ✗ ✗

ghZCCL (our work) ✓ ✓ ✓ ✓ ✓

Table 1: Key designs of state-of-the-art collective communi-
cations libraries. The Homomorphic Capability means that
GPUs can directly operate on compressed data.

An ideal GPU-aware, compression-accelerated collective
communications library should meet the following criteria:
• GPU-centric design that avoids host-device data transfers
and CPU computation overheads.

• Compression support with accuracy control to achieve
performance improvements with high data quality.

• Co-designed compression to maximize both throughput
and compression ratio.

• Direct GPU operations on compressed data during inten-
sive communications, eliminating the need for expensive
DOC workflows.

To propose such an ideal solution, several new challenges
must be addressed:

• Homomorphic compression: How can GPUs compute with
compressed data during communication, removing the
need for costly DOC workflows? Currently, no existing
GPU compressors offer this functionality.

• Performance vs. quality: How can we ensure that a GPU
homomorphic workflow delivers high compression per-
formance without sacrificing quality?

• Co-design with collective communications: How can we
co-design this new compression workflow with collective
communications to achieve the best overall performance
for GPU-centric communication?

1.3 Our solution: ghZCCL
To address the aforementioned limitations of existing works
and new challenges, we propose ghZCCL, which is a GPU-
aware homomorphic compression-accelerated collective
communications library that allows GPUs to directly com-
pute and communicate with compressed data. To the best
of our knowledge, ghZCCL is the first-ever GPU-aware ho-
momorphic compression-communication co-design. To be
specific, there are three key designs in ghZCCL: 1 Novel
workflow: Pioneering GPU homomorphic compression pipeline.
This ultra-fast lossless homomorphic compression pipeline
diminishes the needs for complete decompression and re-
compression while maintaining the same data quality com-
pared with the original DOC workflow, allowing ghZCCL’s
homomorphic compressor—ghZ achieves extreme compres-
sion throughput. 2 Throughput optimization: Fused light-
weight compression kernel. It conducts partial decompres-
sion, operation, and partial recompression with a single
kernel, significantly decreases the kernel launching over-
heads and increases memory access efficiency. 3 Commu-
nication co-design: GPU-centric homomorphic compression-
communication co-design. This GPU-centric co-design sup-
ports different collective computation operations and soundly
improves the collective communication efficiency on modern
GPU clusters. We evaluate ghZCCL with various application
datasets across up-to 512 NVIDIA A100 GPUs and present
some key findings below:

• ghZ achieves 531.91–942.44 GB/s averaged DOC-handling
throughput on NVIDIAA100 GPU that is 3.47–3.89× faster
than the current fastest lossy compressor—cuSZp2.

ghZCCL: Advancing GPU-aware Collective Communications with Homomorphic Compression ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

• ghZ maintains the same high compression quality and
compression ratio compared to the traditional error-bound-
ed lossy compressor across different application datasets.

• ghZCCL significantly outperforms state-of-the-art com-
munication libraries. Specifically, ghZCCL-accelerated Re-
duce delivers up to 1.34×, 3.85×, and 188× performance im-
provements and ghZCCL-accelerated Allreduce achieves
up to 2.29×, 5.81 ×, and 6.01 × speedups compared with
gZCCL, NCCL, and Cray-MPI, respectively.

• The practical use case — image stacking analysis shows
that ghZCCL surpasses gZCCL and reaches 1.91× and
2.34× performance improvements over gZCCL and NCCL
while preserving both statistical and visual accuracies.

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of the background and related
work. Sections 3, 4, and 5 detail our design and optimiza-
tion strategies. Section 6 discusses the evaluation findings.
Finally, Section 7 concludes the paper and outlines directions
for future work.

2 Background and Related Work
In the exascale era, researchers are actively developing high-
speed GPU lossy compressors due to two reasons: (1) error-
bounded lossy compressors can provide a much higher com-
pression ratio than the loss compressors while strictly bound-
ing the compression error between the reconstructed data
and the original data within a user-specified threshold [23,
31, 47]. (2) GPU compressors can provide orders of magni-
tude higher compression throughputs than the CPU com-
pressors because of the tremendous computing power of
modern GPUs. There are many types of GPU lossy compres-
sors [24, 25, 33, 34, 40, 45]. Among them, the cuSZp2 [24]
is considered to be the state-of-the-art error-bounded GPU
compressor that provides significantly higher compression
throughput than other compressors (2× and 200× faster than
pure-GPU and CPU-GPU lossy compressors, respectively)
with a high compression ratio and reconstructed data qual-
ity. However, none of these GPU compressors can apply
operations on compressed data. In contrast, our GPU homo-
morphic compressor, ghZ, performs direct calculations on
compressed data, which provides 3.89× speedup compared
with the traditional decompression-operation-compression
(DOC) workflow of the fastest cuSZp2 GPU compressor.

Error-bounded lossy compression has been demonstrated
to effectively accelerate numerous scientific applications and
AIworkloads, including checkpointing [38], quantum simula-
tions [44], partial differential equation (PDE) simulations [8],
and deep learning [26, 27], all yielding validated applica-
tion results. More recently, researchers have leveraged com-
pression techniques to improve the communication perfor-
mance of high-performance clusters [18–22, 32, 43, 48, 49].

Among these, error-bounded lossy compression-based solu-
tions [19, 21, 22] have gained significant attention for their
ability to precisely control error propagation, as demon-
strated through both theoretical and experimental analyses
in [22]. However, existing compression-accelerated commu-
nication methods, including the state-of-the-art GPU-aware
gZCCL, rely on a traditional DOC workflow, which intro-
duces significant overheads in collective communications.
In contrast, our ghZCCL supports direct computation and
communication on compressed data on GPUs, significantly
improving DOC-handling efficiency and enhancing collec-
tive communication performance, as detailed in Section 6.

1E-1 1E-2 1E-3 1E-4
Relative Error Bounds

0
2
4
6
8

10
12
14
16

Ru
nt

im
e

(s
)

6.79

9.73
12.18

14.32

1.73
3.06 3.99 4.50

2.13 2.41 2.87 3.87

DOC Compression Decompression

Figure 1: Compare the runtime of DOC workflow with a
single compression/decompression.

3 Rethinking GPU Compression: Why
Homomorphic Compression?

GPU compressors have been widely-used in many data-
intensive applications/routines, including the collective com-
putation operations (Reduce_scatter, Allreduce, etc.) we fo-
cus on in this paper. To utilize GPU compressors in real-world
applications, users typically compress the original data to
reduce the storage space, memory footprint and data move-
ment costs [19, 35, 44]. Then, the compressed data need to
be fully decompressed if users need to analyze or conduct
operations on the whole original data. After that, if the data
has been modified, users need to fully recompress the oper-
ated data into compressed format to reduce the storage cost
or accelerate the applications/routines. Thus, this process
is rather time-consuming compared with a single compres-
sion/decompression operation. This scenario is even worse
when users need to compute with two compressed data in-
puts, since we need two decompression operations to de-
compress the two compressed data inputs, one computation
operation to compute with the two decompressed data, and
another compression operation to recompress the operated
data. For instance, in Figure 1, we evaluate the runtime of
the DOC workflow compared with a single compression/de-
compression using the state-of-the-art GPU error-bounded
lossy compressor, cuSZp2.We can notice that DOC consumes

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

DPR+CPT
+CPR
58.8%

MPI
39.9%

OTHER
1.3%

(a) gZCCL (Ring)

DPR+CPT
+CPR
85.6%

MPI
11.6%

OTHER
2.8%

(b) gZCCL (ReDoub)

Figure 2: Performance breakdown of gZCCL’s ring-based and
recursive_doubling-based Allreduce operations.

3–4×more runtime compared with one compression/decom-
pression operation. This finding prompts a question: would
the DOC workflow becomes a major bottleneck for GPU-
aware compression-accelerated collective communications?
In the state-of-the-art gZCCL framework, GPUs need to

decompress the received data before applying operations
and recompress the operated data before send them to other
GPUs. This process is exactly the same as the DOC work-
flow mentioned earlier. To understand the overheads of the
DOC workflow inside of the collective communications, we
breakdown the performance of the gZCCL framework with
both the ring-based and recursive_doubling-based Allreduce
operations. In Figure 2, DPR+CPT+CPR represents the total
time spent on decompression, computation, and compres-
sion, which corresponds to the DOC workflow. MPI stands
for the runtime of MPI communications, while OTHER en-
compasses the time consumed by other operations. We can
observe that the DPR+CPT+CPR dominates the two cases,
with a significant proportion of 58.8% in the ring-based ap-
proach and 85.6% in the recursive_doubling-based approach.
This observation underscores the limitations of the tradi-
tional DOC workflow in enhancing the overall performance
of collective communications.

Design Takeaway 1: The DOC workflow is the main
bottleneck in GPU-aware compression-accelerated collec-
tive communications. To resolve this, we need a high-
throughput GPU homomorphic compression kernel that
efficiently processes the DOC workflow.

4 ghZCCL: High-level Overview
We propose ghZCCL, a pioneering GPU-aware homomor-
phic compression-accelerated collective communications li-
brary that allows GPUs to directly compute and communi-
cate with compressed data. There are two key components
of ghZCCL: (1) a lightning-fast single-kernel GPU homo-
morphic compressor—ghZ. (2) a GPU-aware homomorphic
compression-communication co-design. In this section, we
present the high-level overview of ghZ and the co-design.

4.1 ghZ Overview
Figure 3 shows the high-level overview of the ghZ workflow
when compared with the traditional DOC workflow of the
state-of-the-art cuSZp2. In the traditional DOC workflow,
the GPU first initiates a GPU decompression kernel to de-
compress the compressed byte array into a float array. This
decompression process started with a Global Synchroniza-
tion (1) that retrieves the index of each compressed block
within the compressed byte array. Then the Lossless Decod-
ing (2) decodes the byte array to an integer array. After that,
the Lossless Transform (3) converts the integer array to a
decompressed float array. The GPU needs to repeat steps
1 – 3 to decompress another compressed byte array. Later,
the two decompressed float arrays are combined together
through a GPU Computation Kernel (4). Next, the operated
float array is compressed by the GPU compression kernel
into the compressed format. The compression kernel starts
with a Error-bounded Transform (5) that converts the float
array into integer array. Then, the Global Synchronization
(1) obtains the index of compressed blocks and the Lossless
Encoding (6) transforms the Int array into the compressed
bytes. In total, the DOC workflow consists of four kernel
launching and ten individual processing stages.

Compressed
byte array 1

Compressed
byte array 2

Int
array 1

Int
array 2

Float
array 1

Float
array 2

Float
array 1

Float
array 2

Operated
float array

Int
array 3

Compressed
byte array 3

GPU Decompression 2

T
ra

d
it

io
n

a
l
D

O
C

 W
o

rk
fl

o
w

O
u

r
S

in
g

le
-k

e
rn

e
l

G
P

U
 H

o
m

o
m

o
rp

h
ic

C

o
m

p
re

s
s

io
n

Compressed
byte array 1

Compressed
byte array 2

Operated
int array

Compressed
byte array 3

1

1

2

2

3

3

5 1 6

1 2 3 4

Global
Synchronization

Lossless
Decoding

Lossless
Transform

Data Stream

GPU Computation
Kernel

Error-bounded
Transform

Lossless Encoding Fused Global
Synchronization Fused Lossless

Decoding &
Computation

GPU Decompression 1

4

Operation GPU Compression

1 2

3 4 5

1

Resynchronization3

6

Lossless Encoding4

2

Figure 3: High-level overview of ghZ when compared with
the traditional DOC workflow.

In contrast, our ghZ features a single-kernel extreme-
throughput homomorphic compression workflow that is able
to directly operate with compressed data inputs with only
four processing stages. First, the two compressed byte arrays

ghZCCL: Advancing GPU-aware Collective Communications with Homomorphic Compression ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

undergo a Fused Global Synchronization (1), which re-
trieves offsets of the two groups of compressed data blocks
with a fused device-level parallel prefix-sum. Then, based
on the two sets of indexes obtained, ghZ decode the two
compressed byte arrays using a Fused Lossless Decoding
& Computation (2) that transforms and combines the byte
arrays into a single operated integer array. Then, the GPU
threads synchronize with each other in a Resynchroniza-
tion (3) to obtain the new compressed bytes offsets. Finally,
the integer array is encoded into a compressed byte array
through a Lossless Encoding (4).

Design Takeaway 2: The GPU homomorphic compres-
sion workflow of ghZ surpasses the DOC workflow of
cuSZp2. By cutting kernel launches from four to one and
processing stages from ten to four, it significantly boosts
DOC-handling latency and throughput.

4.2 ghZCCL Co-design Overview
As shown in Figure 4, we present a high-level overview of
our compression-communication co-design. To fully exploit
the unique benefits of GPU homomorphic compression in
collective communications, we propose a GPU-centric homo-
morphic compression-accelerated collective communication
framework specifically designed for computation-intensive
collective operations. First, we develop Co-designed Al-
gorithms (5) to improve performance and GPU utiliza-
tion across diverse input data sizes and GPU counts for
GPU-aware homomorphic compression-accelerated collec-
tive communications. These algorithms outperform the
gZCCL’s collective algorithms that rely on the traditional
DOC workflow. Next, we further enhance the efficiency
of these algorithms with a co-designed In-place ghZ (6),
which effectively minimizes GPU memory usage and data
copying overhead. Additional key optimizations includeAda-
ptive Vectorized Memory Access (7), which allow both
ghZ and cuSZp2 to adaptively access GPU main memory in
a vectorized manner during intensive collective communica-
tions, andMulti-streamCompression (8), which overlaps
compression kernels to significantly reduce runtime.

5 ghZCCL: Key Designs
In this section, we present the eight key designs of ghZCCL.
For clarity, the step numbers (e.g., 1) in the text continue to
refer to Figures 3 and 4.

5.1 ghZ: Design Details
We now explore the design of ghZ in detail. The components
1 – 4 correspond to those labeled 1 – 4 in Figure 3.

GPU 1 GPU 2 …… GPU
2
N

GPU N……

GPU-aware Homomorphic Compression-accelerated
Collectives (ghZCCL Co-design)

Fundamental Optimization Further Optimizations

Co-designed Algorithms

Data
Sizes

GPU
Counts …

In-place ghZ

Adaptive Vectorized Mem. Access

Multi-stream Compression

5 6

7

8

Communicate with

Figure 4: High-level overview of ghZCCL.

5.1.1 Fused Global Synchronization 1 . To directly operate
on compressed data inputs, the first step is to retrieve the
offsets for each compressed data block through a fused syn-
chronization strategy, enabling further processing. To better
introduce this synchronization approach, we first explain
the high-level compression workflow. The original data is di-
vided into small blocks (e.g., 32 floating-point data points per
block), with each thread compressing a single block per itera-
tion. To ensure memory coalescing, threads within the same
warp process neighboring blocks. This cycle repeats 32 times,
resulting in each warp compressing a total of 32 × 32 = 1024
blocks. Since compressed data blocks may have varying sizes,
the exact locations of each block within the compressed data
cannot be predetermined. Consequently, threads must syn-
chronize to communicate and calculate offset information.

In our ghZ, we employ a Fused Global Synchronization to
determine the specific locations of compressed blocks, elimi-
nating the need for independent synchronizations for each
input, as required in the DOC workflow. First, each GPU
thread calculates the total compressed data offsets for two
sets of 32 data blocks using fixed-rate information, which
specifies the number of bits used to encode each data point
within a block. After determining the thread-level offsets, an
inclusive warp-level prefix sum is applied to calculate the two
total compressed data sizes for a warp of the compressed
byte arrays. This step is optimized using __shfl_up_sync,
enabling efficient in-warp communication. Subsequently,
the last thread of each warp writes the total compressed
data sizes to temporary global memory buffers. An exclusive
global-level prefix sum is then performed to compute the
global compressed data offsets for each warp in the byte ar-
rays. This process utilizes the decoupled look-back technique
described in [13, 24]. By employing Fused Global Synchro-
nization, we significantly reduce synchronization latency
compared to the DOCworkflow, enhancing overall efficiency.

5.1.2 Fused Lossless Decoding & Computation 2 . In ghZ,
we introduce a Fused Lossless Decoding & Computation
approach to partially decode compressed byte arrays and
perform calculations directly on integer data. In contrast, the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

traditional DOC workflow requires fully decompressing the
compressed data into floating-point arrays and launching an
additional GPU kernel to process the two floating-point data
inputs, as illustrated in 3. For each data block, the GPU thread
first performs warp-level communication to determine the
compressed byte offsets of the two compressed data blocks.
This is achieved using the previously obtained fixed-rate
information and the __shfl_up_sync primitive. If both fixed
rates are zero, the two blocks are skipped to save processing
time. If at least one block has a non-zero fixed rate, ghZ
retrieves the sign flags (e.g., 32 sign bits per block) for the
two compressed data blocks in a vectorized manner.
Next, for each compressed block, ghZ’s bit-shuffle-based

fixed-length decoder partially decompresses the correspond-
ing compressed bytes into two 32-element integer arrays.
It then directly computes using the integer arrays to gener-
ate a new sign-bit array, an operated integer array, and an
updated fixed rate, all within a single loop optimized with
loop unrolling. The fixed-rate information is subsequently
stored in the operated compressed data, and __shfl_sync is
employed to update the compressed data offsets across differ-
ent iterations of data blocks. This Fused Lossless Decoding &
Computation method delivers significantly higher through-
put compared to the DOC workflow, which always requires
fully decompressing the two compressed data arrays and
operating on floating-point data.

5.1.3 Resynchronization and Lossless Encoding 3 & 4 . Af-
ter obtaining the operated integer array, ghZ performs a
Resynchronization step to determine the compressed byte
offsets of the newly compressed operated data blocks and
applies a lossless encoding to encode the integer blocks into
compressed bytes. This process is significantly more light-
weight compared to the full recompression required by the
traditional DOC workflow, as shown in Figure 3. The Resyn-
chronization process involves a warp-level synchronization
followed by a global-level synchronization, akin to the Fused
Global Synchronization in ghZ. During the Lossless Encod-
ing phase, the previously obtained fixed-rate information
for each block is utilized to store only the fixed number of
bits required for each element in the block (e.g., 4 bits per
element). This approach significantly reduces storage space
compared to storing the full 32 bits for each element.

Design Takeaway 3: The lightweight design of ghZ op-
timizes memory access and reduces computational costs,
significantly outperforming the traditional DOC work-
flow in compression efficiency.

5.2 ghZCCL: Co-design Details
In this section, we delve into the co-design details of ghZCCL,
with components 5 – 8 corresponding to those in Figure 4.

5.2.1 GPU-aware homomorphic compression-accelerated col-
lective algorithms 5 . To effectively leverage homomorphic
compression in GPU-aware collective communications, the
foundational step is to co-design the collective communica-
tion algorithms. The state-of-the-art GPU-aware compres-
sion-accelerated collective framework, gZCCL [19], was spe-
cifically designed for the DOC workflow and is not compati-
ble with homomorphic compression. To address this limita-
tion, we propose different co-designed algorithms (e.g., ring-
based and recursive_doubling-based Allreduce) to optimize
collective performance across varying data sizes and GPU
counts. In this subsection, we use the recursive_doubling-
based Allreduce as an exemplar, and the same methodology
can be easily applied to other algorithms.

While the ring-based Allreduce is widely employed for pro-
cessing large messages in leading collective communication
libraries such asMPICH [30] and NCCL [12], it can encounter
GPU underutilization when the GPU count is large. This in-
efficiency arises because each GPU processes only 𝐷/𝑁 data
per compression task, where 𝐷 is the input data size and
𝑁 is the number of GPUs [19]. To address this scalability
challenge, we propose the GPU Homomorphic Compression-
Accelerated Recursive_Doubling-Based Allreduce Algorithm.
In Figure 5, we compare the high-level design of ghZCCL
with gZCCL in the recursive_doubling-based Allreduce algo-
rithm for four GPUs. In gZCCL, each GPU first compresses
its original data and sends the compressed data to the target
GPU. Upon receiving the data, the target GPU decompresses
it to reconstruct the original data, then launches a reduction
kernel to operate on the two original data inputs. After ob-
taining the reduced result, the data is recompressed into a
compressed format using another compression kernel. This
DOC workflow repeats log𝑁 − 1 times, where 𝑁 is the num-
ber of GPUs. In the final round, the last received data is
decompressed and combined with the previously reduced
output. This round does not involve recompression since it
produces the final reduced output. If the compression cost
of the original data is 𝐶𝑃𝑅, the decompression cost is 𝐷𝑃𝑅,
and the operation cost is 𝑂𝑃𝑅, the total computational cost
in gZCCL’s recursive_doubling-based Allreduce algorithm
is: 𝑇𝐴𝑅

𝑔𝑍𝐶𝐶𝐿
= log𝑁 × (𝐷𝑃𝑅 +𝑂𝑃𝑅 +𝐶𝑃𝑅).

In contrast, our ghZCCL co-design, built around our GPU
homomorphic compressor—ghZ—eliminates the costly DOC
workflow used by gZCCL. In ghZCCL, each GPU first con-
currently compresses its original data, then exchanges the
compressed data with other GPUs. Following the communi-
cation step, each GPU directly operates on the compressed
data using our GPU homomorphic compressor, bypassing
the need to decompress it. The resulting newly operated
compressed data is then transmitted among GPUs. This com-
munication and homomorphic compression process repeats

ghZCCL: Advancing GPU-aware Collective Communications with Homomorphic Compression ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

for log𝑁 − 1 rounds. After the intensive communications,
during the final round, the last received compressed data is
directly computed with the previously reduced compressed
output using the GPU homomorphic compressor. Finally,
the reduced compressed data is decompressed to retrieve
the original reduced output, completing the algorithm. The
total cost of this algorithm is: 𝑇𝐴𝑅

𝐺𝐻𝐶𝐿
= 𝐶𝑃𝑅 + (log𝑁 − 1) ×

𝐻𝑃𝑅 +𝐻𝑃𝑅 +𝐷𝑃𝑅 = 𝐶𝑃𝑅 + log𝑁 ×𝐻𝑃𝑅 +𝐷𝑃𝑅, where𝐻𝑃𝑅

represents the homomorphic processing cost. The cost dif-
ference between gZCCL and ghZCCL is: 𝑇𝐴𝑅

𝑔𝑍𝐶𝐶𝐿
−𝑇𝐴𝑅

𝐺𝐻𝐶𝐿
=

log𝑁 (𝐷𝑃𝑅 + 𝑂𝑃𝑅 + 𝐶𝑃𝑅 − 𝐻𝑃𝑅) − 𝐶𝑃𝑅 − 𝐷𝑃𝑅. Since the
traditional DOC cost (𝐷𝑃𝑅 + 𝑂𝑃𝑅 + 𝐶𝑃𝑅) is significantly
higher than 𝐻𝑃𝑅, we conclude that ghZCCL achieves much
higher collective performance than gZCCL.

AGPU 1

GPU 2

GPU 3

GPU 4

CPR

CPR

CPR

CPR

DPR

DPR

DPR

DPR

B

C

D

+A+B C+D

+A+B C+D

+A+B C+D

+A+B C+D

CPR

CPR

CPR

CPR

DPR

DPR

DPR

DPR

+A B

+A B

+C D

+C D

B

A

D

CDz

Cz

Bz

Az

A+B

A+B

C+D

C+D

C+D

C+D

A+B

A+B(C+D)z

(C+D)z

(A+B)z

Operation

Operation

Operation

Operation

DOC

(A+B)z

gZCCL
Operation

Operation

Operation

Operation

Stage 1 Stage 2

AGPU 1

GPU 2

GPU 3

GPU 4

CPR

CPR

CPR

CPR

B

C

D

+Az+Bz Cz+Dz DPR

DPR

DPR

DPR

+Az Bz

+Az Bz

+Cz Dz

+Cz Dz

Dz

Cz

Bz

Az

Homomorphic
Compression

ghZCCL

Stage 1 Stage 2

Homomorphic
Compression

Homomorphic
Compression

Homomorphic
Compression

+Az+Bz Cz+Dz

+Az+Bz Cz+Dz

+Az+Bz Cz+Dz

Az+Bz

Az+Bz

Cz+Dz

Cz+Dz

Legend

Homomorphic
Compression

Homomorphic
Compression

Homomorphic
Compression

Homomorphic
Compression

+

+

Data

Kernels

Data Flow

Communication

Normal
Operation
Hormorphic
Compression

Figure 5: Compare the high-level design of ghZCCL with
gZCCL in the recursive_doubling-based Allreduce algorithm.
This example uses four GPUs/processes.

5.2.2 In-place ghZ and Adaptive Vectorized Memory Access
6 & 7 . In this section, we detail the designs of the In-place
ghZ and Adaptive Vectorized Memory Access, both specifi-
cally co-designed to meet the needs of GPU-aware collective
communications. Initially, the ghZ processes two compressed
byte arrays as inputs and directly operates on them to pro-
duce an operated compressed byte array, which is stored in
an additional GPU buffer. While this design already outper-
forms the DOCworkflow, it leads to suboptimal performance
and memory management in collective communication sce-
narios, particularly on GPUs where memory resources are
constrained. In ghZCCL, after a GPU receives compressed
data from another GPU, the data is stored in a temporary
GPU buffer called tmp_buf. This buffer, along with another

input buffer outputBytes (which stores the previously re-
duced compressed data), is fed into the GPU homomorphic
compression kernel. With the original ghZ, an additional
GPU buffer would be required to store the newly operated
compressed output. Subsequently, the data would need to be
copied back to outputBytes for either local storage or further
communication. This process increases both the memory
footprint and runtime. To address this inefficiency, we co-
designed an in-place ghZ, capable of directly writing the
homomorphically compressed data into one of the input
GPU buffers during the compression process. This approach
reduces memory usage and improves runtime efficiency, en-
hancing performance for GPU-aware collectives.

We also propose the Adaptive Vectorized Memory Access
to enable the vectorized memory access capability for com-
pression tasks (including both normal compression and ho-
momorphic compression) during collective communications
to better exploit the GPU global memory bandwidth. In the
collective communication scenario, it is common to divide
input data into smaller data chunks for data communications.
For example, the ring-based Reduce_scatter divides the in-
put data of size 𝐷 into 𝑁 chunks, where 𝑁 is the number
of processes/GPUs. Then, each chunk will be compressed
and communicated during the intensive communications.
However, this can possibly result in the misaligned memory
access issue if using vectorized memory access during the
compression tasks because the start index for each chunk in
the GPU receive buffer may not be a multiple of 4. Figure 6
illustrates the workflow of Adaptive Vectorized Memory Ac-
cess during the normal compression process. Prior to the
compression task, the data undergoes a three-step prepro-
cessing procedure to prepare it for efficient handling from
GPU global memory: (1) The starting address and length of
the data chunk designated for compression and communica-
tion are analyzed to determine its suitability for vectorized
processing. (2) If the data chunk is not vectorizable, the re-
mainders at the starting and ending locations of the chunk
are identified and retrieved to facilitate scalar operations. (3)
If the data chunk is vectorizable, this step is bypassed, and
the data is directly accessed and processed in a vectorized
manner before proceeding to cuSZp compression. During
the homomorphic compression process, these three steps
are executed in the same sequence before the Fused Lossless
Decoding & Computation phase and after the Lossless En-
coding phase. Figure 7 presents a running example of a data
chunk processed using the proposed Adaptive Vectorized
Memory Access technique with the normal compression pro-
cess. The original application data is stored in a 1D layout
within computer systems. When processed by our technique,
any remainders at the boundaries of the data chunk are iden-
tified and handled through scalar operations. This ensures

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

Checking
Memory
Access

Remainder
Processing

Vectorized
Processing

Normal
Compression

Vectorizable

Non-Vectorizable

Figure 6: The Adaptive Vectorized Memory Access workflow
in normal compression.

that the remaining data points are fully vectorized, enabling
ultra-fast processing speeds.

Application Data

Whole 1D Array in GPU Memory

Target Chunk for
Communication

Vector Op.

Scalar Op.

Figure 7: A running example of Adaptive Vectorized Memory
Access in normal compression.

5.2.3 Multi-stream Compression 8 . In the ring-based Re-
duce_scatter algorithm,we utilize our developedmulti-stream
compression to overlap compression kernels with each other,
improving GPU utilization in our co-designed algorithm.
In the original ring-based Reduce_scatter algorithm within
gZCCL, each GPU compresses a single chunk of data, sends
it to the next GPU, receives compressed data from the previ-
ous GPU, performs a DOC workflow on the received data,
and sends the updated data to the next GPU. This process
repeats for 𝑁 − 1 rounds, where 𝑁 is the number of GPUs.
Consequently, the total computational cost can be expressed
as:𝑇𝑅𝑆

𝑔𝑍𝐶𝐶𝐿
= (𝑁 −1)× (𝐷𝑃𝑅+𝑂𝑃𝑅+𝐶𝑃𝑅), where𝐷𝑃𝑅,𝑂𝑃𝑅,

and𝐶𝑃𝑅 are the runtimes for decompression, operation, and
compression of a single data chunk of size 𝐷/𝑁 , where 𝐷 is
the input data size.
By comparison, our ghZCCL co-design compresses all

small chunks of the original data at the very beginning, prior
to intensive communications. Subsequently, all GPUs engage
in a ring-like communication pattern, directly transmitting
and operating on compressed data chunks. Thus, we have
the opportunity to overlap the compression kernels using
our developed multi-stream compression. Since compressing
a single chunk often leads to underutilized GPU device, over-
lapping compression tasks further enhances performance,
complementing the improvements achieved through homo-
morphic compression. As a result, the total cost for our
ghZCCL can be expressed as:𝑇𝑅𝑆

𝐺𝐻𝐶𝐿
= (𝑁 −1)×𝐻𝑃𝑅+𝐷𝑃𝑅+

𝐶𝑃𝑅𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ≈ (𝑁 −1) ×𝐻𝑃𝑅+𝐷𝑃𝑅+𝐶𝑃𝑅, where𝐻𝑃𝑅 repre-
sents the homomorphic processing runtime, and 𝐶𝑃𝑅𝑂𝑣𝑒𝑟𝑙𝑎𝑝

reflects the reduced compression cost due to overlapping. Ac-
cordingly, the time difference between gZCCL and ghZCCL
is:𝑇𝑅𝑆

𝑔𝑍𝐶𝐶𝐿
−𝑇𝑅𝑆

𝐺𝐻𝐶𝐿
= (𝑁 − 1) × (𝐷𝑃𝑅 +𝑂𝑃𝑅 +𝐶𝑃𝑅 −𝐻𝑃𝑅) −

𝐷𝑃𝑅 −𝐶𝑃𝑅 = (𝑁 − 1) × (𝐷𝑂𝐶 −𝐻𝑃𝑅) −𝐷𝑃𝑅 −𝐶𝑃𝑅. Since
the 𝐷𝑂𝐶 cost is considerably higher than 𝐻𝑃𝑅, the relative
performance of ghZCCL improves as the number of GPUs

(𝑁) increases. A larger GPU count further amplifies the per-
formance advantage of ghZCCL over the SOTA gZCCL.

Design Takeaway 4: The co-design and optimizations
of ghZCCL enhance the efficiency and scalability of GPU-
based collective communications, outperforming gZCCL,
which relies on the DOC workflow.

6 Experimental Evaluation
The following sections discuss the evaluation results.

6.1 Experimental Setup
We evaluate on a GPU supercomputer with 512 NVIDIAA100
80G GPUs (128 nodes, 4 GPUs each). Nodes are connected
with HPE Slingshot 11 (200 Gbps). The default compression
error bound is 1E-4, unless stated otherwise.
Seven real-world scientific applications from diverse do-

mains are evaluated, as summarized in Table 2. These include
two different RTM application datasets generated under dis-
tinct simulation settings of the 3D SEG/EAGE Overthrust
model [28], and the CESM-ATM application dataset derived
from the atmospheric model of the CESM climate simulation
package [11]. The Nyx application dataset is produced from
a cosmological hydrodynamics simulation using adaptive
mesh [36], while the JetIn application dataset represents the
Q-criterion of a jet in crossflow, created through direct nu-
merical simulation [14]. The SynTruss application dataset
simulates a CT scan of an 8x8x8 octet truss with five defects
on its front side [29], and the HCCI application dataset cap-
tures the first timestep of a direct numerical simulation of
autoignition in stratified dimethyl-ether/air turbulent mix-
tures [6]. These application datasets span a wide range of
scientific challenges and computational domains, ensuring
comprehensive evaluation.

Simulation Setting 1: Seismic Wave Application
151 fields dim: 512𝑥 × 512𝑦 × 512𝑧 total: 95.3 GB

Simulation Setting 2: Seismic Wave Application
3 fields dim: 1008𝑥 × 1008𝑦 × 352𝑧 total: 4.0 GB

CESM-ATM: Climate Simulation
33 fields dim: 26𝑥 × 1800𝑦 × 3600𝑧 total: 20.7 GB

Nyx: Cosmological Hydrodynamics Simulation
6 fields dim: 512𝑥 × 512𝑦 × 512𝑧 total: 3.1 GB

JetIn: Computational Fluid Dynamics
1 fields dim: 1408𝑥 × 1080𝑦 × 1100𝑧 total: 6.2 GB

SynTruss: Computed Tomography Scan
1 fields dim: 1200𝑥 × 1200𝑦 × 1200𝑧 total: 6.4 GB

HCCI: Computational Fluid Dynamics
1 fields dim: 560𝑥 × 560𝑦 × 560𝑧 total: 669 MB

Table 2: Information of evaluated application datasets.

We also summarize all the compression and collective
communication solutions evaluated in Table 3.

ghZCCL: Advancing GPU-aware Collective Communications with Homomorphic Compression ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

cuSZp2: The fastest GPU error-bounded lossy compressor [24]
ghZ: The proposed first-ever GPU homomorphic compressor

Cray MPI: The state-of-the-art MPI library used in 2 of 3
Exascale supercomputers in the world [17, 41]
NCCL: The fastest collective communications library for
NVIDIA GPUs [12]
gZCCL: The state-of-the-art compression-accelerated collective
communications library for GPUs [19]
ghZCCL: The proposed first-ever GPU-aware homomorphic
compression-accelerated collective communications library

Table 3: Information of evaluated compression and collective
communication solutions. We highlight our solutions and
baselines with blue and red colors, respectively.

6.2 Evaluating GPU Homomorphic
Compressor–ghZ

In this section, we conduct a comprehensive evaluation of our
ghZ, focusing on DOC-handling throughput, compression
ratio, and compression quality.

6.2.1 DOC-handling throughput of ghZ. In Figure 8, we eval-
uate the DOC-handling throughput of ghZ compared to the
DOC workflow using the fastest error-bounded lossy com-
pressor, cuSZp2. Across all application datasets, ghZ consis-
tently outperforms cuSZp2, regardless of the relative error
bounds. On average, ghZ achieves DOC-handling through-
puts ranging from 531.91 to 942.44 GB/s, while cuSZp2 achie-
ves compression throughputs between 153.32 and 252.24
GB/s, making it 3.47–3.89× slower than ghZ.
Notably, ghZ demonstrates its highest throughput with

the JetIn application dataset, reaching 1323.40 GB/s with a
1E-1 error bound and 1056.89 GB/s with a 1E-4 error bound.
These values far exceed the 302.45 GB/s and 294.52 GB/s
achieved by cuSZp2, corresponding to speedups of 4.38×
and 3.59×, respectively. This superior performance can be
attributed to the high sparsity of the JetIn, which consists
of many zero data blocks (i.e., blocks containing only zero
values). In ghZ, these zero blocks are skipped by directly
setting the lossless decoded integer values to zero, avoiding
unnecessary retrievals from the compressed data inputs. This
adaptive homomorphic compression strategy further boosts
the speed of ghZ.

Additionally, we observe that both ghZ and cuSZp2 expe-
rience lower compression throughputs as the error bound
decreases. This is because smaller error boundsmake the data
harder to compress, increasing computational and memory
access costs, which in turn reduces performance. However,
even with a 1E-4 error bound, ghZ maintains a significantly
higher throughput than cuSZp2 with a 1E-1 error bound
when processing the same application dataset. For example,
when processing the NYX application dataset, ghZ achieves
a throughput of 382.64 GB/s with a 1E-4 error bound, while

cuSZp2 reaches only 238.10 GB/s with a far less restrictive
1E-1 error bound. This highlights that our ghZ can effectively
tackle considerably more challenging compression scenarios
while achieving higher compression performance compared
to cuSZp2, even when cuSZp2 operates under much simpler
compression conditions. This advantage greatly expands the
potential use cases of ghZ in DOC and similar workflows.

6.2.2 Compression ratio and quality of ghZ. In Table 4, we
evaluate the compression ratio and quality of ghZ across a
range of application datasets. Since ghZ operates losslessly,
any compression accuracy loss stems solely from the already
lossyly compressed data inputs. Consequently, the compres-
sion ratio and quality of ghZ are identical to those of the
traditional DOC workflow with cuSZp2, as confirmed by our
comprehensive experiments. Thus, we only report values of
ghZ in Table 4. This demonstrates that ghZ maintains the
same compression ratio and quality as the traditional DOC
workflow while significantly outperforming it in compres-
sion performance, as shown in 6.2.1.
The evaluation results reveal that ghZ exhibits varying

compression ratios across different application datasets and
relative error bounds. For a 1E-1 error bound, the average
compression ratio ranges from 35.28 to 127.94 across datasets.
For a more restrictive 1E-4 relative error bound, the average
compression ratio ranges from 3.81 to 77.44. This trend indi-
cates that smaller error bounds result in lower compression
ratios because more data features must be preserved, making
the data harder to compress.
Regarding compression quality, ghZ achieves excellent

results across all application datasets. For example, in the
JetIn dataset, the Peak Signal-to-Noise Ratio (PSNR) ranges
from 66.58 to 101.61 for error bounds between 1E-1 and 1E-4,
indicating high-quality compression. Additionally, smaller
error bounds lead to higher compression quality because
more data features are preserved. These findings confirm that
ghZ delivers high compression throughput and impressive
compression ratios without sacrificing data accuracy.

Evaluation Takeaway 1: On average, cuSZp2 achieves
153.32–252.24 GB/s, while ghZ reaches 531.91–942.44
GB/s, delivering a 3.47–3.89× speedup without compro-
mising compression ratio or accuracy, due to its lossless
homomorphic compression design.

6.3 Comparing ghZCCL with SOTA
Collective Communications Libraries

After demonstrating the high compression performance of
ghZCCL’s ghZ, we now evaluate the performance of ghZCCL-
accelerated collective communications on 64 NVIDIA A100

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

238

382

4.38X

1323

1056

3.74X

942

531

Figure 8: DOC handling throughput of ghZ when comparing with cuSZp2.

REL Sim. Set. 1 Sim. Set. 2 CESM-ATM NYX JetIn SynTruss HCCI
Compression Ratio (Original Data Size / Compressed Data Size)

1E-1 avg: 115.32 avg: 103.94 avg: 77.74 avg: 93.14 avg: 127.94 avg: 35.28 avg: 90.78
(95.90∼127.98) (92.18∼119.28) (5.12∼122.81) (32.61∼127.99) (127.94∼127.94) (35.28∼35.28) (90.78∼90.78)

1E-2 avg: 100.02 avg: 51.84 avg: 26.10 avg: 64.18 avg: 125.49 avg: 10.08 avg: 47.04
(58.18∼127.98) (21.63∼95.45) (3.46∼59.09) (7.46∼127.72) (125.49∼125.49) (10.08∼10.08) (47.04∼47.04)

1E-3 avg: 86.69 avg: 34.26 avg: 12.04 avg: 35.21 avg: 117.16 avg: 5.50 avg: 22.29
(33.72∼127.98) (8.75∼75.80) (2.55∼33.52) (4.39∼124.54) (117.16∼117.16) (5.50∼5.50) (22.29∼22.29)

1E-4 avg: 77.44 avg: 25.83 avg: 7.19 avg: 19.48 avg: 100.31 avg: 3.81 avg: 7.64
(22.53∼127.96) (5.25∼60.87) (1.98∼21.87) (3.03∼88.90) (100.31∼100.31) (3.81∼3.81) (7.64∼7.64)

Compression Quality (PSNR)

1E-1 avg: 52.51 avg: 41.09 avg: 33.00 avg: 46.60 avg: 66.58 avg: 31.96 avg: 39.38
(39.42∼91.91) 37.08∼46.46 (24.83∼41.64) (24.82∼79.90) (66.58∼66.58) (31.96∼31.96) (39.38∼39.38)

1E-2 avg: 69.36 avg: 54.00 avg: 48.49 avg: 57.77 avg: 73.93 avg: 46.57 avg: 54.62
(55.71∼110.55) 48.34∼61.46 (44.60∼54.24) (44.73∼86.75) (73.93∼73.93) (46.57∼46.57) (54.62∼54.62)

1E-3 avg: 87.16 avg: 72.15 avg: 67.30 avg: 71.65 avg: 87.13 avg: 65.92 avg: 67.98
(73.32∼125.46) (66.12∼80.39) (64.60∼73.17) (63.89∼92.98) (87.13∼87.13) (65.92∼65.92) (67.98∼67.98)

1E-4 avg: 106.27 avg: 91.86 avg: 86.75 avg: 87.52 avg: 101.61 avg: 85.92 avg: 84.45
(92.78∼142.67) (85.83∼100.15) (84.73∼92.31) (84.77∼98.25) (101.61∼101.61) (85.92∼85.92) (84.45∼84.45)

Table 4: Compression ratio and quality of ghZ: each cell is formatted as “avg: value (min∼max)”.

GPUs. We compare our approach against three state-of-the-
art baselines: (1) the MPI collectives offered by Cray-MPI[17],
(2) the collective communications from NCCL [12], and (3)
the compression-accelerated collectives from gZCCL[19], as
summarized in Table 3.

28

109

188

1

Figure 9: Performance evaluation of ghZCCL-accelerated
Reduce against SOTA baselines in different data sizes.

6.3.1 Reduce. In Figure 9, we evaluate ghZCCL against mul-
tiple baselines using the Reduce operation, with speedups
measured relative to CrayMPI. The results show that ghZCCL
consistently outperforms all counterparts across all data sizes.
Compared to the second-best solution, gZCCL, ghZCCL
achieves a 1.34× speedup at 600MB. This improvement stems
from ghZCCL’s ability to significantly reduce DOC-related
overheads by co-designing GPU homomorphic compression
with collective communications. Furthermore, ghZCCL is
up to 3.85× and 188× faster than NCCL and Cray MPI, re-
spectively. The substantial performance gain over NCCL is
attributed to ghZCCL’s ability to reduce overall communi-
cation volume and mitigate network congestion through its
ultra-fast homomorphic compression. The improvement is
even more pronounced compared to Cray MPI, as its Reduce
operation is not fully GPU-centric, leading to significant
device-host data transfer and CPU computation overheads.

ghZCCL: Advancing GPU-aware Collective Communications with Homomorphic Compression ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

6.3.2 Allreduce. Figure 10 presents a performance compar-
ison between ghZCCL and other state-of-the-art commu-
nication libraries using the Allreduce collective operation.
Similar to the observations in Section 6.3.1, ghZCCL con-
sistently outperforms all baselines, achieving up to 8.55×
performance improvement over Cray MPI. When compared
to NCCL, ghZCCL achieves a 3.21× speedup, primarily due to
its significantly improved communication efficiency enabled
by lightweight homomorphic compression, which reduces
the amount of data transmitted. In contrast, NCCL lacks
this capability and must communicate with uncompressed
data. Among all the solutions, gZCCL delivers the second-
best performance; however, it still underperforms ghZCCL
by up to 2.19×. This performance gap arises from gZCCL’s
substantial decompression and recompression overheads,
whereas ghZCCL directly operates on compressed data with-
out decompression. Additionally, we observe that Cray MPI
exhibits relatively better performance in Allreduce compared
to its performance in Reduce (Section 6.3.1). This is because
Cray MPI is specifically optimized to make Allreduce GPU-
centric, as it is the most widely used collective operation.

8.55

3.21X

Figure 10: Performance evaluation of ghZCCL-accelerated
Allreduce against SOTA baselines in different data sizes.

6.4 Evaluating the Scalability of ghZCCL
To further evaluate the performance of ghZCCL, Figure 11 an-
alyzes its scalability on 512 NVIDIA A100 GPUs. The results
demonstrate that ghZCCLmaintains strong scalability across
varying GPU counts, significantly outperforming baseline
solutions. In Subfigure 11a, ghZCCL achieves up to 183×
speedup over Cray MPI and 5.81× over NCCL. Addition-
ally, it outperforms gZCCL by up to 1.34×, exhibiting better
scalability than the previously best compression-accelerated
communication solution. A similar trend is observed in Sub-
figure 11b, where ghZCCL surpasses gZCCL by 2.29× on
512 GPUs. Moreover, ghZCCL achieves even greater perfor-
mance improvements over Cray MPI and NCCL, with up to
5.96× and 4.88× speedups, respectively. This superior perfor-
mance is attributed to ghZCCL’s ability to directly operate on

and communicate with compressed data, effectively reduc-
ing communication overhead and optimizing compression
to improve overall runtime efficiency.

183

5.81X

(a) Reduce

4.88X 5.96

(b) Allreduce

Figure 11: Scalability evaluation of ghZCCL against SOTA
baselines in different GPU counts.

Evaluation Takeaway 2: Evaluated on up to 512 NVIDIA
A100 GPUs, ghZCCL significantly outperforms state-of-
the-art communication libraries, achieving speedups of
up to 2.29×, 5.81×, and 188× compared to gZCCL, NCCL,
and Cray MPI, respectively.

6.5 Image Stacking Performance and
Accuracy Analysis

In this section, we use the image stacking application to
evaluate both the performance and accuracy of the proposed
ghZCCL. Image stacking is widely used in various scientific
fields, including atmospheric science and geology, to gener-
ate high-resolution images by combining multiple individual
images. This process involves an Allreduce operation. As
highlighted by Gurhem in [15], researchers utilize MPI to
merge these individual images into final composite images.
Table 5 shows that ghZCCL significantly outperforms

both NCCL and gZCCL, achieving a 2.34× speedup over
NCCL, whereas gZCCL only reaches a 1.23× speedup. Since
Cray MPI consistently underperforms NCCL, we omit its
results to save space. To gain deeper insight into the perfor-
mance differences, we break down the runtime of gZCCL
and ghZCCL. The results reveal that gZCCL’s runtime is
primarily dominated by the compression and operation time

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

Methods Speedups Compr.+Oper. Comm. Others
gZCCL 1.23 82.57% 14.80% 2.63%

ghZCCL 2.34 69.45% 28.41% 2.14%
NCCL 1 No breakdown because of complexity

Table 5: Performance analysis of image stacking. The
speedups are based on NCCL and the last three columns
represent performance breakdown.

(Compr.+Oper.), accounting for 82.57% of the total execu-
tion time. This substantial DOC overhead is successfully
mitigated in ghZCCL, reducing the proportion to 69.45%—or
36.37% relative to gZCCL’s total runtime. These improve-
ments stem from our ultra-fast homomorphic compression-
communication co-design, which enables GPUs to directly
communicate and compute with compressed data, signif-
icantly reducing the overhead associated with traditional
DOC workflows.

After demonstrating the high performance of ghZCCL, we
further evaluate its numerical accuracy (PSNR and NRMSE)
and visual quality. With an absolute error bound of 1E-4,
ghZCCL achieves an impressive PSNR of 73.60 and an excel-
lent NRMSE of 2.1E-4. Figure 12 presents a visual comparison
of stacking images using ghZCCL and the original uncom-
pressed NCCL method. The comparison reveals no visual
differences between the two images, confirming that ghZCCL
effectively preserves image quality. This combination of high
numerical accuracy and visual quality underscores the ef-
fectiveness of ghZCCL in delivering superior performance
while maintaining exceptionally high data quality.

(a) NCCL (lossless) (b) ghZCCL

Figure 12: Compare the visual quality of ghZCCLwith NCCL.

7 Conclusion and Future Work
In this paper, we introduce ghZCCL, a novel GPU-aware
homomorphic compression-accelerated collective commu-
nications library that enables direct GPU computation and
communication on compressed data. Through evaluations
on up to 512 NVIDIA A100 GPUs and 7 application datasets,
ghZCCL significantly outperforms state-of-the-art compres-
sion and communication libraries: achieving speedups of up

to 3.89× over cuSZp2, 2.29× over gZCCL, 5.81× over NCCL,
and 188× over Cray MPI. Moving forward, we plan to ex-
tend ghZCCL to additional hardware platforms, including
AI accelerators (e.g., Groq LPU, SambaNova RDU) and FP-
GAs, further broadening its impact on both compression and
communication across diverse computing architectures.

Acknowledgments
This research was supported by the U.S. Department of En-
ergy (DOE) Office of Science, Advanced Scientific Comput-
ing Research (ASCR), under contracts DE-AC02-06CH11357
and DE-SC0024207. Additional support was provided by the
National Science Foundation through grants OAC-2104023
and OAC-2311875. This work also utilized resources of the
Argonne Leadership Computing Facility, a DOE Office of
Science user facility at Argonne National Laboratory.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16). 265–283.

[2] Ahmed M. Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini,
and Marco Canini. 2021. An Efficient Statistical-based Gra-
dient Compression Technique for Distributed Training Systems.
arXiv:2101.10761 [cs.LG]

[3] George Almási, Philip Heidelberger, Charles J. Archer, Xavier Mar-
torell, C. Chris Erway, José E. Moreira, B. Steinmacher-Burow, and
Yili Zheng. 2005. Optimization of MPI Collective Communication on
BlueGene/L Systems. In Proceedings of the 19th Annual International
Conference on Supercomputing.

[4] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool
Hashmi, and Dhabaleswar K Panda. 2017. S-Caffe: Co-designing MPI
runtimes and Caffe for scalable deep learning on modern GPU clusters.
In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 193–205.

[5] Alan Ayala, Stanimire Tomov, Xi Luo, Hejer Shaeik, Azzam Haidar,
George Bosilca, and Jack Dongarra. 2019. Impacts of Multi-GPU
MPI collective communications on large FFT computation. In 2019
IEEE/ACM Workshop on Exascale MPI (ExaMPI). IEEE, 12–18.

[6] Gaurav Bansal, Ajith Mascarenhas, and Jacqueline H. Chen. 2015.
Direct Numerical Simulations of Autoignition in Stratified Dimethyl-
Ether (DME)/Air Turbulent Mixtures. Combustion and Flame 162
(2015), 688–702. https://doi.org/10.1016/j.combustflame.2014.08.021

[7] M. Bayatpour and M. A. Hashmi. 2018. SALaR: Scalable and Adaptive
Designs for Large Message Reduction Collectives. In 2018 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). 1–10. https:
//doi.org/10.1109/CLUSTER.2018.00009

[8] Jon Calhoun, Franck Cappello, Luke N Olson, Marc Snir, andWilliam D
Gropp. 2019. Exploring the feasibility of lossy compression for PDE
simulations. The International Journal of High Performance Com-
puting Applications 33, 2 (2019), 397–410. https://doi.org/10.1177/
1094342018762036

[9] Qiaoling Chen, Qinghao Hu, Guoteng Wang, Yingtong Xiong, Ting
Huang, Xun Chen, Yang Gao, Hang Yan, Yonggang Wen, Tianwei
Zhang, and Peng Sun. 2024. AMSP: Reducing Communication Over-
head of ZeRO for Efficient LLM Training. arXiv:2311.00257 [cs.DC]

https://arxiv.org/abs/2101.10761
https://doi.org/10.1016/j.combustflame.2014.08.021
https://doi.org/10.1109/CLUSTER.2018.00009
https://doi.org/10.1109/CLUSTER.2018.00009
https://doi.org/10.1177/1094342018762036
https://doi.org/10.1177/1094342018762036
https://arxiv.org/abs/2311.00257

ghZCCL: Advancing GPU-aware Collective Communications with Homomorphic Compression ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[10] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and
Kalyan Kumaran. 2018. Characterization of MPI usage on a production
supercomputer. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 386–400.

[11] Community Earth System Model (CESM) Atmosphere Model. 2019.
http://www.cesm.ucar.edu/models/. Online.

[12] NVIDIA Corp. 2023. NCCL – Optimized primitives for inter-GPU
communication. https://github.com/NVIDIA/nccl.

[13] Michael Garland Duane Merrill. 2016. Single-pass Parallel Prefix Scan
with Decoupled Look-back. https://research.nvidia.com/sites/default/
files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf.

[14] R. W. Grout, A. Gruber, H. Kolla, P.-T. Bremer, J. C. Bennett, A. Gyu-
lassy, and J. H. Chen. 2012. A Direct Numerical Simulation Study of
Turbulence and Flame Structure in Transverse Jets Analysed in Jet-
Trajectory Based Coordinates. Journal of Fluid Mechanics 706 (2012),
351–383. https://doi.org/10.1017/jfm.2012.257

[15] Jérôme Gurhem, Henri Calandra, and Serge G. Petiton. 2021. Parallel
and Distributed Task-Based Kirchhoff Seismic Pre-Stack Depth Mi-
gration Application. In 2021 20th International Symposium on Parallel
and Distributed Computing (ISPDC). 65–72. https://doi.org/10.1109/
ISPDC52870.2021.9521599

[16] Wenbin He, Hanqi Guo, Tom Peterka, Sheng Di, Franck Cappello, and
Han-Wei Shen. 2018. Parallel Partial Reduction for Large-Scale Data
Analysis and Visualization. In 2018 IEEE 8th Symposium on Large Data
Analysis and Visualization (LDAV). 45–55. https://doi.org/10.1109/
LDAV.2018.8739165

[17] HPE. [n. d.]. Cray MPI/MPICH. https://cpe.ext.hpe.com/docs/24.03/
mpt/mpich/index.html.

[18] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Yafan
Huang, Ken Raffenetti, Hui Zhou, Kai Zhao, Zizhong Chen, Franck
Cappello, Yanfei Guo, and Rajeev Thakur. 2024. POSTER: Optimizing
Collective Communications with Error-bounded Lossy Compression
for GPU Clusters. In Proceedings of the 29th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming (PPoPP
’24). 454–456. https://doi.org/10.1145/3627535.3638467

[19] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Yafan
Huang, Ken Raffenetti, Hui Zhou, Kai Zhao, Xiaoyi Lu, Zizhong Chen,
Franck Cappello, Yanfei Guo, and Rajeev Thakur. 2024. gZCCL:
Compression-Accelerated Collective Communication Framework for
GPU Clusters. In Proceedings of the 38th ACM International Confer-
ence on Supercomputing (Kyoto, Japan) (ICS ’24). 437–448. https:
//doi.org/10.1145/3650200.3656636

[20] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Zizhe
Jian, Xin Liang, Kai Zhao, Xiaoyi Lu, Zizhong Chen, Franck Cappello,
Yanfei Guo, and Rajeev Thakur. 2024. hZCCL: Accelerating Collective
Communication with Co-Designed Homomorphic Compression. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (Atlanta, GA, USA) (SC ’24).
IEEE Press, Article 104, 15 pages. https://doi.org/10.1109/SC41406.
2024.00110

[21] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Zhaorui Zhang,
Jinyang Liu, Xiaoyi Lu, Ken Raffenetti, Hui Zhou, Kai Zhao, Khalid Al-
harthi, Zizhong Chen, Franck Cappello, Yanfei Guo, and Rajeev Thakur.
2025. ZCCL: Significantly Improving Collective Communication With
Error-Bounded Lossy Compression. arXiv:2502.18554 [cs.DC]

[22] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Zhaorui Zhang,
Jinyang Liu, Xiaoyi Lu, Ken Raffenetti, Hui Zhou, Kai Zhao, Zizhong
Chen, Franck Cappello, Yanfei Guo, and Rajeev Thakur. 2024. An
Optimized Error-controlled MPI Collective Framework Integrated
with Lossy Compression. In 2024 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 752–764. https://doi.org/10.
1109/IPDPS57955.2024.00072

[23] Jiajun Huang, Jinyang Liu, Sheng Di, Yujia Zhai, Zizhe Jian, Shixun
Wu, Kai Zhao, Zizhong Chen, Yanfei Guo, and Franck Cappello. 2023.
Exploring Wavelet Transform Usages for Error-bounded Scientific
Data Compression. In 2023 IEEE International Conference on Big Data
(BigData). 4233–4239. https://doi.org/10.1109/BigData59044.2023.
10386386

[24] Yafan Huang, Sheng Di, Guanpeng Li, and Franck Cappello. 2024.
cuSZp2: A GPU Lossy Compressor with Extreme Throughput and
Optimized Compression Ratio. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage, and
Analysis.

[25] Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cap-
pello. 2023. cuSZp: An Ultra-fast GPU Error-bounded Lossy Compres-
sion Framework with Optimized End-to-End Performance. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis.

[26] Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck
Cappello. 2019. DeepSZ: ANovel Framework to Compress Deep Neural
Networks by Using Error-Bounded Lossy Compression. In Proceedings
of the 28th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’19). 159–170. https://doi.org/10.1145/
3307681.3326608

[27] Sian Jin, Chengming Zhang, Xintong Jiang, Yunhe Feng, Hui Guan,
Guanpeng Li, Shuaiwen Leon Song, and Dingwen Tao. 2021. COMET:
a novel memory-efficient deep learning training framework by using
error-bounded lossy compression. Proc. VLDB Endow. 15, 4 (Dec. 2021),
886–899. https://doi.org/10.14778/3503585.3503597

[28] Suha Kayum et al. 2020. GeoDRIVE – A high performance computing
flexible platform for seismic applications. First Break 38, 2 (2020),
97–100.

[29] Pavol Klacansky, Haichao Miao, Attila Gyulassy, Andrew Townsend,
Kyle Champley, Joseph Tringe, Valerio Pascucci, and Peer-Timo Bremer.
2022. Virtual Inspection of Additively Manufactured Parts. In 2022
IEEE 15th Pacific Visualization Symposium (PacificVis). 81–90. https:
//doi.org/10.1109/PacificVis53943.2022.00017

[30] Argonne National Laboratory. 2023. MPICH – A high-performance
and widely portable implementation of the MPI-4.0 standard. https:
//www.mpich.org.

[31] Xin Liang, Sheng Di, Sihuan Li, Dingwen Tao, Bogdan Nicolae, Zizhong
Chen, and Franck Cappello. 2019. Significantly improving lossy com-
pression quality based on an optimized hybrid prediction model. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Denver, Colorado) (SC ’19).
Association for Computing Machinery, New York, NY, USA, Article
33, 26 pages.

[32] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018.
Deep Gradient Compression: Reducing the communication bandwidth
for distributed training. In The International Conference on Learning
Representations.

[33] Peter Lindstrom. [n. d.]. cuzfp. https://github.com/LLNL/zfp/tree/
develop/src/cuda_zfp.

[34] Jinyang Liu, Jiannan Tian, Shixun Wu, Sheng Di, Boyuan Zhang,
Robert Underwood, Yafan Huang, Jiajun Huang, Kai Zhao, Guanpeng
Li, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2024. cuSZ-i:
High-Ratio Scientific Lossy Compression on GPUs with Optimized
Multi-Level Interpolation. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC
’24). Article 13, 15 pages. https://doi.org/10.1109/SC41406.2024.00019

[35] Gabriel Marcus, Yuantao Ding, Paul Emma, Zhirong Huang, Ji Qiang,
Tor Raubenheimer, Marco Venturini, and Lanfa Wang. 2015. High
Fidelity Start-to-end Numerical Particle Simulations and Performance
Studies for LCLS-II. In 37th International Free Electron Laser Conference.

http://www.cesm.ucar.edu/models/
https://github.com/NVIDIA/nccl
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://doi.org/10.1017/jfm.2012.257
https://doi.org/10.1109/ISPDC52870.2021.9521599
https://doi.org/10.1109/ISPDC52870.2021.9521599
https://doi.org/10.1109/LDAV.2018.8739165
https://doi.org/10.1109/LDAV.2018.8739165
https://cpe.ext.hpe.com/docs/24.03/mpt/mpich/index.html
https://cpe.ext.hpe.com/docs/24.03/mpt/mpich/index.html
https://doi.org/10.1145/3627535.3638467
https://doi.org/10.1145/3650200.3656636
https://doi.org/10.1145/3650200.3656636
https://doi.org/10.1109/SC41406.2024.00110
https://doi.org/10.1109/SC41406.2024.00110
https://arxiv.org/abs/2502.18554
https://doi.org/10.1109/IPDPS57955.2024.00072
https://doi.org/10.1109/IPDPS57955.2024.00072
https://doi.org/10.1109/BigData59044.2023.10386386
https://doi.org/10.1109/BigData59044.2023.10386386
https://doi.org/10.1145/3307681.3326608
https://doi.org/10.1145/3307681.3326608
https://doi.org/10.14778/3503585.3503597
https://doi.org/10.1109/PacificVis53943.2022.00017
https://doi.org/10.1109/PacificVis53943.2022.00017
https://www.mpich.org
https://www.mpich.org
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp
https://doi.org/10.1109/SC41406.2024.00019

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiajun Huang et al.

TUP007. https://doi.org/10.18429/JACoW-FEL2015-TUP007
[36] NYX simulation. 2019. https://amrex-astro.github.io/Nyx. Online.
[37] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce

algorithms for clusters of workstations. J. Parallel and Distrib. Comput.
69, 2 (2009), 117–124.

[38] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. 2015.
Exploration of Lossy Compression for Application-Level Check-
point/Restart. In 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium. 914–922. https://doi.org/10.1109/IPDPS.2015.67

[39] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Opti-
mization of collective communication operations in MPICH. The
International Journal of High Performance Computing Applications 19,
1 (2005), 49–66.

[40] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp,
Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao,
et al. 2020. cuSZ: An efficient gpu-based error-bounded lossy compres-
sion framework for scientific data. In Proceedings of the ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques.
3–15.

[41] TOP500.org. 2024. TOP500 LIST - NOVEMBER 2024. https://top500.
org/lists/top500/2024/11/.

[42] Didem Unat, Ilyas Turimbetov, Mohammed Kefah Taha Issa, Doğan
Sağbili, Flavio Vella, Daniele De Sensi, and Ismayil Ismayilov. 2024. The
Landscape of GPU-Centric Communication. arXiv:2409.09874 [cs.DC]

[43] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. 2017. TernGrad: ternary gradients to reduce com-
munication in distributed deep learning. In Proceedings of the 31st
International Conference on Neural Information Processing Systems.

[44] Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cap-
pello, Hal Finkel, Yuri Alexeev, and Frederic T. Chong. 2019. Full-state

quantum circuit simulation by using data compression. In Proceed-
ings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC ’19). Article 80, 24 pages.
https://doi.org/10.1145/3295500.3356155

[45] Xiaodong Yu, Sheng Di, Kai Zhao, Jiannan Tian, Dingwen Tao, Xin
Liang, and Franck Cappello. 2022. Ultrafast Error-Bounded Lossy Com-
pression for Scientific Datasets. In Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing.

[46] Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Yunhe Feng, Xin
Liang, Dingwen Tao, and Franck Cappello. 2023. FZ-GPU: A Fast and
High-Ratio Lossy Compressor for Scientific Computing Applications
on GPUs. In Proceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’23). 14 pages.
https://doi.org/10.1145/3588195.3592994

[47] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot,
Zizhong Chen, and Franck Cappello. 2021. Optimizing Error-Bounded
Lossy Compression for Scientific Data by Dynamic Spline Interpola-
tion. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). 1643–1654. https://doi.org/10.1109/ICDE51399.2021.00145

[48] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed, H.
Subramoni, and D. K. Panda. 2021. Designing High-Performance MPI
Libraries with On-the-fly Compression for Modern GPU Clusters. In
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS).

[49] Qinghua Zhou, Pouya Kousha, Quentin Anthony, Kawthar Shafie Kho-
rassani, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda. 2022.
Accelerating MPI All-to-All Communication With Online Compres-
sion On Modern GPU Clusters. In High Performance Computing: 37th
International Conference, ISC High Performance 2022, Proceedings.

https://doi.org/10.18429/JACoW-FEL2015-TUP007
https://amrex-astro.github.io/Nyx
https://doi.org/10.1109/IPDPS.2015.67
https://top500.org/lists/top500/2024/11/
https://top500.org/lists/top500/2024/11/
https://arxiv.org/abs/2409.09874
https://doi.org/10.1145/3295500.3356155
https://doi.org/10.1145/3588195.3592994
https://doi.org/10.1109/ICDE51399.2021.00145

	Abstract
	1 Introduction
	1.1 Motivation for Compression-Accelerated Collectives
	1.2 Limitations of Existing Works and Goal
	1.3 Our solution: ghZCCL

	2 Background and Related Work
	3 Rethinking GPU Compression: Why Homomorphic Compression?
	4 ghZCCL: High-level Overview
	4.1 ghZ Overview
	4.2 ghZCCL Co-design Overview

	5 ghZCCL: Key Designs
	5.1 ghZ: Design Details
	5.2 ghZCCL: Co-design Details

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Evaluating GPU Homomorphic Compressor–ghZ
	6.3 Comparing ghZCCL with SOTA Collective Communications Libraries
	6.4 Evaluating the Scalability of ghZCCL
	6.5 Image Stacking Performance and Accuracy Analysis

	7 Conclusion and Future Work
	Acknowledgments
	References

