
Fused3S: Fast Sparse Attention on Tensor Cores
Zitong Li

University of California, Irvine

Irvine, USA

zitongl5@uci.edu

Aparna Chandramowlishwaran

University of California, Irvine

Irvine, USA

amowli@uci.edu

Abstract
Sparse attention is a core building block in many leading neu-

ral networkmodels, from graph-structured learning to sparse

sequence modeling. It can be decomposed into a sequence

of three sparse matrix operations (3S): sampled dense-dense

matrix multiplication (SDDMM), softmax normalization, and

sparse matrix multiplication (SpMM). Efficiently executing

the 3S computational pattern on modern GPUs remains chal-

lenging due to (a) the mismatch between unstructured spar-

sity and tensor cores optimized for dense operations, and (b)

the high cost of data movement. Previous works have opti-

mized these sparse operations individually or addressed one

of these challenges. This paper introduces Fused3S, the first

fused 3S algorithm that jointly maximizes tensor core utiliza-

tion and minimizes data movement. Across real-world graph

datasets, Fused3S achieves 1.6−16.3× and 1.5−14× speedup

over state-of-the-art on H100 and A30 GPUs. Furthermore,

integrating Fused3S into Graph Transformer inference accel-

erates end-to-end performance by 1.05 − 5.36×, consistently
outperforming all 3S baselines across diverse datasets (single

and batched graphs) and GPU architectures.

CCS Concepts
• Computing methodologies → Neural networks; Mas-
sively parallel algorithms.

Keywords
Transformers, Sparse Attention, Graph Neural Networks,

Long Sequence Modeling, Tensor Core, Kernel Fusion

ACM Reference Format:
Zitong Li and Aparna Chandramowlishwaran. 2025. Fused3S: Fast

Sparse Attention on Tensor Cores. In 2025 International Conference
on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3721145.3730430

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1537-2/25/06

https://doi.org/10.1145/3721145.3730430

1 Introduction
Attention has become fundamental in machine learning

models from transformers [35] to graph neural networks

(GNNs) [5, 34, 36]. However, its computational cost remains

a bottleneck as we scale in sequence length and graph size.

While dense and block-sparse attention have benefited from

hardware-aware algorithm design [3, 4], sparse attention–

essential for graph-based learning and dynamic sparsity

patterns–remains under-optimized on modern hardware

accelerators. This inefficiency is especially pronounced on

GPUs with tensor cores, which deliver peak throughput for

dense matrix multiplications (or limited structured sparsity

such as 2:4) with strict operand shapes. In contrast, sparse op-

erations involve irregular memory accesses and unstructured

computation, making it poorly suited for current tensor core

design. As a result, tensor cores remain largely underutilized

for sparse workloads.

Sparse attention can be decomposed into a sequence of

three operations: Sampled Dense-Dense Matrix Multiplica-

tion (SDDMM) to compute attention scores, softmax nor-

malization, and Sparse Matrix Multiplication (SpMM) to ag-

gregate features. We refer to this computational pattern as

3S, which recurs in GNNs [5, 34, 36], sparse transformers

[18, 22], and models that exploit dynamic sparsity.

Prior efforts to accelerate the 3S pattern fall into two

broad categories: (1) Individual kernel optimizations, which
improves the performance of one or more sparse operations

(such as SDDMM and/or SpMM) in isolation using special-

ized sparse tensor formats and kernel-local optimizations

[7, 13, 17, 20, 27, 32, 38, 40, 46]. These approaches incur un-

necessary data movement when intermediate results are

materialized in global memory. (2) Kernel fusion, which re-

duces memory traffic by combining the 3S operations into

a single kernel. However, existing fused kernels for sparse

attention are designed either for CPUs [29] or CUDA cores

[21], leaving tensor core acceleration untapped. As summa-

rized in Table 1, no existing work fuses the 3S operations

while targeting tensor cores.

To bridge this gap, we propose Fused3S, the first fused
sparse attention algorithm and kernel designed for GPU

tensor cores. Fused3S: (1) adopts a block-structured sparse

format aligned with tensor core operand shapes, (2) fuses

SDDMM, softmax, and SpMM into a single kernel to reuse

intermediate results in registers and shared memory, and

https://orcid.org/0000-0002-3029-2214
https://orcid.org/0000-0003-0840-4192
https://doi.org/10.1145/3721145.3730430
https://doi.org/10.1145/3721145.3730430
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3730430

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

Table 1: Summary of algorithms designed for 3S or its sub-operations (SDDMM or SpMM).

Method Hardware Format Precision Kernels Fusion 3S
SDDMM SpMM

Sputnik [9] CUDA CSR fp16, fp32 • • • •
RoDe [28] CUDA CSR fp32, fp64 • • • •
JigSaw[44] SPTC Reorder-aware fp16 • • • •
TCA-SpMM[13] TC CSR fp16/fp32 • • • •
Magicube [20] TC SR-BCRS int16, int8, int4 • • • •
SMaT[27] TC BCSR fp16 • • • •
BSA-SpMM [17] TC CSR, Blocked-ELL fp16 • • • •
Flash-LLM [40] TC Tiled-CSL fp16/fp32 • • • •
TC-GNN[38] TC TCF tf32 • • • •
DTC-SpMM[7] TC ME-TCF tf32 • • • •
Acc-SpMM[46] TC BitTCF tf32 • • • •
FlashSparse[32] TC ME-BCRS fp16/tf32 • • • •
FusedMM[29] CPU CSR fp32, fp64 • • • •
DF-GNN[21] CUDA CSR+COO, CSC fp32 • • • •
Fused3S (this paper) TC BSB fp16/fp32 • • • •

(3) implements a mixed precision pipeline with numerically

stable online softmax to maximize performance while main-

taining accuracy.

Our contribution can be summarized as follows.

• Fused3S1, an open-source kernel that simultaneously

exploits kernel fusion and tensor core utilization for

the 3S sparse computational pattern.

• The fused algorithm is designed to be fully on-chip

with high parallelism. This is achieved using multi-

level tiling with efficient block- and warp-level work

partitioning to avoid global-memory synchronization.

Reordering and register-level remapping optimizations

improve load balance and memory accesses for irregu-

lar graphs.

• Across real-world graph datasets, Fused3S achieves

1.6− 16.3× and 1.5− 14× speedups over DF-GNN [21],

FlashSparse [32], and PyG [8] on H100 and A30 GPUs

respectively.

• Integrated into theGraph Transformer [5] implemented

in DGL [37], Fused3S achieves 1.05− 5.36× end-to-end

inference speedup over state-of-the-art 3S baselines

across graph datasets and GPUs.

2 Background
2.1 Computational Pattern in Sparse

Attention
A common computation in machine learning models from

graph-structured learning to sparse sequence modeling is the

1
https://github.com/HPCForge/Fused3S

3S pattern: a sequence of SDDMM, softmax normalization,

and SpMM. 3S can be formulated as:

O = softmax(QK𝑇 ⊙ A)V (1)

where Q, K, V, and O ∈ R𝑁×𝑑
are dense matrices and

A ∈ R𝑁×𝑁
is a sparse matrix that defines attention patterns

(e.g., adjacency or masking). Equation 1 can be decomposed

into three operations:

(1) SDDMM: Compute attention scores S = QK𝑇 ⊙ A,
where the dense-dense multiplication QK𝑇 is com-

puted only for non-zeros in A.
(2) Softmax:Normalize the scores row-wiseE = softmax(S).
(3) SpMM: Aggregate output O = EV.
This 3S pattern appears in several popular architectures.

Graph Attention Network (GAT). In GATs [36], nodes

in a graph attend selectively to their neighbors usingA as the

adjacency matrix. A typical formulation of GAT attention is:

O = softmax

(
LeakyReLU([WH| |WH]) ⊙ A

)
(WH), (2)

whereH is the input node features,W is a learnable weight

matrix, and | | denotes concatenation. (1) SDDMM computes

the unnormalized attention coefficients between nodes. (2)

Softmax normalizes the attention coefficients across all neigh-

bors of a node. (3) SpMM aggregates the transformed features

of neighboring nodes, weighted by the normalized attention

coefficients.

Attention-basedGraphNeuralNetwork (AGNN).AGNN
[34] introduces a dynamic, adaptive attention. We can for-

mulate AGNN as:

O = softmax

(
𝛽 (𝑡) cos(H(𝑡) ,H(𝑡)𝑇) ⊙ A

)
H(𝑡)

(3)

https://github.com/HPCForge/Fused3S

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

where A includes self-loops, 𝛽 (𝑡) is a learnable parameter

for layer 𝑡 , and cos(·, ·) denotes the cosine similarity. Here,

Q = K = V = H(𝑡)
, with the SDDMM step computing scaled

cosine similarities.

Graph Transformer (GT). GTs [5, 33, 45] extend atten-

tion to entire graphs, treating nodes as tokens. A representa-

tive formulation is:

O = softmax

(
(W𝑄H) (W𝐾H)𝑇 ⊙ A

)
(W𝑉H), (4)

whereW𝑄 ,W𝐾 , andW𝑉 are learnable projections for queries,

keys, and values. Unlike standard transformers, GTs explic-

itly encode graph structure through A.
Recent surveys [23, 31] note that many GT models use

dense global attention, augmented with structural bias (e.g.,

node degrees, shortest paths) to avoid over-smoothing and

improve expressivity. However, this approach can be compu-

tationally expensive for large graphs, motivating the need

for sparse attention.

Sparse Transformers. Sparse transformers [2] reduce

the quadratic complexity of attention by applying a sparse

mask M.

O = softmax

(
(W𝑄X) (W𝐾X)𝑇 ⊙ M

)
(W𝑉X), (5)

where X is the input sequence. The maskM determines to-

ken interactions and may be static or dynamically generated.

Static masks [1, 42] impose structured sparsity (e.g., block-

diagonal and block-sparse) that is GPU friendly. Dynamic

variants [18, 22] compute M on-the-fly enabling context-

aware sparsity. While dynamic masks often improve accu-

racy, they introduce irregular sparsity that is difficult to

optimize efficiently.

Although GATs use fixed A and sparse transformers gen-

erateM dynamically, these diverse models share the same 3S

bottleneck: computing and applying sparse attention onmod-

ern hardware accelerators. Our work targets this unifying

3S abstraction to develop a hardware-optimal algorithm.

2.2 Tensor Core and Operand Shapes
Tensor Cores (TCs) are specialized hardware units onNVIDIA

GPUs designed for high-throughput matrix multiply and ac-

cumulate operations. Since their introduction in 2017, FP16

throughput using TCs has increased from 125 TFLOPS on

V100 to 990 TFLOPS on H100, an improvement of 8× in 5

years [24, 26]. This rapid progression has significantly im-

proved the performance of dense matrix computations.

There are two primary programming interfaces for TCs:

CUDA wmma (Warp Matrix Multiply Accumulate) and PTX

mma (Matrix Multiply Accumulate) instructions. The choice

of interface depends on specific optimization goals. The PTX

mma is a lower-level interface that allows direct operand load-
ing from global memory (HBM) into registers, bypassing

shared memory. This provides finer-grained control and can

be advantageous for workloads with limited data reuse. In

contrast, wmma operates at a higher abstraction level, requir-

ing both input matrices to be explicitly staged in shared

memory before loading into registers.

Table 2: Precision formats and operand shapes on Ten-
sor Cores. Here𝑚,𝑛, 𝑘 denote tile dimensions for ma-
trix multiplication.

Precision Type Operand Shapes

FP16
wmma m16n16k16, m8n32k16, m32n8k16

mma m8n8k4, m16n8k8, m16n8k16

BF16
wmma m16n16k16, m8n32k16, m32n8k16

mma m16n8k8, m16n8k16

TF32
wmma m16n16k8

mma m16n8k4, m16n8k8

FP8
wmma –

mma m16n8k32, m16n8k16

TCs support various operand shapes and precision for-

mats summarized in Table 2. These shapes dictate how input

matrices are partitioned into tiles and strongly influence

performance. For sparse computations, the optimal tile size

may not always align with the hardware’s peak capability.

The architectural trend towards "dense TCs" suggests larger

tile shapes to maximize TC utilization but this can lead to

more zero computations when applied naively to sparse ma-

trices. Smaller tile shapes reduce the occurrence of zeros

and improve compute density on sparse data, but may result

in underutilized TCs. Among the available configurations,

the m16n8k16 tile shape emerges as a practical compromise,

supported in multiple precision formats (FP16, BF16, FP8).

3 Fused3S
This section presents the design of Fused3S. We first describe

how the sparse matrix A is stored in a block-structured for-

mat tailored to tensor core operand shapes. Then, we detail

the Fused3S kernel resulting in Algorithm 1 and highlight

the key optimizations:

• Fusing the 3S operations (SDDMM, Softmax, SpMM)

into a single kernel using multi-level tiling/blocking to

reduce memory traffic and enable on-chip data reuse.

• Incremental softmax computation to support large at-

tention matrices.

• Warp-level parallelism for SIMT-friendly execution.

• Permuted data layouts and register-level remapping

to enable coalesced memory access patterns.

3.1 Sparse Format for Tensor Cores
We introduce the Binary Sparse Block (BSB) format to

efficiently map a sparse matrix 𝐴 onto tensor cores. BSB

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

extends the Memory-Efficient Tensor Core Format (ME-TCF)

[7], which in itself builds on the TC-GNN Compressed For-

mat (TCF) [38]. Like block-CSR (BCSR), these formats use a

block layout with local indexing but are specifically designed

for tensor core operand shapes.

The construction of the BSB format proceeds as follows

and is illustrated in Figure 1:

(1) Divide the sparse matrix into row windows (RW) of

size 𝑟 .

(2) Within each RW, eliminate columns containing only

zeros to increase compute density.

(3) Partition the compacted RW into tensor core blocks
(TCB) of shape 𝑟 × 𝑐 , where 𝑟 and 𝑐 match supported

mma tile sizes (e.g., 16 × 8 in Table 2).

(4) We maintain three data structures:

• tcb_row_offset (tro): Number of TCBs per RW.

• col_sparse_to_dense (sptd): Mapping from orig-

inal to compacted column indices per RW.

• bitmap: A fixed-size bitmask encoding the sparsity

pattern in each TCB.

Figure 1: Binary Sparse Block (BSB) format. The TCB
size in this example is 4 × 2 while in practice the size is
larger (i.e., 16×8). Red boxes highlight how the first row
window in compacted, tiled, and stored in BSB format.

ME-TCF uses two arrays to store non-zero elements: one

for the number of non-zero elements in each TCB and an-

other to store the local index of each nonzero element in

all TCBs. We make the observation that adjacency matrices

and attention masks exhibit binary-valued sparsity. Unlike

ME-TCF and TCF, which represent the location of nonzeros

using integer indices, BSB encodes the 𝑟 × 𝑐 TCB using a

single binary bitmap. For example, a 16 × 8 TCB requires

only 128 bits to represent its sparsity pattern, eliminating

indexing overhead.

Table 3 compares the memory footprint of various sparse

formats. The formats differ in how they organize sparsity

(row-based vs. block-based) and whether they store explicit

nonzero values. Row-based formats (such as CSR) are incom-

patible with tensor cores due to irregular access patterns.

General-purpose block formats such as BCSR [15] and its

variants [20, 27, 32] improve locality but explicitly store both

nonzero values and their positions. In contrast, formats such

as TCF [38], ME-TCF [7], BitTCF [46], and our BSB are de-

signed for tensor cores. These formats align blocks with

MMA tile shapes and assume binary sparsity. BSB further re-

duces overhead by encoding block sparsity with a fixed-size

bitmap. Unlike BCSR, BSB compacts columns within row

windows to increase density and reduce the total number of

blocks.

Table 3: Comparison of sparse formats. row: row-based,
blk: generic block-based, mma: MMA-tile-aligned. Ma-
trix size is 𝑁 × 𝑁 with 𝑧 nonzeros. Row window height
is 𝑟 ; 𝑏: number of blocks, 𝑏𝑐: stored columns after com-
paction (if any), and 𝑟𝑐: elements per block. Sizes as-
sume 32-bit indices and values unless format is binary.

Format Type Memory Footprint NZ Value
CSR row 32(𝑁 + 2𝑧) fp32

SR-BCSR blk 32(2𝑁
𝑟

+ 𝑏𝑐 + 𝑏𝑟𝑐) fp32

ME-BCRS blk 32(𝑁
𝑟
+ 𝑏𝑐 + 𝑏𝑟𝑐) fp32

BCSR blk 32(𝑁
𝑟
+ 𝑏 + 𝑏𝑟𝑐) fp32

TCF mma 32(𝑁
𝑟
+ 𝑁 + 3𝑧) binary

ME-TCF mma 32(𝑁
𝑟
+ 𝑏 + 𝑧) + 8𝑧 binary

BitTCF mma 32(𝑁
𝑟
+ 𝑏 + 𝑧) + 𝑧 binary

BSB (ours) mma 32(𝑁
𝑟
+ 𝑏𝑐) + 𝑏𝑟𝑐 binary

3.2 Fusion and Thread-block Parallelization
Algorithm 1 describes the Fused3S kernel. The input and

output matrices Q and O are divided into row blocks (line

1-2), each assigned to a thread block. Each thread block loads

its corresponding Q𝑖 into shared memory (line 5), which

is reused across TCBs in the row window. The number of

TCBs in the 𝑖-th rowwindow is determined using tro (line 6).
Thread blocks then extract the column indices c that define
the nonzero pattern in A𝑖 using the sptdmap (line 7). These

indices are used to gather rows from K and V (line 8), which

are then partitioned into warp-aligned blocks (lines 9-10).

UnlikeQ𝑖 , which is reused across all warps, K̂ and V̂ are only

accessed once per row window and loaded directly from

HBM into registers without staging in shared memory.

The inner loop (lines 11-23) fuses the 3S operations. SD-

DMM is executed using a warp-level TBGemm (line 13), com-

puting attention scores S𝑖 , which are masked with the sparse

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 4: Notation used in Algorithm 1.

Symbol Definition
Q,K,V ∈ R𝑁×𝑑

Query, key, value matrices

A ∈ R𝑁×𝑁
Sparse matrix (e.g., adjacency or mask)

S ∈ R𝑁×𝑁
Attention score matrix

E ∈ R𝑁×𝑁
Row-wise normalized score matrix

O ∈ R𝑁×𝑑
Output matrix

Q𝑖 ∈ R𝑟×𝑑 Query block

K̂, V̂ ∈ R𝑡𝑐×𝑑 Gathered rows of key and value matrices

S𝑖 ∈ R𝑟×𝑐𝑊 Attention score block

E𝑖 ∈ R𝑟×𝑐𝑊 Normalized score block

O𝑖 ∈ R𝑟×𝑑 Output block

m𝑜 ∈ R𝑟 Row-wise max scores

l𝑜 ∈ R𝑟 Row-wise softmax normalization factor

𝑟, 𝑐 Dimensions of tensor core block

𝑡 Number of TCBs in row window 𝑖

𝑊 Number of warps per thread block

𝑁 Number of rows/nodes

𝑑 Feature dimension

Algorithm 1 Fused3S

Require: A in BSB format: tro, sptd, bitmap; Q,K,V ∈ R𝑁×𝑑

Ensure: O = softmax(QKT ⊙ A)V ∈ R𝑁×𝑑

1: Divide Q into 𝑇𝑟 = ⌈𝑁𝑟 ⌉ blocks {Q1
... Q𝑇𝑟 }, each of size 𝑟 × 𝑑

2: Divide O into 𝑇𝑟 blocks {O1 ... O𝑇𝑟 }, each of size 𝑟 × 𝑑
3: for 𝑖 = 1 to 𝑇𝑟 do
4: Initialize m𝑜 = −∞, l𝑜 = 0 ∈ R𝑟 , O𝑖 = 0 ∈ R𝑟×𝑑 in fp32
5: Load Q𝑖 from HBM to SMEM

6: 𝑡 = tro[𝑖 + 1] − tro[𝑖]
7: c = getColumnVectorIndex(sptd, 𝑖)

8: K̂, V̂ ∈ R𝑡𝑐×𝑑 = select rows of K,V according to c
9: Divide K̂ into 𝑇𝑐 = ⌈ 𝑡

𝑊
⌉ blocks {K̂1 ...K̂𝑇𝑐 }, each of size

𝑊𝑐 × 𝑑
10: Divide V̂ into 𝑇𝑐 blocks {V̂1 ...V̂𝑇𝑐 }, each of size𝑊𝑐 × 𝑑
11: for 𝑗 = 1 to 𝑇𝑐 do
12: // SDDMM

13: S𝑖 = TBGemm(Q𝑖 , K̂
T
𝑗 , 0)

14: Apply bitmap mask to S𝑖
15: // Online Softmax

16: m𝑖 = max (m𝑜 , rowmax(S𝑖))
17: E𝑖 = 𝑒S𝑖−m𝑖

18: l𝑜 = diag(𝑒m𝑜−m𝑖)l𝑜 + rowsum(E𝑖)
19: Store E𝑖 (cast to fp16) in SMEM

20: // SpMM

21: O𝑖 = diag(𝑒m𝑜−m𝑖)O𝑖
22: O𝑖 = TBGemm(E𝑖 , V̂𝑗 , O𝑖)
23: m𝑜 = m𝑖
24: Write O𝑖 = diag(l𝑜)−1O𝑖 to HBM

bitmap from the BSB format (line 14). Softmax is computed in-

crementally using a numerically stable online variant adapted

Algorithm 2 TBGemm

Require: MMA tile: (𝑚,𝑛, 𝑘); A ∈ R𝑚×𝐾
in SMEM (fp16), B ∈

R𝐾×𝑃
in HBM (fp16), D ∈ R𝑚×𝑃

in SMEM (fp32)

Ensure: C = AB + D ∈ R𝑚×𝑃
in fp32

1: Divide A into 𝑇𝑔 = ⌈𝐾
𝑘
⌉ tiles {A1, ...,A𝑇𝑔 }, each of size𝑚 × 𝑘

2: Divide B into 𝑇ℎ = ⌈𝑃𝑛 ⌉ tiles {B1, ...,B𝑇ℎ }, each of size 𝐾 × 𝑛
3: Divide D into 𝑇ℎ tiles {D1, ...,D𝑇ℎ }, each of size𝑚 × 𝑛
4: for 𝑖 = 1 to 𝑇ℎ do
5: Load D𝑖 from SMEM to registers as C𝑖
6: Divide B𝑖 into 𝑇𝑔 tiles {B𝑖1, ...,B𝑖𝑇𝑔 }, each of size 𝑘 × 𝑛
7: for 𝑗 = 1 to 𝑇𝑔 do
8: Load A𝑗 from SMEM to registers

9: Load B𝑖 𝑗 from HBM to registers

10: C𝑖 = mma(A𝑗 ,B𝑖 𝑗 ,C𝑖) // Tensor Core operation
11: return C

from FlashAttention-2 [3] (lines 16–18). We track the run-

ning row-wisemaxm𝑜 and normalization factor l𝑜 , and apply
exponential rescaling across blocks to preserve numerical

stability and ensure correctness, despite the blockwise com-

putation. All scaling is done in fp32. Normalized scores E𝑖
are cast to fp16 and stored in shared memory (line 19). SpMM

proceeds by rescaling the accumulated output block O𝑖 and
invoking a second TBGemm (lines 21–22). After processing

all blocks in the row window, the final output block O𝑖 is
normalized and written to HBM (line 24).

The TBGemm kernel in Algorithm 2 is a core primitive used

in SDDMM and SpMM (lines 13 and 22). It partitions in-

put blocks into tensor core compatible tiles, loads operands

into registers, and issues MMA instructions to perform high-

throughput matrix multiply-accumulate.

There are two ways to parallelize the 3S computation:

node-parallel and edge-parallel. The distinction lies in

how S, the output of SDDMM, is distributed among thread

blocks, as illustrated in Figure 2. Although these terms are

coined in the context of graph attention, the concepts apply

more broadly to sparse attention.

Node-Parallel Fusion. In node-parallel, each thread block
is assigned a fixed set of rows in S (i.e., a subset of nodes in
the graph). As seen in Algorithm 1, softmax requires row-

wise reductions (max and sum), which can be computed lo-

cally within each thread block. This enables the subsequent

SpMM to also be executed within the same thread block. The

primary advantage of node-parallel is independence: each

thread block owns all data needed for its rows of softmax

and SpMM, avoiding inter-block synchronization. This is

depicted at the top of Figure 2, where thread blocks operate

on disjoint rows.

Edge-Parallel Fusion. Edge-parallel distributes compu-

tation across thread blocks based on TCBs (i.e., edge-level

granularity). This achieves better load balancing, especially

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

Figure 2: Comparison of node-parallel (top) and edge-
parallel (bottom) strategies. Different colored blocks
are owned by different thread blocks. In edge-parallel,
blocks of Q or O are shaded with multiple colors if
shared by multiple thread blocks. The figure is divided
vertically into three stages: (1) SDDMM, (2) data distri-
bution of S and E for softmax, and (3) SpMM.

for datasets where the number of TCBs per RW (i.e., node

degree in graphs) varies widely (see Table 7). Such variance

is common in real-world graphs due to their power-law de-

gree distribution. By evenly distributing TCBs among thread

blocks, edge-parallel ensures uniform workload across SMs.

However, it introduces significant synchronization overhead.

Since rows of S (and hence O) may be computed by multiple

thread blocks, softmax and SpMM must coordinate through

global synchronization or atomic updates to HBM–both of

which incur performance penalties. As shown in the bottom

of Figure 2, rows may be fragmented across multiple thread

blocks. Prior work [7] reports that edge-parallel SpMM is

20% slower than node-parallel on average. Since Fused3S

fuses softmax and SpMM, it requires an additional global

synchronization for softmax, making edge-parallel even less

attractive.

LoadBalancing viaRowWindowReordering. Fused3S
fuses the 3S operations into a single kernel to reduce memory

traffic, so minimizing global synchronization is important for

performance. For this reason, we adopt node-parallel fusion.

By default, we assign each RW to one thread block. In

Algorithm 1, this corresponds to the outer loop (line 3), with

each iteration executed in parallel by thread blocks. This can

lead to load imbalance across thread blocks. We visualize the

performance impact in Figure 7, which shows that some SMs

remain active long after the others have finished execution.

Tomitigate this, we perform row window reordering, where
RWs are sorted in decreasing order of TCB count. This pri-

oritizes denser RWs earlier in the kernel execution when

more RWs are available to be assigned to other thread blocks.

Lightweight RWs that complete quickly are deferred to the

end. This scheduling policy improves SM utilization and

reduces kernel tail latency. Importantly, this reordering is

performed during preprocessing, alongside sparse matrix

compaction, and adds negligible overhead per input graph.

By combining node-parallel fusion with sparse layout op-

timizations, Fused3S maximizes memory efficiency while

maintaining scalability on irregular graphs.

3.3 Warp Partitioning Strategies
We explore two strategies to partition work among warps

within a thread block: split-column and split-row. Figure 3

illustrates these two approaches for SDDMM and SpMM,

highlighting each warp’s data access pattern and its use of

shared memory and registers.

In the split-column scheme (top), the columns of the right-

hand-side matrix (K̂
T
in SDDMM and V̂ in SpMM) are divided

among warps. Each warp computes a distinct 𝑟 × 𝑐 tile of
the intermediate matrix S and output matrix O. The advan-
tage of this scheme is that warps operate on independent

tiles, eliminating the need for inter-warp synchronization.

However, each warp must access the entire Q𝑖 row block (in

SDDMM) or E𝑖 (in SpMM), increasing memory pressure. The

number of active warps in split-column is bounded by the

number of TCBs per RW (𝑡 in line 9 of Algorithm 1). When 𝑡

is small, there may be insufficient warp-level parallelism to

hide the latency of memory accesses.

In the split-row scheme (bottom), the rows of K̂
T
and V̂ are

partitioned among warps. All warps within a thread block

cooperate to compute each 𝑟×𝑐 tile of S andO. This approach
reduces the memory footprint per warp—each warp only

loads a fragment of Q𝑖 or E𝑖 . However, this comes at the cost

of warp synchronization or atomic operations to aggregate

the partial results in shared memory. In addition, the number

of warps in split-row is constrained by the feature dimension

𝑑 . For small 𝑑 , limited parallelism may reduce the ability to

hide the latency of irregular memory accesses of K and V.
The trade-offs between these schemes involve memory

access patterns, synchronization cost, register/shared mem-

ory pressure, and degree of parallelism exposed at the warp

level. Algorithm 1 is based on node-parallel thread block

partitioning (i.e.,𝑇𝑟 is partitioned among thread blocks) with

split-column warp partitioning (i.e., 𝑇𝑐 is partitioned among

warps). We chose split-column as the default because, for typ-

ical attention workloads, the cost of accessing the entire 𝑟 ×𝑑
row block is often less significant than the cost of inter-warp

synchronization. Furthermore, split-column maps naturally

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 3: Work partitioning among warps within a
thread block. Top: split-column (column blocks of K𝑇

and V are divided among warps). Each warp indepen-
dently computes a 𝑟×𝑐 tile of S andO. Bottom: split-row
(row blocks of K𝑇 and V are divided among warps). All
warps collaborate to compute each 𝑟 × 𝑐 tile of S and O.

to the SIMT execution model of GPUs, enabling efficient

parallel computation on independent tiles.

3.4 Data Layout and Memory Accesses
Efficient memory access is important for high performance,

especially for sparse operations, which are often memory-

bandwidth bound. We analyze the memory access patterns

in SDDMM and SpMM at the thread block and warp levels,

and describe a permuted data layout to improve memory

coalescing.

SDDMM.Within each thread block, all warps access the

same row block of Q (see Figure 3). Given this data reuse,

Q𝑖 is copied from HBM to shared memory once per thread

block (line 5 of Algorithm 1). In contrast, K̂
T
𝑗 is partitioned

column-wise among warps and is not reused within the

thread block. Therefore, it is loaded directly from HBM into

registers. Since K̂ is formed by gathering non-contiguous

rows from K based on the column indices of nonzeros in A𝑖 ,
this leads to uncoalesced memory accesses. Furthermore, the

PTX mma interface requires tensor core operands to follow

specific alignment and layout constraints. This results in

each thread issuing multiple 32-bit load instructions from

scattered addresses as seen at the top-left of Figure 4.

To address this, we apply a register remapping optimiza-

tion. As illustrated in the bottom-left of Figure 4, we optimize

the memory access such that each thread issues a single 128-

bit wide load. This is equivalent to permuting the columns

of K̂
T
𝑗 . To preserve correctness of the output and to be com-

patible with SpMM, we apply the same permutation to the

columns of Q𝑖 . This maintains the mathematical operation

while optimizing memory access. Softmax does not incur

additional data movement, as the result S𝑖 of SDDMM is al-

ready resident in registers. After softmax, each warp writes

its slice of E𝑖 to shared memory, where it is reused by SpMM.

SpMM. In SpMM, E𝑖 is already in shared memory. The ma-

trix V̂ is gathered from rows ofV using the same indices as for

K̂, and likewise consists of non-contiguous memory accesses.

Naively loading V̂ results in scattered memory instructions—

for example, four separate 16-bit loads from non-adjacent

addresses per thread, as shown on the top-right of Figure 4.

To mitigate this, we apply a similar register remapping to

permute the column layout of V̂ to increase the horizontal

granularity of each thread’s load (see bottom-right of Fig-

ure 4). This results in a different layout of the output block,

O𝑖 . Since O𝑖 is stored in shared memory, we reverse this per-

mutation when writing it back to HBM, so the final output

layout matches the expected format.

We use the PTX mma interface rather than the CUDA wmma
API. The key difference between the two is that wmma requires
both input operands to reside in shared memory before be-

ing loaded into registers. In Fused3S, the right-hand-side

operands K̂
T
𝑗 in SDDMM and V̂𝑗 in SpMM are used only once

per thread block and are not reused. Staging them in shared

memory would introduce unnecessary data transfers and

increase memory pressure without any performance benefit.

With mma, we can load these operands directly from HBM

into registers, reducing the number of memory operations

and decreasing latency.

3.5 Mixed Precision and Stability
To optimize performance and memory footprint, Fused3S

employs a mixed-precision strategy. Table 5 summarizes the

precision of the inputs, intermediate results, and output. The

input matricesQ, K, and V are stored in fp16 to reduce mem-

ory bandwidth requirements and leverage high-throughput

fp16 tensor core operations. Intermediate attention scores

S, computed during SDDMM, are accumulated in fp32 to

minimize precision loss. Softmax is computed entirely in

fp32 for numerical stability. After softmax, the normalized

scores E are cast back to fp16 before being stored in shared

memory, as the subsequent SpMM accepts fp16 inputs and
produces the final output O in fp32. This mixed-precision

design balances performance and accuracy.

Softmax. Softmax is a key operation in attention, but it is

susceptible to numerical overflow in low-precision formats.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

Figure 4: Register remapping in SDDMM (left) and SpMM (right). Top: original layouts. Bottom: permuted layouts.

Table 5: Precision of inputs, intermediate results and
output.

Matrix Q K V S E O
Precision fp16 fp16 fp16 fp32 fp32 → fp16 fp32

In its naive form,

softmax(x) = exp(x𝑖)∑
𝑗 exp(x𝑗)

(6)

where the exponential may exceed the dynamic range of

the floating point format. For example, the maximum value

representable in fp32 is approximately 𝑒89. If any element

in S exceeds 89, its exponential becomes infinity, resulting

in NaN values in the output. In fp16, the threshold is even

lower—around 𝑒11—making the problem more severe. These

overflows not only corrupt inference results but also break

differentiability during backpropagation.

Most attention implementations use the max-stabilized
softmax [11], defined as:

softmax(x) = exp(x𝑖 −max(x))∑
𝑗 exp(x𝑗 −max(x)) (7)

which subtracts the row-wise maximum prior to exponenti-

ation. Although the additional reduction (to compute max)

introduces synchronization overhead in GPU kernels, the

gain in numerical stability is typically well worth the cost.

We implement the online softmax algorithm [3], a blocked

variant of the max-stabilized softmax. While online softmax

can be less stable than the global variant, particularly with

smaller block sizes [10], we find it to be a favorable trade-

off for Fused3S. It significantly reduces memory consump-

tion by avoiding the need to materialize the full attention

score matrix and enables Fused3S to scale to large graphs, as

demonstrated in Section 4.

4 Results
We evaluate the performance of Fused3S both as a standalone

kernel and as the attention layers of a graph transformer

model during inference on various real-world graphs of dif-

ferent sizes.

4.1 Setup
GPU Architecture. We perform experiments on NVIDIA

A30 (Ampere) and H100 (Hopper) GPUs. The A30 has 56 SMs,

each with 4 tensor cores and achieves up to 165 TFLOPs

of FP16 tensor core throughput with 933 GB/s of DRAM

bandwidth. The H100 has 132 SMs and 4 tensor cores per

SM, delivering 990 TFLOPs of FP16 tensor core throughput

and 4 TB/s of DRAM bandwidth. See NVIDIA datasheet for

full architectural details [25, 26].

Datasets. We benchmark Fused3S on a diverse set of graph

datasets drawn from popular GNN benchmarks [12, 14, 16,

19, 30, 39, 41, 43]. Table 6 summarizes their key properties.

To characterize sparsity after the sparse matrix compaction

described in Section 3.1, we report two metrics: TCB/RW and

nnz/TCB, assuming a TCB size of 16 × 8. For both metrics,

we include the coefficient of variation (CV = 𝜎/𝜇), which

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

quantifies irregularity. A high CV (e.g., ≈ 1) in TCB/RW indi-
cates a significant variation in workload per RW, which poses

challenges for load balancing and warp-level parallelism.

Table 6: Single Graph Datasets. Metrics shown are after
sparse compaction with TC block size 16 × 8.

Name Nodes Edges TCB/RW nnz/TCB

avg CV avg CV

IGB-small 1M 12.1M 24.4 0.25 7.9 0.11

IGB-medium 10M 120M 24.4 0.58 7.9 0.11

Amazon0505 410K 3.36M 12.3 0.20 10.6 0.46

Com-Amazon 335K 926K 6 0.61 7.5 0.22

Musae-github 38K 578K 29.4 1.34 8.3 0.15

Artist 51K 819K 32 0.73 8 0.11

Pubmed 20K 89K 9.3 0.45 7.7 0.18

Cora 2.7K 10.6K 7.5 0.38 8.3 0.29

Citeseer 3.3K 9.2K 5.8 0.31 7.7 0.24

AmazonProducts 1.57M 264.3M 330.5 1.22 8.2 0.07

Yelp 717K 14M 39 1.28 8 0.09

Reddit 233K 114.9M 477.2 1.35 16.5 0.95

Blog 89K 4.19M 69 2.47 11 0.44

Elliptic 204K 234K 2.5 0.57 7.5 0.45

Ogbn-products 2.45M 123.7M 101.4 0.84 8 0.05

Table 7 presents a more detailed breakdown of work imbal-

ance for four representative graphs. We sort all RWs by their

TCB count and group them into ten deciles. Each cell reports

the minimum and maximum TCB count within that decile.

Graphs like Reddit exhibit a long tail: many sparse row win-

dows, but some are extremely dense. Yelp and Github show

similar irregularity, as reflected by their high CV values, mak-

ing them useful for stress-testing load balance. In contrast,

graphs like Pubmed have a more uniform distribution.

In addition to large single-graph datasets for node- and

edge-level prediction tasks, many real-world applications–

especially graph property prediction–process collections of

small graphs (often fewer than 500 nodes). To improve GPU

utilization, these graphs are batched together into a single

larger graph. This batching introduces a unique sparsity

pattern with many disconnected components. We evaluate

Fused3S on batched graphs from two widely-used bench-

marks: Long Range Graph Benchmark (LRGB) [6] and Open

Graph Benchmark (OGB) [14], with a batch size of 1024.

Baselines.We compare Fused3S with the following compet-

itive baselines for sparse attention and 3S:

• DF-GNN [21] is the state-of-the-art for the fused 3S

kernel on CUDA cores in fp32, and includes a numer-

ically stable softmax. We evaluate two variants: tiling,

designed for larger graphs, and hyper, optimized for

small graphs.

• FlashSparse [32] represents the state-of-the-art for

SDDMMand SpMMas separate kernels on tensor cores

with mixed precision (fp16 + fp32). The original code
implements a naive softmax, so we also benchmark

a modified version with a numerically stable softmax

for a fair comparison.

• PyTorch Geometric (PyG) [8] is a widely used GNN

framework with a PyTorch backend.

• Deep Graph Library (DGL) [37] is another popular
GNN framework. We include it in the end-to-end trans-

former evaluation, as the original Graph Transformer

[5] implementation is built on DGL.

4.2 3S Kernel Performance
Figure 5 shows the 3S kernel performance on the single

graph datasets listed in Table 6. To summarize performance

across the datasets, we report the geometric mean speedup

computed as

(∏𝐷
𝑑=1

𝑠𝑑

) 1

𝐷

, where 𝑠𝑑 is the speedup on dataset

𝑑 and 𝐷 is the total number of datasets.

On the A30 and H100 GPUs, Fused3S consistently out-

performs all baselines achieving geometric mean speedups

of 1.5 − 12.3× and 1.6 − 14.7× respectively. DF-GNN_hyper

adopts a hybrid edge- and node-parallel strategy, partition-

ing non-zeros in SDDMM using edge-parallelism. This im-

proves load balance and yields better performance than DF-

GNN_tiling on small graphs. However, it consumes signifi-

cantly more memory since it stores entire rows of S in shared
memory. As a result, DF-GNN_hyper fails on high-degree

graphs such as Reddit, AmazonProducts, Ogbn-products, and

IGB-medium. In contrast, DF-GNN_tiling which is based

on node-parallel fusion uses less shared memory and is

preferred for large graphs but suffers from load imbalance.

FlashSparse outperforms its stable-softmax variant due to

the additional synchronization required to compute row-

wise max. However, as discussed in Section 3.5, the naive

softmax is prone to overflow errors and is not recommended

in practice.

Fused kernels avoid storing intermediate results between

SDDMM, softmax, and SpMM, reducing memory pressure.

This is especially important on memory-constrained GPUs

like the A30. For example, on the AmazonProducts dataset

with themost number of edges, both FlashSparse and PyG fail

due to out-of-memory (OOM) errors caused by materializing

the large S matrix. In contrast, Fused3S and DF-GNN_tiling

complete successfully. Fused3S further benefits from mixed

precision (fp16/fp32) execution, using less memory than

DF-GNN, which runs entirely in fp32. On H100, Fused3S

remains the only kernel to run on the largest graphs tested

(IGB-large and Ogbn-papers100M, results not shown).

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

Table 7: Distribution of TCB counts per RW across deciles. Each cell shows the min–max TCB range in that decile.

Dataset decile size 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Reddit 1456 4–46 46–88 88–135 135–190 190–265 265–367 367–503 503–718 718–1113 1114–9857

Yelp 4480 4–9 9–12 12–15 15–19 19–23 23–29 29–38 38–52 52–82 82–1000

Pubmed 123 1–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–14 14–43

Github 236 2–13 13–16 16–18 18–20 20–23 23–25 25–29 29–34 34–46 46–1191

On highly irregular graphs such as Blog, Yelp and Github,

Fused3S shows limited speedup. These datasets exhibit ex-

treme variance in TCB counts per RW (see Table 7). For

instance, in Github, 90% of row windows have fewer than 46

TC blocks, while a few exceed 1000. Even with row window

reordering, such imbalance decreases compute and memory

throughput. Assigning multiple thread blocks per row win-

dow could improve load balance. New GPU features such as

thread block clusters allow thread blocks within a cluster to

synchronize in shared memory, which we plan to explore in

future work.

Figure 6 shows the performance on batched graphs. On

the A30 and H100 GPUs, Fused3S consistently outperforms

all baselines achieving geometric mean speedups of 1.5−14×
and 1.9 − 16.3× respectively. Batched graphs consist of dis-

connected components that exhibit more regular sparsity

and clustering, which can be exploited to improve mem-

ory locality. DF-GNN benefits from this naturally, whereas

Fused3S currently does not exploit component boundaries

or subgraph-level structure. Incorporating such structure-

aware optimizations is a promising direction for future work.

4.3 Fused3S Performance Breakdown
We analyze the contribution of each kernel design decision

in Fused3S by incrementally enabling optimizations. Each

variant builds upon the previous one, and their performance

is shown in Figures 5 and 6.

Warp partitioning. To evaluate the impact of warp par-

titioning strategies in Section 3.3, we compare two variants:

F3S_splitR, the combination of split-row SDDMM and split-

column SpMM, and F3S_splitC, the combination of split-

column SDDMM and split-column SpMM. On single graph

datasets, F3S_splitC achieves a geometric mean speedup

of 1.5× on both A30 and H100 GPUs. The benefit is less

pronounced on batched graphs, which tend to have lower

degrees and fewer TCBs per RW. As a result, the choice of

warp partitioning has limited impact on overall performance.

Row window reordering.We analyze the impact of sort-

ing RWs by their TCB count. This optimization improves

load balance by scheduling expensive rowwindows earlier in

the kernel execution. Figure 7 shows the active time of each

of the 56 SMs on the A30 GPU, with and without reordering

on two representative graphs (Reddit and Pubmed). Without

reordering, some SMs remain active for longer than others.

On average, F3S_reorderRW improves load balance and per-

formance by 1.18× over F3S_splitC on about half of the

single graph datasets. However, the benefit depends on the

graph structure. When only a few RWs contain many TCBs

while the rest are sparse (e.g., Github and Blog), reordering

offers limited gains (if any at all) as seen in Figures 5 and 6.

Permuting Q, K, and V. We examine the effect of per-

muting the layout of Q, K, and V as described in Section 3.4.

The F3S_permuteQKV kernel applies this permutation on top

of reordering and split-column partitioning. This optimiza-

tion improves memory coalescing and instruction efficiency,

achieving geometric mean speedups of 1.19−1.39× on single

graphs and 1.16 − 1.25× on batched graphs.

4.4 End-to-end Model Performance
We evaluate the inference performance of the Graph Trans-

former (GT)model [5]which comprises 10 transformer blocks,

each with an attention layer, three feedforward layers, and

two normalization layers. We replace the original atten-

tion kernel implemented in DGL [37] with four 3S variants:

Fused3S, DF-GNN’s tiling and hyper kernels, and FlashSparse

with naive softmax.

Figure 8 reports performance on five single graph and

five batched graph datasets. For each dataset, we vary the

embedding dimension 𝑑 ∈ {64, 128, 256} to assess sensitiv-

ity to model size. Fused3S improves end-to-end inference

time, achieving geometric mean speedups of 1.1− 3.08× and

1.05 − 5.36× over the baselines on A30 and H100 respec-

tively. As shown in Figure 8(b) and (d), the DGL baseline

spends the majority of its inference time in the attention ker-

nel. Replacing DGL with any optimized 3S kernel (including

DF-GNN and FlashSparse) significantly reduces this bottle-

neck. As a result, attention accounts for a smaller fraction

of the total inference time, partially amortizing kernel-level

speedups, especially on smaller graphs. The exceptions are

larger graphs (Reddit, Ogbn-products, and AmazonProducts),

where attention remains a bottleneck.

Interestingly, the effect of increasing 𝑑 differs between

A30 and H100. On A30, increasing 𝑑 shifts the bottleneck

toward the MLP layers, reducing the relative time spent

in attention. In contrast, on H100, both MLP and attention

layers scale efficiently, so attention remains a consistent

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(a) H100 GPU. Fused3S achieves 2.8×, 2.2×, 1.6×, 4.4× and 14.7× geometric mean speedup over DF-GNN_tiling, DF-GNN_hyper,
FlashSparse_naive_softmax, FlashSparse_stable_softmax, and PyG respectively.

(b) A30 GPU. Fused3S achieves 2.7×, 1.7×, 1.5×, 2.2×, and 12.3× geometric mean speedup over DF-GNN_tiling , DF-GNN_hyper,
FlashSparse_naive_softmax, FlashSparse_stable_softmax, and PyG respectively.

Figure 5: 3S kernel performance on single graph datasets in Table 6. Graphs are ordered by increasing number of
edges (left to right). Y-axis is in log-scale.

(a) H100 GPU. Fused3S achieves 4.5×, 1.9×, 2.4×, 10.8×, and 16.3× geometric mean speedup over DF-GNN_tiling , DF-GNN_hyper,
FlashSparse_naive_softmax, FlashSparse_stable_softmax, and PyG respectively.

(b) A30 GPU. Fused3S achieves 4.3×, 1.5×, 1.9×, 2.5×, and 14× geometric mean speedup over DF-GNN_tiling , DF-GNN_hyper,
FlashSparse_naive_softmax, FlashSparse_stable_softmax, and PyG respectively.

Figure 6: 3S kernel performance on batched graphs from LRGB [6] and OGB [14]. Y-axis is in log-scale.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

(a) Reddit dataset

(b) Pubmed dataset

Figure 7: Comparison of SM active time on A30 with
(right) and without (left) row window reordering.

or growing fraction of total time. This effect is particularly

visible in DF-GNN_hyper and FlashSparse, where shared

memory pressure or lack of fusion limits the scalability of

attention at higher 𝑑 .

5 Related Work
Sparse Matrix Computation on GPUs. Sparse matrix op-

erations such as SpMM and SDDMM have received extensive

attention due to their importance in GNNs, LLMs, and scien-

tific computing. CUDA-core kernels such as Sputnik [9] and

RoDe [28] use 1D/2D tiling, offset alignment, memory coa-

lescing, and load-balancing heuristics to target unstructured

sparsity. These approaches avoid preprocessing and operate

directly on formats like CSR and COO.

With the growing adoption of tensor cores, recent efforts

focus on enabling tensor core acceleration for sparse oper-

ations. TC-GNN [38] proposes a TC-friendly format (TCF)

that aligns sparsity patterns with MMA operand constraints;

DTC-SpMM [7] extends this with ME-TCF and sparse dou-

ble buffering to further reduce memory latency. Both DTC-

SpMM and SMaT[27] use row reordering to increase the

density of MMA tiles. FlashSparse [32] introduces separate

optimized kernels for SDDMM and SpMMusing the memory-

efficient BCRS format and forming denser MMA tiles using

8×1 vectors. Acc-SpMM [46] proposes BitTCF, a compressed

bitmask format for efficient tile decoding.

Other designs focus on structured or semi-structured spar-

sity. JigSaw [44], Flash-LLM [40] and BSA-SpMM [17] focus

on SpMM in transformer inference, where inputs are tall-

skinny and sparsity is generated by weight pruning. TCA-

SpMM [13] reshapes vector dot products into blocked matrix

multiplications to improve TC utilization without prepro-

cessing the sparse matrix into a different format. These tech-

niques perform well under certain assumptions, but might

not generalize to the irregular sparsity found in real-world

graph data.

Sparse Attention and Fused Kernels. Sparse attention

typically involves three operations: SDDMM, softmax, and

SpMM. Popular frameworks like DGL [37] and PyG [8] im-

plement these as separate kernels and materializing interme-

diate outputs in memory. This results in significant memory

traffic and kernel launch overhead. DF-GNN [21] is the first

work to fuse all three operations into a single CUDA-core

kernel with a numerically stable softmax. It proposes two

variants: tiling for large graphs and hyper for small graphs

with high variance in node degree. However, DF-GNN ex-

ecutes entirely in fp32, uses CSR/COO/CSC formats, and

does not target tensor cores.

Sputnik, FlashSparse, and Magicube [20] also target sparse

attention but do not fuse the softmax stage—intermediate

results are materialized between SDDMM and SpMM. As a

result, memory pressure remains high, and performance is

bounded by inter-kernel synchronization.

6 Conclusion
Fused3S is the first fully on-chip, fused sparse attention ker-

nel designed for tensor cores. It introduces the BSB format,

a block-aligned layout optimized for MMA operand shapes,

and fuses SDDMM, softmax, and SpMM into a single TC-

accelerated mixed-precision kernel. Fused3S integrates GPU

optimizations includingwarp-level split-column partitioning,

register remapping, and row window reordering to improve

memory coalescing and address load imbalance under high

sparsity. Experimental results show that Fused3S achieves

high performance on real-world graphs with unstructured

sparsity–a use case not well supported by prior tensor core

or fused sparse kernels.

Looking ahead, several directions offer potential for im-

proving Fused3S. Hopper’s hardware features such as fp8
compute and Tensor Memory Accelerator (TMA) could fur-

ther reduce memory overhead and improve throughput. Al-

ternative tile shapes enabled by lower precision, and operand

reordering such as FlashSparse’s swap-and-transpose tech-

nique, may increase computational density. While this work

focuses on the forward pass, extending the optimizations to

the backward pass—which also involves SpMM and SDDMM

operations in reverse order—is expected to yield similar per-

formance improvements for training. Additionally, support

for thread block clusters could enable synchronization across

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(a) Performance onA30. Fused3S achieves 1.55×, 1.29×, 1.10×, and 3.08× speedup over DF-GNN_tiling, DF-GNN_hyper, FlashSparse,
and DGL respectively.

(b) Fraction of inference time spent in attention kernels on A30.

(c) Performance onH100. Fused3S achieves 1.56×, 1.05×, 1.15× and 5.36× speedup overDF-GNN-tiling, DF-GNN-hyper, FlashSparse,
and DGL respectively.

(d) Fraction of inference time spent in attention kernels on H100.

Figure 8: Graph Transformer inference performance with different 3S kernels. Missing bars indicate OOM. Labels
on top of bars record the runtime in milliseconds.

multiple thread blocks, unlocking finer-grained load balanc-

ing. Finally, adapting Fused3S to better support the per-graph

sparsity and block-disconnected structure of batched GNN

datasets (e.g., molecular graphs, abstract syntax trees, crystal

graphs) may help bridge the gap between general sparse

attention and multi-graph applications.

Acknowledgments
We thank the Research Cyberinfrastructure Center at UC

Irvine for access to the GPUs on the HPC3 cluster. We also

thank Alex Danielian and Daniel Hsu for their assistance

with kernel development and data preparation.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zitong Li and Aparna Chandramowlishwaran

References
[1] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer:

The long-document transformer. arXiv preprint arXiv:2004.05150
(2020).

[2] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Gener-

ating Long Sequences with Sparse Transformers. CoRR abs/1904.10509

(2019). arXiv:1904.10509 http://arxiv.org/abs/1904.10509

[3] Tri Dao. 2024. FlashAttention-2: Faster Attention with Better Par-

allelism and Work Partitioning. In The Twelfth International Confer-
ence on Learning Representations. https://openreview.net/forum?id=

mZn2Xyh9Ec

[4] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.

2022. FlashAttention: Fast and Memory-Efficient Exact Attention with

IO-Awareness. arXiv:2205.14135 [cs.LG] https://arxiv.org/abs/2205.

14135

[5] Vijay Prakash Dwivedi and Xavier Bresson. 2021. A Generalization of

Transformer Networks to Graphs. AAAI Workshop on Deep Learning
on Graphs: Methods and Applications (2021).

[6] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz,

Guy Wolf, Anh Tuan Luu, and Dominique Beaini. 2022. Long Range

Graph Benchmark. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track. https://openreview.
net/forum?id=in7XC5RcjEn

[7] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridging

the Gap in Accelerating General Sparse Matrix Multiplication with

Tensor Cores. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3 (ASPLOS ’24). Association for ComputingMachinery,

New York, NY, USA, 253–267. doi:10.1145/3620666.3651378

[8] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation

Learning with PyTorch Geometric. In ICLRWorkshop on Representation
Learning on Graphs and Manifolds.

[9] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse

GPU kernels for deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 17, 14 pages.

[10] Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer,

Yejin Lee, Zachary DeVito, Jeff Johnson, Gu-Yeon Wei, David

Brooks, and Carole-Jean Wu. 2024. Is Flash Attention Stable?

arXiv:2405.02803 [cs.LG] https://arxiv.org/abs/2405.02803

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive

Representation Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

https://arxiv.org/abs/1706.02216

[13] Yoonsang Han, Inseo Kim, Jinsung Kim, and Gordon Euhyun Moon.

2024. Tensor Core-Adapted Sparse Matrix Multiplication for Accel-

erating Sparse Deep Neural Networks. Electronics 13, 20 (Jan. 2024),
3981. doi:10.3390/electronics13203981 Number: 20 Publisher: Multi-

disciplinary Digital Publishing Institute.

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,

Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph

Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687 (2020).

[15] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity:

Optimization framework for sparse matrix kernels. The International
Journal of High Performance Computing Applications 18, 1 (2004), 135–
158.

[16] Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka,

Tengfei Ma, Xiang Song, andWen-mei Hwu. 2023. IGB: Addressing The

Gaps In Labeling, Features, Heterogeneity, and Size of Public Graph

Datasets for Deep Learning Research. In In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23) (KDD ’23). doi:10.48550/ARXIV.2302.13522

[17] Eunji Lee, Yoonsang Han, and Gordon Euhyun Moon. 2024. Acceler-

ated Block-Sparsity-Aware Matrix Reordering for Leveraging Tensor

Cores in Sparse Matrix-Multivector Multiplication. In Euro-Par 2024:
Parallel Processing, Jesus Carretero, Sameer Shende, Javier Garcia-Blas,

Ivona Brandic, Katzalin Olcoz, and Martin Schreiber (Eds.). Springer

Nature Switzerland, Cham, 3–16.

[18] Heejun Lee, Jina Kim, Jeffrey Willette, and Sung Ju Hwang. 2024.

SEA: Sparse Linear Attention with Estimated Attention Mask. In The
Twelfth International Conference on Learning Representations. https:

//openreview.net/forum?id=JbcwfmYrob

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large

Network Dataset Collection. http://snap.stanford.edu/data.

[20] Shigang Li, Kazuki Osawa, and Torsten Hoefler. 2022. Efficient quan-

tized sparse matrix operations on tensor cores. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 37,

15 pages.

[21] Jiahui Liu, Zhenkun Cai, Zhiyong Chen, and Minjie Wang. 2024.

DF-GNN: Dynamic Fusion Framework for Attention Graph Neural

Networks on GPUs. In The Third Learning on Graphs Conference.
https://openreview.net/forum?id=8GNDnBbUfF

[22] Liu Liu, Zheng Qu, Zhaodong Chen, Fengbin Tu, Yufei Ding, and

Yuan Xie. 2022. Dynamic Sparse Attention for Scalable Transformer

Acceleration. IEEE Trans. Comput. 71, 12 (2022), 3165–3178. doi:10.
1109/TC.2022.3208206

[23] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Ram-

pášek. 2024. Attending to Graph Transformers. Transactions on Ma-
chine Learning Research (2024). https://openreview.net/forum?id=

HhbqHBBrfZ

[24] NVIDIA Corporation 2018. NVIDIA TESLA V100. NVIDIA Corpora-

tion. https://images.nvidia.com/content/technologies/volta/pdf/tesla-

volta-v100-datasheet-letter-fnl-web.pdf

[25] NVIDIA Corporation 2022. NVIDIA A30 TENSOR CORE GPU. NVIDIA
Corporation. https://www.nvidia.com/content/dam/en-zz/Solutions/

data-center/products/a30-gpu/pdf/a30-datasheet.pdf

[26] NVIDIA Corporation 2025. NVIDIA GH200 Grace Hopper Superchip.
NVIDIA Corporation. https://resources.nvidia.com/en-us-grace-cpu/

grace-hopper-superchip?ncid=no-ncid

[27] Patrik Okanovic, Grzegorz Kwasniewski, Paolo Sylos Labini, Ma-

ciej Besta, Flavio Vella, and Torsten Hoefler. 2024. High Per-

formance Unstructured SpMM Computation Using Tensor Cores.

arXiv:2408.11551 [cs.DC]

[28] Meng Pang, Xiang Fei, Peng Qu, Youhui Zhang, and Zhaolin Li. 2024. A

Row Decomposition-based Approach for Sparse Matrix Multiplication

on GPUs (PPoPP ’24). Association for Computing Machinery, New

York, NY, USA, 377–389. doi:10.1145/3627535.3638470

[29] Md. Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021.

FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding

and Graph Neural Networks . In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE Computer Society, Los

Alamitos, CA, USA, 256–266. doi:10.1109/IPDPS49936.2021.00034

[30] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repos-

itory with Interactive Graph Analytics and Visualization. In AAAI.
https://networkrepository.com

[31] Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu,

Dongyu Zhang, and Karin Verspoor. 2024. Graph Transformers: A

Survey. arXiv:2407.09777 [cs.LG] https://arxiv.org/abs/2407.09777

https://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://openreview.net/forum?id=in7XC5RcjEn
https://openreview.net/forum?id=in7XC5RcjEn
https://doi.org/10.1145/3620666.3651378
https://arxiv.org/abs/2405.02803
https://arxiv.org/abs/2405.02803
http://www.deeplearningbook.org
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://doi.org/10.3390/electronics13203981
https://doi.org/10.48550/ARXIV.2302.13522
https://openreview.net/forum?id=JbcwfmYrob
https://openreview.net/forum?id=JbcwfmYrob
http://snap.stanford.edu/data
https://openreview.net/forum?id=8GNDnBbUfF
https://doi.org/10.1109/TC.2022.3208206
https://doi.org/10.1109/TC.2022.3208206
https://openreview.net/forum?id=HhbqHBBrfZ
https://openreview.net/forum?id=HhbqHBBrfZ
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/products/a30-gpu/pdf/a30-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/products/a30-gpu/pdf/a30-datasheet.pdf
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip?ncid=no-ncid
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip?ncid=no-ncid
https://arxiv.org/abs/2408.11551
https://doi.org/10.1145/3627535.3638470
https://doi.org/10.1109/IPDPS49936.2021.00034
https://networkrepository.com
https://arxiv.org/abs/2407.09777
https://arxiv.org/abs/2407.09777

Fused3S: Fast Sparse Attention on Tensor Cores ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[32] Jinliang Shi, Shigang Li, Youxuan Xu, Rongtian Fu, Xueying Wang,

and Tong Wu. 2024. FlashSparse: Minimizing Computation Re-

dundancy for Fast Sparse Matrix Multiplications on Tensor Cores.

arXiv:2412.11007 [cs.DC] https://arxiv.org/abs/2412.11007

[33] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J

Sutherland, and Ali Kemal Sinop. 2023. Exphormer: Sparse trans-

formers for graphs. In International Conference on Machine Learning.
arXiv:2303.06147

[34] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li.

2018. Attention-based graph neural network for semi-supervised

learning. arXiv preprint arXiv:1803.03735 (2018).
[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-

tention is all you need. Advances in neural information processing
systems 30 (2017).

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention

Networks. In International Conference on Learning Representations.
https://openreview.net/forum?id=rJXMpikCZ

[37] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,

Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph

library: A graph-centric, highly-performant package for graph neural

networks. arXiv preprint arXiv:1909.01315 (2019).
[38] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei

Ding. 2023. TC-GNN: Bridging Sparse GNN Computation and Dense

Tensor Cores on GPUs. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 149–164. https:

//www.usenix.org/conference/atc23/presentation/wang-yuke

[39] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele,

Claudio Bellei, Tom Robinson, and Charles E. Leiserson. 2019. Anti-

Money Laundering in Bitcoin: Experimenting with Graph Convo-

lutional Networks for Financial Forensics. arXiv:1908.02591 [cs.SI]

https://arxiv.org/abs/1908.02591

[40] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou,

Xiafei Qiu, Yong Li, Wei Lin, and Shuaiwen Leon Song. 2023. Flash-

LLM: Enabling Cost-Effective and Highly-Efficient Large Generative

Model Inference with Unstructured Sparsity. doi:10.48550/arXiv.2309.

10285 arXiv:2309.10285 [cs].

[41] Zhilin Yang, WilliamW. Cohen, and Ruslan Salakhutdinov. 2016. Revis-

iting semi-supervised learning with graph embeddings. In Proceedings
of the 33rd International Conference on International Conference on Ma-
chine Learning - Volume 48 (New York, NY, USA) (ICML’16). JMLR.org,

40–48.

[42] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie,

Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan

Wang, Li Yang, and Amr Ahmed. 2020. Big bird: transformers for

longer sequences. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada)
(NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 1450,

15 pages.

[43] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,

and Viktor Prasanna. 2020. GraphSAINT: Graph Sampling Based

Inductive Learning Method. arXiv:1907.04931 [cs.LG] https://arxiv.

org/abs/1907.04931

[44] Kaige Zhang, Xiaoyan Liu, Hailong Yang, Tianyu Feng, Xinyu Yang,

Yi Liu, Zhongzhi Luan, and Depei Qian. 2024. Jigsaw: Accelerating

SpMM with Vector Sparsity on Sparse Tensor Core. In Proceedings
of the 53rd International Conference on Parallel Processing (ICPP ’24).
Association for Computing Machinery, New York, NY, USA, 1124–1134.

doi:10.1145/3673038.3673108

[45] Meng Zhang, Jie Sun, Qinghao Hu, Peng Sun, Zeke Wang, Yonggang

Wen, and Tianwei Zhang. 2024. TorchGT: A Holistic System for Large-

Scale Graph Transformer Training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (Atlanta, GA, USA) (SC ’24). IEEE Press, Article 77, 17 pages.

doi:10.1109/SC41406.2024.00083

[46] Haisha Zhao, San Li, Jiaheng Wang, Chunbao Zhou, Jue Wang,

Zhikuang Xin, Shunde Li, Zhiqiang Liang, Zhijie Pan, Fang Liu, Yan

Zeng, Yangang Wang, and Xuebin Chi. 2024. Acc-SpMM: Accelerating

General-purpose Sparse Matrix-Matrix Multiplication with GPU Ten-

sor Cores. arXiv:2501.09251 [cs.DC] https://arxiv.org/abs/2501.09251

https://arxiv.org/abs/2412.11007
https://arxiv.org/abs/2412.11007
https://arxiv.org/abs/2303.06147
https://openreview.net/forum?id=rJXMpikCZ
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://arxiv.org/abs/1908.02591
https://arxiv.org/abs/1908.02591
https://doi.org/10.48550/arXiv.2309.10285
https://doi.org/10.48550/arXiv.2309.10285
https://arxiv.org/abs/1907.04931
https://arxiv.org/abs/1907.04931
https://arxiv.org/abs/1907.04931
https://doi.org/10.1145/3673038.3673108
https://doi.org/10.1109/SC41406.2024.00083
https://arxiv.org/abs/2501.09251
https://arxiv.org/abs/2501.09251

	Abstract
	1 Introduction
	2 Background
	2.1 Computational Pattern in Sparse Attention
	2.2 Tensor Core and Operand Shapes

	3 Fused3S
	3.1 Sparse Format for Tensor Cores
	3.2 Fusion and Thread-block Parallelization
	3.3 Warp Partitioning Strategies
	3.4 Data Layout and Memory Accesses
	3.5 Mixed Precision and Stability

	4 Results
	4.1 Setup
	4.2 3S Kernel Performance
	4.3 Fused3S Performance Breakdown
	4.4 End-to-end Model Performance

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

