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Abstract

Datalog, a declarative logic programming language that oper-

ates bottom-up, has experienced increasing popularity due to

its natural handling of recursive queries. Its applications span

diverse fields, including graph mining, program analysis,

deductive databases, and neuro-symbolic reasoning. While

Datalog shares similarities with SQL in using relational al-

gebra kernels, it uniquely employs iterative execution until

reaching a fixed point to support recursion. Current Datalog

engines like SLOG, LogicBlox, and Soufflé work well with

multi-core and multi-threaded systems, but none have yet

tackled multi-node, multi-GPU architectures. Our research

addresses this gap by developing the first multi-GPU, multi-

node Datalog engine. This advancement is particularly for

high-performance computing (HPC) systems, which typi-

cally feature multiple GPUs per node. Our implementation

combines MPI for inter-node communication with CUDA

for GPU parallelization, enabling the processing of massive

datasets in real time. We have created novel data-parallel

implementations of core relational algebra operations (join),

while also optimizing deduplication and tuple materializa-

tion. To handle iterative execution, we have developed two

novel GPU-accelerated methods for non-uniform all-to-all

data exchange. Evaluating on Argonne National Lab’s Po-

laris supercomputer demonstrated our engine’s effectiveness,

achieving performance improvements of up to 32× against

state-of-the-art multi-node Datalog engine.
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1 Introduction

Datalog is a declarative logic programming language no-

table for its elegant handling of recursive queries. Its power

is exemplified by its ability to express complex algorithms

succinctly. For instance, computing a graph’s transitive clo-

sure requires merely two lines of Datalog code. Similarly,

other graph algorithms like same graph generation, con-

nected component analysis, and single-source shortest path

calculations can be implemented in just two to three lines of

Datalog code [53]. This remarkable expressiveness has led

to Datalog’s adoption across diverse domains, from bioinfor-

matics and graph mining [26, 45, 48, 51] to program analy-

sis [7, 12, 19, 21], and neuro-symbolic reasoning [40].

Datalog operates by translating queries into relational

algebra operations, such as joins, projections, and unions.

The system architecture consists of two main components: a

frontend compiler that transforms Datalog queries into iter-

ative relational algebra kernels and a backend that executes

these kernels [34] until a fixed-point is reached. This design

enables a powerful combination of high-level expressive-

ness through Datalog’s syntax while achieving performance

through parallel implementation of the relational algebra

kernels. Several engines have implemented this approach:

Soufflé [32] leverages OpenMP for multi-threaded CPU pro-

cessing, SLOG [23] employs MPI for distributed CPU com-

putation, GPUJoin [50] and GPULog [54] utilize CUDA for

GPU acceleration.

Among parallel Datalog engines, the GPU-based approach

significantly outperforms others, with reported speedups

exceeding 10× in complex tasks such as program analy-

sis [54]. This advantage comes from Datalog’s inherently
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data-intensive and memory-bound nature, where each iter-

ation requires deduplication, indexing, and aggregation of

large volumes of generated data. Datacenter-grade GPUs pro-

vide much higher memory bandwidth than CPUs of the same

class; for instance, the Nvidia H100 reaches 3.35 TB/s [42],

whereas the high-end AMD Zen 5 achieves only 576 GB/s [4].

In this paper, we introduce mnmgDatalog, the first multi-

node, multi-GPU Datalog engine. To the best of our knowl-

edge, ours is the first Datalog engine that fully harnesses

the potential of modern GPU-based supercomputers. Our

engine employs a radix-hash-based data partitioning scheme

to balance computation across GPUs while minimizing data

exchange. We design novel distributed relational algebra op-

erators that consider both data partitioning strategies and

the SIMT nature of GPUs [43]. Our framework relies on non-

uniform all-to-all data exchanges to facilitate fixed-point

iteration. We explore two different implementations of all-

to-all data exchanges that also leverage the computational

capabilities of the GPU. In addition to core features found

in other GPU-based Datalog engines, we implement recur-

sive aggregation, a widely used Datalog feature, and scale

it efficiently across multiple nodes. We evaluate mnmgDat-

alog’s performance up to 32 NVIDIA A100 GPUs on the

Polaris supercomputer [5], benchmarking its performance

against state-of-the-art CPU and GPU-based engines on di-

verse graph analytic queries. Our main contributions are

summarized as follows:

• We present a radix-hash-based data partitioning strategy,

optimized for indexing and iterative computation.

• We implement CUDA-aware non-uniform all-to-all ex-

changes for tuple materialization to facilitate iterative re-

lational algebra.

• We implement and scale recursive aggregation on GPU.

• On a single GPU,mnmgDatalog achieves up to 7× speedup
over GPULog, and up to 33× over Soufflé. In a multi-node,

multi-GPU setting, mnmgDatalog outperforms the state-

of-the-art HPC-based engine SLOG by up to 32×.

2 Declarative analytics using Datalog

Datalog operates through a lightweight bottom-up evalu-

ation approach and is widely used in deductive database

systems [13, 14, 16]. A Datalog program consists of an exten-
sional database containing explicit input facts and an inten-
sional database of derived facts inferred through rules [11].

These rules are expressed as first-order Horn clauses, where

each rule takes the form:

Head← Body
1
, Body

2
, . . . , Body𝑛

The head contains a single predicate atom which represents

the inferred fact, while the body specifies the conditions for

its derivation using a set of predicate atoms. The implication

symbol ← connects the head with the body. Commas in

the body represent logical AND (∧) that performs a join
operation between the predicate atoms.

Datalog excels at handling recursive queries through fixed-
point evaluation, where rules are repeatedly applied until no

new facts can be derived. For instance, the following rules

can be used to derive the transitive closure of an input graph,

which finds all reachable paths from each node:

TC(𝑥,𝑦) ← Edge(𝑥,𝑦).
TC(𝑥, 𝑧) ← TC(𝑥,𝑦), Edge(𝑦, 𝑧).

The first rule establishes that a direct edge from 𝑥 to𝑦 implies

reachability. The second rule, which is recursive, extends this

reachability by chaining existing paths: if 𝑥 can reach 𝑦 and

there is an edge from 𝑦 to 𝑧, then 𝑥 can also reach 𝑧. This

recursive expansion is achieved through a join operation

between the TC and Edge relations, where previously de-

rived reachability facts from TC are joined with new edges

from Edge to infer additional paths. This process continues

iteratively until no new paths can be inferred. Such recur-

sive capabilities allow Datalog to efficiently solve problems

like transitive closure, connected components, same gener-

ation, and other queries that traditional SQL struggles to

handle. Though traditional SQL supports recursive queries

through common table expressions (CTEs), Datalog’s expres-

sive syntax and bottom-up evaluationmake recursive queries

simpler and more efficient by automatically iterating until

a fixed point is reached, without requiring explicit control

structures.

Semi-naïve evaluation. Modern datalog engines achieve

performance improvements through the semi-naïve evalu-

ation [3], an incremental evaluation technique. Our frame-

work, mnmgDatalog, likewise implements this optimization

technique, which improves the efficiency of iterative queries

by exclusively utilizing only the newly derived facts during

each successive iteration. This strategy avoids redundant

computation by ensuring that only newly derived facts are

used to infer additional facts in the iterative process.

In semi-naïve evaluation, non-static relations (such as TC
in path-finding applications) are strategically decomposed

into three distinct components: (1) full, which encompasses

all facts discovered prior to the most recent iteration; (2)

delta, containing exclusively those facts identified during

the immediately preceding iteration; and (3) new, which
stores facts newly derived during the current computational

iteration. Throughout each iteration, join operations are se-

lectively applied using only the delta component of a re-

lation, with resultant tuples stored in the new component.

Upon iteration completion, the algorithm executes a three-

phase transition process: it transfers all tuples from delta
into the full relation, exchanges pointers between delta
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Figure 1: Iterations of transitive closure computation.

and new to prepare delta for the subsequent iteration, and
reinitializes new to accommodate upcoming derivations. Fig-

ure 1 provides a visual representation of this iterative execu-

tion process for transitive closure rules under the semi-naïve

evaluation framework.

The top left presents the input graph, while the top right

depicts the fully computed TC. In the first iteration, the TC
relation is initialized using the direct edges from the Edge
relation. Since TC is initially empty, the recursive rule does

not contribute any new facts at this stage. Both the Delta
and Full versions are set to be identical to TC, ensuring
that all direct connections are established before applying

recursive expansions in subsequent iterations. In the second

iteration, the recursive rule computes New := Edge ⊲⊳ Delta,
yielding {(1, 3), (1, 4), (2, 5), (2, 6)}. Since these tuples are

not present in the existing Full version, they are added

to Full (highlighted in red) and also stored in Delta for

the next iteration. In the third iteration, the join produces

unique set of tuples {(1, 5), (1, 6)}, which are merged into

Full (highlighted in green) and retained in Delta. In the

fourth iteration, Edge ⊲⊳ Delta produces no new tuples, leav-

ing Delta empty and signaling fixpoint termination. This

stepwise expansion optimizes TC computation by restricting

joins to newly derived facts, eliminating redundant compu-

tation while ensuring correctness.

Recursive Aggregation. Recursive aggregation extends stan-
dard Datalog semantics by allowing aggregate functions such

as MIN, MAX, SUM, and COUNT to be applied dynamically dur-

ing recursive evaluation. This feature is useful in graph al-

gorithms, including connected components, shortest paths,

and PageRank, where values must be iteratively propagated

rather than computed post-fixpoint using stratification [3].

One such application is the Weakly Connected Compo-

nents (WCC) problem, where recursive aggregation enables

the efficient propagation of component representatives. The

WCC query can be formulated in Datalog as follows:

WCC(𝑛, 𝑛) ← Edge(𝑛, _).
WCC(𝑦, MIN(𝑧)) ← WCC(𝑦, 𝑧), Edge(𝑥,𝑦) .

The first rule initializes each node as its own component,

while the second rule propagates the smallest representative

node ID across connected nodes using the MIN aggregate. Un-
like traditional Datalog engines that materialize all possible

component memberships, recursive aggregation ensures that

only the minimal component representative is maintained,

reducing both space complexity and redundant computa-

tions.

3 Challenges and requirements

This section outlines the critical requirements for building

a multi-node multi-GPU datalog engine. We focus on three

fundamental components necessary to achieve scalable per-

formance: workload partitioning, data representation, and

inter-node data exchange.

3.1 Workload partitioning

Parallelizing algorithms necessitates identifying an appro-

priate partitioning axis for workload distribution. Two funda-

mental approaches exist for problem partitioning:model/task-

level partitioning and data-level partitioning. Datalog pro-

grams inherently support both paradigms. While task par-

allelism is program-dependent, allowing complex Datalog

programs to be decomposed into independent, concurrently

executable task groups – our research exclusively addresses

data-level parallelism. We propose a data-parallel framework

that effectively distributes the computational workload of

Datalog programs across multiple GPUs. This approach re-

quires strategic partitioning of all relations within the Data-

log program and subsequent allocation of these partitioned

segments across available GPUs.

Conventional GPU-accelerated algorithms are engineered

primarily for dense computational patterns, exemplified by

matrix multiplication operations [1, 2, 20, 28]. These dense

workloads facilitate uniform partitioning into equal-sized

computational units, thereby optimizing memory bandwidth

utilization and cache efficiency. In contrast, Datalog com-

putation exhibits inherent irregularity and sparsity, as the
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relations involved in Datalog programs vary considerably in

size, characteristics, and topological properties. This intrin-

sic heterogeneity renders efficient data partitioning across

multiple GPUs substantially more complex.

Naive approaches that uniformly distribute relations across

available GPUs prove inadequate, as effective partitioning

must specifically accommodate the fundamental operations

underlying Datalog execution, such as low-level relational al-

gebra kernels including joins, unions, projections, and other

tasks like deduplication and merging procedures. In Figure 1,

when distributing Edge relation with tuples (1,2), (2,3), (2,4),

(4,5), and (4,6) across two GPUs, a join-preserving approach

must ensure that all tuples with identical join keys such as

those beginning with "2" are allocated to the same GPU. This

locality preserving allocation is essential for ensuring that

join operations, which in this case occur on the first column,

can be performed efficiently within a single GPU without

cross-device communication. A naive uniform distribution

strategy that allocates an equal number of tuples (e.g., three

tuples per GPU) would compromise this crucial locality prop-

erty. While such an approach might achieve nominal data

balance across GPUs, it inevitably leads to highly imbalanced

computational workloads during execution and introduces

significant inter-GPU communication overhead. To address

this distribution challenge, we implement a hash-based parti-

tioning methodology [9] wherein relational data is systemat-

ically distributed across all available GPUs according to the

hash value of the join column (detailed in Section 4.1). Thus,

the first key challenge we propose to address in this paper is

designing a data partitioning strategy that respects Datalog

computation while minimizing communication overhead.

3.2 Data representation

A prerequisite for constructing a scalable multi-node, multi-

GPU Datalog execution engine is the optimization of single-

GPU performance. Fundamental to achieving peak single-

GPU efficiency is the underlying data representation, specif-

ically, how relational data is organized and stored within

GPUmemory. The critical design challenge lies in developing

data structures that simultaneously achieve multiple perfor-

mance objectives: minimizing memory footprint, enabling

high-throughput data retrieval operations (essential for join

execution), and effectively supporting auxiliary operations

such as deduplication. These memory-resident data struc-

tures form the foundation upon which the entire distributed

computation framework depends, directly influencing over-

all system scalability and performance characteristics.

For efficient lookup operations, hash tables represent the

predominant data structure upon which hash join algorithms

are constructed [8, 24, 33]. Conventional CPU-oriented hash

join implementations frequently utilize hash tables built on

linked-list architectures. However, these structures demon-

strate poor performance characteristics when deployed on

GPU architectures, as pointer-chasing operations inherently

generate non-coalesced memory access patterns, resulting

in significant latency penalties. To overcome this architec-

tural limitation, our implementation employs a specialized

open-addressing hash map with linear probing techniques.

This design modification substantially optimizes memory

access patterns and enhances overall execution performance

on GPU hardware. A comprehensive detail of this implemen-

tation approach, including performance characteristics and

design considerations, is presented in Section 4.

3.3 Efficient communication

Relational algebra (RA) kernels, including join and other op-

erations, executed locally within individual GPUs generate

new tuples that typically serve as input for subsequent itera-

tions of the semi-naive evaluation process. However, these

newly generated tuples do not necessarily belong to the

GPU/process where they were originally produced. To mate-

rialize the newly generated facts and consequently to facili-

tate iterative parallel relational algebra execution, processes

must participate in a non-uniform all-to-all inter-process ex-

change of generated tuples to their appropriate destination

(GPU). The materialization of a tuple in an output relation

involves hashing its join column to identify the target GPU,

followed by transmission to that specified GPU. Since tu-

ples produced during the local computation phase may each

correspond to arbitrary GPUs in the output relation, an all-to-

all communication phase becomes necessary to redistribute

these output tuples to their managing processes. Due to in-

herent variations in both the number of tuples generated

across different processes and their destination distributions,

the all-to-all communication phase exhibits a fundamentally

non-uniform characteristic. We explain the need for a non-
uniform all-to-all run using a real example.

In Figure 1, consider performing transitive closure of the

Edge relation using two GPUs with hash-based data distri-

bution on the first column. Under this scheme, GPU 0 stores
{(2, 3), (2, 4)} and GPU 1 holds {(4, 5), (4, 6), (1, 2)} based
on hashing on the first column. During TC computation, a

join operation is performed, followed by a projection that

eliminates the common column, resulting in newly derived

tuples after the first iteration: GPU 0 produces {(1, 3), (1, 4)},
while GPU 1 derives {(2, 5), (2, 6)}. Since the projection step

eliminates the join column, a global redistribution of all new

tuples is necessary. This necessitates all-to-all communica-

tion, where each GPU sends and receives derived tuples

according to the hash partitioning scheme, ensuring that

subsequent join operations are performed locally. Without

an optimized communication strategy, this redistribution
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Figure 2: First iteration of semi-naïve evaluation with

local aggregation on Weakly Connected Component

(WCC) query using mnmgDatalog.

introduces significant overhead, limiting scalability. An effi-

cient communication mechanism must address three key

challenges: structured data movement, minimal memory

overhead, and scalable GPU-to-GPU communication.

4 mnmgDatalog: multi-node multi-GPU

Datalog

This section describes the implementation of mnmgDatalog,

the first multi-node, multi-GPU Datalog engine. Figure 2 pro-

vides a structural overview of our engine, illustrating the

execution flow of the first iteration of Weakly Connected

Components (WCC) query on a multi node multi GPU setup

with semi-naïve evaluation strategy. It links directly to the

key components of our implementation: workload partition-

ing with hash-based data distribution (Sec 4.1), efficient com-

munication for distributed result propagation (Sec 4.2), and

GPU-optimized relational algebra kernels (Sec 4.3).

4.1 Hash-based data distribution

Inspired by the classic parallel processing algorithm GRACE

Hash Join [22] in distributed RDBMS, and the distributed

Datalog engine BPRA [35], mnmgDatalog creates local data

storage in each GPU’s VRAM and partitions each relation

based on the join columns. We illustrate this process using

the partitioning of the edge relation, described in Section 2.

Figure 3 shows how the Edge relation is distributed across

multiple GPUs using a radix-based hashing technique. Each

GPU initially holds a disjoint subset of the input edges. To

redistribute the data, the system applies a hash function to

the first column of each edge tuple (the join key), and the

result modulo the total number of GPUs (which is 2 in this

case) determines the destination GPU. For example, with

two GPUs, a tuple with key 𝑘 is sent to GPU ℎ𝑎𝑠ℎ(𝑘) mod 2.

This ensures that all tuples sharing the same join key are
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Figure 3: Data distribution based on radix based hash-

ing technique within the available GPUs

co-located on the same GPU, enabling local join operations

without requiring cross-GPU communication during the join

phase.

In real-world datasets, data skew can be an issue. For

example, in social network analysis, some users may have

substantially more followers than others, resulting in un-

even computational load across GPUs. In such cases, a pure

hash-based partitioning strategy based solely on the join col-

umn may be insufficient. Recent research [35, 53] proposes a

promising solution using sub-bucketing to address this chal-

lenge. While this technique has not yet been implemented

in our system, it aligns well with our architecture and is on

our roadmap for future integration.

4.2 Data communication

As established in Section 3.3, our framework needs non-

uniform all-to-all data exchanges to materialize newly gen-

erated tuples during each iteration of the fixed-point loop.

Within the MPI programming model, non-uniform all-to-all

communication is implemented using the MPI_Alltoallv [17,
18, 46] collective operation. This function requires all pro-

cesses to participate synchronously, with the first argument

specifying a contiguous buffer containing the concatenated

data segments destined for all participating processes. To

correctly interpret this buffer during transmission, the func-

tion requires supplementary offset and count arrays that

precisely delineate the boundaries of individual data seg-

ments targeted to specific processes. Consequently, prior to

invoking these MPI collective operations, the system must

construct the all-to-all send buffer and calculate accurate

offsets for the data segments destined for each GPU pro-

cess within the consolidated buffer. The preparation of this

buffer in the required format can incur significant compu-

tational overhead. To address this challenge, we leverage
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Algorithm 1 Sorting-Based buffer preparation and All-to-

All communication

1: Input: Local GPU buffer D, total GPUs R (1 MPI rank per GPU)

2: Output: Distributed GPU buffer receive_data
3: for each tuple (key, value) in D parallel do

4: row_mapping← get_rank(key, R)
5: end for

6: StableSortByKey(row_mapping, D)
7: (unique_rank, send_count)← ReduceByKey(row_mapping, D)
8: ExclusiveScan(send_count, send_displacement)
9: receive_count← MPI_Alltoall on send_count
10: ExclusiveScan(receive_count, receive_displacement)
11: if CUDA-aware MPI is supported then

12: receive_data← MPI_Alltoallv on
(D, send_displacement, receive_displacement)

13: else

14: Copy D to CPU buffer send_data_host
15: receive_data_host← MPI_Alltoallv on

(send_data_host, send_displacement, receive_displacement)
16: Copy receive_data_host to GPU buffer receive_data
17: end if

18: Return: receive_data

Algorithm 2 Two-Pass buffer preparation and for All-to-All

communication

1: Input: Local GPU buffer D, total GPUs R (1 MPI rank per GPU)

2: Output: Distributed GPU buffer receive_data
3: for each tuple (key, value) in D parallel do ⊲ First pass

4: destination_rank← get_rank(key, R)
5: AtomicAdd(send_count[destination_rank], 1)
6: end for

7: ExclusiveScan(send_count, send_offset)
8: Copy send_offset to send_displacement
9: for each tuple (key, value) in D parallel do ⊲ Second pass

10: destination_rank← get_rank(key, R)
11: position← AtomicAdd(send_offset[destination_rank], 1)
12: send_data[position]← (key, value)
13: end for

14: receive_count← MPI_Alltoall on send_count
15: ExclusiveScan(receive_count, receive_displacement)
16: if CUDA-aware MPI is supported then

17: receive_data← MPI_Alltoallv on
(send_data, send_displacement, receive_displacement)

18: else

19: Copy send_data to CPU buffer send_data_host
20: receive_data_host← MPI_Alltoallv on

(send_data_host, send_displacement, receive_displacement)
21: Copy receive_data_host to GPU buffer receive_data
22: end if

23: Return: receive_data

the parallel processing capabilities of GPUs to efficiently
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Figure 4: Communication phases of mnmgDatalog

prepare these buffers. mnmgDatalog implements and com-

paratively evaluates two distinct buffer preparation method-

ologies, sorting-based preparation and two-pass preparation,

outlined in Figure 4.

The sorting-based approach is outlined in Algorithm 1.

This method begins by copying all data into the send buffer

and computing the destination GPU rank for each tuple using

the data partitioning mechanism described in the previous

section. The tuples in the send buffer are then sorted by

their associated rank numbers, which automatically groups

all tuples destined for the same rank together. Next, a his-

togram of the rank numbers in the send buffer is computed

to determine the data offsets for each rank. The advantage

of this approach is that all the operations involved, such as

sorting and histogram computation, can be efficiently accel-

erated on GPUs using well-established algorithms [47, 52].

These algorithms are specifically designed to maximize GPU

memory bandwidth utilization. This approach minimizes

memory fragmentation, but incurs additional computational

overhead due to sorting.

An alternative method, the two-pass buffer preparation

technique described in Algorithm 2, eliminates the need for

sorting by performing a two-step counting and writing pro-

cess. CUDA kernels are used to directly count the number of

tuples destined for each rank. The first kernel pass scans the

input tuples and uses atomic operations to track the send

count for each rank. The second kernel pass prepares the

send buffer based on these counts by writing the tuples to
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their respective positions in memory. This approach elimi-

nates the need for sorting, but the resulting buffers may be

more fragmented, potentially affecting memory access effi-

ciency during the communication phase. While the two-pass

method avoids sorting overhead, we found that the sorting-

based approach yields slightly better performance due to

improved memory coalescing and reduced fragmentation

(detailed in Section 5.4).

All-to-all communication. Once buffer preparation is com-

plete, the second stage performs all-to-all communication to

shuffle data among GPUs. mnmgDatalog supports two com-

munication mechanisms: CUDA-aware MPI [6, 31, 56], and

CPU buffer-basedMPI communication. CUDA-awareMPI en-

ables direct communication between GPU buffers without re-

quiring intermediate copies to CPU memory. This technique

leverages technologies like GPUDirect RDMA and NVLink
to achieve high bandwidth and low-latency data transfers

between GPUs. GPUDirect RDMA allows GPUs to communi-

cate directly with the network interface card, bypassing the

host CPU and reducing communication latency. Similarly,

NVLink provides high-speed interconnects between GPUs

on the same node, enabling faster data movement during

intra-node communication. In systems that support CUDA-

aware MPI, mnmgDatalog’s communication calls directly

transfer GPU-resident buffers between processes, minimiz-

ing overhead. To ensure compatibility across a broader range

of systems, we also provide a CPU buffer-based mode, where

GPU data is first copied to CPUmemory before invokingMPI.

While this approach incurs additional data movement over-

head, it guarantees that mnmgDatalog can run on systems

without CUDA-aware MPI support. mnmgDatalog provides

a runtime configuration to select between these two commu-

nication modes. This flexibility ensures that mnmgDatalog

can maximize performance on CUDA-aware MPI-enabled

systems by utilizing direct GPU exchanges, while also main-

taining portability across architectures.

4.3 GPU-optimized data representation

mnmgDatalog employs an open-addressing hash table with

linear probing for efficient join execution. Hash joins domi-

nate computational cost in recursive Datalog queries, making

their optimization crucial for scalability. In iterative queries

such as Weakly Connected Components (WCC), the inner

relation remains unchanged across iterations, making static

hash tables an ideal choice. By constructing the hash table

once and reusing it in subsequent iterations, mnmgData-

log eliminates unnecessary recomputation. The hash join

consists of two phases: the build phase and the probe phase.

During the build phase, the inner relation keys are inserted

into the hash table, with collisions handled via linear prob-

ing. Contiguous memory storage ensures high cache locality,

reducing memory latency. In the probe phase, the Delta re-

lation serves as the outer relation, querying the hash table

for matches to propagate new facts. Although our engine is

optimized for iterative join during Datalog evaluation, many

of these join strategies, such as static hash table construction

and GPU-friendly memory layouts, can also benefit tradi-

tional non-iterative join workloads. Traditional joins share

the same underlying hash-based probing mechanism. There-

fore, mnmgDatalog’s GPU-accelerated join implementation

is general enough to improve performance in both iterative

and non-iterative relational joins.

Figure 2 shows an example of the first iteration of the

fixed-point loop for the WCC query, including the dedupli-

cation process in mnmgDatalog that eliminates redundant

computation across iterations. After each GPU performs a

local join between the distributed Edge relation and the cur-

rent delta of the connected component relation (CCDelta),
new tuples representing potential component ID updates are

produced. These tuples may include redundant entries due

to overlapping neighborhoods or multiple paths propagating

the same component ID. To handle this issue, each GPU con-

ducts its own local deduplication process. This is achieved

by first sorting all locally generated results (shown as CCNew),
then eliminating redundant entries by using thrust’s unique

function [44]. This function works by examining consec-

utive keys with identical values and preserving only the

first occurrence while removing all subsequent duplicates.

The deduplicated results are then exchanged across GPUs,

shown as the transition from CCNew to CCDistributed. Post-
communication, another deduplication pass is applied to

remove inter-GPU duplicates. Then a set difference opera-

tion is applied between CCDistributed and CCFull to identify

only the unseen tuples which will be used in subsequent

iteration as CCDelta. This ensures that the fixpoint loop only

processes unique tuples, avoiding redundant computation.

To enable efficient set-difference and merging, CCFull is kept
sorted throughout all iterations.

To further optimize performance, mnmgDatalog lever-

ages grid-stride loops, ensuring that each GPU thread pro-

cesses multiple tuples in a row-major order. This approach

minimizes memory divergence by aligning memory accesses

with the GPU’s warp execution model, reducing unnecessary

stalls and maximizing cache hits. This design choice ensures

that the local joins are memory-efficient and scalable.

4.4 Recursive aggregation in

mnmgDatalog

Beyond basic Datalog semantics, mnmgDatalog supports

GPU-based parallel recursive aggregation through a modi-

fied deduplication phase. In standard relations, mnmgData-

log performs deduplication by launching a GPU thread for



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ahmedur Rahman Shovon, Yihao Sun, Kristopher Micinski, Thomas Gilray, and Sidharth Kumar

2 1
1 2
3 2
2 3
5 4
6 4
4 5
4 6

2 1
3 2

5 4

6 4
Ite

ra
tio

n 
1

ID ID 1 < 2
ID 2 < 3
ID 4 < 5
ID 4 < 6

Node

Edge CC
(Delta)

Join 
result

CC CCDelta

(Full)
⨝

1 2
2 1
2 3
3 2
4 5
5 4
4 6
6 4

(CCFull-CCPrevFull)

1 1
2 2
3 3
4 4
5 5
6 6

Edge CC
(Delta, Full)

1 2
2 1
2 3
3 2
4 5
5 4
4 6
6 4

1 1
2 2
3 3
4 4
5 5
6 6

1 1
2 1
3 2
4 4
5 4
6 4

3 1

Ite
ra

tio
n 

2

ID 1 < 2

1 2
2 1
2 3
3 2
4 5
5 4
4 6
6 4

2 1
3 2

5 4

6 4

1 1
3 1

3 2

4 4

4 4

1 1
2 1

3 1

4 4

5 4

6 4

Ite
ra

tio
n 

3

1 2
2 1
2 3
3 2
4 5
5 4
4 6
6 4

2 1 1 1
2 1

3 1

4 4

5 4

6 4

3 1 Empty
CCDelta

End

1 2 3

4

5 6

Input Graph

Initialization

1 2 3

4

5 6

WCC

1 1 1

4

4 4

Figure 5: All iterations of Weakly Connected Compo-

nents (WCC) calculation using the semi-naïve evalua-

tion technique incorporating recursive aggregation.

each newly generated tuple. Each thread probes the hash

table of the full relation using the indexed column value

and performs an equality check on the non-indexed column.

If no match is found, the tuple is considered unique and is

inserted into the delta version of the relation. For relations

involving recursive aggregation, instead of a strict equality

check on the non-indexed column, mnmgDatalog leverages

the monotonicity property of aggregate functions. When

recursively aggregated values are associated with the same

non-aggregated key, they can only evolve monotonically,

for instance, decreasing in the case of MIN or increasing

for MAX. mnmgDatalog replaces the equality check with

an aggregate-aware comparator that retains and propagates

only the improved values (i.e., decreased or increased value).

In this case, not only is the improved value inserted into the

delta relation, just like in standard deduplication, but the

corresponding entry in the full relation is also updated with

the new aggregated value.

In Figure 5, we use the recursive MIN operator in the WCC

query as an example to illustrate how recursive aggregation

is implemented in mnmgDatalog. In the first iteration, the

CCDelta relation is joined with the Edge relation to propagate

component IDs across connected nodes. Initially, each node

is assigned its own ID. During aggregation, node 2 receives

a smaller ID from node 1, and similarly, nodes 5 and 6 up-

date their IDs based on their neighbors, as shown in the

gray boxes in the figure. To keep the aggregated value mono-

tonically decreasing so that we can get minimal value after

fixpoint, mnmgDatalog will store the tuple with smaller ag-

gregated value (i.e., tuple (2, 1), (5, 4)) in CCDelta and update

value in CCFull. This process repeats in the second iteration,

further propagating the smallest component IDs. Recursive

aggregation continues in this way, applying the MIN function
iteratively. By the third iteration, all nodes have converged to

their final component IDs, and CCDelta becomes empty, sig-

naling that a fixpoint has been reached. The final connected

components are shown in the bottom-left of Figure 5, where

nodes sharing the same ID belong to the same connected

component; for instance, 1, 2, 3 and 4, 5, 6.

5 Evaluation

In this section, we present a comprehensive performance

evaluation of mnmgDatalog, demonstrated by three sets

of experiments: (1) evaluation with real applications on one

single GPU, (2) evaluation of a single iteration of the fixed-

point which includes a single join operation in multi-GPU

environment, following by the materialization of the newly

generated tuple that includes an all-to-all data exchange

phase and (3) evaluation with real applications in multi-GPU

environment.

5.1 Environment

We conducted all our experiments on the Polaris supercom-

puter at the Argonne Leadership Computing Facility. Each

compute node is equipped with an AMD EPYC Milan 7543P

32-core CPU, 512 GB of DDR4 RAM, and four NVIDIA A100

GPUs interconnected via NVLink. Multi-node communica-

tion is facilitated by Slingshot 11 high-speed interconnects.

For GPU-based Datalog systems, including mnmgDatalog,

GPUlog, GPUJoin, and cuDF, we used a single GPU on a

single node on Polaris. For multi-node experiments, we com-

paredmnmgDatalog against SLOG, a distributed CPU-based

Datalog engine, using the same number of nodes for both

systems. Each SLOG node was configured to utilize 32 CPU

threads to match Polaris’ CPU architecture. CUDA-aware

MPIwas enabled by usingMPI-GPU support to allow theMPI

library to send and receive data directly fromGPU buffers. To

evaluate mnmgDatalog’s portability, we also benchmarked

its performance using CPU buffer-basedMPI communication,

where GPU data was first transferred to host memory, sent

via MPI, and copied back to the GPU post-communication.

5.2 Test programs and datasets

To evaluate the performance and scalability of mnmgData-

log, we designed experiments that assess both the perfor-

mance of a single iteration of the fixed-point loop and full

iterative query execution. The single iteration benchmark
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isolates the core computational step of recursive Datalog

execution, while the transitive closure (TC) (Section 2), same

generation (SG) [54], and weakly connected components

(WCC)(Section 2) benchmarks evaluate full multi-iteration

workloads. For the single join benchmark, we used a syn-

thetic dataset with 10M tuples per rank for weak scaling and

a total of 10M tuples for the strong scaling experiment. For

recursive queries (TC, SG, WCC), we used large real-world

graphs from the Stanford Network Analysis Project (SNAP),

SuiteSparse, and road network datasets [15, 37, 38]. These

graphs span diverse domains, with output sizes ranging from

millions to several billion edges, providing a comprehensive

scalability assessment across varying data distributions and

computational complexities. As the data are large-scale, par-

allel I/O is employed, where each MPI rank independently

reads and writes its assigned partition from disk, ensuring

efficient data distribution, reducing I/O contention, and en-

abling scalable processing across multiple nodes.

Table 1: Transitive Closure (TC) execution time com-

parison: mnmgDatalog vs. GPUlog, Soufflé (AMD Mi-

lan CPU 32 cores), and GPUJoin on large graphs (OOM:

out of memory).

Dataset TC Time (s)

name edges mnmgDatalog GPUlog Soufflé GPUJoin

com-dblp 1.91B 13.58 26.95 232.99 OOM

fe_ocean 1.67B 66.34 72.74 292.15 100.30

usroads 871M 75.07 78.08 222.76 364.55

vsp_finan 910M 81.14 82.75 239.33 125.94

Table 2: Same Generation (SG) execution time compar-

ison: mnmgDatalog vs. GPUlog, Soufflé and cuDF.

Soufflé running on 32 core AMD Milan CPU.

Dataset SG Time (s)

name size mnmgDatalog GPUlog Soufflé cuDF

fe_body 408M 9.08 18.41 74.26 OOM

loc-Brightkite 92.3M 1.66 11.67 48.18 OOM

fe_sphere 205M 3.55 7.88 48.12 OOM

CA-HepTH 74M 0.60 4.79 20.12 21.24

5.3 Single GPU benchmark

This section assesses the efficiency of mnmgDatalog on a

single GPU in executing transitive closure (TC) and same

generation (SG) queries compared to state-of-the-art GPU-

based Datalog engines (GPULog, GPUJoin, cuDF) and amulti-

threaded CPU-based solver (Soufflé). Table 1 and Table 2

present execution times for a single NVIDIA A100 GPU
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Figure 6: Strong scaling performance of the single join

operation in mnmgDatalog scaling from 2 to 32 GPUs

while keeping the total workload fixed at 10M tuples.

across mnmgDatalog, GPULog, and GPUJoin, while Souf-

flé is executed with 32 CPU threads to leverage its multi-

threaded capabilities.

For TC queries (Table 1), mnmgDatalog demonstrates

competitive performance against GPULog, outperforming it

with up to 1.98× speedup. Compared to Soufflé, mnmgData-

log achieves up to 20× speedup. Additionally, mnmgData-
log is up to 4.8× faster than GPUJoin, which fails to process

large datasets due to out-of-memory (OOM) errors, high-

lighting its limited scalability in recursive query execution.

For SG queries (Table 2), mnmgDatalog outperforms GPU-

Log by up to 7× and achieves a speedup of up to 33.5× over

Soufflé. Compared to cuDF, mnmgDatalog demonstrates

up to 35.4× higher performance, as cuDF fails to process

most SG queries due to memory limitations. The compar-

ison highlights the superior scalability of mnmgDatalog

over CPU-based approaches while demonstrating its robust

handling of large graphs compared to existing GPU-based

Datalog engines.

5.4 Single iteration of the fixed-point

benchmark

We executed a single iteration of the fixed-point loop using

synthetic datasets. This includes a join operation followed

by an all-to-all data exchange to materialize the newly gener-

ated tuples. We executed this benchmark using both sorting-

based and two-pass buffer generation approaches to measure

their respective impact on buffer preparation time, communi-

cation overhead, and overall execution time. Each approach

was evaluated under both CUDA-aware MPI (CAM) and

CPU buffer-based MPI communication to analyze the effect

of direct GPU-to-GPU transfers versus CPU-mediated com-

munication. This test emphasizes the efficiency of iterative

join operations, as recursive queries rely heavily on repeated

joins across iterations. We conduct both strong scaling and
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Figure 7: Strong scaling time breakdown of a single iteration across key computational stages for both sorting-based

and two-pass buffer preparation methods, evaluated under CPU buffer-based MPI and CUDA-aware MPI (CAM).

weak scaling benchmarks, providing a granular breakdown

of individual operations, including join operation, buffer

preparation, communication (both pre-join and post-join),

and deduplication.

Strong scaling performance. For strong scaling, we fixed

the total dataset size to 10 million tuples and increased the

number of GPUs from 2 to 32, effectively reducing the work-

load per rank. Figure 6 illustrates the execution time across

different configurations. As the number of GPUs increases be-

yond 2, execution time decreases due to improved workload

distribution and parallel processing. For both CUDA-Aware

MPI (CAM) and CPU buffer-based MPI, the sorting-based

buffer preparation shows better scaling than the two-pass

approach. When comparing CAM to CPU buffer-based MPI,

CAM achieves lower execution times across all scales due

to direct GPU-to-GPU transfers, whereas CPU-based MPI

incurs additional memory copies between host and device.

Figure 7 provides a breakdown of execution time for strong

scaling. The join operation remains relatively constant in

time across all configurations, whereas buffer preparation

and communication contribute the most significant over-

heads. The two-pass approach suffers from higher buffer

preparation time, while the sorting method reduces this cost

significantly. The transition from 4 to 8 GPU achieves the

largest performance gain, as it enables workload distribu-

tion and parallelism, but further increasing the number of

GPUs beyond 16 results in diminishing returns due to less

workload on GPUs.

Weak scaling performance. For weak scaling, we main-

tained 10 million tuples per GPU, increasing both the dataset

size and the number of GPUs proportionally. Figure 8 shows

the execution time trends, CUDA-aware MPI (CAM) imple-

mentations sustain better performance with lower scaling

overheads. In both all-to-all communication techniques, the

sorting-based approach exhibits better scaling. The execution

time became steady with using more than 4 GPUs. Across

2 4 8 16 32
Number of GPUs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ti
m

e 
(s

)

1.22

2.09 2.10 2.15 2.22

1.47

2.28 2.21 2.29
2.37

0.58

0.80 0.73 0.760.79
0.91

0.82 0.88
1.02

Weak scaling, 10M tuples/rank (range 50K/rank)

CPU Sort
CPU Two pass
CAM Sort
CAM Two pass

Figure 8: Weak scaling performance of the single itera-

tion of the fixed-point operation in mnmgDatalog.

both strong and weak scaling, the sorting based buffer prepa-

ration consistently outperforms two pass approaches, demon-

strating the benefits of avoiding expensive atomic operations

from two pass approach. CUDA-aware MPI (CAM) provides

substantial performance gains over CPU buffer-based MPI by

eliminating redundant host-device memory transfers, mak-

ing it the preferred choice for GPU-accelerated join process-

ing. The performance bottlenecks shift from join computa-

tion to buffer preparation and communication, indicating

that optimizing these stages is crucial for improving the effi-

ciency of iterative joins in distributed GPU environments.

5.5 Multi-node multi-GPU benchmark

We benchmark mnmgDatalog on transitive closure (TC),

same generation (SG), and weakly connected components

(WCC) using up to 32 GPUs spanning multiple nodes on

the Polaris supercomputer. As no existing multi-node, multi-

GPUDatalog engine is available, we comparemnmgDatalog

against the state-of-the-art distributed CPU-based Datalog

engine, SLOG, for transitive closure computation.
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Figure 9: (Top row) Execution time comparison of transitive closure (TC) between mnmgDatalog and SLOG,

where SLOG uses 32 CPU threads per node, and mnmgDatalog employs GPU acceleration with CPU-based MPI

buffer communication. (Bottom row) Breakdown analysis of Transitive Closure (TC) execution on mnmgDatalog

illustrating the time distribution across key operations as the number of GPUs scales from 1 to 32.

We intentionally used host-side (CPU) buffers for MPI

communication to ensure a fair and neutral comparison with

SLOG, which also relies on CPU buffers for data exchange.

By configuring mnmgDatalog in the same way, we isolated

the impact of algorithmic design from hardware accelera-

tion, allowing us to assess the raw algorithmic advantage

under equivalent conditions. The performance benefits of

CUDA-Aware MPI were evaluated separately in the single-

join experiments (Section 5.4), where we demonstrated how

our engine could further accelerate communication when

GPU-to-GPU transfers are enabled.

Transitive closure. Table 3 presents the performance com-

parison of TC execution across multiple GPUs. mnmgData-

log consistently outperforms SLOG.mnmgDatalog achieves

up to 32× speedup at 1 GPU and 13.89× speedup at 32 GPUs

over SLOG. While mnmgDatalog maintains a clear advan-

tage across all configurations, the performance gap between

mnmgDatalog and SLOG narrows as the number of GPUs

increases. This is due to the decreased workload per GPU on

higher scales. However, even with this diminishing gap, mn-

mgDatalog continues to exhibit superior scalability due to

its optimized join processing and reduced memory overhead

in recursive query execution, whereas SLOG experiences

significant overhead from CPU-bound relational operations.

Figure 9 top row further illustrates the scaling trends, em-

phasizing that mnmgDatalog exhibits near-linear scaling as

the number of GPUs increases from 1 GPU to 32 GPUs. The

speedup for fe_ocean ranges from 7.9× to 13.9×, vsp_finan
from 3.6× to 9.9×, and usroad from 2.4× to 6.8×when scaling
from 1 to 32 GPUs, compared to SLOG on the same nodes.

Figure 9 bottom row provides a detailed breakdown of

the execution time for TC across different GPU configura-

tions. The results show that join time and communication

time decrease significantly as the number of GPUs increases,

demonstrating the effectiveness of workload distribution

across multiple nodes. Join operations benefit from paral-

lelism, while communication overhead is reduced as individ-

ual GPU workloads become smaller with increasing GPU

counts. However, merge and memory clearing time are the

dominant contributors to the total execution time. This is ex-

pected, as merging the intermediate results in each iteration

requires allocations/deallocations of GPU memory during

the iterations. Additionally, deduplication time reduces at

higher GPU counts, as smaller partitions per GPU lead to

more efficient duplicate elimination. This highlights the ca-

pability of mnmgDatalog to effectively scale distributed

Datalog queries in a multi-node, multi-GPU environment,

making it a robust solution for large-scale recursive query

processing.

Same generation benchmarking. The Same Generation (SG)

query determines whether two nodes in a directed graph

belong to the same hierarchical level. It is defined recursively
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Figure 10: (Top-row) Same graph (SG) generation scaling from 1 to 32 GPUs. (Bottom-row) Weakly connected

component (WCC) scaling from 1 to 16 GPUs.

Table 3: Transitive Closure (TC) runtime (s) compari-

son: SLOG vs. mnmgDatalog. Scaling SLOG from 1–32

nodes (32 CPU threads per node) and mnmgDatalog

from 1–32 GPUs via CPU-buffered MPI (sorting-based

buffer preparation).

Dataset

Name

TC

Edges

Datalog

Engine

1 Node

1 GPU

2 Nodes

2 GPUs

4 Nodes

4 GPUs

8 Nodes

8 GPUs

16 Nodes

16 GPUs

32 Nodes

32 GPUs

vsp_finan 910M

SLOG 294.99 154.04 82.69 52.01 36.61 22.40

mnmgDatalog 81.14 41.94 21.02 9.73 4.18 2.26

usroads 871M

SLOG 180.05 100.20 58.28 40.49 24.75 11.06

mnmgDatalog 75.07 36.92 18.06 8.35 3.67 1.74

fe_ocean 1.669B

SLOG 682.62 348.85 168.23 92.53 59.35 28.48

mnmgDatalog 66.34 36.88 21.31 10.07 4.36 2.05

Gnutella31 884M

SLOG 315.52 143.85 58.32 31.70 16.69 10.56

mnmgDatalog 9.86 6.66 5.26 2.67 1.42 0.77

as follows:

SG(u, v) ← Edge(p, u), Edge(p, v), u ≠ v.
SG(u, v) ← Edge(x, u), SG(x, y), Edge(y, v), u ≠ v.

The first rule captures direct relationships where two nodes

share a common predecessor, while the second rule extends

this recursively by checking for intermediate connections.

Figure 10 top row illustrates the SG execution times across

multiple GPUs using CPU-bufferedMPI communication with

sorting-based buffer preparation.We achieve 6× to 22× speedup
from 1 to 32 GPUs. For the fe_body dataset, we observe an

anomaly where execution time increases from 1 GPU to 2

GPUs before improving with additional GPUs. This behavior

is likely due to communication and partitioning overhead

outweighing the benefits of parallelism at this scale. When

moving from 1 GPU to 2 GPUs, data redistribution introduces

inter-GPU communication, which incurs latency, especially

for datasets where the computation-to-communication ratio

is not sufficiently high.

Weakly connected component. Figure 10 bottom rowpresents

the WCC execution time as the number of GPUs increases

from 1 to 16. com-Orkut achieves 5.7× speedup, whileML_Geer
scales 5.5×, wiki-topcats shows a 2.3× speedup. The per-

formance gain is largely attributed to local materialization,

where each GPU retains its partial connected component

state, reducing inter-GPU communication. This prevents re-

dundant updates from being exchanged in every iteration, en-

suring that only minimal data is transferred. The hash-based

partitioning strategy further optimizes execution by keeping

most component updates local, limiting global synchroniza-

tion overhead. Scaling efficiency varies across datasets due

to differences in graph connectivity. Graphs with denser

connectivity require frequent inter-GPU communication, im-

pacting performance; by contrast, sparser graphs benefit

from localized processing, yielding better scalability.

6 Related work

GPU-based Datalog. Accelerating Datalog engines with

GPUs has been a long-standing goal of the Datalog com-

munity. Early attempts, such as GPUDatalog [39] and Red-

Fox [57], failed to gain traction due to their inability to effi-

ciently handle iterative queries using semi-naïve evaluation,

a core feature of high-performance Datalog engines. Addi-

tionally, limited GPU VRAM (under 16GB) required frequent

host-to-device data transfers, further constraining perfor-

mance and scalability. Consequently, GPU-based Datalog

was largely overlooked for years. Recent advancements in
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GPU VRAM and computational power have revived interest

in GPU-based Datalog systems. GPUJoin [49] demonstrated

that GPU-based Datalog could outperform optimized CPU

engines, though it was limited to binary relations and a

narrow set of queries. Inspired by GPUJoin, GPULog [54]

became the first GPU Datalog engine to support all funda-

mental relational algebra operations and semi-naïve evalua-

tion, leveraging the novel HISA data structure for efficient

execution.

Modern datacenter GPUs typically support advanced GPU-

to-GPU interconnects, offering significantly higher memory

bandwidth compared to GPU-to-host data transfers. We view

mnmgDatalog as a critical extension of GPU-based Datalog

systems to leverage this trend. By scaling the number of

GPUs in the system, mnmgDatalog can handle significantly

larger databases while maintaining low communication over-

head.

Distributed Datalog. There has been significant progress

in scaling Datalog-like languages to large machine clusters.

Systems such as RDFox[41], BigDatalog[48], SociaLite[45],

Myria[27], Nexus[29], and Radlog [26] have effectively uti-

lized Apache Spark clusters to achieve scalability in data size.

However, the query performance of these systems often can’t

scale beyond ten nodes. A more recent MPI-based distributed

Datalog engine, SLOG [23], has demonstrated promising re-

sults in performance scaling, achieving near-linear scaling

up to 64 nodes and gradual saturation up to 256 nodes on

ANLF’s Theta supercomputer. The design of mnmgDatalog

draws inspiration from SLOG, adapting its data partitioning

and communication techniques to the GPU. By integrating

CUDA-aware MPI, mnmgDatalog is optimized to scale ef-

ficiently on modern high-performance computing clusters,

leveraging the computational power and interconnect capa-

bilities of GPUs.

Monotonic Aggregation and Semiring Provenance. Data-
log’s basic semantics are simple, but extensions are needed

for complex real-world queries in domains like program and

graph analysis. Recursive aggregation, which allows mono-

tonically updating existing tuples, is a widely adopted exten-

sion supported by CPU-based engines like BigDatalog[48],

RecStep[19], and Logica [51]. The GPU-based system Lob-

ster [10] formalizes monotonic aggregation using semiring

provenance [25, 59], supporting various neural-symbolic

reasoning queries, but it is limited to single-GPU setups. Ef-

ficient multi-GPU monotonic aggregation remains an open

problem. InmnmgDatalog, we experimentally supportmulti-

GPU monotonic aggregation with a specialized comparator

during deduplication. While limited to single-integer column

aggregation, this represents a step toward general multi-GPU

support.

7 Conclusion and future work

WepresentedmnmgDatalog, the first-evermulti-node,multi-

GPU Datalog engine, designed for efficient execution of

recursive queries over internet-scale datasets at unprece-

dented levels of scalability. Our approach integrates a radix-

hash-based data partitioning strategywith CUDA-aware non-

uniform all-to-all communication. Our benchmarks demon-

strate that mnmgDatalog is the highest-performance Data-

log engine to date, beating the previously-SOTA GPU-based

competitor (GPULog) by 7×, the SOTA CPU-based engine

(Soufflé) by up to 33×, and the distributed supercomput-

ing competitor (SLOG) by up to 32×. The data, code, and

documentation are all open-sourced and can be found at

https://github.com/harp-lab/MNMGDatalog/.

While mnmgDatalog shows impressive performance, we

have several planned enhancements to improve its robust-

ness and portability. For long-running workloads, we aim

to implement per-iteration checkpoint/restart capabilities,

allowing the system to capture execution state at arbitrary

points and recover from failures mid-execution. To address

load imbalance due to data skew, we are exploring a two-

level strategy: work-stealing among SXM-connected GPUs

within a node[55], and sub-bucketing across nodes to im-

prove inter-node load distribution. In addition, we plan to

support recent advances in space-optimized join processing,

including parallel worst-case optimal joins and query decom-

position techniques [36, 58], which help conserve valuable

GPU memory. Finally, we are extending mnmgDatalog to

support a broader range of HPC platforms by integrating

GPU-aware MPI implementations available in ROCm [55]

for AMD GPUs and OneAPI [30] for Intel GPUs.
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