
Graph Convolutional Network Acceleration Using
Adiabatic Superconductor Josephson Devices
Zhengang Li

Northeastern University
Boston, USA

li.zhen@northeastern.edu

Hongwu Peng
University of Connecticut

Storrs, USA
hongwu.peng@uconn.edu

Xuan Shen
Northeastern University

Boston, USA
shen.xu@northeastern.edu

Masoud Zabihi
Northeastern University

Boston, USA
m.zabihi@northeastern.edu

Xi Xie
University of Connecticut

Storrs, USA
xi.xie@uconn.edu

Geng Yuan
University of Georgia

Athens, USA
geng.yuan@uga.edu

Yanzhi Wang
Northeastern University

Boston, USA
yanz.wang@northeastern.edu

Olivia Chen
Kyushu University
Fukuoka, Japan

olivia.chen@ieee.org

Caiwen Ding
University of Minnesota Twin

Cities
Minneapolis, USA
dingc@umn.edu

Abstract
Graph Convolutional Network (GCN) has gained popular-
ity as it could lower the human expert’s burden in making
tactical real-time decisions. As Moore’s law is reaching an
end, the acceleration of the conventional GCN systems is
limited. One promising alternative is the Adiabatic Quantum-
Flux-Parametron (AQFP) superconducting computing as it
can achieve extremely high energy efficiency compared to
CMOS. In this paper, we propose an AQFP-aware GCN ac-
celeration framework via co-optimizing AQFP hardware
and GCN algorithms. More specifically, we first develop a
regrowth-after- partitioning algorithm to enable the AQFP
hardware parallelism and accelerate the aggregation compu-
tation while maintaining accuracy. Then, we propose two dis-
tinct AQFP-based architectures tailored specifically for each
of the combination and aggregation stages. Furthermore, to
unlock the extreme energy efficiency, we develop a hybrid
binarized/low-bit GCN hardware/software co-design that
can be efficiently executed on AQFP-based devices. Lever-
aging the AQFP randomized behavior, we adjust the AQFP
buffer design to achieve multi-bit intermediate results and
explore the bit-width at the output of the combination step.

This work is licensed under a Creative Commons
Attribution-NonCommercial International 4.0 License.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3730434

To mitigate the gap between the software model with hard-
ware implementation, an AQFP logic-aware GCN Hybrid
Quantization is proposed for the binarized GCN framework.
Our framework demonstrates remarkable energy efficiency
even when considering the additional cooling consumption.
Specifically, compared with the representative FPGA-based
framework GCoD [88], our framework achieves energy effi-
ciency improvements of 1.9× 104, 1.1× 104, and 8.7× 104 for
the Cora, CiteSeer, and PubMed datasets, respectively, with
a similar level of accuracy. To the best of our knowledge, this
is the first attempt to implement an AQFP-based architecture
specifically designed for GCNs.

CCS Concepts
• Hardware→ Emerging technologies; • Computer sys-
tems organization→Architectures; •Computingmethod-
ologies→Machine learning.

Keywords
GCN, AQFP, Quantization, BNN, Superconducting

ACM Reference Format:
Zhengang Li, Hongwu Peng, Xuan Shen, Masoud Zabihi, Xi Xie,
Geng Yuan, Yanzhi Wang, Olivia Chen, and Caiwen Ding. 2025.
Graph Convolutional Network Acceleration Using Adiabatic Su-
perconductor Josephson Devices. In 2025 International Conference
on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3721145.3730434

https://orcid.org/0000-0001-6644-4761
https://orcid.org/0000-0003-2025-2195
https://orcid.org/0000-0003-4965-7321
https://orcid.org/0000-0003-1916-901X
https://orcid.org/0009-0001-7489-2860
https://orcid.org/0000-0001-9844-992X
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0003-0891-1231
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3721145.3730434
https://doi.org/10.1145/3721145.3730434
https://doi.org/10.1145/3721145.3730434

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

1 Introduction
As an emerging branch in deep learning research, graph neu-
ral networks (GNNs) aim to lower the human expert’s burden
in making tactical real-time decisions in applications, such
as computer vision [70], traffic forecasting [44], autonomous
systems [71], drug discovery [9], and social influence [33]. Re-
cently, several GNN models have been developed to incorpo-
rate external features into graph structures, e.g., Graph Con-
volutional Networks (GCN) [49], GraphSAGE [35], Graph
Isomorphism Networks (GIN) [84], and Graph Attention Net-
works [78]. GCN has become the most popular GNN among
others due to its foundational architecture, effective perfor-
mance on wide range of tasks [2, 36, 83, 92]. It comprises two
primary phases - aggregation and combination, implicating
iterative traversal of the graph nodes and edges.
In order to achieve high performance and energy effi-

ciency for GCN systems, two research trends have emerged.
The first one is graph input or weight sparsification algo-
rithms that aim to reduce the computation and memory
footprint [13, 14, 16, 89]. The second one is to address the
workload imbalance caused by the irregularity of the graph
inputs with highly unbalanced non-zero distributions accord-
ing to AWB-GCN [28], EnGn [52], G-CoS [90] and [1, 5, 51].
As Moore’s law is reaching an end [79], the potential for

accelerating GCN systems using conventional Von-Neumann
architecture remains limited. We are in urgent need of (i)
a next-generation technology beyond CMOS, and (ii) the
corresponding customized novel computing architectures
for GCN accelerators to achieve ultra-high energy efficiency.
One promising alternative is the Adiabatic Quantum-Flux-
Parametron (AQFP) superconducting computing [15]. By
leveraging magnetic flux quantization and quantum interfer-
ence in Josephson-junction (JJ)-based superconductor loops,
AQFP have emerged as promising candidates for future com-
puting. Compared to state-of-the-art CMOS technology, AQFP
can potentially achieve an energy-efficiency gain in the range
of 104 ∼ 105 [15].
Despite the recent success of AQFP-based convolutional

neural network (CNN) [50, 85], implementing GCNs on the
AQFP superconducting computing platform presents unique
challenges:
(i) GCN computation complexity.While the combination

phase uses a computation pattern similar to CNN, the ag-
gregation phase relies on the sparse and irregular graph
structure. Such inherent irregularity necessitates specialized
hardware designs to perform graph-related operations like
aggregating neighbors and passing messages. The recent
AQFP-based CNN frameworks, as evidenced by previous
works such as [50, 85], predominantly emphasize dense ma-
trix multiplication. This new emphasis presents a fresh chal-
lenge to existing AQFP-based frameworks.

(ii) GCN mapping problem on AQFP devices. Current accel-
erators, e.g., AWB-GCN [28], GROW [43], FlowGNN [67] and
GNNAdvisor [82] process moderately sparse feature matrix
(X) multiplication with a dense and small weight matrix (W),
and thenmultiply the output with the highly sparse and irreg-
ular adjacency matrix (A). This enables a workload-efficient
computation design that utilizes a unified SpMM (Sparse
Matrix-Matrix Multiplication) engine. However, AQFP, as an
emerging technique, currently has relatively limited scala-
bility, and there is no AQFP-based architecture tailored for
GNN to handle the large memory requirements from graph
structures and node embeddings. Expansion of the AQFP
scalability and efficient memory storage/access for sparse
matrix become crucial for AQFP devices to deploy the GCN
computation.

(iii) The intermediate results prohibit the efficient mapping
of GNN onto hardware.We observe that a crucial challenge
that remains unaddressed in GNN hardware design is the
output of the combination step (producing a 32-bit interme-
diate result), even with binarized GNN frameworks [7, 81],
where the weight and input feature matrices are binarized.
This omission creates inefficiency and hinders the seamless
mapping of binarized GCN frameworks to AQFP-based de-
vices. In addition, (iv) AQFP platforms present randomized
behavior. Because of the thermal noise and/or quantum fluc-
tuation impact, the output of AQFP buffer presents random-
ized behavior when input current amplitude falls in a certain
range, known as ”gray-zone" Δ𝐼𝑖𝑛 [27]. In this case, it will
be hard to detect the direction of the input current, result-
ing in a randomized output with a probability related to the
input current, i.e., 0 < 𝑃 (𝐼𝑖𝑛) < 1. This unique property is
a double-sided sword that introduces inaccuracy but also
makes it possible to be combined with stochastic computing.
To address the aforementioned escalating challenges, in

this paper, we propose an AQFP-aware GCN acceleration
framework via co-optimizing AQFP hardware and GCN al-
gorithm. In addition, to unlock the extreme energy efficiency,
we develop aGCNhybrid quantization software-and-hardware
co-design that can be efficiently executed on AQFP-based
devices. Even considering the cooling consumption for AQFP
devices, we still achieve significant improvement in terms
of energy efficiency while keeping good throughput and
model accuracy, compared with the previous GCN accel-
eration frameworks on different hardware platforms. For
instance, we achieve 1.35 times speedup and 6.1 × 103 times
higher energy efficiency than REFLIP [42] ReRAM design on
PubMed dataset. Our proposed framework surpasses FPGA-
based and ASIC work by about four orders of magnitude,
and ReRAM-based work by two to four orders of magnitude.
To the best of our knowledge, this paper is the first at-

tempt to implement an AQFP-based architecture specifically

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1
2

3
4

5

Channel
Embedding

Input
Graph adj list

N
od

es

Linear

GCNConv

In CH

Linear

Linear
Linear
Linear

1
2

3
1

2
3

4

…
…

…

…

Figure 1: Single graph convolution layer computation.

designed for GNNs to manage various types of computation.
We summarize our contributions as follows:
• We propose AQFP-based architecture tailored for GCN
computation considering both the combination and
the aggregation stages.
• A regrowth-after-partitioning algorithm is developed
to divide large graphs into sub-graphs, to enable the
AQFP hardware parallelism while maintaining accu-
racy.
• We propose an AQFP logic-aware GCN hybrid quan-
tization to handle the intermediate result and AQFP
randomized behavior problems in our framework.
• Hardware-and-software co-design. Adjusting theAQFP
buffer configuration to achieve multi-bit output and
fully leverage its randomized behavior.

Overall, compared with the representative FPGA-based
framework GCoD [88], our framework achieves energy effi-
ciency improvements of 4 orders of magnitude for the Cora,
CiteSeer, and PubMed datasets with a similar level of accu-
racy, even considering the additional cooling consumption.

2 Background and Motivation
2.1 Preliminaries of GCN Accelerators
Graph neural networks analyze the graph’s structure and
learn the characteristics of nodes, edges, or even the entire
graph. The Graph Convolutional Networks (GCNs) [49] ap-
ply graph convolutions (GCNConv) recursively to extract
meaningful information from the graphs. A representative
example of single GCNConv layer can be found in Fig. 1. A
given graph is denoted by 𝐺 = (V, E, 𝐴), which incorpo-
rates |V| nodes and |E | edges and adjacent list𝐴. Each node
within the graph is affiliated with an C-dimensional feature
vector, and the matrix 𝑋 ∈ R |V |×C represents the collection
of these feature vectors for all nodes, serving as the feature
embedding matrix. The forward propagation within the sin-
gle GCNConv layer can be conceptually divided into two
distinct stages. The initial stage involves a linear transfor-
mation, represented by the equation 𝑌 = 𝑋𝑊 . The second

BUF

a

q

xin xout

Symbol: buffer
Schematic: buffer

BUF

a

q

xin
“0” BUF

b c

xout

Ibias

Iout

Iin

J1 J2

Lx1 Lx2

L1 L2

Lq Lout

Logic ‘1’

a

q
(a)

(b)

(c)

Symbol: AND gate

Figure 2: (a) Schematic of an AQFP buffer. (b) Symbol
view of an AQFP buffer. (c) Symbol view of an AQFP
AND gate, consisting of 3 AQFP buffers and a 3-to-1
branch.

stage incorporates a feature aggregation operation, given
by 𝑋 ′ = 𝜎 (𝐴𝑌). This two-step process illustrates the core
functionality of the GCNConv layer within the GCN.

In the aggregation stage of graph convolutional networks
(GCNs), the adjacency list 𝐴 is typically characterized by
extreme sparsity and follows a power-law distribution [28],
such as 0.144% for Cora [57], 0.082% for CiteSeer [31], and
0.023% for Pubmed [69]. HyGCN [86] employs a design strat-
egy that separates aggregation and combination stages us-
ing sparse-sparse (SpGEMM) and sparse-dense (SpMM) ma-
trix multiplication engines. However, this approach leads
to under-utilization and workload imbalance between the
engines due to their reliance on graph input characteristics.
To address the under-utilization issue, AWB-GCN [28],

GROW [43], and GPU accelerators, such as GNNAdvisor [82],
present unified hardware designs for both aggregation and
combination phases. Moreover, later work AWB-GCN [28]
and GCoD [88] recognize the processing of nodes with larger
degree as a major bottleneck, particularly when utilizing
thousands of processing elements, and thus focus on exploit-
ing parallelism in GCNs. Furthermore, I-GCN [29] leverages
the clustering nature of graphs, having developed an island
(cluster) detector and island consumer to enhance graph
processing locality. FlowGNN [66] exploits a message pass-
ing based dataflow implementation of GNNs acceleration
on FPGA platform, similar to that of PyG [26] on GPU plat-
forms. However, the design doesn’t address the workload
imbalance issue and lacks performance scalability to process
large graphs compared to existing GPU platform with large
number of core count (6912 CUDA cores for A100 GPU).
GROW [43] deploys the row-wise product to accelerate the
GNN workload and employ the graph partition algorithms
to enhance the locality of SpMM process.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

2.2 Cryogenic Devices and AQFP
Superconducting Logic

AQFP, originally stemming from quantum-flux-parametron
(QFP) logic, is a superconducting logic family initially pro-
posed in 1985 [55]. The adiabatic version of QFP, introduced
in [75], achieves substantially lower energy dissipation (5-6
orders lower than CMOS) by re-parameterizing the device to
operate in an adiabatic mode. Furthermore, recent research
on the reversible version of QFP (RQFP) suggests that bit-
level information transfer energy may even surpass the Shan-
non limit (𝑘𝐵𝑇𝑙𝑛2) [74]. Like other superconducting logic
families, AQFP utilizes Josephson Junctions (JJ) as the core
switching element for state transitions in logic encoding.

The fundamental AQFP circuit structure is theAQFP buffer,
comprising a double-Josephson-Junction SQUID (𝐽1, 𝐽2) [21],
as illustrated in Figure 2. Primarily driven by AC power,
which functions as both excitation current and power sup-
ply, this configuration utilizes fluxes generated by an applied
AC current 𝐼𝑏𝑖𝑎𝑠 (trapezoidal or sinusoidal). The direction
of the input current 𝐼𝑖𝑛 determines the presence of a sin-
gle flux quantum in the left or right loop, thereby dictating
the direction of the output current 𝐼𝑜𝑢𝑡 and representing the
logical state ‘1’ or ‘0’. A transformer consisting of 𝐿𝑞 and
𝐿𝑜𝑢𝑡 amplifies and delivers 𝐼𝑜𝑢𝑡 to the next logic level. The
AQFP buffer forms the basis for a suite of AQFP logic gates,
including INVERTER, AND, OR, MAJORITY, and SPLITTER.
Unlike conventional CMOS technology, both combina-

tional and sequential AQFP logic cells are driven by AC
power, which also serves as a synchronization mechanism
or clock signal. Consequently, AQFP circuits inherently ex-
hibit deep-pipelining due to the requirement of overlapping
clock signals. A detailed design methodology for the AQFP
standard cell library can be found in [77].

Due to the principle of AQFP buffer, the output is sensitive
to the direction of the input current. When the amplitude of
input current is very small, which falls in the “grayzone" Δ𝐼𝑖𝑛
[27] of an AQFP buffer, the stochastic switching behavior
(caused by the thermal or quantum fluctuation) exists in an
AQFP comparator will make the AQFP hard to detect the di-
rection of the input current, resulting in a randomized output
with a probability related to input current, i.e., 0 < 𝑃 (𝐼𝑖𝑛) < 1.
This unique property is a double-sided sword that introduces
inaccuracy but also makes it possible to be combined with
stochastic computing. SC-AQFP [12], an AQFP-based DNN
acceleration framework, employs stochastic computing but
is only effective for simple tasks on small networks (e.g.,
MNIST). Another study [85] proposes a BNN model-based
crossbar synapse array architecture tailored for AQFP logic.
However, current attenuation, limited scalability, and the
randomized behavior of AQFP buffers challenge the true im-
plementation of this architecture. Our proposed framework

addresses these issues, offering a feasible solution. To address
these concerns, SupeRBNN [50] proposes an AQFP-aware
BNN training framework that accounts for AQFP character-
istics. Nevertheless, as it only takes into account the general
convolutional layers, it falls short of meeting the computa-
tional demands associated with GCN.
Besides the superconducting devices, CMOS-based cryo-

genic devices have been investigated as an optional solution
as they can improve computer devices’ energy efficiency
due to the lower leakage current and wire latency [68, 91].
Multiple cryogenic CMOS-based works [3, 8, 60, 61, 64, 65]
are proposed to improve the overall hardware performance.
Different from superconducting computation applied under
4K temperature, 77K temperature is more actively considered
for cryogenic CMOS-based design to save the cooling con-
sumption. The corresponding comparison is incorporated
into the experimental evaluation.

2.3 Stochastic Computing
Stochastic computing (SC) is a paradigm that represents a
stochastic number (SN) by counting the number of ones in a
uniformly distributed bitstream. For instance, the bitstream
0100110100 denotes a real number 𝑥 = 𝑃𝑋 = 4/10 = 0.4,
where 𝑋 represents the stochastic bitstream and 𝑥 its associ-
ated real value. An SC with a bipolar encoding format can
accommodate numbers in the range of [-1, 1], with a real
number 𝑥 processed through 𝑃 (𝑋 = 1) = (𝑥 + 1)/2. For
example, 0.4 can be represented as 1011011101 and -0.6 as
0100100000. Figure 3 illustrates various SN representation
formats. SC boasts low hardware-cost implementation for
arithmetic operations. Unipolar and bipolar multiplication
can be handled using a single AND and XNOR gate, respec-
tively, while addition operations can leverage the OR gate,
multiplexer, or approximate parallel counter (APC) [47]. Typ-
ically, SNs are generated via hardware-based random number
generators; however, in our design, we directly utilize neuron
circuit output results as SNs due to the true random property
of the AQFP buffer [30, 73].

2.4 Model Quantization and Binary Neural
Network

Model quantization enables deep neural network (DNN) in-
ference acceleration on edge devices by compressing model
size and improving inference speed. This technique maps
the 32-bit floating-point weight and/or activation values in
a DNN model to lower bit-width values by partitioning the
data range into a specified number of levels. Quantization
research can be classified into different schemes, from the
extremely low precision seen in Binary (BNN) [23, 24, 53, 63]

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Unipolar Representation
P(X=1) = 4/10

P(X=1) = 7/10 P(X=1) = 2/10
Bipolar Representation

0.4

or
0,1,0,0,1,1,0,1,0,0

1,0,0,1,0,1,0,0,0,1

0.4
1,0,1,1,0,1,1,1,0,1

1,1,1,1,0,1,1,0,0,1

-0.6
0,1,0,0,1,0,0,0,0,0

1,0,0,1,0,0,0,0,0,0
or or

Figure 3: Examples of the unipolar and bipolar repre-
sentations of stochastic numbers.

and Ternary Neural Networks (TNN) [39, 94] to low-bit-
width fixed-point networks [20, 93] which uniformly quan-
tize models.

BNNs, with their weights constrained to {−1, 1}, simplify
hardware implementation and reduce operations by replac-
ing multiplications with additions/subtractions or eliminat-
ing them using XNOR and AND operations when activations
are binary. This renders BNNs suitable for low-power con-
sumption scenarios. However, the limited representational
ability of BNNs results in accuracy degradation, prompting
research to explore mitigations, such as introducing scaling
factors [63], fusing scaling factors [10], and utilizing multi-
ple scaling factors [53]. Furthermore, methods to minimize
gradient information loss [32, 62, 87] and model modifica-
tions to preserve accuracy after quantization [54] have been
proposed.
Some recent works developed Binarized Graph Convo-

lutional Network (GCN) frameworks [7, 81] that extend
weight and feature binarization into the GCN domain. These
approaches, however, primarily focus on feature binariza-
tion across layers, inadequately considering intermediate
graph features within a single GCNConv layer. Consequently,
such frameworks cannot be directly adapted to Adiabatic
Quantum-Flux-Parametron (AQFP) devices.

3 Architecture Design for AQFP-based GCN
accelerator

The overall architecture of the AQFP-based GCN accelerator
is shown in Fig. 4, in which the computation mainly con-
tains two parts: combination computation and aggregation
computation. In this section, we discuss the corresponding
details of our proposed architecture paradigms. All compo-
nents for GCN computation, i.e., memory tile, crossbar tile,
and register are implemented using the AQFP technology.

3.1 GCN Computation Initialization
For the initialization, the vectors representing the graph are
stored in AQFP memory tiles. Each tile stores a sub-graph
derived by graph boundary edge re-growth partition algo-
rithm (details are illustrated in Section 4.3), thus, enabling
the hardware parallelism to improve the performance of
throughput. To effectively represent the graph, we utilize
two vectors: the vector "indices" stores the column indices
of the non-zero elements, and the vector "indptr" stores the
index pointers in "indices" indicating where each row starts.
We employed 8 KB AQFP memory tiles with the architecture
presented in [72] for storing the graph vectors. During the
mapping process, we use the indices as addresses to prop-
erly map the relevant elements into the memory crossbar
tiles. Additionally, the weights are stored in the crossbar tiles
allocated for combination computation. After initialization,
the computation for each layer of the GNN is performed in
three phases: (1) Combination computation phase, (2) Interim
storage phase, and (3) Mapping and aggregation phase.

3.2 GCN Combination Computation
GCN combination computation is mainly a dense matrix
multiplication incorporating both GCN weight matrix and
input node feature matrix. Considering the binarization, the
whole matrix computation can be converted into XNOR op-
eration and accumulation. Inspired by recent work [85], we
can use an AQFP-based crossbar to handle the combination
computation and address the challenges arising from the data
movement between memory and computing units in con-
ventional Von Neumann architectures. However, the direct
implementation of AQFP crossbar still faces two problems:
1) the limited crossbar size due to the current attenuation
phenomenon restricts the ability to accommodate the entire
computation within the structure. 2) the original design of
the AQFP-based crossbar supports only 1-bit output provided
by the classic AQFP buffer, whereas the accuracy require-
ments of GCN computations necessitate multi-bit intermedi-
ate results.
To address these problems, we propose our AQFP-based

architecture paradigm for combination computation in GCN
consisting of three components. First, following [85], we
employ an AQFP-based crossbar as the main body for per-
forming the binarized weight matrix multiplication compu-
tation (Section 3.4). This leverages the inherent parallelism
and computational capabilities of AQFP technology. Sec-
ond, we adjust the functionality of the AQFP buffer with a
linear probability distribution to serve as a stochastic com-
putation bit-stream generator (Section 3.6). This modified
buffer generates the stochastic bit-streams required for the
stochastic computing process. Finally, we incorporate a sto-
chastic computing module that accumulates the generated

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

Graph
Storage

In
st

ru
ct

io
n

AQFP Memory tile

AQFP Crossbar tile

AQFP Register

1
23

7
6

8

5

4
1

2
3

7
6
8

5

4

2
6

6

5

2 5

Adjacent
Matrix CSR Format

Command

Input Features X

Weight W

Input

Pre-Store

C
om

bi
na

tio
n

C
om

pu
ta

tio
n

Register
for

storing
XW

results In
te

ri
m

 S
to

ra
ge

M
ap

pi
ng

 a
nd

 A
gg

re
ga

tio
n

C
om

pu
ta

tio
n

Results

M
em

or
y

C
on

tr
ol

le
r

1 2

3

4

5
6

7 8

1 2

3

5

2 5

4

6

5
2

6

6

7

8

Figure 4: The overall architecture for AQFP-based GCN implementation.

bit-streams and provides the desired multi-bit intermediate
result (Section 3.5). By introducing these three components,
our proposed AQFP-based architecture paradigm enables
efficient and accurate combination computation in GCNs. It
overcomes the limitations of crossbar size and output preci-
sion, making it feasible to leverage the advantages of AQFP
technology for GCN computations while maintaining the
required accuracy.

3.3 GCN Aggregation Computation
During the combination computation phase, the results for
𝑌 = 𝑋𝑊 are calculated. These results are then stored in reg-
isters during the interim storage phase. In the next step, the
relevant data is read from the registers and mapped into the
crossbar arrays using the addresses provided by the graph.
Once the data is properly placed in each AQFP crossbar tile
for the aggregation computation, all crossbar tiles associated
with the aggregation computation perform the computa-
tion in parallel, resulting in the generation of outputs. If
these results are for the first layer, they are written back to
the crossbar associated with the combination computation
through an AQFP buffer to convert it back to binary val-
ues. This enables the computation for the second layer to be
started and performed in a similar manner to that of the first
layer, as discussed earlier.

The architecture size can be adapted flexibly to the graph
dataset that is being processed. And the crossbar size is de-
signed according to the number of GCN hidden futures.

3.4 AQFP-based Crossbar Architecture
Figure 5 illustrates the circuit architecture of AQFP-based
crossbar. Following the work [85], the binarized weights are
pre-stored in 1-bit AQFP logic-in-memory (LiM) cells and
multiplied by an in-cell XNORmacro. The resulting output of
each LiM cell corresponds to the multiplication of the input
feature matrix input from each row of the crossbar, and the

LiM LiM LiM
Crossbar Synapse Array

AQFP buffer adjustment

Neuron Circuit

Linear probability
distribution

LiM LiM LiM

LiM LiM LiM

AQFP
Buffer

AQFP
Buffer

Figure 5: AQFP-based Crossbar Architecture.

corresponding pre-stored weight. Notably, this approach de-
viates from the conventional popcount-based accumulation
method used in BNNs. Instead, we adopt an analog summa-
tion technique that directly adds up all the outputs, taking
advantage of the fact that AQFP represents logic ’1’ and ’0’
using positive and negative current pulses. Consequently,
the accumulated result, represented by the current sum-up of
each column in the synapse array, is subsequently transmit-
ted to the adjusted AQFP buffer for next-level computation.

3.5 Stochastic Computing-based
Accumulation

According to [50, 85], the randomized behavior that appears
in the AQPF buffer presents an output probability depen-
dence on the input current amplitude, which can provide a
sufficient level of stochastic numbers (SNs) through a certain
observation windowwith almost no hardware overhead. The
output AQFP buffer can efficiently convert the attenuated

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

APC APC APC APC

GCN Combination Feature Map

01
01

1

10
10

0

00
10

1

11
10

1

Figure 6: Architecture design of SC-based accumulation
module.

output current into SNs to resolve the possible accuracy loss
introduced by the analog current addition.
For example, as shown in Figure 6, for each clock phase,

the AQFP buffer of the crossbar will generate a 1-bit output
with the probability of ‘1’ or ‘0’ depending on the accumu-
lated current from the corresponding crossbar column.When
we use an observation window for the output, we can obtain
an output bit-stream, which is naturally a stochastic number.
To perform the accumulation of stochastic numbers (SNs)
across different crossbars, we utilize approximate parallel
counters (APCs) [47] at the output of the module. Note that
all logic cells and circuits, including APCs and comparators,
are designed using the AQFP standard cell library. This li-
brary comprises AQFP logic gates such as AND, OR, buffer,
inverter, majority, splitter, and read-out interfaces. By utiliz-
ing the AQFP standard cell library, we ensure compatibility
and seamless integration of all logic elements in our proposed
architecture.

In contrast to the approach presented in [50], which exclu-
sively employs the stochastic computing-based accumulation
module to address the limited scalability of AQFP crossbars,
our method harnesses the power of stochastic computing
to achieve a broader bit-width precision in the intermediate
results, thereby meeting the accuracy requirements of Graph
Convolutional Networks (GCN). The detailed algorithm is
elaborated upon in Section 4.2, and the corresponding accu-
racy analysis is provided in Section 5.5.

However, the standard AQFP buffer exhibits a non-linear
randomized distribution in terms of input current, which
can introduce distortion and mismatches in the generated
stochastic numbers. To overcome this challenge and fully
exploit the randomized behavior of the AQFP buffer, we
adjust the device parameter in the standard AQFP buffer to
achieve a nearly linear probability distribution as shown in
Section 3.6.

Figure 7: The relationship between output probability
of "1" with input current on AQFP buffer based on
different 𝛽𝐿 .

3.6 AQFP Buffer Adjustment
In order to use AQFP-buffer to generate multi-bit intermedi-
ate results, we need to modify the AQFP design to increase
the geometric parameter 𝛽𝐿 and achieve a more linear dis-
tribution in the “grayzone". This parameter is proportional
to the number of flux quanta that can be screened by the
Josephson junctions’ maximum critical current. Implement-
ing a larger 𝛽𝐿 value decreases the switching sensitivity to
the input current, resulting in a more stable slope, as shown
in Figure 7.

To address the non-linear randomized distribution of the
classic AQFP buffer, we deploy an adjustment mechanism to
achieve a linear probability distribution. This adjustment is
crucial for fully leveraging the randomized behavior of the
AQFP buffer as a stochastic computing bit-stream generator.

3.7 AQFP Adjusted Buffer Behavior
Analysis

As mentioned above, we use adjusted AQFP buffers to func-
tion as a stochastic number generator. We adjust the ran-
domized distribution into the linear format to satisfy the
stochastic computing requirement and achieve integer inter-
mediate results in combination computation. In our research,
conducted at a temperature of 4.2K, the probability distri-
bution incurred by the randomized behavior is shown in
Figure 7, which presents the output probability of ’1’ for
adjusted AQFP buffer corresponding to a given input current
amplitude at the micro-ampere level. The formulation can
be denoted as:

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

𝑃 (𝐼𝑖𝑛) =


0, 𝐼𝑖𝑛 < −Δ𝐼𝑖𝑛/2
0.5 + 2𝐼𝑖𝑛/Δ𝐼𝑖𝑛, −Δ𝐼𝑖𝑛/2 ≤ 𝐼𝑖𝑛 ≤ Δ𝐼𝑖𝑛/2
1, 𝐼𝑖𝑛 > Δ𝐼𝑖𝑛/2

(1)

where 𝐼𝑖𝑛 is the input current amplitude of the AQFP buffer,
and Δ𝐼𝑖𝑛 means the length of the “gray-zone”.
Considering the impact of superconductive inductance

which incurs the current attenuation, the accumulated cur-
rent inside each column of the crossbar would decrease when
the crossbar size becomes larger (has additional inputs in the
merging circuits). Assuming the accumulated current ampli-
tude in each column of the crossbar representing the value
of “1” (unit current) be denoted as𝑈 (𝐶), which is negatively
correlated with the crossbar number of inputs 𝐶 , then the
value presented by the accumulated current (which is also the
input current of AQFP buffer) is denoted as 𝑉𝑖𝑛 = 𝐼𝑖𝑛/𝑈 (𝐶).
Thus, we can rewrite the probability distribution equation
(1) into the value form (when 𝐼𝑖𝑛 drops into Δ𝐼𝑖𝑛):

P (𝑉𝑖𝑛 |Δ𝐼𝑖𝑛,𝐶) = 0.5 + 2𝑉𝑖𝑛𝑈 (𝐶)
Δ𝐼𝑖𝑛

, (2)

which bridges the software training algorithm with the hard-
ware configuration.

4 AQFP-aware GNN Hybrid Quantization
Training Algorithm

4.1 Graph Convolutional Network
Graph Convolutional Network (GCN) [49] is a very popular
member of the graph neural network family. Here, we show
a brief review of GCN. Given an undirected graph 𝐺 , one
layer of the graph convolution operation can be described
as:

𝑋 (𝑙+1) = 𝜎

(
𝐴̃𝑋 (𝑙)𝑊 (𝑙)

)
, (3)

where 𝜎 expresses the activation function, 𝐴̃ denotes the
adjacency matrix, 𝑋 (𝑙) means the input node feature map of
the 𝑙-th layer,𝑊 (𝑙) means the weight matrix of the 𝑖-th layer
which contains the learnable parameters.

From a spatial methods perspective, the graph convolu-
tion layer in Graph Convolutional Networks (GCN) can be
decomposed into two distinct steps: combination and ag-
gregation. The first step is the combination step, denoted
as 𝑌 (𝑙) = 𝑋 (𝑙)𝑊 (𝑙) , performing simple matrix multiplica-
tions of weights and computed feature vectors associated
with vertices. The second step aggregation, denoted as 𝐴̃𝑌 (𝑙) ,
requires graph traversal using an adjacency matrix that rep-
resents connections between vertices. Notably, the adjacency
matrix of a graph structure is extremely sparse (with a den-
sity around 0.1% level or even lower), it requires compression
to perform an efficient hardware implementation.

4.2 AQFP logic-aware GCN Hybrid
Quantization Co-design

4.2.1 Binarization of Weight Matrix and Node Feature. Fol-
lowing the conventional GCN binarization framework, such
as [7, 81], we perform binarization quantization for both
weight matrix𝑊 ∈ R𝐹 (𝑙)×𝐹 (𝑙+1) and input node feature 𝑋 ∈
R𝑁×𝐹

(𝑙) , where 𝐹 (𝑙) means the feature dimension of the 𝑖-th
layer, N means the number of nodes. The binarization can
be described as:

𝑊
(𝑙)

:, 𝑗 ⇒ 𝛼
(𝑙)
𝑗

sign
(
𝑊
(𝑙)

:, 𝑗

)
(4)

where𝑊 (𝑙)
:, 𝑗 means the 𝑗-th column of𝑊 (𝑙) , and 𝛼 (𝑙)

𝑗
is the

per-column scaling factor computed by the 𝐿1 norm of the
corresponding column:

𝛼
(𝑙)
𝑗

=
1

𝐹 (𝑙+1)

𝑊 (𝑙)
:, 𝑗

1
, (5)

After the binarization, the binarized weight 𝑊̃ contains
two components: the binarymatrix𝑊̂ (𝑙) = sign

(
𝑊 (𝑙)) which

be computed in the crossbar and the scaling factor vector
𝛼 (𝑙) which can be considered in the adjusted AQFP buffer.
The input node feature map 𝑋 (𝑙) is binarized in a similar
manner. The only difference is that we use one single scaling
factor 𝛽 (𝑙) for the whole matrix, preventing mismatches on
AQFP devices. Thus, the entire combination computation
can be converted to:

𝑌
(𝑙)
𝑖, 𝑗

= 𝛼
(𝑙)
𝑗
𝛽 (𝑙)𝑋 (𝑙)

𝑖,: 𝑊̂
(𝑙)

:, 𝑗 . (6)

where 𝑋
(𝑙)
𝑖,: 𝑊̂

(𝑙)
:, 𝑗 =

∑𝐹 (𝑙)
𝑘=1 𝑋

(𝑙)
𝑖,𝑘
· 𝑊̂ (𝑙)

𝑘,𝑗
presents the matrix

multiplication between binarized input with weight. The
binarized weight 𝑊̂ (𝑙)

𝑘,𝑗
is pre-stored in the 𝑘-th row, 𝑗-th

column of AQFP crossbar LiM, while the binarized input
value 𝑋

(𝑙)
𝑖,𝑘

is presented by the direction of the 𝑖-th input
current at the 𝑘-th row of the crossbar. For a toy example,
if 𝑋 (𝑙)

𝑖,: = {0, 1, 1};𝑊̂ (𝑙)
𝑘,𝑗

= {1, 1, 0}𝑇 , then the value of the

combination result 𝑌 (𝑙)
𝑖, 𝑗

= 𝛼
(𝑙)
𝑗
𝛽 (𝑙) (0 + 1 + 0) = 𝛼

(𝑙)
𝑗
𝛽 (𝑙) . For

the gradient approximation in back-propagation, we follow
the setting of [81].

4.2.2 AQFP-aware Multi-bit Quantization for Combination
Computation Result. Asmentioned earlier, conventional GCN
binarization frameworks, such as [81], do not consider the
intermediate result’s optimization. This omission creates in-
efficiency and hinders the seamless mapping of binarized
GCN frameworks to hardware, especially for AQFP-based de-
vices. Due to the significant accuracy degradation observed
when directly binarizing the combination computation re-
sults (please refer to the ablation study in Section 5.5), we
propose to use a hybrid quantization scheme and reserve

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

low-bit precision for combination computation results to
preserve the accuracy.
For 𝑚-bit quantization, we derive the quantized values

from the set:

S(𝑚) = 𝛾 (𝑙) × {−1, (2
2𝑚 − 1

− 1), (4
2𝑚 − 1

− 1), . . . , 1}, (7)

where 𝛾 is the scaling factor, which is a learnable value fixed
in the inference period. Then the quantizer function from
the original floating-point matrix 𝑌 to an𝑚-bit value matrix
𝑌 is expressed as

𝑌 (𝑙) = 𝛾 (𝑙) · ℎ−1
(

1
2𝑚 − 1

· round
(
(2𝑚 − 1) · ℎ

(
⌈𝑌 (𝑙) , 𝛾 (𝑙) ⌋

)))
,

(8)
where ℎ(·) shifts a value within [−1, +1] into the range of
[0, 1] (e.g., ℎ(𝑥) = 𝑥/2 + 0.5), and ⌈𝑌 (𝑙) , 𝛾 (𝑙)⌋ clips each ele-
ment in 𝑌 (𝑙) by:

⌈𝑌 (𝑙)
𝑖, 𝑗

, 𝛾 (𝑙)⌋ =


−1, 𝑌

(𝑙)
𝑖, 𝑗

< −𝛾 (𝑙)

𝑌
(𝑙)
𝑖, 𝑗
/𝛾 (𝑙) , −𝛾 (𝑙) ≤ 𝑌

(𝑙)
𝑖, 𝑗
≤ 𝛾 (𝑙)

1, 𝑌
(𝑙)
𝑖, 𝑗

> 𝛾 (𝑙)
. (9)

To fully leverage the randomized behavior of AQFP buffers
for generating the stochastic numbers, we need to map the
multi-bit quantization levels into the randomization distribu-
tion presented by equation (2). Comparing equation (2) with
(9), we find the clipping and the randomization distribution
in the value domain have the same format. For combination
computation in 𝑙-th layer, given the 𝑖-th row of the input node
feature, the value represented by the accumulated current
in the 𝑗-th column in the crossbar 𝑉 (𝑙)

𝑖𝑛,𝑖, 𝑗
= 𝑌

(𝑙)
𝑖, 𝑗
/(𝛼 (𝑙)

𝑗
𝛽 (𝑙)).

Consequently, AQFP-based device and the quantized model
can be bridged by setting the hardware configuration Δ𝐼𝑖𝑛
for 𝑙-th layer and 𝑗-th column as:

Δ𝐼 (𝑙)
𝑖𝑛,𝑗

=
2𝛾 (𝑙)𝑈 (𝐶)
𝛼
(𝑙)
𝑗
𝛽 (𝑙)

(10)

whichmakes it feasible to generate the multi-bit combination
result with scaling factors by AQFP buffer.

4.3 Graph Boundary Edge Re-growth
Partition Algorithm

In the field of hardware parallelism, handling large graph
datasets requires breaking them down into manageable sub-
graphs that can be individually processed. Traditional graph
partitioning methods, while valuable, have presented specific
challenges. Various methods have been developed for graph
training and inference partitioning, including neighborhood
sampling [34], graph partitioning [18, 29, 46], and boundary
sampling [80]. However, shortcomings have been identified
in these methods. Neighborhood sampling-based approaches,
for instance, can increase inference latency and processing

time due to the graph sampling process [34]. Moreover, the
METIS library [46, 80], while offering a basic graph parti-
tioning solution, can create subgraphs devoid of inter-cluster
connections, thereby resulting in decreased inference accu-
racy. BNS-GCN [80] attempted to address this issue by sam-
pling first-degree neighbors during training, yet the analysis
of the tradeoff between inference efficiency and partition
accuracy was found to be lacking.

Algorithm 1 Graph Boundary Edge Re-growth Partition
Algorithm
Require: 𝐴, 𝑋 {Graph input as adjacent list and embedding}

1: 𝐴0, 𝐴1, ..., 𝐴𝑘 ← METIS_PARTITION(𝐴) {Conduct a
METIS partition algorithm on 𝐴}

2: for 𝑖 = 0 to 𝑘 do
3: 𝐸𝑖 ← DETECT_BOUNDARY_EDGES(𝐴𝑖) {Detect all

boundary edges of partition 𝐴𝑖 }
4: 𝐴𝑖 ← 𝐴𝑖 ∪ 𝐸𝑖 {Regrow the boundary edges}
5: end for
6: return 𝐴0, 𝐴1, ..., 𝐴𝑘 {Return the graph partitions}

To construct the partitions of graph datasets, the METIS al-
gorithm [46, 80] has been employed, yielding n partitions of
nodes: V = [V1, · · · V𝑛], where V𝑖 represents the nodes
in the i-th partition. These partitions are represented as
𝐺𝑖 = [𝐺1, · · · ,𝐺𝑛], where𝐺𝑖 consists of the nodes and edges
withinV𝑖 . Subsequently, the nodes are reorganized, and the
adjacency matrix is partitioned into 𝑖2 sub-matrices. Each
diagonal sub-block 𝐴𝑖𝑖 represents an adjacency matrix con-
taining intra-connections within V𝑖 , while diagonal block
matrix 𝐴 is the adjacency matrix for 𝐺 , with 𝐴 𝑗𝑘 (𝑗 ≠ 𝑘) de-
noting inter-connections between two different partitionsV𝑗

andV𝑘 . The METIS algorithm, however, has been observed
to cause accuracy degradation during the inference stage.
The root cause of this problem is the removal of inter-cluster
edges, resulting in feature loss at the nodes and inhibiting
message passing between distinct clusters.
To overcome these challenges, we develop a regrowth-

after-partitioning algorithm, as detailed inAlgorithm 1, which
subdivides the graph into smaller sub-clusters and facilitates
the reconnection of edges and nodes between clusters. This
approach emphasizes the regeneration of boundary edges
between disconnected clusters to mitigate feature loss and
enable efficient message passing between inter-cluster nodes.

The regrowth-after-partitioning method features 4 signifi-
cant benefits:
• The partition algorithm can be conducted in parallel
with training, and the partition result can be reused
during inference.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

• At inference time, the partitioned graph improves en-
ables parallel graph processing, where each sub-graph
can be process separately by each AQFP device.
• The partition algorithm only leads to minor inference
FLOPs overhead, observing that the normal graph
datasets examined in this study contain approximately
only 10% to 25% 1-hop boundary edges (nodes) be-
tween clusters, depending on graph structure and num-
ber of partitions.
• With the proposed partition algorithm, the graph pro-
cessing accuracy is more robust when we increase the
number of partitions, as evidenced in Figure 8.

It demonstrates performance in terms of enhanced infer-
ence speed, reduced single-device memory usage, and mini-
mal accuracy degradation, thus overcoming the limitations
of existing methods.

20 21 22 23 24 25

Num. of partitions

0.725

0.750

0.775

0.800

Ac
cu

ra
cy

Accuracy vs Num. of partitions

w. bdy. val.
w. bdy. test.
w.o. bdy. val.
w.o. bdy. test.

+1.6%

Figure 8: Partition algorithm evaluation on Pubmed

Partition Algorithm Evaluation. Figure 8 presents an
evaluation of the partition algorithm on the PubMed dataset.
The plot provides a comparison of the accuracy between
our algorithm and the METIS [46, 80] algorithm, considering
cases with boundary edge recovery (w. bdy.) and without
boundary edge recovery (w.o. bdy.). It can be observed that
the test accuracy experiences significantly less degradation
when boundary edge recovery is employed, a phenomenon
that is particularly evident at higher partition numbers.

5 Experimental Evaluation
5.1 Experimental setup
AQFP hardware implementation employs a semi-automated
design method geared towards the AIST 4-layer 10 kA/cm2

niobium process (HSTP) [59]. Analog cells and circuits are
manually optimized at the Josephson-junction (JJ) level, while
logic cells and circuits utilize the AQFP standard cell library.
The entire circuit operates on a delay-line (microstrip line)
based clocking scheme [38] with a frequency of 5 GHz and a
5 ps inter-stage delay. Verification at the circuit level employs
a modified Josephson simulator, Jsim [25], accounting for
thermal noise.

For the GNN training, we focus on the transductive learn-
ing task. A two-layer GCN with 64 hidden features is used
as our model architecture. AQFP-aware hybrid quantization
is performed on this architecture to evaluate our overall per-
formance. Besides that, Adam [48] optimizer is used with a
learning rate of 0.001. The total training epoch is 1000, and
the dropout layers are utilized in the training process with a
dropout rate of 0.4.
Three datasets are used in our experimental evaluation:

Cora, CiteSeer, and PubMed, which are shown in Table 1.
The training strategies and hyperparameters keep the same
the same for all of them.

Table 1: Detailed information of three datasets: Cora,
CiteSeer, and PubMed. Density (𝐴) means the density
of the adjacency matrix.

Dataset Cora CiteSeer PubMed

#Nodes 2708 3327 19717
#Edges 5429 4732 44338

#Features 1433 3703 500
Density (𝐴) 0.144% 0.082% 0.023%
Classes 7 6 3

5.2 Visualization of Graph Boundary Edge
Re-growth Partition

In the context of graph partitioning and hardware accel-
eration, it is essential to understand the partitioning and
regrowth methodologies’ effect on the original sparse graph
structure. We illustrate an example of utilizing a partition
and regrowth technique in Algorithm 1, utilizing the Cora
dataset as an exemplar. As depicted in Fig. 9(a), the orig-
inal graph features irregular sparsity and comprises edge
connections dispersed across the entire matrix.

To facilitate the partitioning process, we employ theMETIS
library [46, 80] to reorder the graph into four primary clus-
ters. This reordered graph is presented in Fig. 9(b). We sub-
sequently extract the second graph cluster along with its
boundary nodes and connections, resulting in the graphical
representation seen in Fig. 9(c). Upon inspection, we discern
that the cluster maintains few boundary edge connections
with all other clusters.

To further optimize the partition, we aggregate the bound-
ary nodes and edges while disregarding other unused nodes.
The outcome is illustrated in Fig. 9(d). Through this process,
we discover that only a minimal number of boundary nodes
(112 nodes) are incorporated into the original cluster of 677
nodes. Consequently, the overall computational workload
remains largely unaffected.

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(a) Original graph (b) Clustered graph

(c) Cluster w. boundary (d) Aggregated cluster nodes

Figure 9: Graph partition and boundary regrowth pro-
cess on Cora dataset

The significance of the aforementioned partition and bound-
ary partition algorithm extends beyond structural rearrange-
ment. In the preprocessing stage, this approach enables us
to allocate distinct hardware to process each cluster, thereby
obtaining the classification label of each cluster’s inner node.
Notably, this strategy is executed without incurring sub-
stantial hardware overhead, underscoring its efficiency and
potential utility in hardware-accelerated graph processing.

5.3 Hardware Performance Analysis
As shown in Table 2, we compare our AQFP-based design
with multiple representative GNN frameworks based on dif-
ferent platforms and optimizations, including I-GCN [29],
AWB-GCN [28], GCoD [88], FlowGNN [66], HyGCN [86],
CoDG [56], REFLIP [42], and Cryo-CMOS [11]. Since the
existing ASIC-based GCN accelerators can also benefit from
77K cryogenic computing. We estimate the energy efficiency
of the 77K implementation of HyGCN according to [17] and
cooling consumption according to [11]. Our work shown
here uses 4 bits for combination results with 6 graph parti-
tions & boundary regrowth.

Without considering the cooling consumption, compared
with the CMOS-based framework I-GCN and AWB-GCN,
FPGA-based framework HyGCN, I-GCN, and FlowGNN, and
ASIC-based framework HyGCN, our AQFP-based implemen-
tation achieves significant improvement on both latency and
energy-efficiency perspectives in all three datasets. Com-
pared with the ReRAM-based framework CoDG-ReRAM, al-
though the latency is a little bit longer, our proposed frame-
work achieves 4 to 6 degrees of magnitude better energy
efficiency if we only consider the chip power dissipation.

This huge improvement comes from binarization, efficient
partition and mapping, and AQFP high-efficiency benefits.

5.4 Energy Consumption Comparison
Considering Cooling Consumption

Modern cryogenic computing often aims for two target low
temperatures, 77K and 4K, because the two temperatures
can be easily achieved by applying Liquid Nitrogen (LN)
and Liquid Helium (LHe), respectively. To satisfy the super-
conducting cooling requirement, our Low-level circuits are
measured at the 4K level within a liquid helium Dewar. No-
tably, the cooling cost for typical superconducting digital
circuits stands at approximately 400 times the chip power
dissipation [41]. Despite considering cryo energy, our pro-
posed framework still exhibits significantly higher energy ef-
ficiency compared to previous GNN acceleration approaches,
surpassing FPGA-based and ASIC work by about four orders
of magnitude, and ReRAM-based work by two to four orders
of magnitude.
Besides the superconducting devices, CMOS-based cryo-

genic devices have been investigated as an optional solution
as they can improve computer devices’ energy efficiency
due to the lower leakage current and wire latency [68, 91].
Multiple cryogenic CMOS-based works [3, 8, 60, 61, 64, 65]
are proposed to improve the overall hardware performance.
In addition to the conventional devices, our accelerator

is compared against Cryo-CMOS [11], which employs a
CMOS-based cryogenic technique to enhance hardware per-
formance under low operating temperatures. Since the cool-
ing consumption accounts for a major portion of energy
dissipation for cryogenic devices, to achieve better overall
energy efficiency, Cryo-CMOS is applied under 77K tempera-
ture to save the cooling consumption. According to the total
energy consumption, our results indicate that our framework
achieves 1.6 × 103, 8.4 × 103, and 1.7 × 104 times better en-
ergy efficiency under Cora, CiteSeer, and PubMed datasets,
respectively.
Regarding the 77K implementation of HyGCN, as dis-

cussed in Section 5.3, we estimate performance based on
prior studies [11, 17]. The cooling consumption of 77K is
about 9.65 times the device consumption [11]. Considering
the cooling consumption, 77K Cryo-CMOS can achieve about
1.5 times the energy efficiency of the conventional room tem-
perature CMOS. Even when accounting for cooling consump-
tion, our approach achieves energy efficiency improvements
ranging from 9.8×103 to 1.9×104 for various graph datasets,
consistently delivering faster inference speeds.
As we delve into the emerging field of AQFP-based de-

vices, it is essential to consider the potential for further ad-
vancements, such as new production processes and new
superconducting materials. This could lead to even lower

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

Table 2: Comparison of latency in 𝜇s, and energy efficiency in Graph/kJ on Cora, CiteSeer, and PubMed dataset. Our
work uses 4 bits with 6 graph partitions & boundary regrowth. Representative works I-GCN [29], AWB-GCN [28],
FlowGNN [66], HyGCN [86], GCoD [88], CoDG [56], REFLIP [42] and Cryo-CMOS [11] are compared. Energy
efficiency: graphs/kJ.

Work Platform Optimization Cora CiteSeer PubMed
Latency Energy-efficiency Latency Energy-efficiency Latency Energy-efficiency

Without Considering Cooling Consumption
I-GCN D5005 FPGA Graph reorder 1.3 7.1E6 1.9 3.7E6 15.1 5.3E5

AWB-GCN D5005 FPGA Load balancer 2.3 3.1E6 4.0 1.9E6 30 2.5E5
GCoD VCU128 FPGA quant, reorder 4.41 9.6E5 7.05 5.8E5 56.38 6.8E4

FlowGNN U50 FPGA Message passing 6.91 7.8E6 8.33 6.44E6 53.22 1.01E6
REFLIP ReRAM fixed point 0.91 2.1E7 1.14 1.1E7 14.55 9.7E5

CoDG-ReRAM ReRAM quant, reorder 0.18 1.2E8 0.38 4.9E7 3.48 4.8E6
HyGCN ASIC N/A 21 7.2E6 300 4.9E5 640 2.3E5
HyGCN ASIC (77K) N/A ∼21 9.9E6 ∼300 6.7E5 ∼640 3.2E5

Cryo-CMOS ASIC (77K) N/A - 1.2E8 - 7.9E6 - 3.8E6
Ours AQFP Hybrid Quant, SC 1.32 7.0E12 1.40 2.5E12 10.8 2.4E12

Considering Cooling Consumption
HyGCN ASIC (77K) N/A ∼21 9.3E5 ∼300 6.3E4 ∼640 3.0E4

Cryo-CMOS ASIC (77K) N/A - 1.1E7 - 7.4E5 - 3.5E5
Ours AQFP Hybrid Quant, SC 1.32 1.8E10 1.40 6.2E9 10.8 5.9E9

overall energy dissipation for AQFP-based devices in the fu-
ture, making them even more promising for energy-efficient
hardware solutions.

5.5 Combination Computation Bit-width
Ablation Study

Here, we provide the ablation study for both graph bound-
ary edge re-growth partition and different bit-widths of the
combination computation result 𝑌 . We also list the model
performance result of the representative FPGA-based frame-
work GCoD [56] to be the baseline and have the comparison.

As shown in Table 3, when bit-width of 𝑌 equals 1, we
achieve a fully binarized GCN model, in which we binarize
both the activation, weight, and intermediate result. This one
achieves super higher energy efficiency and the shortest la-
tency but incurs a huge accuracy degradation, i.e., about 3∼7
% lower accuracy compared with GCoD. When the number
of bits in 𝑌 reaches 4, our framework achieves a similar level
or even higher model accuracy compared with the baseline.
When increasing the bit-width of the combination result

(Y), we observe that higher model accuracy is achieved at the
cost of lower energy efficiency and longer inference latency.
using Cora as an example, transitioning from 1-bit to 4-bit
results in a notable accuracy improvement, from 76.4% to
80.0%. However, energy efficiency decreases from 4.7 × 1013

graphs/kJ to 7.2× 1012 graphs/kJ, and latency increases from
1.14𝜇s to 7.66𝜇s. Moreover, the incorporation of a partition
algorithm proves to be a valuable strategy. It significantly
reduces inference latency while maintaining a similar level
of accuracy and energy efficiency. In the case of the 4-bit

combination result version, the use of the partition algorithm
decreases latency from 7.66𝜇s to 1.32𝜇s. As a result, our pref-
erence leans toward the adoption of the ’4-bit + partition’
version. This choice places a primary emphasis on preserving
high accuracy while simultaneously striking a good trade-
off between accuracy and energy efficiency and maintaining
lower latency. Compared with the baseline GCoD, our ’4-bit +
partition’ version achieves 3.3× to 5.2× faster inference speed
with super higher energy efficiency whether considering the
cooling consumption or not, while preserving a similar accu-
racy level. Regarding overall system accuracy, our hardware-
software co-design integrates AQFP’s inherent randomness
into the stochastic computing training algorithm, resulting
in promising accuracy. Furthermore, the GCN architecture
only has two layers, ensuring that SC error accumulation
remains fully controllable. Previous studies [12, 50] have also
demonstrated the reliability of combining AQFP with SC in
deep neural networks, further validating our approach. Com-
bined with graph boundary edge re-growth partition, the
latency is significantly improved with the help of hardware
parallelism, while preserving both the model accuracy and
the energy efficiency.

5.6 AQFP-based Application Discussion
Compared to the well-established CMOS technology, super-
conducting electronics stands out as an emerging field, with
anticipated enhancements in scalability and performance
forthcoming through future advances in fabrication tech-
nologies. The current scalability

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 3: Ablation study for the graph boundary edge re-
growth partition (part.) and bit-width of combination
computation result 𝑌 . GCoD [88] is listed as a baseline
for comparison. Here, model accuracy (%), inference
delay (𝜇s), and energy efficiency (EE, Graph/kJ) are com-
pared for different implementations evaluated onCora,
CiteSeer, and PubMed datasets.

GCoD
[88]

Our Framework
(1-bit for weight and activation)

Y bit - 1 bit 2 bit 3 bit 4 bit 4 bit + part.
Cora

Acc. 79.5 76.4 77.7 79.7 80.0 80.2
Delay 4.41 1.14 2.23 3.86 7.66 1.32
EE 9.6E5 4.7E13 2.4E13 1.4E13 7.2E12 7.0E12

CiteSeer
Acc. 69.6 62.9 64.6 67.8 68.2 68.3
Delay 7.05 1.67 2.81 4.42 8.31 1.40
EE 5.8E5 1.7E13 8.3E12 5.2E12 2.6E12 2.5E12

PubMed
Acc. 78.6 75.6 76.4 77.3 77.9 77.8
Delay 56.38 7.25 15.6 28.4 58.0 10.8
EE 6.8E4 1.7E13 8.3E12 5.1E11 2.5E12 2.4E12

For the future application of the proposed work, we target
the AI acceleration component of the next-generation hetero-
geneous supercomputer. The proposed neural network can
serve as an integral component within a high-performance
superconducting-based general computing system [6], fa-
cilitating the acceleration of AI-based computing. With de-
veloped superconducting-CMOS interface technology [19,
37, 58], and the ongoing development of superconducting-
quantum interface [76], this system shows great promise
for advancing the development of the next-generation su-
percomputer through heterogeneous integration with both
cryogenic CMOS memory systems [3, 40, 64] and quantum
computing systems [4, 45]. The proposed neural network can
serve as an integral component within a high-performance
superconducting-based general computing system [6], facili-
tating the acceleration of AI-based computing. With devel-
oped superconducting-CMOS interface technology, includ-
ing Josephson Latching Driver (JLD) [19, 37] and nanocry-
otron (nTron) [58], which can convert small superconducting
pulses (usually several microvolts to millivolts) to sufficient
voltage-level signals, this system shows great promise for
advancing the development of the next-generation super-
computer through heterogeneous integration with cryogenic
CMOS memory systems [3, 40, 64]. On the other hand, the
ongoing development of superconducting-quantum inter-
face [76] shows that the AQFP-based computing system
presents a compelling interface for controlling supercon-
ducting qubits [22, 45] in quantum computing, owing to its

extremely low energy dissipation. Furthermore, their opera-
tion in a congruent thermal environment with superconduct-
ing qubits not only mitigates thermal discrepancies but also
fosters a streamlined integration on a singular platform. This
cohabitation underpins a symbiotic relationship between the
computation and control units, potentially facilitating the
amalgamation of efficient computation and precise control,
which is paramount in the scalable deployment of quantum
information systems.

6 Conclusion
In this paper, we propose a GCN acceleration framework
based on AQFP technology, systematically addressing the
multifaceted challenges in realizing ultra-efficient GCN accel-
erators. We first develop a regrowth-after-partitioning algo-
rithm to enable the AQFP hardware parallelism and acceler-
ate the aggregation computation while maintaining accuracy.
We propose two distinct AQFP-based architectures tailored
specifically for each of the combination and aggregation
stages. To unlock the extreme energy efficiency, we develop
a hybrid binarized/low-bit GCN hardware/software code-
sign that can be efficiently executed on AQFP-based devices.
Leveraging the AQFP randomized behavior, we adjust the
AQFP buffer design to achieve multi-bit intermediate results
and explore the bit-width at the output of the combination
step. To mitigate the gap between the software model with
hardware implementation, we propose an AQFP logic-aware
GCN Hybrid Quantization. A comparative evaluation with
existing GNN frameworks substantiates marked enhance-
ments in latency and energy efficiency. The study further
underscores the significance of AQFP as a next-generation
device/circuit technology, offering ultra-high energy effi-
ciency in GCN accelerators, with gains ranging from 1 × 104

to 1 × 106 compared to conventional CMOS technology. Our
framework demonstrates remarkable energy efficiency even
when considering the additional cooling consumption.

Acknowledgments
This research was supported in part by Semiconductor Re-
search Corporation (SRC) Artificial Intelligence Hardware
program (CD), and JST FOREST Program (Grant Number
JPMJFR226W, Japan) (OC).

References
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and

Eduard Alarcón. 2021. Computing graph neural networks: A survey
from algorithms to accelerators. ACM Computing Surveys (CSUR) 54,
9 (2021), 1–38.

[2] Sami Abu-El-Haija et al. 2020. N-gcn: Multi-scale graph convolution
for semi-supervised node classification. In uncertainty in artificial
intelligence.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

[3] Shamiul Alam, Md Shafayat Hossain, Srivatsa Rangachar Srinivasa,
and Ahmedullah Aziz. 2023. Cryogenic memory technologies. Nature
Electronics 6, 3 (2023), 185–198.

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. 2019. Quantum supremacy using a programmable
superconducting processor. Nature 574, 7779 (2019), 505–510.

[5] Adam Auten et al. 2020. Hardware acceleration of graph neural net-
works. In DAC.

[6] Christopher L Ayala, Tomoyuki Tanaka, Ro Saito, Mai Nozoe, Naoki
Takeuchi, and Nobuyuki Yoshikawa. 2020. Mana: A monolithic adi-
abatic integration architecture microprocessor using 1.4-zj/op un-
shunted superconductor josephson junction devices. IEEE Journal
of Solid-State Circuits 56, 4 (2020), 1152–1165.

[7] Mehdi Bahri et al. 2021. Binary graph neural networks. In CVPR.
[8] Arnout Beckers, Farzan Jazaeri, Andrea Ruffino, Claudio Bruschini,

Andrea Baschirotto, and Christian Enz. 2017. Cryogenic characteriza-
tion of 28 nm bulk CMOS technology for quantum computing. In 2017
47th European Solid-State Device Research Conference (ESSDERC). IEEE,
62–65.

[9] Pietro Bongini et al. 2021. Molecular generative graph neural networks
for drug discovery. Neurocomputing (2021).

[10] Adrian Bulat and Georgios Tzimiropoulos. 2019. Xnor-net++: Im-
proved binary neural networks. arXiv preprint arXiv:1909.13863 (2019).

[11] Ilkwon Byun, Dongmoon Min, Gyu-hyeon Lee, Seongmin Na, and
Jangwoo Kim. 2020. CryoCore: A fast and dense processor architecture
for cryogenic computing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 335–348.

[12] Ruizhe Cai et al. 2019. A stochastic-computing based deep learning
framework using adiabatic quantum-flux-parametron superconducting
technology. In ISCA.

[13] Yixin Cao et al. 2019. Multi-Channel Graph Neural Network for Entity
Alignment. In ACL.

[14] Cen Chen et al. 2021. DyGNN: Algorithm and Architecture Support
of Dynamic Pruning for Graph Neural Networks. In DAC.

[15] Olivia Chen et al. 2019. Adiabatic quantum-flux-parametron: Towards
building extremely energy-efficient circuits and systems. Scientific
reports (2019).

[16] Tianlong Chen et al. 2021. A unified lottery ticket hypothesis for graph
neural networks. In ICML.

[17] HL Chiang, TC Chen, JF Wang, S Mukhopadhyay, WK Lee, CL Chen,
WinSan Khwa, B Pulicherla, PJ Liao, KW Su, et al. 2020. Cold CMOS
as a power-performance-reliability booster for advanced FinFETs. In
2020 IEEE Symposium on VLSI Technology. IEEE, 1–2.

[18] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. 2019. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data
mining. 257–266.

[19] Fumihiro CHINA, Naoki TAKEUCHI, Hideo SUZUKI, Yuki YA-
MANASHI, Hirotaka TERAI, and Nobuyuki YOSHIKAWA. 2022. A
High-Speed Interface Based on a Josephson Latching Driver for Adi-
abatic Quantum-Flux-Parametron Logic. IEICE Transactions on Elec-
tronics E105.C, 6 (06 2022), 264–269. doi:10.1587/transele.2021sep0002

[20] Jungwook Choi, Zhuo Wang, et al. 2018. Pact: Parameterized clipping
activation for quantized neural networks. arXiv:1805.06085 (2018).

[21] John Clarke and Alex I Braginski. 2006. The SQUID handbook: Applica-
tions of SQUIDs and SQUID systems. John Wiley & Sons.

[22] John Clarke and Frank K Wilhelm. 2008. Superconducting quantum
bits. Nature 453, 7198 (2008), 1031–1042. doi:10.1038/nature07128

[23] Matthieu Courbariaux et al. 2016. Binarized neural networks: Training
deep neural networks with weights and activations constrained to+ 1

or-1. (2016).
[24] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015.

Binaryconnect: Training deep neural networks with binary weights
during propagations. In NeurIPS.

[25] Emerson S. Fang. 1989. A Josephson integrated circuit simulator (JSIM)
for superconductive electronics application.

[26] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation
learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428
(2019).

[27] T.V. Filippov et al. 1995. Signal resolution of RSFQ comparators. IEEE
Transactions on Applied Superconductivity (1995).

[28] Tong Geng et al. 2020. AWB-GCN: A graph convolutional network
accelerator with runtime workload rebalancing. In MICRO.

[29] Tong Geng et al. 2021. I-GCN: A graph convolutional network accel-
erator with runtime locality enhancement through islandization. In
MICRO.

[30] James E Gentle. 2003. Random number generation and Monte Carlo
methods. Vol. 381. Springer.

[31] C Lee Giles et al. 1998. CiteSeer: An automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries.

[32] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu,
Jiazhen Lin, Fengwei Yu, and Junjie Yan. 2019. Differentiable soft
quantization: Bridging full-precision and low-bit neural networks. In
ICCV. 4852–4861.

[33] Zhiwei Guo and Heng Wang. 2020. A deep graph neural network-
based mechanism for social recommendations. IEEE Transactions on
Industrial Informatics (2020).

[34] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive rep-
resentation learning on large graphs. Advances in neural information
processing systems 30 (2017).

[35] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In NIPS.

[36] Peng Han et al. 2019. GCN-MF: disease-gene association identification
by graph convolutional networks and matrix factorization. In KDD.

[37] N. Harada, N. Yoshikawa, A. Yoshida, and N. Yokoyama. 2004. Joseph-
son latching driver with a low bit-error rate. IEEE Transactions on
Applied Superconductivity 14, 4 (2004), 2031–2036. doi:10.1109/TASC.
2004.837112

[38] Yuxing He, Naoki Takeuchi, and Nobuyuki Yoshikawa.
2020. Low-latency power-dividing clocking scheme for
adiabatic quantum-flux-parametron logic. Applied Physics
Letters (2020). arXiv:https://doi.org/10.1063/5.0005612
https://doi.org/10.1063/5.0005612

[39] Zhezhi He and Deliang Fan. 2019. Simultaneously optimizing weight
and quantizer of ternary neural network using truncated gaussian
approximation. In CVPR.

[40] Yuki Hironaka, Yuki Yamanashi, and Nobuyuki Yoshikawa. 2020.
Demonstration of a single-flux-quantum microprocessor operating
with Josephson-CMOS hybrid memory. IEEE Transactions on Applied
Superconductivity 30, 7 (2020), 1–6.

[41] D Scott Holmes, Andrew L Ripple, and Marc A Manheimer. 2013.
Energy-efficient superconducting computing—Power budgets and re-
quirements. IEEE Transactions on Applied Superconductivity 23, 3 (2013),
1701610–1701610.

[42] Yu Huang et al. 2022. Accelerating graph convolutional networks
using crossbar-based processing-in-memory architectures. In HPCA.

[43] Ranggi Hwang et al. 2023. GROW: A Row-Stationary Sparse-Dense
GEMM Accelerator for Memory-Efficient Graph Convolutional Neural
Networks. In HPCA.

[44] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic
forecasting: A survey. Expert Systems with Applications (2022), 117921.

https://doi.org/10.1587/transele.2021sep0002
https://doi.org/10.1038/nature07128
https://doi.org/10.1109/TASC.2004.837112
https://doi.org/10.1109/TASC.2004.837112
https://arxiv.org/abs/https://doi.org/10.1063/5.0005612
https://doi.org/10.1063/5.0005612

Graph Convolutional Network Acceleration Using Adiabatic Superconductor Josephson Devices ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[45] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor
Lanting, Firas Hamze, Neil Dickson, Richard Harris, Andrew J Berkley,
Jan Johansson, Paul Bunyk, et al. 2011. Quantum annealing with
manufactured spins. Nature 473, 7346 (2011), 194–198.

[46] George Karypis and Vipin Kumar. 1998. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM Journal on
scientific Computing 20, 1 (1998), 359–392.

[47] Kyounghoon Kim et al. 2015. Approximate de-randomizer for stochas-
tic circuits. In ISOCC.

[48] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[49] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification
with graph convolutional networks. arXiv preprint arXiv:1609.02907
(2016).

[50] Zhengang Li et al. 2023. SupeRBNN: Randomized Binary Neu-
ral Network Using Adiabatic Superconductor Josephson Devices.
arXiv:2309.12212 (2023).

[51] Shengwen Liang et al. 2020. Deepburning-gl: an automated framework
for generating graph neural network accelerators. In ICCAD.

[52] Shengwen Liang et al. 2020. Engn: A high-throughput and energy-
efficient accelerator for large graph neural networks. IEEE Trans.
Comput. (2020).

[53] Xiaofan Lin et al. 2017. Towards accurate binary convolutional neural
network. NeurIPS (2017).

[54] Zechun Liu et al. 2020. Reactnet: Towards precise binary neural net-
work with generalized activation functions. In ECCV.

[55] K. Loe and E. Goto. 1985. Analysis of flux input and output Josephson
pair device. IEEE Transactions on Magnetics (1985).

[56] Yixuan Luo et al. 2022. CoDG-ReRAM: An Algorithm-Hardware Co-
design to Accelerate Semi-Structured GNNs on ReRAM. In ICCD.

[57] Andrew Kachites McCallum et al. 2000. Automating the construction
of internet portals with machine learning. Information Retrieval (2000).

[58] Adam N. McCaughan and Karl K. Berggren. 2014. A
Superconducting-Nanowire Three-Terminal Electrothermal De-
vice. Nano Letters 14, 10 (2014), 5748–5753. doi:10.1021/nl502629x
arXiv:https://doi.org/10.1021/nl502629x PMID: 25233488.

[59] S. Nagasawa et al. 2005. Reliability evaluation of Nb 10 kA/cm2 fabrica-
tion process for large-scale SFQ circuits. Physica C: Superconductivity
and its Applications (2005).

[60] SS Teja Nibhanupudi, Siddhartha Raman Sundara Raman,Mikaël Cassé,
Louis Hutin, and Jaydeep P Kulkarni. 2021. Ultra-low-voltage UTBB-
SOI-based, pseudo-static storage circuits for cryogenic CMOS applica-
tions. IEEE Journal on Exploratory Solid-State Computational Devices
and Circuits 7, 2 (2021), 201–208.

[61] Divya Prasad, Manoj Vangala, Mudit Bhargava, Arnout Beckers,
Alexander Grill, Davide Tierno, Krishnendra Nathella, Thanus-
ree Achuthan, David Pietromonaco, James Myers, et al. 2022.
Cryo-computing for infrastructure applications: A technology-to-
microarchitecture co-optimization study. In 2022 International Electron
Devices Meeting (IEDM). IEEE, 23–5.

[62] Haotong Qin et al. 2020. Forward and backward information retention
for accurate binary neural networks. In CVPR.

[63] Mohammad Rastegari et al. 2016. Xnor-net: Imagenet classification
using binary convolutional neural networks. In ECCV.

[64] Rakshith Saligram, Suman Datta, and Arijit Raychowdhury. 2021. Cry-
oMem: A 4K-300K 1.3 GHz eDRAM macro with hybrid 2T-gain-cell in
a 28nm logic process for cryogenic applications. In 2021 IEEE Custom
Integrated Circuits Conference (CICC). IEEE, 1–2.

[65] Rakshith Saligram, Divya Prasad, David Pietromonaco, Arijit Ray-
chowdhury, and Brian Cline. 2021. A 64-bit arm CPU at cryogenic
temperatures: Design technology co-optimization for power and per-
formance. In 2021 IEEE Custom Integrated Circuits Conference (CICC).

IEEE, 1–2.
[66] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and

Cong Hao. 2022. FlowGNN: A Dataflow Architecture for Universal
Graph Neural Network Inference via Multi-Queue Streaming. arXiv
preprint arXiv:2204.13103 (2022).

[67] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and
Cong Hao. 2023. FlowGNN: A Dataflow Architecture for Real-Time
Workload-Agnostic Graph Neural Network Inference. In 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 1099–1112.

[68] Oleg Semenov, Arman Vassighi, and Manoj Sachdev. 2002. Impact
of technology scaling on thermal behavior of leakage current in sub-
quarter micron MOSFETs: perspective of low temperature current
testing. Microelectronics Journal 33, 11 (2002), 985–994.

[69] Prithviraj Sen et al. 2008. Collective classification in network data. AI
magazine 29, 3 (2008), 93–93.

[70] Weijing Shi and Raj Rajkumar. 2020. Point-gnn: Graph neural network
for 3d object detection in a point cloud. In CVPR.

[71] Xiaowu Sun et al. 2019. Formal verification of neural network con-
trolled autonomous systems. In HSCC.

[72] Hiroshi Takayama, Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki
Yoshikawa. 2018. A random-access-memory cell based on quantum flux
parametron with three control lines. In Journal of Physics: Conference
Series, Vol. 1054. IOP Publishing, 012063.

[73] Naoki Takeuchi et al. 2013. Measurement of 10 zJ energy dissipation
of adiabatic quantum-flux-parametron logic using a superconducting
resonator. Applied Physics Letters (2013).

[74] N. Takeuchi et al. 2014. Reversible logic gate using adiabatic super-
conducting devices. Scientific Reports 4 (2014).

[75] Naoki Takeuchi, Dan Ozawa, Yuki Yamanashi, and Nobuyuki
Yoshikawa. 2013. An adiabatic quantum flux parametron as an ultra-
low-power logic device. Superconductor Science and Technology (2013).

[76] Naoki Takeuchi, Taiki Yamae, Taro Yamashita, Tsuyoshi Yamamoto,
and Nobuyuki Yoshikawa. 2023. Scalable quantum-bit controller using
adiabatic superconductor logic. arXiv:2310.06544 [physics.app-ph]

[77] Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki Yoshikawa. 2015.
Adiabatic quantum-flux-parametron cell library adopting minimalist
design. Journal of Applied Physics 117, 17 (5 2015), 173912.

[78] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention net-
works. arXiv preprint arXiv:1710.10903 (2017).

[79] M Mitchell Waldrop. 2016. The chips are down for Moores law. Nature
News 530, 7589 (2016).

[80] Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. 2022.
BNS-GCN: Efficient full-graph training of graph convolutional net-
works with partition-parallelism and random boundary node sampling.
Proceedings of Machine Learning and Systems 4 (2022), 673–693.

[81] Junfu Wang et al. 2021. Bi-gcn: Binary graph convolutional network.
In CVPR.

[82] YukeWang et al. 2021. GNNAdvisor: An adaptive and efficient runtime
system for GNN acceleration on GPUs. In OSDI.

[83] Zonghan Wu et al. 2020. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and learning systems
(2020).

[84] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826
(2018).

[85] Tomoharu Yamauchi et al. 2023. Design and Implementation of Energy-
Efficient Binary Neural Networks Using Adiabatic Quantum-Flux-
Parametron Logic. TAS (2023).

[86] Mingyu Yan et al. 2020. Hygcn: A gcn accelerator with hybrid archi-
tecture. In HPCA.

https://doi.org/10.1021/nl502629x
https://arxiv.org/abs/https://doi.org/10.1021/nl502629x
https://arxiv.org/abs/2310.06544

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Trovato et al.

[87] Jiwei Yang et al. 2019. Quantization networks. In CVPR.
[88] Haoran You et al. 2022. Gcod: Graph convolutional network accelera-

tion via dedicated algorithm and accelerator co-design. In HPCA.
[89] Sixing Yu et al. 2022. Topology-Aware Network Pruning using Multi-

stage Graph Embedding and Reinforcement Learning. In ICML.
[90] Yongan Zhang et al. 2021. G-CoS: Gnn-accelerator co-search towards

both better accuracy and efficiency. In ICCAD.
[91] Yan Zhang, Dharmesh Parikh, Karthik Sankaranarayanan, Kevin

Skadron, and Mircea Stan. 2003. Hotleakage: A temperature-aware
model of subthreshold and gate leakage for architects. Technical Report.

Citeseer.
[92] Ling Zhao et al. 2019. T-gcn: A temporal graph convolutional network

for traffic prediction. IEEE transactions on intelligent transportation
systems (2019).

[93] Shuchang Zhou, Yuxin Wu, et al. 2016. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients.
arXiv:1606.06160 (2016).

[94] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2017.
Trained ternary quantization. In ICLR.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Preliminaries of GCN Accelerators
	2.2 Cryogenic Devices and AQFP Superconducting Logic
	2.3 Stochastic Computing
	2.4 Model Quantization and Binary Neural Network

	3 Architecture Design for AQFP-based GCN accelerator
	3.1 GCN Computation Initialization
	3.2 GCN Combination Computation
	3.3 GCN Aggregation Computation
	3.4 AQFP-based Crossbar Architecture
	3.5 Stochastic Computing-based Accumulation
	3.6 AQFP Buffer Adjustment
	3.7 AQFP Adjusted Buffer Behavior Analysis

	4 AQFP-aware GNN Hybrid Quantization Training Algorithm
	4.1 Graph Convolutional Network
	4.2 AQFP logic-aware GCN Hybrid Quantization Co-design
	4.3 Graph Boundary Edge Re-growth Partition Algorithm

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Visualization of Graph Boundary Edge Re-growth Partition
	5.3 Hardware Performance Analysis
	5.4 Energy Consumption Comparison Considering Cooling Consumption
	5.5 Combination Computation Bit-width Ablation Study
	5.6 AQFP-based Application Discussion

	6 Conclusion
	Acknowledgments
	References

