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Abstract
Serving multiple inference tasks of deep neural networks
(DNNs) concurrently on a shared GPU is an established
method for maximizing hardware resource. Although DNN
compilers effectively generate optimal kernel code for in-
dividual DNN inferences, they fall short in optimizing for
concurrent tasks. This paper presents ConCo, a concurrency-
aware compilation scheme designed to optimize the execu-
tion of concurrent DNN inference tasks on a shared GPU.
ConCo dynamically generates multiple code variants, each
tailored to different GPU resource constraints, and efficiently
selects optimal variants at runtime according to concurrent
workload characteristics. To mitigate the substantial over-
head associated with multi-variant compilation, ConCo em-
ploys an optimal-code-sharing strategy, significantly accel-
erating compilation by leveraging commonalities across re-
source configurations. Evaluations demonstrate that ConCo
improves inference throughput by up to 1.2× and reduces
job completion time by up to 69.85% compared to existing
solutions.
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1 Introduction
Deep Neural Networks (DNNs) have found extensive appli-
cations in domains such as computer vision, autonomous
driving systems, and recommendation systems. To meet the
demands for real-time and efficient inference, Graphics Pro-
cessing Units (GPUs) have emerged as powerful parallel
processing hardware extensively utilized to accelerate the
DNN inference process. The shared utilization of GPU re-
sources has further propelled the efficient use of resources
and the pursuit of computational performance. By serving
multiple DNN inference tasks simultaneously, shared GPUs
not only enhance model utilization and improve the overall
throughput of inference tasks but also reduce costs [20, 46].
Consequently, research and optimization of DNN inference
on shared GPU resources have become crucial topics in the
current landscape of DNN applications.
With the evolution of deep learning, numerous complex

DNNmodels and diverse architectures of deep learning accel-
erators have emerged. Traditional deep learning frameworks
typically employ DNN libraries [5, 6, 15, 31] to execute DNN
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operators. Manually crafting optimal code implementation
for each model and hardware type is an exceedingly labo-
rious task. In response, developers try to seek a universal
method to accommodate this diversity while fully leverag-
ing the performance potential of the hardware. To address
this challenge, various DNN compilers have been developed
[3, 11, 40, 41]. These compilers accept models from deep
learning frameworks and automatically generate low-level
code targeting specific hardware.

Existing DNN compilers implicitly assume that the model
can utilize the entire hardware resources, including compu-
tational resources, cache capacity, and memory bandwidth.
However, this assumption fails in concurrent inference sce-
narios, where multiple tasks share GPU resources, leading to
performance degradation. Each inference task only partially
occupies GPU resources, making the original optimizations
suboptimal due to increased contention for computation
units and memory bandwidth. One possible approach to ad-
dress varying resource availability is to prepare multiple
code variants tailored to different GPU conditions. However,
this dramatically increases compilation time, making it im-
practical for real-world deployment. Furthermore, even if
multiple code variants have been generated, existing GPU re-
source allocation and scheduling strategies lack the ability to
dynamically select proper variants in response to workload
fluctuations, resulting in persistent inefficiencies when con-
currency levels change. These challenges highlight the need
for a new compilation approach that ensures high perfor-
mance, manageable compilation overhead, and adaptability
to dynamic execution environments.
In this paper, to address these challenges, we propose

ConCo, a Concurrency-aware Compilation scheme for op-
timizing concurrent DNN inference tasks on a shared GPU.
ConCo consists of three key components: (a) Concurrency-
Aware Code Generation: Instead of assuming full GPU
utilization, ConCo pre-generates multiple optimized code
variants tailored to different GPU resource demands, ensur-
ing efficient execution under varying resource allocation
conditions. (b) Efficient Code Generation Strategy: To
mitigate the excessive compilation time of traditional DNN
compilers, ConCo introduces an optimized code generation
strategy, reducing compilation overhead by over 2×. (c)Code
Selection for Different Concurrency Scenarios: Unlike
existing schedulers [10, 18, 24, 29, 45] that rely on static code
optimizations, ConCo pre-generates and selects optimized
code offline for different concurrency scenarios, ensuring
that the most suitable implementation is used for the corre-
sponding workload condition.

In summary, this paper makes the following contributions:

• We proposed a compilation optimization scheme for
shared GPU scenarios, introducing a selection strategy

that identifies the optimal combination of candidate
codes and determines the most efficient resource allo-
cation plan.

• We proposed a compilation method based on optimal
code sharing in concurrent scenarios with fallback
codes. Compared to Ansor [48] compilation process,
our approach can achieve more than a 2× increase in
compilation speed.

• We evaluated ConCo on NVIDIA A100 and 2080 Ti
GPUs using a diverse set of workloads. Compared to
existing solutions that are not aware of the characteris-
tics of concurrent inference scenarios, ConCo achieved
a throughput improvement of up to 1.2× and a reduc-
tion in JCT of up to 69.85%.

2 Background & Motivation
2.1 GPU Concurrency Mechanisms
With the growing interest in concurrent inference using
shared GPUs, GPU vendors, particularly NVIDIA, have pro-
posed several methods for sharing GPU resources at the
spatial level (Figure 1). Since the Fermi architecture, NVIDIA
introduced a software programming model known as multi-
stream [32], which allows developers to define multiple
CUDA Streams within a single process. Kernels from dif-
ferent streams within the same process can be executed con-
currently on the GPU, sharing its resources. Following the
introduction of multi-streaming, NVIDIA further introduced
Multi-Process Service (MPS) [33] to support flexible resource
allocation, isolation, and virtualization. This approach allows
kernels from different processes to share GPU resources. Al-
though MPS increased the flexibility of resource sharing, it
did not address issues such as memory capacity and band-
width contention, nor did it provide error isolation mecha-
nisms. To address these challenges, starting with the Ampere
architecture, NVIDIA introduced a new feature called Multi-
Instance GPU (MIG) [34]. MIG achieves complete isolation
of computational units, memory, and errors by creating hard-
ware isolation units called GPU Instances (GIs). The develop-
ment of these GPU resource-sharing mechanisms provides
technical support for concurrent DNN inference on shared
GPUs.

2.2 DNN Compiler
DNN compilers have been proposed as a generalized ap-
proach to accommodate diverse DNN models and harness
the full potential of the hardware performance. The objective
of a DNN compiler is to enhance the execution efficiency of
DNN models across various acceleration hardware, thereby
maximizing hardware performance.
Taking Ansor [48] as a representative example, Ansor

begins by partitioning the computation graph into subgraphs
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Figure 1: GPU Concurrency Mechanisms

and optimizes them iteratively. In each tuning round, a set of
random code variants is generated via sketch-based sampling
and random annotations. These candidates, together with
top-performing implementations from previous rounds, form
the initial population for evolutionary search. The generated
offspring are evaluated by an XGBoost-based cost model
[2], and only the most promising candidates are selected for
actual execution on hardware. The measured latencies then
serve as feedback to refine the cost model and guide future
search iterations.

2.3 Motivation
Existing compilers have consistently prioritized the genera-
tion of operators that perform optimally in exclusive scenar-
ios. However, we have observed that certain operators, which
are typically discarded by Ansor’s traditional search process
due to overlong exclusive latency, can exhibit unexpected
performance advantages in concurrent environments.
We construct operator pairs (Op1 and Op2) comprising

fundamental deep learning operation types, such as matrix
multiplication (matmul), 2D convolution (conv2d), reduc-
tion (reduce), average pooling (avgpool). These operators
are adopted from the benchmark collection in ROLLER [49],
which provides 119 representative operators extracted from
models such as ResNet-50 [12], LSTM [28], NASNet [50], and
BERT [7] for compiler evaluation. In our study, we employed
Ansor to measure operators Op1 and Op2, each conducted
1,000 times, thereby acquiring the exclusive optimal codes
A and B, respectively. To attain codes without an exclusive
optimal bias, we eliminated the predictive capabilities of the
Ansor’s learned Cost Model, which is based on XGBoost
[2], resulting in a completely random generation of opera-
tors. Among the 8,000 codes generated through this random
search process, we identified codes ’a’ and ’b’ for operators
Op1 and Op2 that, despite underperforming compared to
codes A and B when run exclusively on the GPU, achieved
shorter concurrent completion times under concurrent exe-
cution conditions.
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Figure 2: Completion Times of Exclusive and Concur-
rent Job Executions for Different Codes (The yellow
and blue bars represent the completion times for 1,000
exclusive GPU runs of operators Op1 and Op2, respec-
tively. The green bars denote the completion times for
1,000 concurrent executions of Op1 and Op2 using the
multi-stream method.)

Operator Configuration
matmul 2 M=128, K=4032, N=1000
conv2d 1 D=(16,128,58,58), K=(128,128,3,3), S=2
conv2d 3 D=(16,168,42,42), K=(168,168,1,1), S=1
conv2d 5 D=(16,512,16,16), K=(512,512,3,3), S=2
reduce 3 I=(128,4032,11,11), axis=[2,3]
avgpool 1 D=(128,168,83,83), K=1, S=2, VALID
avgpool 5 D=(128,336,42,42), K=3, S=2, SAME

Table 1: The configuration of operators used in Figure 2.
(In the Roller benchmark, the conv2d operator was
configured with a batch size of 128. However, given its
substantially longer execution time compared to other
operators (by an order of magnitude), we reduced the
batch size to 16.)

Figure 2 shows the top 5 pairs with the most significant
co-location speedups in our experiments, whose operator
configurations are presented in Table 1. Our experiments
demonstrated that meticulously selected suboptimal exclu-
sive codes could reduce the concurrent completion time by
as much as 26.2%. This finding has sparked our interest in in-
vestigating compilation optimizations that are concurrency-
aware within shared GPU contexts.

2.4 Compilation Optimization for
Concurrent DNN Inference

In the context of concurrent DNN inference tasks on shared
CPUs, prior studies [26] proposed a compilation optimiza-
tion and scheduling scheme tailored for multi-tenant envi-
ronments. The core idea for achieving efficient concurrent
inference in shared CPU environments is as follows:
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(1) Single-Pass Multi-Version Compilation: By gen-
erating multiple code versions in a single search pass
of Ansor, each version is optimized for different inter-
ference levels. These versions are selected from the
Pareto frontier of the parallelism-locality trade-off
space to adapt to varying interference pressures. Code
implementations with small locality and high concur-
rency aremore suitable for high-interference scenarios,
while those with large locality and low concurrency
perform better in low-interference scenarios.

(2) Dynamic Interference Awareness: By monitoring
performance counters (such as L3 cache miss Rate, L3
access, instruction per cycle (IPC), etc.), the system
dynamically predicts the interference level, selects the
according code version to ensure quality of service
(QoS) in multi-tenant environments.
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Figure 3: Parallelism and locality cannot effec-
tively distinguish between high-interference and low-
interference code versions on a shared GPU.

However, the above techniques cannot be directly applied
to shared GPUs due to two factors: the difference between
CPU and GPU architectures, and the lack of necessary per-
formance data.
Difference between CPU and GPU: The architecture

of GPUs is more complex than that of CPUs, and relying
solely on the Pareto frontier of the parallelism-locality
trade-off space is insufficient to distinguish code versions
suitable for different interference levels. We attempted to
replicate VELTAIR’s single-pass multi-version compilation
strategy on GPU architectures, where: parallelism is in-
terpreted as the number of CUDA threads multiplied by
the loop unrolling factor, and locality is interpreted as the
tile size computed by each thread. Figure 3 illustrates the
differences in parallelism and locality of the optimal imple-
mentations under varying interference pressures on GPUs,
with arrows linking optimal points from low to high interfer-
ence. VELTAIR’s findings on CPUs indicate that these arrows

predominantly point towards the upper left on CPUs, sug-
gesting that code with higher concurrency but lower locality
performs better in high-interference scenarios. However, our
experiments on GPUs reveal no such consistent pattern, and
optimal configurations appear more chaotic. This indicates
that the parallelism-locality trade-off does not generalize
well to GPU environments. This fundamental difference pre-
vents the direct application of VELTAIR’s method to shared
GPU scenarios.

Unavailable Performance Data: VELTAIR’s scheduling
strategy relies on CPU performance counters to assess inter-
ference pressure in real time. On GPUs, however, these coun-
ters cannot be accessed concurrently while executing DNN
inference tasks. To obtain such performance data, profiling
is required, which introduces thousands of times additional
overhead, making it impractical for real-time interference
pressure evaluation.

3 Design & Implementation
3.1 Problem Formulation
Recent research indicates that low GPU utilization is a preva-
lent issue in deep learning clusters [16, 23, 43, 44]. A promis-
ing approach to ameliorate this challenge involves concur-
rent inference by sharing a single GPU among multiple tasks.
By executing multiple inference tasks on the same GPU in
parallel, we can maximize the GPU’s computational capacity
and minimize idle time. This method not only enhances the
efficiency of individual GPUs but also boosts the overall pro-
cessing capability and responsiveness of the cluster without
incurring additional hardware costs, thereby optimizing the
system’s overall performance.

However, optimizing the compilation of DNN models for
concurrent execution on shared GPU remains an open prob-
lem due to the following challenges: (a) Resource Con-
tention: When multiple DNN inference tasks share a GPU,
they compete for computational resources (e.g., SMs, mem-
ory bandwidth), leading to performance degradation. (b)
Code Selection: Traditional DNN compilers generate op-
timized code for single-task execution but do not consider
the concurrent execution context, resulting in suboptimal
performance in shared GPU scenarios. (c) Concurrency-
aware Scheduling: The selection of compiled DNN kernels
must account for both the available GPU resources and the
concurrent inference workload to maximize throughput.

To address these challenges, we formulate the problem in
two stages:

Stage 1: Multi-version Code Generation. Given a DNN
model𝑀 and a target GPU architecture𝐺 , the goal is to gen-
erate a set of code variants 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑘 }, where each
variant 𝑐 𝑗 is optimized for executing𝑀 with a specific GPU
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resource fraction, particularly 𝑗/𝑘 of the available Streaming
Multiprocessors (SMs).

Stage 2: GPUResourceAllocation andCode Selection.
Given:

• A set of DNN models 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑁 } to be
executed concurrently.

• A target GPU architecture 𝐺 .
• A set of candidate code versions 𝐶𝑖 = {𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑘 }
for each model 𝑀𝑖 , each with different performance
trade-offs.

• A maximum concurrency level 𝐿, i.e., the number of
models that can execute simultaneously.

Our objective is to find the optimal combination of model-
code pairs (𝑀𝑖 , 𝑐𝑖 𝑗 ) and their resource allocation 𝑟𝑖 such that
the overall throughput (inference tasks per second) is max-
imized on GPU 𝐺 :

max
{𝑐𝑖 𝑗 ,𝑟𝑖 }

𝑁∑︁
𝑖=1

Throughput(𝑀𝑖 , 𝑐𝑖 𝑗 , 𝑟𝑖 ),

where Throughput(𝑀𝑖 , 𝑐𝑖 𝑗 , 𝑟𝑖 ) represents the throughput
of model 𝑀𝑖 when executed with code variant 𝑐𝑖 𝑗 and allo-
cated resource 𝑟𝑖 .
Concurrency Constraint: At any time, the number of si-

multaneously executing models should not exceed 𝐿:

|{𝑖 | 𝑀𝑖 is running}| ≤ 𝐿

This formulation defines the concurrent DNN inference
compilation problem as a resource allocation and code selec-
tion optimization problem. Our proposed method addresses
this by searching for the best combination of compiled code
variants and resource allocation to maximize throughput
while respecting GPU constraints.

To reduce the online optimization overhead, we leverage
a key observation: in production environments, workload
patterns are often periodic and predictable [13, 14, 22, 43].
This stability allows us to pre-search and cache optimal code
selections and resource allocations for a manageable set of
expected workload combinations.

3.2 System Overview
ConCo consists of two aspects: compilation and runtime
scheduling, as illustrated in Figure 4. The ConCo compiler
generates multiple candidate codes for the target model, each
optimized for peak performance under different MPS GPU
resource constraints. To simplify the problem, ConCo cate-
gorizes the resource constraints into multiple distinct levels
ranging from 0 to 100%.

In practical production environments, there are numerous
repetitive tasks [43]. For instance, a GPU cluster deployed
to support product recommendation systems receives thou-
sands of inference tasks from recommendation models every
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Figure 4: ConCo System overview

second. Based on this, we assume that the DNN inference
tasks processed on the GPU and the arrival rates of each
model task are known. Leveraging this assumption, we have
designed our resource allocation and code selection scheme.
This scheme selects the optimal MPS resource allocation for
each DNN model task and picks the most suitable code from
all candidate versions for the given concurrency scenario.

3.3 Concurrency-Aware Code Generation
To support efficient concurrent execution of DNNmodels un-
der dynamic resource allocation, ConCo generates multiple
code variants optimized for different GPU resource configu-
rations. The key insight is that code performance is highly
sensitive to the available Streaming Multiprocessors (SMs),
which can vary significantly in multi-tenant environments.

We leverage NVIDIA’s Multi-Process Service (MPS) to em-
ulate different resource constraints by controlling the active
thread percentage during the compilation process. Specifi-
cally, by limiting the available SMs through MPS, we guide
the compiler to generate code variants that are optimized
for specific resource allocation levels (e.g., 10%, 20%, ..., 100%
of total SMs). This approach ensures that each variant is
tailored to achieve optimal performance under its target re-
source constraint.

However, naively generating these variants would require
independent tuning for each configuration, leading to pro-
hibitive compilation overhead. To address this, we introduce
a shared optimization space that exploits hardware com-
monalities across different SM allocations, as discussed in
Section 3.4. This enables ConCo to efficiently produce a spec-
trum of high-performance code variants while significantly
reducing the overall compilation cost.
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Figure 5: The correlation between normalized execution latencies of different kernel implementations of ResNet-18
operators under various GPU resource constraints on the 2080 Ti.
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3.4 Efficient Code Generation Strategy
Generating performance-optimal code for a target model un-
der varying MPS GPU resource constraints can be achieved
by adjusting the active thread percentage in MPS to limit the
available GPU SMs during the traditional Ansor measure-
ment process. However, producing multiple code versions
for different SM allocations requires repeating this process
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Figure 7: Change of inference time for Resnet-18 by
compilation time on RTX 2080 Ti

for each configuration. Given that compiling a single model
with Ansor typically takes several hours to days, generat-
ing 10 versions could extend the total compilation time to
several days or even weeks, making this approach highly
time-consuming and impractical.
Figure 5 illustrates the normalized execution latency of

ResNet-18 operators under various resource constraints on
a 2080 Ti GPU (i.e., the ratio of each operator’s execution la-
tency using different implementations relative to the optimal
implementation). Each point corresponds to a distinct code
implementation, with the x-axis and y-axis representing the
normalized execution times under 10% GPU and 100% GPU
resource allocations, respectively. As the resource alloca-
tion percentages become more similar, the PPMCC (Pearson
product-moment correlation coefficient) increases, reflecting
a stronger correlation in execution times across different
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resource allocations. The PPMCC is defined as follows,

𝑃𝑃𝑀𝐶𝐶 (𝑋,𝑌 ) =
∑𝑛

𝑖=1 [(𝑋𝑖 − 𝑋 ) (𝑌𝑖 − 𝑌 )]√︃∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋 )2

√︃∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌 )2

(1)

𝑋 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 , 𝑌 =
1
𝑛

𝑛∑︁
𝑖=1

𝑌𝑖 (2)

where, 𝑛 denotes the number of points, and 𝑋𝑖 and 𝑌𝑖 rep-
resent the coordinates of the data points on the x-axis and
y-axis, respectively.
It was observed that code that performs well under one

resource constraint does not significantly underperform un-
der other resource constraints. Additionally, we posit that
code utilizing different SM proportions on the same GPU
may share certain hardware commonalities such as the num-
ber of compute cores per SM, L2 Cache size, and bandwidth.
Hence, the tuning process for generating code with differing
SM GPU resource proportions should not be entirely inde-
pendent. Based on these observations and considerations,
we designed a method of optimal code configuration sharing
that accelerates the convergence speed of code generation
across diverse SM resource constraints.
As depicted in Figure 6, the execution flow chart for the

Compiling component of ConCo entails multiple rounds of
optimal code sharing. During the compiling process, ConCo
engages in M rounds of optimal code sharing. Before each
sharing round, TVM Ansor is utilized for N rounds of op-
erator tuning search for each resource constraint. The Pro-
gram Filter screens out the top 𝛼% performing code from the
current tuning round based on measure performance, and
collates code filtered from the remaining GPU percentages
for performance measurement on the current GPU percent-
age hardware. For instance, if we were to split the search
space for GPU resource constraints into 10 levels spread out

from 10% to 100% uniformly, for one of the rounds of com-
piling code under the 10% resource constraint, after ConCo
executes N * batch_size operator tuning searches, it gathers
a total of 9𝛼%𝑁 · 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 code pieces optimized under
the remaining resource constraints (i.e., 20%, 30%, ..., 100%)
and measures their performance under the 10% constraint.
These filtered codes and their execution times across various
resource constraints are then provided to the subsequent
round’s corresponding GPU percentage constraint Ansor
search to train the Cost Model. If these shared codes perform
exceptionally, they can also serve as the initial population
for the evolutionary search.

3.5 GPU Resource Allocation and Code
Selection

In our experiments, we discovered that optimal GPU resource
utilization often necessitates over-provisioning concurrently,
meaning that the total allocation of resources to all concur-
rent processes exceeds 100%. To achieve higher resource
utilization rates, we implemented over-provisioning, thereby
setting tasks to occupy a designated percentage of GPU re-
sources, which typically results in these tasks contending for
resources with others. Consequently, despite generating ten
distinct versions of code for different GPU resource percent-
ages, the optimal execution strategy is not to run the version
generated under a specific GPU percentage constraint within
the same percentage-limited resource framework.
For a task that requires running 𝑛 different models, we

need to determine the optimal code version 𝐶𝑖% and run-
time resource constraint 𝑅𝑖% for each model 𝑖 ∈ {1, . . . , 𝑛} to
achieve the highest overall throughput. Here, the code ver-
sion𝐶𝑖% represents the code compiled for model 𝑖 on a GPU
with a resource constraint of 𝐶𝑖%. To simplify the problem,
we restrict the values of 𝐶𝑖% and 𝑅𝑖% to discrete values with
a 10% interval. For this combinatorial optimization problem,
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with a search space of 102𝑛 , we use simulated annealing to
search for the optimal configuration.

4 Evaluation
4.1 Setup
We have selected a series of classic models for evaluation,
encompassing CNN-based models (such as ResNet-18 [12]
and VGG-19 [38]), Transformer-based models (such as BERT-
Small [7]), as well as recommendation systems (such as Face-
book DLRM [30]). The testing was conducted utilizing two
types of GPUs: Nvidia RTX 2080 Ti and Nvidia A100 80 GB.
Specifically, the Nvidia RTX 2080 Ti was paired with an In-
tel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, while the Nvidia
A100 80 GB was paired with an Intel(R) Xeon(R) w5-2455X
CPU.

As elucidated in Section 4.2, the code obtained via ConCo
surpasses that generated by traditional Ansor. Code gen-
erated by ConCo for 100% GPU resource allocation consis-
tently outperforms that produced by Ansor, rendering Ansor-
generated code as a baseline somewhat unfair. Consequently,
we have opted to regard the code, generated by ConCo for
100% resource allocation, as the optimal benchmark for ex-
clusive use of all GPU resources.

Our benchmarking encompasses two principal scenarios,
both employing code generated by ConCo for 100% resource
allocation. The distinction between these scenarios lies in
their execution environments: Baseline1 operates under
the default MPS mode (i.e., without imposing a limit on the
maximum usable resources per process), whereas Baseline2
traverses the entire resource limitation space to identify the
allocation scheme that maximizes overall throughput, subse-
quently running concurrently under MPS with the optimal
resource allocation scheme.

4.2 Cost of Compiling
Figure 8 presents the compilation times for generating all
10 candidate codes on the 2080 Ti and A100 GPUs, respec-
tively. The findings illustrate that the compilation time of
our method is approximately half that of the conventional
Ansor approach. Specifically, Figure 7 delineates the curve
of normalized inference time for ResNet-18 as a function of
compilation time under varying GPU resource constraints.
Here, the number of measurement trials for Ansor is config-
ured according to the TVM documentation recommendation
of 900 × 𝑙𝑒𝑛(𝑡𝑎𝑠𝑘𝑠) [47], where 𝑙𝑒𝑛(𝑡𝑎𝑠𝑘𝑠) denotes the num-
ber of sub-tasks (i.e., subgraphs) partitioned by Ansor. The
normalized inference time refers to the ratio of the infer-
ence latency of the current code to the inference latency of
the optimal implementation generated by Ansor at the final
moment under the corresponding resource proportion.

The experimental results demonstrate that ConCo can sig-
nificantly enhance the average convergence speed for the
generated 10 codes. To achieve the compilation effectiveness
of traditional Ansor, ConCo requires only 14.3%-32.3% of
the time needed by conventional Ansor. After evaluating
the trade-off between the effectiveness of generated codes
and the compilation duration, we set the compilation hyper-
parameters to𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 64, 𝑁 = 𝑙𝑒𝑛(𝑡𝑎𝑠𝑘𝑠),
𝑀 = 5, and 𝛼% = 2.5%. Under this hyperparameter config-
uration, we can obtain codes with superior performance to
those generated by traditional Ansor in less than half the
time.

4.3 Results for Compiled Code
Tables 3 and 4 elucidate the inference latency of codes gen-
erated by ConCo under various GPU resource constraints.
Upon analysis, it becomes evident that the minimal delay in
each column is either located on the diagonal of the table
or exhibits negligible deviation from the diagonal values.
This indicates that when a model operates under a resource
constraint 𝑅, the code compiled with constraint 𝐶 invari-
ably exhibits the lowest latency compared to all other codes.
Consequently, this experimental observation substantiates
that our compilation method indeed guarantees the optimal-
ity of the code with respect to the corresponding resource
configuration.

4.4 Performance of Operators
We performed experiments on processes that execute a single
type of operator only to validate the efficacy of our compila-
tion optimization strategy, ConCo. Given that the execution
time of a single operator is typically very short, often in the
microsecond range, scheduling on the CPU would introduce
unacceptable overhead. Consequently, in this segment of
the evaluation, each process repetitively executed the same
operator 500 times. Subsequently, we measured the Job Com-
pletion Time (JCT) for the concurrent execution of multiple
such processes. This JCT serves as the optimization target
for ConCo and the selection criterion for resource allocation
constraints of Baseline 2.
From ResNet-18, Bert-small, VGG-19, and DLRM, we se-

lected operators with relatively long execution times, specif-
ically those ranging from tens to hundreds of microseconds
when executed exclusively on a GPU. Table 2 compares the
JCT reductions achieved by our ConCo relative to the base-
line approaches:

𝑅𝑒𝑑𝑢𝑐𝑒 𝑘 =
𝐽𝐶𝑇𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑘 − 𝐽𝐶𝑇𝐶𝑜𝑛𝐶𝑜

𝐽𝐶𝑇𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑘

𝑘 = 1, 2

Empirical results indicate that ConCo can reduce the JCT
for concurrent execution of single operator processes by
up to 69.85% compared to Baseline 1 and by up to 22.44%
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GPU Operate 1 Operate 2 batch size concurrency Reduce 1 Reduce 2

2080 Ti

2𝑛𝑑 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 20, 20 27.22% 21.85%
2𝑛𝑑 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 4𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 20, 20 17.24% 16.55%
2𝑛𝑑 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 9𝑡ℎ 𝑂𝑃𝑣𝑔𝑔−19 1, 1 1, 1 16.49% 2.58%
14𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 4𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 16.22% 3.83%
22𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 4𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 14.70% 4.81%
5𝑡ℎ 𝑂𝑃𝑑𝑙𝑟𝑚 3𝑟𝑑 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1024, 1 1, 5 13.89% 9.05%
2𝑛𝑑 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 4𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 13.09% 11.72%
2𝑛𝑑 𝑂𝑃𝑑𝑙𝑟𝑚 3𝑟𝑑 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1024, 1 1, 5 11.49% 9.56%
14𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 1𝑠𝑡 𝑂𝑃𝑣𝑔𝑔−19 1, 1 10, 10 11.14% 2.09%
1𝑠𝑡 𝑂𝑃𝑣𝑔𝑔−19 3𝑟𝑑 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 10.16% 4.68%

A100 80 GB

22𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 10, 10 69.85% 11.91%
9𝑡ℎ 𝑂𝑃𝑣𝑔𝑔−19 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 52.18% 11.38%
15𝑡ℎ 𝑂𝑃𝑣𝑔𝑔−19 3𝑟𝑑 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 33.08% 8.79%
5𝑡ℎ 𝑂𝑃𝑑𝑙𝑟𝑚 3𝑟𝑑 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1024, 1 1, 5 32.05% 14.68%
15𝑡ℎ 𝑂𝑃𝑣𝑔𝑔−19 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 31.04% 22.44%
2𝑛𝑑 𝑂𝑃𝑑𝑙𝑟𝑚 3𝑟𝑑 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1024, 1 1, 5 30.23% 9.36%
5𝑡ℎ 𝑂𝑃𝑑𝑙𝑟𝑚 4𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1024, 1 1, 5 26.86% 3.64%
14𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 10, 10 22.35% 6.44%
2𝑛𝑑 𝑂𝑃𝑑𝑙𝑟𝑚 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1024, 1 1, 5 19.99% 19.61%
22𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 6𝑡ℎ 𝑂𝑃𝑏𝑒𝑟𝑡−𝑠𝑚𝑎𝑙𝑙 1, 1 5, 5 18.60% 8.12%
22𝑡ℎ 𝑂𝑃𝑟𝑒𝑠𝑛𝑒𝑡−18 9𝑡ℎ 𝑂𝑃𝑣𝑔𝑔−19 1, 1 10, 10 17.11% 5.25%

Table 2: Comparison of JCT for Concurrent Execution of Single Operator Processes

𝐶%
𝑅% 10% 30% 50% 70% 90% 100%

10% 4.92 1.94 1.57 1.5 1.44 1.42
30% 5.11 1.90 1.54 1.44 1.34 1.30
50% 5.85 2.10 1.37 1.23 1.16 1.07
70% 5.89 2.11 1.39 1.18 1.15 1.08
90% 6.31 2.19 1.44 1.27 1.12 1.06
100% 6.44 2.23 1.45 1.27 1.14 1.02

Table 3: Inference latency (ms) of ConCo-generated
codes for ResNet-18 under different GPU resource con-
straints on RTX 2080 Ti

𝐶%
𝑅% 10% 30% 50% 70% 90% 100%

10% 10.3 5.46 3.75 3.7 3.62 3.61
30% 10.9 3.78 3.13 3.07 2.15 2.14
50% 11.4 4.04 2.63 2.51 2.25 2.26
70% 12.5 4.34 2.71 2.35 2.18 2.16
90% 12.7 4.27 2.90 2.54 1.76 1.75
100% 12.6 4.25 2.89 2.56 1.80 1.76

Table 4: Inference latency (ms) of ConCo-generated
codes for bert-small under different GPU resource con-
straints on RTX 2080 Ti

compared to Baseline 2. This represents a substantial perfor-
mance enhancement.

4.5 End-to-end Performance
Given that the arrival proportions of the various models are
known, to ensure fairness among models, we employed a
global queue scheduling model. In this model, different mod-
els are enqueued at proportionate, equal time intervals, with
tasks being dequeued in a First-In-First-Out (FIFO) manner.
This operational mode ensures comparable throughput for
different models within the same concurrent testing envi-
ronment, thereby allowing us to evaluate concurrent perfor-
mance based on overall throughput.
Table 5 enumerates the concurrent tasks utilized in the

testing, where the arrival rates of each model in the multi-
model concurrent task experiments were set to identical
values. The experimental results are depicted in Figures 9
and 10. The experiments demonstrate that on both 2080 Ti
and A100, ConCo achieves up to a 1.16× and 1.12× increase
in throughput, respectively, compared to Baseline2. This im-
provement indicates that although code compiled with 100%
resource utilization performs optimally when the entire GPU
is exclusively used, in concurrent scenarios, such code is out-
performed by code compiled with restrained GPU resource
utilization.
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Figure 9: Normalized Throughput on RTX 2080 Ti
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Figure 10: Normalized Throughput on A100 80 GB

Experimental results indicate that the performance im-
provements demonstrated by ConCo in end-to-end concur-
rent DNNmodel tests are inferior to those observed in experi-
ments where only a single operator is executed concurrently.
This phenomenon can be attributed to the intrinsic com-
plexity of DNN models, which comprise multiple operators
(or sub-tasks). For instance, the ResNet-18 model includes
24 distinct operators, whereas the Bert-small model com-
prises 9 distinct operators. Theoretically, to achieve optimal
performance, the selection of candidate code and resource
allocation strategy should differ when a specific operator
from ResNet-18 runs concurrently with a different operator
from Bert-small.
Due to the proprietary nature of Nvidia’s GPU architec-

ture, we lack control over the scheduling of operators on
the GPU. On a shared GPU, the operators from different
models that end up running concurrently are determined
randomly. Consequently, ConCo’s search strategy, which
aims to maximize concurrent throughput, must balance the
considerations for all possible pairs of concurrent operators.
This results in code combinations and resource allocation
strategies that are suboptimal compared to those designed for
single-operator processes. Therefore, the performance gains
achievable by ConCo in end-to-end concurrent DNN model
execution are less significant than those in single-operator
concurrent execution scenarios.

4.6 Features Analysis
To investigate why ConCo outperforms Ansor in concurrent
scenarios, we train a random forest model to identify the
features that most significantly influence performance. First,
we extract 164 features, consistent with those used in the cost
model of Ansor. These features encompass aspects related
to computation, buffer access patterns, arithmetic intensity,
memory allocation, and other relevant factors. In the end-to-
end experiments described in Section 4.5, we evaluate both
the ConCo-generated code and the baseline code (i.e., the
Ansor implementation) for each subtask within the same
concurrent scenario. For each pair of implementations, we
randomly assign one as Code A and the other as Code B.
After extracting the 164 features from both Code A and Code
B, we define a label, A_is_ConCo, to distinguish the two. The
label A_is_ConCo takes a value of 1 if Code A corresponds
to the ConCo implementation, and 0 otherwise. To enhance
the analysis, we introduce additional features to capture the
differences between Code A and Code B, focusing on their
relative performance characteristics.

Δ(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 ) =
𝐴.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝐵.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖

𝐴.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖 + 1
, 𝑖 = 1, 2, . . . , 164

(3)
We partitioned the dataset into training and testing sets

with a 7:3 ratio and trained a random forest model to pre-
dict the label A_is_ConCo. The results demonstrate that the
model achieves an accuracy of 92.11% on the testing set,
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Idx Model 𝑝2080𝑇𝑖 𝑝𝐴100 Batch_size
1 Bert-small 20 20 1
2 Bert-small 40 40 1
3 DLRM 20 20 512
4 DLRM 40 40 512
5 DLRM 20 20 1024
6 DLRM 40 40 1024
7 DLRM 20 20 2048
8 DLRM 40 40 2048
9 ResNet-18 20 20 1
10 ResNet-18 40 40 1
11 VGG-19 10 20 1
12 VGG-19 14 30 1
13 Bert-small, DLRM 20 20 1, 512
14 Bert-small, DLRM 20 20 1, 1024
15 Bert-small, DLRM 20 20 1, 2048
16 ResNet-18, Bert-small 20 20 1, 1
17 ResNet-18, DLRM 20 20 1, 512
18 ResNet-18, DLRM 20 20 1, 1024
19 ResNet-18, DLRM 20 20 1, 2048
20 ResNet-18, VGG-19 10 15 1, 1
21 VGG-19, Bert-small 10 15 1, 1
22 VGG-19, DLRM 10 15 1, 512
23 VGG-19, DLRM 10 15 1, 1024
24 VGG-19, DLRM 10 15 1, 2048

Table 5: Tasks setup. 𝑝2080𝑇𝑖 and 𝑝𝐴100 represent themax-
imum concurrency of experiments on RTX 2080 Ti and
A100 80 GB, respectively.
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Figure 11: The top-10 feature importance of random-
forest-based predictor

indicating its effectiveness in distinguishing between the
generated codes of ConCo and Ansor. Figure 11 presents
the top 10 most important features identified by the random
forest model. Among these, the features with the highest in-
fluence on the prediction include auto_unroll_max_step,
blockIdx_x_len, threadIdx_x_len, etc.

As shown in Figure 12, ConCo tends to generate code with
more aggressive loop unrolling, fewer blocks, fewer threads
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Figure 12: Percentage of samples where ConCo feature
values are larger or smaller than Ansor feature values

per block, and higher computational intensity compared to
Ansor. Increased loop unrolling allows the GPU to issue more
independent instructions per cycle, reducing control flow
overhead and enhancing pipeline utilization. This helps mask
instruction latency, particularly for memory-bound opera-
tions, by keeping execution units active. Additionally, the use
of fewer thread blocks and fewer threads per block increases
the workload assigned to each thread. This strategy reduces
scheduling overhead and improves register and shared mem-
ory reuse, as threads retain more data in fast on-chip memory
rather than frequently accessing global memory. Further-
more, ConCo-generated code tends to leverage higher com-
putational intensity, meaning a greater ratio of arithmetic
operations to memory accesses. This improves compute unit
utilization while reducing pressure on global memory band-
width, a critical bottleneck in high-concurrency scenarios.
By minimizing memory transactions and improving data
locality, ConCo effectively alleviates contention for memory
bandwidth when multiple tasks execute concurrently.

In summary, ConCo’s optimizations—including aggressive
loop unrolling, efficient workload distribution, computation-
ally intensive operator selection, and improved memory re-
source utilization—enable it to achieve superior throughput
in concurrent execution environments. These advantages
become particularly pronounced under high contention for
GPU resources, allowing ConCo to consistently outperform
Ansor in such conditions.

5 Related Work
5.1 DNN Compilers
DNN compilers typically optimize code generation through
two complementary levels: computational graph-level and
operator-level. At the graph level, techniques like layout op-
timization [25], operator fusion [3], constant folding [36], au-
tomatic batching, and subgraph generation and replacement
[17] are widely used. Frameworks such as TensorFlow XLA
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[40] and DLVM [42] serve as computational graph-level opti-
mization tools tailored for deep learning. Specifically, TASO
[17] is noted as the first deep neural network (DNN) opti-
mizer that incorporates automatic subgraph replacements.

Operator-level optimizations include loop unrolling, data
tiling, memory management, and loop reordering. Roller
[49], a DNN compiler targeting operator-level optimizations,
enhances operator performance by exploiting saturated data
processing pipelines, thereby boosting the overall perfor-
mance of DNN models.

Among contemporary DNN compilers, TVM [3] is one of
the most widely adopted deep learning compilers. Its inter-
mediate representation, Relay [36], offers rich expressiveness
for DNN models, coupled with optimization and transfor-
mation ease. TVM leverages and extends the scheduling
primitives of Halide [35] to optimize the performance of tar-
get hardware. To perform kernel-level optimization, TVM
searches for optimal configurations within a defined search
space, utilizing strategies such as AutoTVM [4] and Ansor
[48]. While AutoTVM necessitates predefined operator tem-
plates, Ansor expands the search space and removes the need
for manual template design.

Besides the aforementioned DNN compilers, other notable
compilers include Microsoft’s Rammer [27], Google’s Multi-
Level Intermediate Representation (MLIR) [19], Facebook’s
Glow [37], and Tensor Comprehensions [41], introduced by
Vasilache et al..

Despite the availability of a diverse array of DNN compil-
ers, none explicitly generate optimized low-level DNN code
specialized for concurrent execution scenarios on shared
GPUs. SLICE-TUNE [9], proposed by Dhakal et al., attempts
to identify optimal code at performance inflection points by
combining multiple DNN compilers (e.g., TVM, Ansor, and
Chameleon [1]). However, real-world concurrent DNNwork-
loads rarely match these exact inflection points, limiting the
practical benefits of this approach.
VELTAIR [26] improves concurrent DNN inference on

CPUs by selecting implementations from a Pareto frontier
of parallelism-locality trade-offs. Its runtime interference
models leverage CPU performance counters. However, due
to fundamental differences between CPU and GPU archi-
tectures, VELTAIR’s methods, such as core-affinity binding
and interference assessment, are incompatible with GPU
architectures.

5.2 Resource management for shared GPUs
Efficient resourcemanagement is critical for concurrent DNN
inference on shared GPUs. Spatial partitioning of GPU re-
sources allows for the allocation of isolated resources (e.g.,
the number of StreamingMultiprocessors (SMs) and memory

bandwidth) to different DNN workloads. This approach mit-
igates inter-task interference at the hardware resource level.
Current resource partitioning mechanisms predominantly
rely on resource-sharing strategies provided by GPU vendors,
such as the Multi-Process Service (MPS) and Multi-Instance
GPU (MIG) architectures.

GSLICE[8] is a reconfiguration scheme based on MPS that
utilizes spare processes to reduce reconfiguration downtime.
MIG-serving[39] explores the optimal partitioning schemes
forMIG.MISO[21] proposes amachine learning-basedmethod-
ology, leveraging runtime predictions from MPS schemes to
infer the efficacy of MIG schemes and consequently deter-
mine the optimal MIG partitioning strategy.

Despite the notable efficiency in GPU resource utilization
achieved by existing resource management and allocation
schemes, there remains room for improvement. This is be-
cause the underlying code of DNN models is not deliberately
tailored to the specific resource scenarios encountered in
practical deployments. Consequently, further optimization
is both necessary and possible.

6 Conclusion
This paper introduced ConCo, a concurrency-aware com-
pilation framework for concurrent DNN inference tasks on
shared GPUs. ConCo dynamically generates and selects op-
timal code variations based on available GPU resources, ad-
dressing the limitations of existing DNN compilers in concur-
rent scenarios. It has demonstrated promising improvements,
increasing compilation speed by more than 2x, enhancing
throughput by up to 1.2x for concurrent DNN inference tasks,
and reducing JCT by up to 69.85% for concurrent single-
operator processes compared to baselines.
ConCo’s resource allocation and code selection strategy

efficiently manage GPU resources, which is crucial for op-
timal performance in concurrent inference environments.
Future work will focus on extending ConCo’s capabilities to
more hardware architectures and integrating with real-time
systems requiring dynamic resource allocation. Enhancing
adaptability to evolving DNN models and computational
frameworks will also be a priority.
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