
Light-FP: Analyze Floating-Point Error in a Highly
Condensed Approach

Jiazhi Mi

Institute of Computing

Technology, Chinese Academy of

Sciences

Beijing, China

University of Chinese Academy of

Sciences

Beijing, China

mijiazhi22s@ict.ac.cn

Li Chen
∗

Institute of Computing

Technology, Chinese Academy of

Sciences

Beijing, China

Laboratory for Advanced

Computing and Intelligence

Engineering

Wuxi, Jiangsu, China

lchen@ict.ac.cn

Haoyu Wang

Institute of Computing

Technology, Chinese Academy of

Sciences

Beijing, China

University of Chinese Academy of

Sciences

Beijing, China

wanghaoyu21s@ict.ac.cn

Ruixiang Gao

Shandong University of Science

and Technology

Qingdao, Shandong, China

gaoruixiang665@gmail.com

Hongze Zhang

Shandong University of Science

and Technology

Qingdao, Shandong, China

zhanghongze1201@163.com

Ronghong Shen

Institute of Computing

Technology, Chinese Academy of

Sciences

Beijing, China

University of Chinese Academy of

Sciences

Beijing, China

shenronghong23s@ict.ac.cn

Kai Lin

Beijing Institute of Technology

Beijing, China

omg_link@qq.com

You Fu

Shandong University of Science

and Technology

Qingdao, Shandong, China

fuyou@sdust.edu.cn

Huimin Cui

Institute of Computing

Technology, Chinese Academy of

Sciences

Beijing, China

University of Chinese Academy of

Sciences

Beijing, China

cuihm@ict.ac.cn

Abstract
Approximate computing is emerging as a promising para-

digm of High-Performance Computing (HPC) to increase

application performance, with mixed-precision computing

∗
Corresponding Author

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1537-2/25/06

https://doi.org/10.1145/3721145.3730432

standing out as a popular approach within this domain. How-

ever, mixed precision tuning is challenging due to the vast

search space of mixed precision configurations. The floating-

point error sensitivity profile is a technique to quantify the

error contribution of each reduced precision operation to the

final output error, which can dramatically reduce the search

space of mixed precision tuning of applications. To control

time complexity, the error sensitivity profile is currently built

upon reverse-mode automatic differentiation; however, its

high memory demands render this approach impractical for

large HPCworkloads. This paper proposes a novel error anal-

ysis algorithmwithmuch lower space complexity, by leverag-

ing forward-mode automatic differentiation combined with

just-in-time error source aggregation. Furthermore, a new

https://orcid.org/0009-0004-8260-6723
https://orcid.org/0000-0001-7333-8393
https://orcid.org/0009-0005-0519-6940
https://orcid.org/0009-0008-8259-2228
https://orcid.org/0009-0009-0109-4700
https://orcid.org/0009-0008-6966-8953
https://orcid.org/0009-0006-4756-2176
https://orcid.org/0000-0002-7809-4233
https://orcid.org/0000-0002-2491-7679
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3730432

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

error model is introduced to capture dependencies among

assignments within the same error source group, addressing

a key limitation of existing techniques that assume floating-

point assignments to be independent of each other, which

is an assumption sufficient only for smaller-scale cases. We

implement this approach within the LLVM compiler infras-

tructure, as an easy-to-use source-code transformation tool,

Light-FP. Evaluations conducted on applications from the

HPC-MixPBench benchmark suite demonstrate Light-FP’s

superiority over the state-of-the-art tool in terms of accuracy,

runtime, and memory efficiency.

CCS Concepts
• Mathematics of computing → Arbitrary-precision
arithmetic; • Software and its engineering → Dynamic
analysis.

Keywords
Floating-Point Arithmetic, Round-off Error, Precision Tun-

ing, Dynamic Program Analysis

ACM Reference Format:
Jiazhi Mi, Li Chen, Haoyu Wang, Ruixiang Gao, Hongze Zhang,

Ronghong Shen, Kai Lin, You Fu, and Huimin Cui. 2025. Light-FP:

Analyze Floating-Point Error in a Highly Condensed Approach.

In 2025 International Conference on Supercomputing (ICS ’25), June
08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3721145.3730432

1 Introduction
In the post-Moore era, approximate computing is gaining

prominence as an effective strategy to enhance application

performance. This approach leverages the fact that many

applications can tolerate a certain level of error, allowing for

a trade-off between accuracy and performance. Within this

field, reduced floating-point precision, or mixed-precision

computing, has recently gained popularity. Many studies [2],

[12], [1], [4] have shown that employing multiple levels of

precision within a single program can significantly boost the

performance of scientific applications.

Users should identify potential opportunities by pinpoint-

ing error-insensitive variables within the given application.

They should then assess the precision degradation of mixed-

precision configurations, evaluate the performance impacts,

and implement the necessary code transformations. Among

these steps, precision verification is the most challenging.

Aside from costly trials, it is difficult for programmers to

determine whether the errors introduced by a given config-

uration fall within acceptable thresholds. Domain experts

may have extensive knowledge of an algorithm’s numerical

behavior, yet grasping the subtle details of floating-point

rounding errors remains a challenge, especially for large-

scale programs. Mixed precision tuning manually is even

more difficult for ordinary users, and becomes increasingly

infeasible for HPC programs with multiple modules.

Various automatic tools are developed to evaluate approx-

imation errors. Static approaches using interval analysis or

Taylor series approximation provide rigorous bounds for FP

errors, but they do not scale very well and are limited to small

programs currently [29], [8]. Dynamic analysis is more prac-

tical than static approaches. There are mainly two main cate-

gories here, search-based methods and error sensitivity pro-

file approach. Search-based approaches [25], [16] are black-

box methods, that explore various mixed-precision configu-

rations by running the programmultiple times to identify the

optimal configuration that meets the error threshold. Since

the size of the state space is exponential to the number of lo-

cations where the precision can be changed, different search

strategies, combined with clustering algorithm are studied to

reduce the search space, but the number of trials is still large

[24]. The error sensitivity profile approach [21], [27] does

not evaluate the accuracy of each configuration directly, but

provides information on the sensitivity of the output with

respect to variable approximations in one single run. Based

on the sensitivity profile, the mixed precision search space

can be largely reduced, and a valid, sub-optimal configura-

tion can even be gained, without further trials. They are

based on Automatic Differentiation (AD), and Taylor series

approximation is introduced to model the error contribu-

tion of each error source to the final output error. ADAPT,

as a representative, gains attention from many users and

has been incorporated with several software tools together

[18]. However, these error sensitivity tools are not accurate

enough, and have high memory overhead for applications

with many iterations, restricting their applicability to more

HPC workloads or to platforms with limited memory.

We propose Light-FP, an efficient and highly condensed

approach for analyzing approximation errors in HPC appli-

cations. Different from traditional algorithms, Light-FP is

built upon forward mode automatic differentiation and error

source aggregation with much lower space complexity. Be-

sides, to overcome the drawback of existing state-of-the-art

tools that assume floating-point assignments to be indepen-

dent of each other, we propose a new error model to model

dependencies among assignments, and prove that the im-

proved algorithm can get accurate error estimation under

the first-order Taylor series approximation. We build Light-

FP using the LLVM compiler infrastructure and evaluate its

effectiveness in precision tuning.

The primary contributions of this paper are as follows:

• A scalable and efficient algorithm, to analyze floating

point errors due to lowering the precision of variables,

https://doi.org/10.1145/3721145.3730432

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

based on forward mode automatic differentiation and

just-in-time error accumulation. The algorithm’s time

and space overhead is merely a constant multiple of

the original program’s.

• A new error model is introduced to catch dependen-

cies among assignments within the same error source

group.

• Light-FP, a tool to realize the above algorithm. We

put forward its implementation and optimizations. Ad-

joint index tracing substitutes hashmap retrievals with

low-cost index calculations, while data parallelization

significantly enhances the efficiency of the analysis.

• Tool evaluation through eight benchmarks, includ-

ing six applications from HPC-MixPBench. It shows

that Light-FP achieves much better accuracy and per-

formance. Compared to the current state-of-the-art

method CHEF-FP, Light-FP shows a significant advan-

tage in memory consumption, achieving up to 2600x

greater memory efficiency. It also offers runtime bene-

fits for most applications, with a maximum speedup

of 5.6x. In many cases, the accuracy of error estima-

tion is several orders of magnitude better than the

counterpart and quite close to the actual errors.

2 Background and Motivations
The execution trace of a given program segment can be de-

noted as 𝑃 = ⟨𝑇, 𝐼𝑁 ,𝑦⟩, where 𝑇 is the dynamic assignment

statement sequence, 𝑦 is the output statement and 𝐼𝑁 is the

set of upward-exposed floating point variables of 𝑇 . In the

error analysis scenario, both 𝑇 and 𝐼𝑁 are error sources in

𝑃 . For each floating point assignment, if we lower the pre-

cision of its result operand, a small, local truncation error

is introduced, and this error will be scaled and propagated

along def-use chains of 𝑃 , and may finally reach the output

assignment 𝑦. The FP variables in 𝐼𝑁 also brings truncation

error. So we simply regard each input variables as a special

kind of assignment, i.e. 𝐼𝑁 ⊂ 𝑇 .

First-order Taylor series approximation is well suited to

model floating point errors [29], [21], [27]. Let 𝑦 be the out-

put assignment of the program 𝑃 , 𝑡 ∈ 𝑇 , and variable 𝑥 be

what 𝑡 assigns to. Then, a function 𝑦 = 𝑓 (𝑥) exists that can
represent the related part of the program. Assuming that 𝑥

brings a floating point error ℎ, the first-order Taylor series

approximation yields:

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + ℎ

1!

𝑓 ′ (𝑥) + ℎ2

2!

𝑓 ′′ (𝑥) + ... (1)

≈ 𝑓 (𝑥) + ℎ𝑓 ′ (𝑥) (2)

Here 𝑓 ′ (𝑥) represents the derivative of the function to 𝑥 .

So,

Δ𝑦 = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) ≈ ℎ𝑓 ′ (𝑥) (3)

It can be extended to the multi-variable function. For 𝑦 =

𝑓 (𝑥1, ..., 𝑥𝑛), if each 𝑥𝑖 has a floating point error ℎ𝑖 , then the

output error is

Δ𝑦 ≈
𝑛∑︁
𝑖=1

ℎ𝑖 𝑓
′
𝑥𝑖
(𝑥1, ..., 𝑥𝑛) (4)

When performing error analysis to the program segment

𝑃 , each FP assignment in 𝑃 should be regarded as an input of

function 𝑓 , no matter if it is an upward-exposed variable of

𝑃 or an ordinary FP assignment in 𝑇 . The global derivatives

𝑓 ′𝑥𝑖 (𝑥1, ..., 𝑥𝑛) can be computed by Automatic Differentiation

(AD) tools, and the local truncation error, ℎ𝑖 is computed

using 𝑡 , the variable value of the high precision program.

𝑡𝑐𝐸𝑟𝑟 (𝑡) = 𝑡𝑙𝑜𝑤 − 𝑡 (5)

where 𝑡𝑙𝑜𝑤 is the value taken when 𝑡 is demoted to lower

precision.

2.1 Current error model and its accuracy
In the scenario of mixed precision error analysis, each FP

assignment in 𝑃 is an error source by default.

The basic error model. Equation 4 is the error model

adopted by [21]. It should be noted that, this is an inde-

pendent, single-assignment instance approach, where local

truncation error is obtained from the high precision pro-

gram, and the accumulation here implies an assumption that

the error of one assignment will not impact those of other

assignments, which is not true in any real programs. This sim-

plification happens because FP error analysis on correlated

assignments has not yet been established [27]. Although this

method performs well for many small programs, its accuracy

deteriorates as the dependency chain lengthens, causing the

error analysis to deviate increasingly from the actual values.

Let’s see a simplified program of Simpsons, which is an

iterative algorithm to approximate the integral of function

𝑠𝑖𝑛(𝜋𝑥) in a certain interval, shown in Figure 1. When com-

puting the error contribution of the source-level variable 𝑠1,

four source-code level assignments should be considered (as

an input of the function, a special error source exists at the

entry of the function), and the error contributions of totally

of 2000002 dynamic assignments should be evaluated and

accumulated (when n=1e6). Since 𝑠1 is a reduction variable,

different assignments form a long error propagation chain

and independent single-assignment error analysis signifi-

cantly underestimates the output error. When n=1e6, the

estimated error of 𝑠1 is 8.1666e-08, which is 5 orders of mag-

nitude smaller than the actual one (2.6435e-03). Similarly,

the estimated error of 𝑥 is 2.3975e-07, while the actual error

is 3.5069e-02.

An improved error model. To remedy the imprecise draw-

back of the above error model, CHEF-FP [27] modified the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

1 double simpsons_kernel(double x, double s1,
double pi , double h){

2 for (int i = 0; i < n; i++) {
3 x = x + h;
4 s1 = s1 + 4.0 * sin(x * pi);
5 x = x + h;
6 s1 = s1 + 2.0 * sin(x * pi);
7 }
8 s1 = s1 * h * pi / 3.0;
9 return s1;
10 }

Figure 1: Long inter-variable dependence chains (in
Simpsons) that current error models neglect.

model to get the absolute value of each assignment’s error

estimation before summing up them together,

Δ𝑦 ≈
𝑛∑︁
𝑖=1

∥ℎ𝑖 𝑓 ′𝑥𝑖 (𝑥1, ..., 𝑥𝑛)∥ (6)

to obtain a loose upper bound of the estimation.

Fortunately, in this case, formula 6 gets a better estimation.

However we will show in the evaluation section that it does

not guarantee a conservative result, and it incurs severe

overestimates in many cases, making it difficult to find a

suitable mixed-precision configuration.

Can we find a new error model that can cover data depen-

dence among correlated assignments?

2.2 Reverse Mode AD-based Approach and
its Space Complexity

Automatic Differentiation tools can create a new code that

computes derivatives for a given program segment that exe-

cutes a function with meaningful differentiable properties.

AD tools usually support two modes (in different computing

orders), forward mode and reverse mode. When the func-

tion has more inputs than outputs, the reverse mode is more

efficient in computation time.

For mixed precision error analysis, each FP assignment

in 𝑃 can produce an error, so total 𝑂 (|𝑇 |) partial derivatives
are needed, where |𝑇 | is the total number of dynamic as-

signments in 𝑃 , and is a huge number. In this case, each FP

assignment is basically an input for the AD process. The

time complexity of forward mode AD is unaffordable, and

reverse mode AD seems to be the only choice. But the mem-

ory requirement of reverse mode AD is in proportion to |𝑇 |
in the worst case.

To control peak memory usage, recursive checkpointing

along with re-computation is developed to make a trade-off

between space and time, in which the basic reverse-mode

AD is only scheduled on small segments of the code. And

there is no optimal placement exists in general[14], users are

encouraged to specify program intervals for checkpoints by

hand, and some tools such as Tapenade checkpoint all sub-

routine calls by default. Different checkpointing schedules

are put forward. Treeverse [11] targets certain loops using

a binomial partitioning scheme, while [28] can checkpoint

arbitrary computations in a divide-and-conquer fashion at

the level of the language implementation without user anno-

tation. Checkpointing is both complex and surely harmful

to runtime performance.

Can we develop a lightweight, forward AD-based, efficient

error estimation algorithm that has low complexity both on

time and on memory requirements?

3 Source Aggregated Floating-Point Error
Analysis

We put forward a source aggregated, floating point error

analysis algorithm in this section. For ease of understanding

and formalization, we break its main ideas into three parts.

Firstly, we give a plain, forward AD-based error evaluation

algorithm upon a data structure called EPM (Error Prop-
agation Matrix). Then an efficient algorithm is obtained

by compressing the columns of the EPM. Thirdly, the trun-

cation error term in the algorithm is further improved to

model dependencies among assignments within the same

compressed error source group.

3.1 EPM-based Error Analysis, the Naive
Algorithm

In this section, we propose a new error analysis algorithm

based on the error model introduced in section 2. This algo-

rithm leverages a specialized data structure called the Error

Propagation Matrix (EPM) and employs forward mode AD

for error propagation. Although the algorithm does not bring

about space or time benefits, it forms the basics of the up-

graded versions in later sections.

Error source, EV and EPM. Each FP assignment whose resul-

tant operand is a lower-precision candidate is considered as

an error source since it generates truncation error. Following

the define-use chain, these truncation errors are propagated

through reachable expressions, ultimately arriving at the

resultant operand of each such expression. So, each FP as-

signment acts as a medium for error transfer. To quantify this

behavior, we assign each FP assignment an Error Contri-
bution Vector (EV), where each entry represents the error

contributions from specific error sources in the program 𝑃 .

The length of such vectors is |𝑇 |. And we keep all of EVs of

program 𝑃 in an Error Propagation Matrix (EPM).
Row compression. If each assignment has a unique EV, then

EPM would require |𝑇 | rows. However, such a large number

of rows is unnecessary. EVs’ define-use chains blindly follow

that of the original program. Considering two consecutive

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Algorithm 1 Error analysis with EPM

Input: 𝑃 = ⟨𝑇, 𝐼𝑁 ,𝑦⟩
Data structure: EPM, which is a 𝐷 × |𝑇 | matrix

Output: EPM𝑦 , which is the error contributions of |𝑇 | error
sources to y
Initialization of EPM:

1: ∀ i, 𝑬𝑷𝑴𝑖 = 0;
2: ∀ iv ∈ IN, 𝑬𝑷𝑴𝑖𝑣,𝑖𝑣 = tcErr(iv);

EPM update for each assignment tk : r = f (x1, x2)
3: 𝑬𝑷𝑴𝑟 =

𝜕𝑓

𝜕𝑥1
∗ 𝑬𝑷𝑴𝑥1 +

𝜕𝑓

𝜕𝑥2
∗ EPM𝑥2 ;

4: 𝑬𝑷𝑴𝑟,𝑡𝑘+ = 𝑡𝑐𝐸𝑟𝑟 (𝑟);

assignments to the same variable, the second assignment

overwrites the previous value, and at that time the EV of the

first assignment becomes stale (can not propagate anymore).

Therefore, different assignments to the same scalar variable

can reuse the same EV space. It should be noted that differ-

ent elements of the same array belong to different rows of

EPM, in order to track data dependence properly. After such

compression, the rows of EPM are reduced dramatically to𝐷 ,

which is the total number of scalar variables in the program.

The naive algorithm of EPM-based error analysis is given

in Algorithm 1, Here EPM𝑣𝑎𝑟 represents the EV correspond-

ing to variable 𝑣𝑎𝑟 . and EPM𝑣𝑎𝑟,𝑡𝑘 represents the specific

entry in the EV corresponding to the assignment 𝑡𝑘 . During

EPM’s initialization, most EVs are null vectors except for

those corresponding to upward exposed input variables of P.

Rounding errors, generating either from input variables or

FP assignments, will propagate to more EVs along with the

program execution. For each FP statement, the error update

consists of two sub-steps. Without loss of generality, the cur-

rent assignment statement 𝑡𝑘 can be regarded as a function

𝑓 of two variables. The first update is a whole-vector update,

propagating each operand’s EV to the resultant variable 𝑟 ,

and the second update is to compute the local truncation

error of this assignment and add it to a certain entry in the

EV.

Traditionally, forward mode AD requires 𝑛 sweeps when

computing derivatives for a function with 𝑛 inputs. With

the help of EPM, the new algorithm propagates the errors

and derivatives with respect to 𝑛 inputs in the vector form,

achieving the equivalent of 𝑛 sweeps in a single analysis.

When reaching the output assignment (the related variable

is𝑦), each entry of EPM𝑦 represents the product of the partial

derivative and the corresponding truncation error for each

error source. This corresponds to each item of the summation

in Equation 4.

We use Simpsons in Figure 1, as an example to illustrate

how EPM is evolved in Figure 2. In execution trace 𝑃 =

⟨𝑇, 𝐼𝑁 ,𝑦⟩, 𝐼𝑁 = {𝑥, 𝑠1, 𝑝𝑖, ℎ}, the output statement 𝑦 is on

line 9, and 𝑇 has more than 4𝑒6 assignments when 𝑛 = 1𝑒6.

In this figure, red characters are used to denote the changes

incurred by the current update step. ℎ#𝑖 , 𝑥#𝑖 ... represent the

𝑖𝑡ℎ assignment to the related variables. We use Δℎ#𝑖 ,Δ𝑥#𝑖 ...
to represent the truncation errors from 𝑖𝑡ℎ assignment to the

related variables. Additionally, 𝑏1, 𝑏2..., 𝑑1, 𝑑2... are used to

denote the error contribution propagated from the operands

based on the whole-vector update in the Algorithm 1. At

the stage of initialization, EPM will be set to zero firstly and

then the truncation errors of the four input variables will

be updated to EPM𝑖𝑣,𝑖𝑣 , where 𝑖𝑣 ∈ 𝐼𝑁 . For the statement

numbered 2, two sub-steps are shown in detail, the whole-

vector update overwrite the previous data in EPM𝑥 , and then

the truncation error is added to the x
#2
column of the EPM𝑥 .

For 𝑠1 = 𝑠1 + 4.0 ∗ 𝑠𝑖𝑛(𝑥 ∗ 𝑝𝑖), there are three FP operands,

so the three related EPM rows are amplified and propagated

to EPM𝑠1, and the new truncation error is added to the s1
#2

column. The next two statements are just similar.

It is obvious that the above algorithm is impractical, whose

time complexity is𝑂 (|𝑇 |2) and space complexity is𝑂 (𝐷∗|𝑇 |).
Later wewill improve the algorithm by compressing the EPM

columns.

3.2 Compress EPM Columns by Error
Source Aggregation

In algorithm 1, EPM has |𝑇 | columns where |𝑇 | is huge, we
want to look for a proper grouping method on EPM columns,

which can keep the accuracy of error estimation.

Mixed precision tuning is commonly applied at the level

of structural code blocks, variables, or arrays. Users do not

want to discriminate error differences among different assign-

ments to the same scalar variable, or the difference between

each array element of the same array, since arrays are usu-

ally regarded as a whole (or several) precision regions in

precision tuning. So users must accumulate error sensitivity

of different assignments before precision tuning.

There are two main approaches to error accumulation,

post-mortem accumulation and just-in-time accumulation.

Current techniques such as ADAPT or CHEF-FP adopt the

previous method, which records each dynamic assignment

statement’s error sensitivity during execution, and accumu-

lates them after the analysis, according to variable names or

even code hierarchy. This method provides fine-grained er-

ror information and also consumes huge memory space. The

second method is based on user-provided grouping methods

(also called error-source aggregation) and performs just-in-

time accumulation of error sensitivity within the same group

during analysis. We adopt the latter method due to its signif-

icantly lower memory requirements.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

𝑖𝑣 ∈ 𝐼𝑁 2 3 4 5
h#1 x#1 pi#1 s1#1 x#2 s1#2 x#3 s1#3

h ∆ℎ#"

x 2∆ℎ#" ∆𝑥#" ∆𝑥## ∆𝑥#$

pi ∆𝑝𝑖#"

s1 d1 d2 d3 b4 d5 ∆𝑠1## ∆𝑠1#$

𝑖𝑣 ∈ 𝐼𝑁 2 3 4 5
h#1 x#1 pi#1 s1#1 x#2 s1#2 x#3 s1#3

h ∆ℎ#"

x 2∆ℎ#" ∆𝑥#" ∆𝑥## ∆𝑥#$

pi ∆𝑝𝑖#"

s1 b1 b2 b3 b4 b5 ∆𝑠1##

𝑖𝑣 ∈ 𝐼𝑁 2 3 4 5
h#1 x#1 pi#1 s1#1 x#2 s1#2 x#3 s1#3

h ∆ℎ#"

x ∆ℎ#" ∆𝑥#" ∆𝑥##

pi ∆𝑝𝑖#"

s1 b1 b2 b3 b4 b5 ∆𝑠1##

after 𝟐: 𝒙 = 𝒙 + 𝒉

𝟒: 𝒙 = 𝒙 + 𝒉

𝟓: 𝒔𝟏 = 𝒔𝟏 + 𝟐. 𝟎 ∗ sin	(𝒙 ∗ 𝒑𝒊)

1:Initialization of EPM
à(1).	set the whole matrix to be zero
à(2). 𝑬𝑷𝑴𝑖𝑣, 𝑖𝑣		 = 	𝑡𝑐𝐸𝑟𝑟(𝑖𝑣)

à(1). 𝑬𝑷𝑴𝒔𝟏 =
𝜕𝑠1
𝜕𝑠1#' 𝑬𝑷𝑴𝒔𝟏 +

𝜕𝑠1
𝜕𝑥 𝑬𝑷𝑴𝒙 +

𝜕𝑠1
𝜕𝑝𝑖 𝑬𝑷𝑴𝒑𝒊

													= 𝑬𝑷𝑴𝒔𝟏 + 4 ∗ cos 𝑥 ∗ 𝑝𝑖 ∗ 𝑝𝑖 ∗ 𝑬𝑷𝑴𝒙 + 𝑥 ∗ 𝑬𝑷𝑴𝒑𝒊

à 2 . 𝑬𝑷𝑴𝒔𝟏,𝒔𝟏#𝟐 += 𝑡𝑐𝐸𝑟𝑟(𝑠1 + 4.0 ∗ si𝑛(𝑥 ∗ 𝑝𝑖)	

𝟑: 𝒔𝟏 = 𝒔𝟏 + 𝟒. 𝟎 ∗ sin	(𝒙 ∗ 𝒑𝒊)

h x pi s1
h ∆ℎ#"

x ∆ℎ#" ∆𝑥#"+∆𝑥##

pi ∆𝑝𝑖#'

s1 ∆𝑠1#"

𝑖𝑣 ∈ 𝐼𝑁 2 3 4 5
h#1 x#1 pi#1 s1#1 x#2 s1#2 x#3 s1#3

h ∆ℎ#"

x ∆𝑥#"

pi ∆𝑝𝑖#"

s1 ∆𝑠1#"

à	 2 . 𝑬𝑷𝑴𝒙,𝒙#𝟐 += 𝑡𝑐𝐸𝑟𝑟(𝑥 + ℎ)

Aggregating columns according to variables :

à	 1 . 𝑬𝑷𝑴𝒙 = 𝑬𝑷𝑴𝒉 + 𝑬𝑷𝑴𝒙

2:𝒙 = 𝒙 + 𝒉

After the 5th assignments:

𝑖𝑣 ∈ 𝐼𝑁 2 3 4 5
h#1 x#1 pi#1 s1#1 x#2 s1#2 x#3 s1#3

h ∆ℎ#"

x ∆ℎ#" ∆𝑥#"

pi ∆𝑝𝑖#"

s1 ∆𝑠1#"

𝑖𝑣 ∈ 𝐼𝑁 2 3 4 5
h#1 x#1 pi#1 s1#1 x#2 s1#2 x#3 s1#3

h ∆ℎ#"

x ∆ℎ#" ∆𝑥#" ∆𝑥##

pi ∆𝑝𝑖#"

s1 ∆𝑠1#"

h x pi s1
h ∆ℎ#"

x 2∆ℎ#" ∆𝑥#"+∆𝑥##+∆𝑥#$

pi ∆𝑝𝑖#'

s1 d1 d2+d5 d3 b4+∆𝑠1## + ∆𝑠1#$

Figure 2: The evolution of the EPM during the first iteration of Simpson’s method. The EPM consists of four
rows, each corresponding to one of four scalar variables. Since all four variables serve as input parameters to the
function, a total of eight error sources must be considered: four within the loop body and four at the function entry.
Consequently, the first eight columns of the EPM are elaborated in detail, with each column labeled according
to the variable modified by the associated assignment statement. The superscript #𝑖 attached to these variables
indicates that it is the 𝑖𝑡ℎ assignment to that variable. Each entry in the EPM is color-coded—white indicates a zero
value, while green denotes a non-zero value. Additionally, notations are employed in non-zero entries to facilitate
the identification of relationships among EPM updates or between EPMs with and without column compression.
Following column compression, the EPM is reduced to four columns, and its states after Statement 2 and Statement
5 are illustrated at the bottom of the figure.

In the naive Algorithm 1, each entry of EPM represents

the error sensitivity of an individual error source. After ap-

plying just-in-time accumulation, each entry represents the

error sensitivity of an error group. Let𝐺 (𝑒𝑠) denote the user-
provided grouping method that maps each error source 𝑒𝑠 to

its corresponding error group. The second sub-step update

of the Algorithm 1 should be

𝑬𝑷𝑴𝑟,𝐺 (𝑡𝑘)+ = 𝑡𝑐𝐸𝑟𝑟 (𝑟). (7)

Grouping methods for error sources. Basically, users can

group assignments based on their result operands. For in-

stance, for a scalar variable 𝑣 , all assignments to the scalar

variable 𝑣 can be grouped into a single error group 𝐸𝑣 . Simi-

larly, for an array variable 𝑉 , it is common practice to group

all assignments to different array elements 𝑉𝑖 into a unified

error group 𝐸𝑉 . Secondly, users can further group assign-

ments along the time dimension, with the granularity of func-

tions or loop iterations. During the lifetime of a variable, its

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

assignments can bind to different error groups. A typical ex-

ample involves splitting a loop into several subspaces, where

assignments within different subspaces can be mapped to

different error groups. With the help of compiler, this process

imposes no additional burden on the programmer. Thirdly,

the greedy strategies utilized during the mixed-precision

allocation phase may lead to performance degradation by

introducing excessive floating-point (FP) type conversions.

To mitigate the overhead from these additional conversions,

users can group multiple arrays or scalar variables into a

single group based on the degree of intimacy among them,

as determined by tools such as HiFPTuner [12].

Figure 2 also shows what EPM looks like when using

column grouping at the bottom of the figure. Condensed

EPM is shown after the execution of statement 2, and also

after statement 5. For the latter case, we can see that EPM𝑠1,𝑠1

is the summation of the three related entries of EPM𝑠1 under

the naive version.

Validity of column compression. We need to prove that

just-in-time accumulation of EPM columns produces the

same result as post-mortem column accumulation. Consider

two different analysis procedures, one using a compressed

EPM, denoted as EPM’, and the other using an uncompressed

EPM. Since the columns of EPM evolve independently, it

suffices to prove the correctness of the compression process

for two columns, as the conclusion can be generalized to

more columns. Suppose that columns 𝑖 and 𝑗 in EPM are

grouped into column 𝑘 in EPM’, we need to prove that at the

exit of program segment 𝑃 , 𝑬𝑷𝑴𝑦,𝑖+𝑬𝑷𝑴𝑦,𝑗 = 𝑬𝑷𝑴 ′
𝑦,𝑘 . We

usemathematical induction on 𝑙 , the length of the assignment

statement sequence, to prove that after the EPM update for

any assignment 𝑡𝑙 : 𝑟 = 𝑓 (𝑎, 𝑏) in 𝑇 , 𝑬𝑷𝑴𝑟,𝑖 + 𝑬𝑷𝑴𝑟, 𝑗 =

𝑬𝑷𝑴 ′
𝑟,𝑘 still hold. It is trivial that the property holds when

𝑙 = 1. Suppose the property holds for 𝑙 ≤ 𝑛. Now we consider

assignment 𝑡𝑛+1 : 𝑟 = 𝑓 (𝑎, 𝑏), supposing𝐺 (𝑟) is neither 𝑖 nor
𝑗 ,

𝑬𝑷𝑴𝑟,𝑖 + 𝑬𝑷𝑴𝑟,𝑗 =(
𝜕𝑓

𝜕𝑎
𝑬𝑷𝑴𝑎,𝑖 +

𝜕𝑓

𝜕𝑏
𝑬𝑷𝑴𝑏,𝑖)

+(𝜕𝑓
𝜕𝑎

𝑬𝑷𝑴𝑎,𝑗 +
𝜕𝑓

𝜕𝑏
𝑬𝑷𝑴𝑏,𝑗)

=
𝜕𝑓

𝜕𝑎
(𝑬𝑷𝑴𝑎,𝑖 + 𝑬𝑷𝑴𝑎,𝑗)

+ 𝜕𝑓
𝜕𝑏

(𝑬𝑷𝑴𝑏,𝑖 + 𝑬𝑷𝑴𝑏,𝑗)

then according to the inductive hypothesis, it yields

𝑬𝑷𝑴𝑟,𝑖 + 𝑬𝑷𝑴𝑟,𝑗 =
𝜕𝑓

𝜕𝑎
𝑬𝑷𝑴 ′

𝑎,𝑘 +
𝜕𝑓

𝜕𝑏
𝑬𝑷𝑴 ′

𝑏,𝑘 = 𝑬𝑷𝑴 ′
𝑟,𝑘

When𝐺 (𝑟) is either 𝑖 or 𝑗 , the proof is similar. So we prove

the induction step and finish the proof.

After column compression, EPM has a size of 𝐷 ∗ |𝐸 |,
where 𝐷 represents the total number of FP scalar variables

in the program and 𝐸 is the set of error groups. So, the time

complexity of the improved Algorithm 1 becomes𝑂 (|𝐸 |∗|𝑇 |),
and the space complexity turns 𝑂 (|𝐸 | ∗ 𝐷).

3.3 Improve the Accuracy of the Algorithm
1

The error model used in the previous sections is still Equa-

tion 4, which completely ignores dependencies among as-

signments.

A new error model to capture dependencies. We modify

the truncation error formula in the above Algorithm 1 from

formula 7 to

𝑬𝑷𝑴𝑟,𝐺 (𝑡𝑘)+ = 𝑡𝑐𝐸𝑟𝑟 (𝑟 + 𝑬𝑷𝑴𝑟,𝐺 (𝑡𝑘)) (8)

This truncation error formula is different from the previous

one, which is 𝑡𝑐𝐸𝑟𝑟 (𝑟). The new argument of 𝑡𝑐𝐸𝑟𝑟 captures

the cumulative error influence from all prior assignments

within the same error group.

In order to put the accuracy property of the above formula

formally, we introduce several notations on mixed precision

program versions. For a certain error source group 𝐸𝑖 , we

introduce𝐶 (𝐸𝑖) to represent the related mixed precision ver-

sion of the program, in which only the assignments in 𝐸𝑖 use

lower precision while all other assignments use high preci-

sion. For the assignment 𝑡𝑘 : 𝑟 = 𝑓 (𝑎, 𝑏) in 𝑃 , 𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖)

and 𝑟𝐶 (𝐸𝑖)
denote the value of each expression under 𝐶 (𝐸𝑖),

respectively. However, it is important to note that if 𝑡𝑘 ∈ 𝐸𝑖 ,

a precision conversion occurs before assigning 𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖)

to 𝑟𝐶 (𝐸𝑖)
, i.e.,

𝑟𝐶 (𝐸𝑖) = 𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖) + 𝑡𝑐𝐸𝑟𝑟 (𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖))
Otherwise 𝑟𝐶 (𝐸𝑖) = 𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖)

.

Theorem 3.1. When applying the improved algorithm 1
(with the new truncation error formula 8) to a given program
segment, at any time during analysis, for the current assign-
ment 𝑡𝑘 : 𝑟 = 𝑓 (𝑎, 𝑏), two sub-steps of EPM update to 𝐸𝑃𝑀𝑟

are the first order Taylor approximation to the actual accu-
mulated errors originated from all error sources to the current
assignment. This means that, for any error source group 𝐸𝑖 ,

After the whole-vector update with 𝐸𝑃𝑀𝑟 , we have

𝑬𝑷𝑴𝑟,𝐸𝑖 = 𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖) − 𝑓 (𝑎, 𝑏) (9)

After updating 𝐸𝑃𝑀𝑟,𝑡𝑘 with truncation error,

𝑬𝑷𝑴𝑟,𝐸𝑖 = 𝑟𝐶 (𝐸𝑖) − 𝑟 (10)

The proof of the theorem runs as follows.

We prove the property using mathematical induction on

the length of the assignment statement sequence.

As before, input variables are regarded as special assign-

ments. When the length is 1, there are only two cases. In one

case, 𝑡𝑘 : 𝑟 = 𝑓 (𝑎, 𝑏) is the first FP assignment of program 𝑃 ,

and neither operands nor the result brings errors, the above

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

property holds apparently. In the second case, 𝑡𝑘 is an input

variable that belongs to 𝐸𝑖 , and again the above property

holds apparently. All other cases turn the problem to one

whose length is larger than 1.

Induction condition: we assume that when length 𝐿 ≤ 𝑘 ,

the above properties always hold.

For a programwith𝑘+1 assignments, and 𝑡𝑘+1 : 𝑟 = 𝑓 (𝑎, 𝑏),
we have

𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖) = 𝑓 (𝑎𝐶 (𝐸𝑖) , 𝑏𝐶 (𝐸𝑖))
According to the induction assumption,

𝑎𝐶 (𝐸𝑖) = 𝑎 + 𝑬𝑷𝑴𝑎,𝐸𝑖

𝑏𝐶 (𝐸𝑖) = 𝑏 + 𝑬𝑷𝑴𝑏,𝐸𝑖 .

So,

𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖) = 𝑓 (𝑎 + 𝑬𝑷𝑴𝑎,𝐸𝑖 , 𝑏 + 𝑬𝑷𝑴𝑏,𝐸𝑖)
For the above formula, we firstly apply first-order Taylor

series approximation, then after the whole-vector EPM up-

date of statement 𝑡𝑘+1, simplify it using the 𝐸𝑃𝑀𝑟 equation

in sub-step 1, the formula turns as follows.

𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖) ≈𝑓 (𝑎, 𝑏) + 𝜕𝑓

𝜕𝑎
∗ 𝑬𝑷𝑴𝑎,𝐸𝑖 +

𝜕𝑓

𝜕𝑏
∗ 𝑬𝑷𝑴𝑏,𝐸𝑖

=𝑓 (𝑎, 𝑏) + 𝑬𝑷𝑴𝑟,𝐸𝑖

This proves that Equation 9 holds.

If 𝑡𝑘 ∉ 𝐸𝑖 , Equation 10 holds apparently. When 𝑡𝑘 ∈ 𝐸𝑖 ,

before the second EPM update, according to Equation 9

𝑟𝐶 (𝐸𝑖) − 𝑟 =𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖) − 𝑓 (𝑎, 𝑏) + 𝑡𝑐𝐸𝑟𝑟 (𝑓 (𝑎, 𝑏)𝐶 (𝐸𝑖))
≈𝑬𝑷𝑴𝑟,𝐸𝑖 + 𝑡𝑐𝐸𝑟𝑟 (𝑓 (𝑎, 𝑏) + 𝑬𝑷𝑴𝑟,𝐸𝑖)

Now, the right side expression is exactly the new value

of 𝐸𝑃𝑀𝑟,𝐸𝑖 after the second EPM update with formula 8. So,

Equation 10 holds.

According to the above Theorem, this improved algorithm

with formula 8 can significantly improve the accuracy of er-

ror estimation for each error group with negligible overhead.

4 Implementation and Optimizations
We implemented the proposed algorithm in a tool called

Light-FP, which is comprised of a compiler built upon LLVM-

13 to perform code transformation and a runtime library

realizing error sensitivity analysis. The compiler generates

codes for local derivatives, inserts runtime calls for EPM

updates, and also applies an optimization for EPM indexing.

The runtime system is in charge of EPM management and

EPM updates.

4.1 Programming Interface
Light-FP can analyze the whole program or a specified code

region, and the output statement should be marked. The user

should register all the FP variables explicitly before their

first assignment statement. To register a variable, the user

should provide the address and a string label to designate

the related error source group, and the runtime system will

bind the variable to a certain EPM row and a certain EPM

column. The user can register a variable several times during

its lifetime, each time with a different string label, if he/she

wants to discriminate the variable’s error contribution in

different code regions.

Two kinds of registering interfaces. The basic interface is
element-by-element registration, in which users provide the

address and the column label for each variable. This kind of

API is general enough to apply to irregular data structures

such as graphs. We also provide batched mode registration

for FP arrays, in which users provide the base address of the

array and the array size. Under the latter API, array elements

of the same array are all bound to the same column, and

adjacent array elements are bound to adjacent EPM rows.

4.2 Compiler Transformations
The compiler works on the un-optimized, compiler inter-

mediate representation of the program, and has two main

compiler passes. The error propagating pass generates codes

for local derivatives, and inserts runtime calls for EPM ini-

tialization and EPM updates. And we also realized an adjoint

indexing optimization, called EpmIdxTrace.

Error propagating pass. In each user-specified target func-

tion, local derivative codes are generated for each FP as-

signment and runtime calls for EPM update are inserted.

EV propagation is maintained on procedural boundaries, by

pushing EVs to stack that correspond to FP arguments passed

by value and popping stack the EV that is related to the func-

tion result. It should be noted that Light-FP does not update

EPM at the granularity of float-pointing instructions, but at

each source code level assignment, since allocating different

precision for each virtual register is usually not necessary,

but just adds more EPM columns and more type conversions.

EpmIdxTrace pass. The basic method of EPM indexing is

through hashmap, taking the memory address of variables

as keys. Although hashmap is usually highly optimized, but

frequent hash computation and hashmap data access (bad

cache locality) at every FP assignment, bring remarkable per-

formance reduction. We note that under the batched mode of

FP array registration, variables that have adjacent addresses

have adjacent EPM row indices, so array elements of the

same array can share one single table look-up. EpmIdxTrace

pass tries to substitute hashmap retrieval calls with integer

arithmetic, accompanied by FP pointer arithmetic of the orig-

inal program. Firstly, it regards FP pointers of batch mode

variable registration calls as seed variables, collects all the

reachable FP pointer assignments (including GEP and bit-

cast, etc.) from them, and allocates two shadow variables

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(or adjoint variables) for each of the target pointers to store

the related EPM row index and column index, respectively.

Secondly, for each assignment of these target pointers, index

propagation instructions among adjoint variables are gen-

erated, where copy between pointers corresponds to copies

between adjoint indices, and pointer arithmetic corresponds

to an offset operation on the adjoint row index accompanied

with a copy of the adjoint column index. This allows us to ac-

cess the EPM using the adjoint indices instead of relying on

a hash map. If propagation fails (interrupted by an external

function), the dynamic hash map retrieval is called. Thirdly,

the compiler handles scalar stack variables in batched mode,

assigning their relative positions statically, thus reducing

register pressure incurred by adjoint variables. Fourthly, to

support FP pointers in arbitrary nested aggregated struc-

tures, each targeted FP pointer is upgraded to a structure

{double*, int32, int32}, and any aggregated structure including

targeted FP pointers is also upgraded.

4.3 Runtime Support
The runtime system is designed for EPM management and

update.

Preallocated EPM space. To lower the overhead of dynamic

memory allocation, we use profiling to get the shape of the

EPM matrix.

EPM binding and indexing.We use the hash map to retrieve

the EPM index for each variable, where the address of the

variable is the key, and the value contains both the row index

and the column index. Since each variable has a lifetime, so

multiple variables may share the same address (key of the

hashmap) during the program execution. In order to avoid

memory fragmentation, we do not reclaim the EPM row

when a variable becomes inactive but handle such a problem

with a conflict table.

Data parallelization on EPM update. The primary overhead

in the proposed algorithm arises from the EPM update. How-

ever, the independent nature of EPMupdate across distinct er-

ror source groups provides substantial opportunities for data

parallelism. The degree of data parallelism is EPM columns,

when it is wider than the SIMD width of the target architec-

ture, thread parallelism is introduced. We adopt the master-

helper pattern to realize thread parallelism: the master thread

executes the analyzed code region, evaluates derivatives, and

assigns EPM update tasks to the downstream helpers, while

helper threads receive the tasks, and perform the related

EPM update using SIMD instructions. Efficient communi-

cation between the master and helper threads is achieved

through double buffering. Theworkload of the helper threads

is evenly distributed according to EPM columns, with each

thread operating exclusively on its designated columns. To

minimize cache thrashing and improve cache locality, the

EPM matrix is stored in column tiles.

5 Evaluation
5.1 Methodology and Experimental Setup
We compared Light-FP against the current state-of-the-art

CHEF-FP using eight different benchmarks. We chose to

run both CHEF-FP and Light-FP in docker container with

privileged mode throughout the evaluation section. We used

clang++-13 as the backend compiler in the experiments, and

all of the tests used the -O3 option. We ran each experiment

five times and got the data on average. The time taken was

measured using std::chrono library and peak memory by

GNU time. The experiments were done on a Dell PowerEdge

R750 server with two 2.2GHz, Intel Xeon Gold 5320 proces-

sors, each processor has 26 cores. The server has 39MB L3

cache and 128 GB of memory, and we disabled hyperthread-

ing in the experiments.

HPC-MixPBench[24] is an HPC benchmark suite for

mixed-precision analysis, consisting of a representative set

of kernels and applications that are widely used in the HPC

domain.We chose six out of seven applications from it: Black-

Scholes, Hotspot, HPCCG, LavaMD, K-means, and SRAD.

Additionally, we chose NPB/CG from the NAS parallel bench-

marks [26], and Simpsons which is usually used in the error

analysis area.

5.2 The Accuracy of Error Estimation on
Single Variables

We compare the estimation error of Light-FP and CHEF-FP

with the actual error in Table 1 to illustrate the accuracy of

Light-FP, by demoting the precision of one variable at a time.

CHEF-FP actually adopts formula 6 as the error model. To

reveal the deep reason for the current method’s inaccuracy,

we present two kinds of estimated errors for CHEF-FP, the

modified CHEF-FP (without abs() treatment, i.e. using error

model 4) and the original CHEF-FP (with abs() treatment).

Due to space limitations, we focus on variables with sig-

nificant output errors as these variables will have a greater

impact on precision allocation.

In Table 1, to highlight the deviation from the actual errors,

the blue color is used when the deviation is about one order

of magnitude, red when the difference is above one order of

magnitude, and the order difference is given in parentheses.

As shown, Light-FP’s estimation is very close to the actual

error, only 4 variables are marked blue. Modified CHEF-FP

(without abs) generally significantly underestimates the out-

put error, which is consistent with our observation in Simp-

sons in section 2.1. For the original CHEF-FP, the influence

of abs() processing is huge, making the estimations 3 to 6

orders of magnitude larger. But CHEF-FP’s estimation is still

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

Table 1: Comparison between the estimated error and the actual error. CHEF-FP has two columns, onewithout using
abs() when accumulation and one enable abs(), denoted as Esti-CHEF-w/o ABS and Esti-CHEF-w/t ABS, respectively.
The estimated error of Light-FP is denoted as Esti-Light.

Application Input Variable Actual Error Esti-Light Esti-CHEF-w/o ABS Esti-CHEF-w/t ABS
Simpsons 10

6
s1 -2.64E-03 -2.64E-03 -8.16E-05(-2) 3.93E-02(+1)

x -3.48E-02 -3.51E-02 -2.39E-07(-5) 4.21E-02

lavaMD 8 fv_cpu_v 3.35E-04 3.35E-04 1.63E-07(-3) 2.60E-02(+2)

fv_cpu_x -6.10E-06 -6.10E-06 1.22E-07(-1) 1.24E-02(+4)

fv_cpu_y 7.34E-07 7.37E-07 -1.16E-06(+1) 1.24E-02(+5)

fv_cpu_z -2.67E-06 -2.67E-06 -1.44E-08(-2) 1.24E-02(+4)

hotspot 2
20

norm 2.14E+00 2.14E+00 -3.33E-04(-4) 3.81E+00

temp -1.02E-04 -9.99E-05 -1.55E-08(-4) 7.63E-06(-2)

result -1.02E-04 -1.02E-04 1.41E-08-4 7.62E-06(-2)

BlackScholes 10
6

OutputX -1.71E-01 -1.71E-01 -2.34E-02(-1) 3.01E-01

xK2 -3.75E-01 -3.40E-01 -2.69E-01 5.98E+00(+1)

xLocal -2.37E-01 -2.37E-01 -2.27E-01 2.83E+00(+1)

inv_sqrt_2xPI 3.88E-01 3.88E-01 3.88E-01 4.72E-01

NPB/CG 14000 zeta 9.06E-07 9.06E-07 -4.74E-08(-1) 4.74E-08(-1)

norm_temp1 6.52E-06 6.52E-06 1.28E-06 4.79E-04(+2)

norm_temp2 5.28E-07 1.01E-06(+1) -4.32E-06(+1) 4.25E-04(+3)

HPCCG 80 x -5.96E-07 2.38E-07 -8.97E-08 1.15E-06(+1)

r -5.54E-08 -2.20E-08 -4.68E-08 1.22E-07(+1)

Ap -2.79E-08 -2.18E-09(-1) 0.00E+00 0.00E+00

SRAD 500 Jc -1.38E-07 1.13E-07 0.00E+00 0.00E+00

image -4.40E-06 -1.07E-06 2.19E-07(-1) 2.75E-03(+3)

K-means 10
6

ans 1.38E-03 4.90E-02(+1) -1.08E-03 4.74E+01(+4)

clusters -4.31E-04 6.22E-03(+1) -2.87E-03(+1) 3.17E-01(+3)

Table 2: Error estimation and performance of the chosen mixed precision configurations.

Benchmark Input Threshold Actual Error Estimated Error Speedup
Simpsons 10

6
1e-06 6.62e-08 7.14e-08 1.72

hotspot 2
18

1e-08 -1.43e-10 -1.74e-10 1.09

NPB/CG 7000 1e-07 -3.12e-08 4.28e-09 1.04

HPCCG 20*30*80 1e-07 -2.27e-08 -2.19e-08 1.04

lavaMD 8 1e-05 -1.58e-06 -3.29e-06 1.71

SRAD 502*408(500) 1e-05 -4.42e-06 -1.30e-06 1.42

far from accurate, with a lot of red items and blue items,

actually, it gives a serious overestimation of the output error.

The four inaccurate items of Light-FP that occurred in

NPB/CG, HPCCH, and K-means are caused by certain nonlin-

ear operators, such as division, sqrt(), and exp(). The second-
order derivative of those operators may be much larger than

the first derivative, which means the second-order terms in

the Taylor series expansion cannot be neglected. Introducing

second-order terms to the error model could address this is-

sue but would incur substantial computational and memory

overhead.

5.3 Evaluation of Mixed Precision Results
With the error sensitivity vector, we use the greedy

algorithm[21] to find the optimal mixed precision config-

uration that satisfies the specified accuracy.

For each input of the tested benchmark, We applied error

analysis and used HiFPTuner as a preprocessor to group the

related variable, then searched for optimal mixed precision

configurations based on the result of analysis, and chose one

configuration for each benchmark with the best speedup,

and showed them in Table 2. In the table, Light-FP’s estima-

tion is compared with the actual error, and speedups of the

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

mixed-precision configuration are also given. One config-

uration that exhibits significant speedup under one input

may not sustain the same acceleration in another input. This

is due to variations in data size, computational complexity,

and precision requirements at different scales can lead to in-

creased overhead, resulting in performance degradation. We

found that preprocessing by HiFPTuner is useful for Hotspot

and NPB/CG.

5.4 Evaluation of Two Optimizations in
Light-FP

The two performance optimizations that we described in sub-

section 4.2 and 4.3 are EpmIdxTrace and data parallelization

on EPM update and are abbreviated as EIT and DP, respec-

tively. Totally we should consider four combinations, no-opt

(serial-analysis), EIT-only, DP-only, and EIT+DP. Since EIT-

only is not important , so we omit it for page limits.

In the data parallelization scenario, both mismatched

workload (a helper usually has more workload than the mas-

ter) and inter-thread synchronization between the master

and helpers may affect the pipelining performance appar-

ently. To exclude the dragging back effects from helpers,

we introduce two master versions, DP-master and DP-

master+EIT. In these versions, both EPM update and helper

threads are disabled, but the master still performs message

packaging and data copying to the double buffers. In DP-

master, hash map retrieval is used for EPM indexing, while

EIT is enabled in DP-master+EIT. These versions imply the

upper bounds of data parallelization when EIT is disabled/en-

abled. Besides, there are also two full versions, which are

DP and DP+EIT. DP+EIT uses 8 helper threads for error up-

dates, while DP uses 4 helper threads which is the optimal

configuration.

Figure 3 is a combo chart, the primary Y-axis is normal-

ized time according to the un-optimized version which is

the serial analysis with the two optimizations disabled, and

the secondary Y-axis shows speedup. The number of EPM

columns is labeled below each benchmark name.

Contribution of EpmIdxTrace: From Figure 3, we can see

positive EIT improvements both on the master side and on

the overall performance in almost all cases. DP-master of

Black-Scholes is the only exception, EIT shows no speedup

because hashmap has only 44 items (good cache locality)

and dynamic retrieval behaves almost as well as EIT. Fur-

thermore, if EpmIdxTrace does not let multiple FP scalars

share the same adjoint indices, EIT will witness severe per-

formance degradation for high register pressure. We can also

see that EIT is more profitable for large inputs than small

inputs. For the NPB/CG case, EIT is 15% more effective on

a large input compared to a small input. Table 3 presents

the effect of EIT optimization for each application. EIT-imp1

gives the performance improvement of EpmIdxTrace on the

master side with EPM update disabled, and EIT-imp2 relates

to the overall performance contribution when using 8 helper

threads. Among all cases, EIT-imp1 gets 41.88% improvement

on average, and EIT-imp2 gains only 24.38%.

5.5 Performance Evaluation
Figure 4 to 11 compare the performance of Light-FP, CHEF-

FP with that of the original program, both memory require-

ment and execution time will be considered

Accumulated effects of the two optimizations: The line chart
in Figure 3 gives the overall speedup of DP+EIT over the

un-optimized version. The average speedup among all 16

cases reaches 3.77.

Scalability of data parallelization: The positive improve-

ment of EIT+DP over DP indicates that the master is the

bottleneck in DP. But when EIT is enabled, things are dif-

ferent, helper threads become the bottleneck in many cases.

The reason may lie in that the EPM update becomes memory-

bound, and more helpers worsen the memory contention.

For cases with EPM columns within 10-20, the proper num-

ber of helper threads is 6, and 8 threads are needed when

columns are larger.

Memory Advantage: The memory bloat factor is constant

for each benchmark under Light-FP, regardless of inputs or

loop counts, and is quite close to the columns of its EPM. The

bloat factor is sometimes smaller than 𝑛𝑐𝑜𝑙𝑠 because only a

small portion of the program’s variables are monitored in the

analysis. In contrast, the memory requirement of CHEF-FP

grows with the number of loop counts.

Light-FP demonstrates evident memory advantages in

cases with a large number of iterations. In NPB/CG with

14,000 iterations, the bloat factor of CHEF-FP is 942, while

that of Light-FP is less than 2. In lavaMD with a size dimen-

sion of 10, CHEF-FP bloated 6,671x, whereas Light-FP bloated

32x. In the Simpsons case, Light-FP is 2,600X more mem-

ory efficient than CHEF-FP. In Hotspot, SRAD, and HPCCG,

1.72 1.47

2.89 3.04

2.29

4.66

4.48

6.06

4.56 4.80

3.54 3.64 3.53 3.79
4.64

5.14

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

10
^4

10
^6

10
^6

10
^8 80 32
0

14
00

75
00
0

2^
18

2^
24 4 10

10
^2

10
^3

10
^4

10
^6

K-Means
3

Simpsons
11

HPCCG
15

NPB/CG
15

Hotspot
21

LavaMD
23

SRAD
26

Black-
Scholes
44

sp
ee

du
p

N
or

m
al

ze
d

tim
e

DP-master+EIT DP-master EIT+DP DP speedup=1/(EIT+DP)

Figure 3: Effects of the two optimizations under the
data parallelization scenario

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

Table 3: Effects of the EIT optimization.

K-means Simpsons HPCCG NPB/CG Hotspot lavaMD SRAD Black-Scholes Average
EIT-imp1 40% 40% 53% 72% 59% 41% 30% 0% 41.88%

EIT-imp2 9% 22% 29% 50% 30% 20% 35% 0% 24.38%

01110
origin.Time Light-FP.Time CHEF-FP.Time origin.Memory Light-FP.Memory CHEF-FP.Memory

0.0

0.3

2.6

0.1

1.2
10.8

0.4

4.0
27.3

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

10^6 10^7 10^8

M
em
or
y（
M
B）

Ex
ec
-T
im
e(
s)

Iterations

Figure 4: Simpsons

0.1 0.2 0.4 0.7 1.4 2.9 5.5 10.5 4.0 7.1 15.1 30.0

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

40 80 160 320

M
em
or
y(
M
B
)

Ex
ec
-T
im
e(
s)

Z-dimension

Figure 5: HPCCG

0.1
0.4

1.6

35.9

0.9
5.1

16.8

121.9

2.0
10.9

42.6

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E-2
1.E-1
1.E+0
1.E+1
1.E+2
1.E+3

1400 7000 14000 75000

M
em

or
y(

M
B

)

Ex
ec

-T
im

e(
s)

Data scales

Figure 6: NPB/CG

0.2
1.0

2.8
9.9

2.1
7.8

30.2

119.8

7.9
39.6

167.8

1.E+0
1.E+1
1.E+2
1.E+3
1.E+4
1.E+5

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

2^18 2^20 2^22 2^24

M
em
or
y(
M
B
)

Ex
ec
-T
im
e(
s)

Data Size

Figure 7: Hotspot

0.5
1.8 3.3

13.6
66.2 132.1

41.1

246.6

1.E+0

1.E+1
1.E+2

1.E+3
1.E+4

1.E+5

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

100 500 1000

M
em

or
y

(M
B

)

Ex
ec

-T
im

e(
s)

Iterations

Figure 8: SRAD

0.0
0.2

2.7 4.8

0.3

3.6
36.7

75.2

0.7

10.6
108.8

239.3

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

2 4 8 10

M
em

or
y(

M
B

)

Ex
ec

-T
im

e(
s)

Size of dimention

Figure 9: LavaMD

0.0
0.01

0.6 0.5
4.6

0.01

0.2

10.2
2.6

21.7

0.01 0.2

10.1
2.4

18.1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E-3
1.E-2
1.E-1
1.E+0
1.E+1
1.E+2
1.E+3

10^2 10^3 10^4 10^5 10^6

M
em

or
y(

M
B

)

Ex
ec

-T
im

e(
s)

Data points

Figure 10: K-means

0.00

0.02 0.1
0.8

6.6

0.03
0.3

2.4
21.3

219.3

0.02
0.1

0.7
5.2

45.9

1.E+0

1.E+1

1.E+2

1.E+3

1.E-3
1.E-2
1.E-1
1.E+0
1.E+1
1.E+2
1.E+3

10^2 10^3 10^4 10^5 10^6

M
em

or
y（

M
B
）

Ex
ec

-T
im

e(
s)

Data points

Figure 11: Black-Scholes

Figures 4 to 11 compare the performance of Light-FP, CHEF-FP with the original program. The bars represent the
time taken by the tools, and the lines show peak memory usage. Both Y-axes use a logarithmic scale.

Light-FP exhibits 12x to 54x more efficient than CHEF-FP.

Additionally, for the largest inputs tested in the NPB/CG and

Hotspot cases, CHEF-FP encounters out-of-memory issues.

There are exceptions in two cases. For K-means and Black-

Scholes, Light-FP’s bloat factor on memory usage is only

1.3x~4x, but CHEF-FP performs perfectly with negligible

memory usage. The reason is that for these two programs,

CHEF-FP only focuses on the kernel function within a loop,

and each execution of the kernel is independent of other

executions. So CHEF-FP can aggregate the error and then

release all the memory at the end of the execution of each

kernel.

Time Advantage: Light-FP is obviously faster than CHEF-

FP by about 2x~5x in six benchmarks, which are Hotspot,

lavaMD, SRAD, Simpsons, NPB/CG, and HPCCG.

For the largest input tested of Hotspot, SRAD, and

NPB/CG, CHEF-FP collapses for lacking memory, so their

time bars are absent. For two of them, Hotspot and SRAD,

we employed linear fitting to predict the running time of

CHEF-FP on a machine with sufficient memory, as shown in

Table 4. The predicted time can be considered as the mini-

mum possible time since checkpointing introduces additional

computational overhead. Nevertheless, Light-FP still demon-

strates a runtime advantage in this extreme scenario (1.93x

for Hotspot and 3.42x for SRAD). For NPB/CG, the running

time at the maximum scale of 75,000 increases significantly

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

due to a substantial rise in the number of iterations, which

does not scale linearly, so the forecast time is not provided.

Table 4: Time comparison of LightFP with CHEF-FP
whose time is gained by linear fitting.

Benchmark Light-FP(s) CHEF-FP(s)
Hotspot(2

24
) 119.8 231.6

SRAD(1000) 132.1 452.2

There are also exceptions for K-means and Black-Scholes.

For most inputs of K-means, the analysis time of Light-FP

is about 1.06x slower. The reason lies in that, Light-FP has

about triple the instructions of CHEF-FP, and the 3-length

error vectors exhibit poorly either in SIMD parallelism or

in thread-level parallelism. For Black-Scholes, Light-FP’s EV

length is quite large (44), so the computation complexity

is about 14 times larger than that of CHEF-FP. Although

it gained 5.1x speedup from data parallelism, the runtime

overhead is still large.

In summary, Light-FP exhibits an obvious advantage in

memory consumption with up to 2600x more memory effi-

ciency and also runtime advantages on many applications.

For multi-entrant code regions with very few instructions,

Light-FP may be less efficient than CHEF-FP in terms of

memory consumption and runtime, but the difference is mi-

nor.

6 Current limitations
Input dependent: Dynamic analysis is input-dependent.

The mixed precision configurations stemming from the error

sensitivity result under one input may not apply to another

input. Representative datasets should be used to get a general

mixed-precision configuration for the application.

Support external functions: Currently Light-FP does

not support external functions. In the future, third-party AD

tools can be leveraged to generate code for them to get the

related derivatives and enable the propagation of errors in

the external function.

Support parallel programs: Since our algorithm adopts

a tightly coupled approach combining AD with error compu-

tation, but not relying on third-party AD tools, the proposed

algorithm should be tightly integrated with the implementa-

tion of each parallel programming language. For OpenMP,

since EPM is a shared data structure among OpenMP threads,

data synchronization on EPM is indispensable, and the syn-

chronization of EVs is just an analog of that of variables in

the original OpenMP program. For MPI programs, EV prop-

agation among processes should be introduced along with

MPI communication, and this means extra shadow commu-

nication on error vectors.

Improve the accuracy of error estimation: For some

HPC applications, the first-order Taylor approximation is

not accurate enough. The proposed algorithm can be fur-

ther improved with a second-order error term as in [30],

but not higher-order Taylor approximation because [22] re-

vealed that higher-order Taylor approximation does not give

much better approximation results, only leads to complex

expressions. And the second-order error term can be kept in

another EPM matrix.

7 Related Work
Floating-point error analysis has been studied extensively in

the literature, and there are mainly three kinds of methods.

The static method analyzes the source code of the pro-

gram, to get a tight bound on the FP rounding error which

applies to all inputs. Some of them such as Rosa and Daisy

[9], [7],[6] analyze real-valued programs with error specifica-

tions, and search for proper mixed precision configurations

using SMT solver. Gappa[10] evaluated error bound for ele-

mentary functions using interval arithmetic and proved the

result automatically, and its successor, Gappa++[20] utilized

affine arithmetic in error bound evaluation and can further

handle transcendental functions. Since the above techniques

often provide very pessimistic overestimates, FPTaylor put

forward Symbolic Taylor Expansions, a rigorous global opti-

mizationmethod, to tighten the error bound. Symbolic Taylor

Expansions are also used in FPTuner[5] to get a mixed preci-

sion configuration that satisfies output accuracy by solving a

quadratically constrained quadratic program. Static analysis

is currently limited to kernels or small programs, and cannot

scale to real applications.

Search-based methods are more general, apply to arbitrary

programs theoretically, and can usually find more efficient,

mixed-precision configurations. Precimonious introduced

Delta-Debugging to search for a feasible configuration and

leverage automatic code transformation to generate program

variants. CRAFT[17] used binary instrumentation to build

mixed-precision variants of existing binaries and a simple,

breadth-first search for a proper mixed-precision configu-

ration. Since fewer type casts at runtime lead to better per-

formance, HiFPTuner[13] formulated a community hierar-

chy on variables based on edge profiling and dependence

analysis and presented a hierarchical search algorithm that

iteratively lowers precision with regards to communities. [3]

built a backtrace graph based on control flow information and

temporal locality, applied backtrace clustering (community)

and iterative search refinement to reduce search complexity.

GPUMixer[15] chose candidate assignment statements for

mixed precision computation using a performance-driven

approach and estimated errors through shadowed execution.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiazhi Mi and Li Chen, et al.

[19] modeled the actual performance and power consump-

tion of mixed precision programs on hardware platforms,

and based on this model searched for the Pareto optimal set

of all precision configurations. Although the search-based

approach is general, the state space is exponential to the

number of variables so its scalability is limited, and it can

also get trapped into local minima.

Compared with time-intensive, search-based approaches,

dynamic analysis has low overhead, and the runtime infor-

mation collected may be more relevant for finding a better

solution. Blame[23] built the blame set for each instruction

with the help of shadowed execution, and deduced precision

requirements for each instruction, so reducing the state space

to be explored dramaticallyADAPT suggested implementing

an error sensitivity profile based on algorithmic differentia-

tion, demonstrating its usefulness to narrow the search space,

and has been incorporated with several software tools into

an integrated toolchain, where TypeForge analyzes variable

types and transforms codes, ADAPT provides error sensi-

tivity information, and CRAFT searches the state space that

has been reduced by previous tools. To deal with the perfor-

mance problem of ADAPT, CHEF-FP chose Clad[31] as the

AD tool, generated FP error estimation code directly into the

derivative source, enabling compiler optimizations resulting

in less analysis time and reduced memory usage. But, CHEF-

FP does not completely solve the memory overhead problem,

incurred by reverse mode AD, where space overhead is pro-

portional to the total number of instructions of the original

program in the worst case.

In contrast, Light-FP is built upon forward mode AD, with

the help of EPM and error source aggregation, overcoming

the time complexity issue of forward AD without hurting

the accuracy of error analysis. This method is more suitable

for HPC workloads.

8 Conclusion
In this paper, we propose an efficient algorithm to evaluate

approximation errors, which tightly integrates forwardmode

AD with error source aggregation. we provide a new error

model to capture correlation among variables within the

same error source group. Potentially, the approach works for

different parallel codes, including OpenMP, MPI, and CUDA.

We realized the algorithm in Light-FP, a source-code trans-

formation tool, to analyze approximation errors in HPC ap-

plications, and evaluated it on six applications and two other

benchmarks. We find that Light-FP can provide more accu-

rate error estimation than traditional methods, and show

how the estimation is used in mixed-precision tuning. Low

overhead makes Light-FP feasible for typical HPC applica-

tions with a large number of iterations. Light-FP achieved

a maximum speedup of 5.6X over CHEF-FP in the Hotspot

application. It also significantly reduced memory by 2600X

for the Simpsons benchmark, 500X for CG, and 200X for

LavaMD.

Acknowledgments
We would like to thank the anonymous reviewers for their

insightful comments and suggestions. In addition, we used

ChatGPT to polish some sentences in this paper and write

some Python scripts. This work is supported by the fund

of Laboratory for Advanced Computing and Intelligence

Engineering.

References
[1] Alan Ayala, Stanimire Tomov, Xi Luo, Hejer Shaeik, Azzam Haidar,

George Bosilca, and Jack Dongarra. 2019. Impacts of multi-gpu mpi

collective communications on large fft computation. In 2019 IEEE/ACM
Workshop on Exascale MPI (ExaMPI). IEEE, 12–18.

[2] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie

Langou, Julien Langou, Piotr Luszczek, and Stanimire Tomov. 2009.

Accelerating scientific computations with mixed precision algorithms.

Computer Physics Communications 180, 12 (2009), 2526–2533.
[3] Hugo Brunie, Costin Iancu, Khaled Z Ibrahim, Philip Brisk, and Bran-

don Cook. 2020. Tuning floating-point precision using dynamic pro-

gram information and temporal locality. In SC20: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–14.

[4] Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro, Ghislain Lartigue,

and David Defour. 2019. Automatic exploration of reduced floating-

point representations in iterative methods. In Euro-Par 2019: Parallel
Processing: 25th International Conference on Parallel and Distributed
Computing, Göttingen, Germany, August 26–30, 2019, Proceedings 25.
Springer, 481–494.

[5] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev,

Ganesh Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous

floating-point mixed-precision tuning. ACM SIGPLAN Notices 52, 1
(2017), 300–315.

[6] Eva Darulova, Einar Horn, and Saksham Sharma. 2018. Sound mixed-

precision optimization with rewriting. In 2018 ACM/IEEE 9th Interna-

tional Conference on Cyber-Physical Systems (ICCPS).

[7] Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko

Becker, and Robert Bastian. 2018. Daisy-framework for analysis and

optimization of numerical programs (tool paper). In Tools and Algo-
rithms for the Construction and Analysis of Systems: 24th International
Conference, TACAS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, Part I 24. Springer, 270–287.

[8] Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals. In

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 235–248.

[9] Eva Darulova and Viktor Kuncak. 2017. Towards a compiler for reals.

ACM Transactions on Programming Languages and Systems (TOPLAS)
39, 2 (2017), 1–28.

[10] Florent De Dinechin, Christoph Quirin Lauter, and Guillaume

Melquiond. 2006. Assisted verification of elementary functions using

Gappa. In Proceedings of the 2006 ACM symposium on Applied comput-
ing. 1318–1322.

[11] Andreas Griewank. 1992. Achieving logarithmic growth of temporal

and spatial complexity in reverse automatic differentiation. Optimiza-
tion Methods and software 1, 1 (1992), 35–54.

Light-FP: Analyze Floating-Point Error in a Highly Condensed Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[12] Hui Guo and Cindy Rubio-González. 2018. Exploiting community

structure for floating-point precision tuning. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 333–343.

[13] Hui Guo and Cindy Rubio-González. 2018. Exploiting community

structure for floating-point precision tuning. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 333–343.

[14] Laurent Hascoet and Valérie Pascual. 2013. The Tapenade automatic

differentiation tool: principles, model, and specification. ACM Trans-
actions on Mathematical Software (TOMS) 39, 3 (2013), 1–43.

[15] Ignacio Laguna, Paul C Wood, Ranvijay Singh, and Saurabh Bagchi.

2019. Gpumixer: Performance-driven floating-point tuning for gpu sci-

entific applications. In High Performance Computing: 34th International
Conference, ISC High Performance 2019, Frankfurt/Main, Germany, June
16–20, 2019, Proceedings 34. Springer, 227–246.

[16] Michael O Lam and Jeffrey K Hollingsworth. 2018. Fine-grained

floating-point precision analysis. The International Journal of High
Performance Computing Applications 32, 2 (2018), 231–245.

[17] Michael O Lam, Jeffrey K Hollingsworth, Bronis R de Supinski, and

Matthew P Legendre. 2013. Automatically adapting programs for

mixed-precision floating-point computation. In Proceedings of the 27th
international ACM conference on International conference on supercom-
puting. 369–378.

[18] Michael O Lam, Tristan Vanderbruggen, HarshithaMenon, andMarkus

Schordan. 2019. Tool integration for source-level mixed precision. In

2019 IEEE/ACM 3rd International Workshop on Software Correctness for
HPC Applications (Correctness). IEEE, 27–35.

[19] Zeqing Li, Yongwei Wu, and Youhui Zhang. 2023. Multi-Objective Op-

timization for Floating Point Mix-Precision Tuning. In 2023 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED).
IEEE, 1–6.

[20] Michael D Linderman, Matthew Ho, David L Dill, Teresa H Meng,

and Garry P Nolan. 2010. Towards program optimization through

automated analysis of numerical precision. In Proceedings of the 8th
annual IEEE/ACM international symposium on Code generation and
optimization. 230–237.

[21] Harshitha Menon, Michael O Lam, Daniel Osei-Kuffuor, Markus Schor-

dan, Scott Lloyd, Kathryn Mohror, and Jeffrey Hittinger. 2018. Adapt:

Algorithmic differentiation applied to floating-point precision tuning.

In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 614–626.

[22] Arnold Neumaier. 2003. Taylor forms—use and limits. Reliable com-
puting 9, 1 (2003), 43–79.

[23] Cuong Nguyen. 2015. A Dynamic Analysis for Tuning Floating-point

Precision. (2015).

[24] Konstantinos Parasyris, Ignacio Laguna, Harshitha Menon, Markus

Schordan, Daniel Osei-Kuffuor, Giorgis Georgakoudis, Michael O Lam,

and Tristan Vanderbruggen. 2020. HPC-MixPBench: An HPC bench-

mark suite for mixed-precision analysis. In 2020 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 25–36.

[25] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James

Demmel, William Kahan, Koushik Sen, David H Bailey, Costin Iancu,

and David Hough. 2013. Precimonious: Tuning assistant for floating-

point precision. In Proceedings of the international conference on high
performance computing, networking, storage and analysis. 1–12.

[26] William Saphir, Rob F Van der Wijngaart, Alex Woo, and Maurice

Yarrow. 1997. New Implementations and Results for the NAS Parallel

Benchmarks 2.. In PPSC. Citeseer.
[27] Garima Singh, Baidyanath Kundu, Harshitha Menon, Alexander Penev,

David J Lange, and Vassil Vassilev. 2023. Fast And Automatic Floating

Point Error Analysis With CHEF-FP. In 2023 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, 1018–1028.
[28] Jeffrey Mark Siskind and Barak A Pearlmutter. 2018. Divide-and-

conquer checkpointing for arbitrary programs with no user annotation.

Optimization Methods and Software 33, 4-6 (2018), 1288–1330.
[29] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,

Zvonimir Rakamarić, and Ganesh Gopalakrishnan. 2018. Rigorous

estimation of floating-point round-off errors with symbolic taylor

expansions. ACM Transactions on Programming Languages and Systems
(TOPLAS) 41, 1 (2018), 1–39.

[30] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,

Zvonimir Rakamarić, and Ganesh Gopalakrishnan. 2018. Rigorous

estimation of floating-point round-off errors with symbolic taylor

expansions. ACM Transactions on Programming Languages and Systems
(TOPLAS) 41, 1 (2018), 1–39.

[31] Vassilev Vassilev, M Vassilev, A Penev, L Moneta, and V Ilieva. 2015.

Clad—automatic differentiation using clang and LLVM. In Journal of
Physics: Conference Series, Vol. 608. IOP Publishing, 012055.

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Current error model and its accuracy
	2.2 Reverse Mode AD-based Approach and its Space Complexity

	3 Source Aggregated Floating-Point Error Analysis
	3.1 EPM-based Error Analysis, the Naive Algorithm
	3.2 Compress EPM Columns by Error Source Aggregation
	3.3 Improve the Accuracy of the Algorithm 1

	4 Implementation and Optimizations
	4.1 Programming Interface
	4.2 Compiler Transformations
	4.3 Runtime Support

	5 Evaluation
	5.1 Methodology and Experimental Setup
	5.2 The Accuracy of Error Estimation on Single Variables
	5.3 Evaluation of Mixed Precision Results
	5.4 Evaluation of Two Optimizations in Light-FP
	5.5 Performance Evaluation

	6 Current limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

