
CB-SpMV:A Data Aggregating and Balance Algorithm for for
Cache-Friendly Block-Based SpMV on GPUs

Xing Cong
Beihang University
BeiJing, China

congxing@buaa.edu.cn

FuKai Sun
Beihang University
BeiJing, China

sunfukai@buaa.edu.cn

YiFan Chen
Beihang University
BeiJing, China

chenyifan@buaa.edu.cn

Chenhao Xie∗
Beihang University
BeiJing, China

xiechenhao@buaa.edu.cn

Yi Liu
Beihang University
BeiJing, China

yi.liu@buaa.edu.cn

Depei Qian
Beihang University
BeiJing, China

depeiq@buaa.edu.cn

Abstract
Sparse matrix-vector multiplication (SpMV) is crucial in compu-
tational science, engineering, and machine learning. Despite sub-
stantial efforts to improve SpMV performance on GPUs through
various techniques, issues related to data locality, hardware uti-
lization, and load balancing persist, leaving room for further op-
timization. This paper presents CB-SpMV, a cache-friendly SpMV
optimization algorithm, using a novel data convergent and adapt-
able 2D blocking structure. The matrix in CB-SpMV is divided into
independent sub-blocks, with virtual pointers aggregating different
types of intra-block data for better cache-level data locality. To
enhance hardware utilization, a block-aware column aggregation
strategy and the selection of sub-block formats are proposed to
accelerate computation and adapt to varying sparse matrices. Fi-
nally, an inter-block load-balancing algorithm is designed to ensure
efficient workload distribution across thread blocks. Experimental
evaluations on 2,843 matrices from the SuiteSparse Collection show
that CB-SpMV significantly improves cache hit rates and achieves
average speedups of up to 3.95× over state-of-the-art methods like
cuSPARSE-BSR, TileSpMV, and DASP on NVIDIA A100 and RTX
4090 GPUs.

CCS Concepts
• Computer systems organization→ Single instruction, mul-
tiple data; • General and reference→ Performance; • Com-
puting methodologies→ Parallel programming languages.

Keywords
Data Structure and Memory Optimization, Blocked Sparse Matrix,
SpMV on GPUs

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725746

ACM Reference Format:
Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian.
2025. CB-SpMV:A Data Aggregating and Balance Algorithm for for Cache-
Friendly Block-Based SpMV on GPUs. In 2025 International Conference on
Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3721145.3725746

1 Introduction
Sparse matrix operations, a cornerstone of computational science
and engineering, are essential in numerical simulations, data anal-
ysis, and machine learning. Sparse matrices, characterized by ir-
regularly distributed non-zero elements, pose challenges such as
poor memory locality and load imbalances in parallel computing,
which hinder computational efficiency. Among these operations,
sparse matrix-vector multiplication (SpMV) is one of the most fun-
damental and widely studied kernels. Research has focused on
optimizing memory access through novel storage formats (e.g.,
CSR5[33], LSRB-CSR[32], TileSpMV[39]), dynamic storage format
selection(e.g., Alphasparse [16]), and leveraging Tensor Core hard-
ware(e.g., DASP[34]). Despite these advancements, issues related
to cache efficiency, hardware utilization, and load balancing persist,
leaving room for further optimization.

Regarding data locality, both the widely studied CSR format
and the state-of-the-art block-based format[24, 39, 40] store the co-
ordinate array and value array separately. This design necessitates
frequent access to the coordinate array during SpMV operations,
which involves large memory jumps to retrieve elements from the
value array. Such a skipping storage structure significantly reduces
the hit rates of the GPU’s L1 and L2 caches. A detailed analysis of
this issue is provided in the following section 2.2.

Regarding hardware utilization, although previous research
works[39] introduce block-based SpMV for data locality and a vari-
ety of formats to handle sub-blocks with different sparsity levels, it
still suffers from inadequate hardware utilization on GPUs in the
case of highly sparse sub-blocks. For instance, when a sub-block
contains few non-zero elements, the GPU still needs a warp, the
basic thread unit of GPUs, to process, which leads to most of the
warp threads remaining idle. Such a similar situation also exists
for Tensor Core accelerated SpMV[34]. In the data layout of DASP,
the 16×8 TCU(Tensor Core Unit) produces 256 values per cycle,
but only the 16 diagonal values are relevant for SpMV, limiting the
tensor core’s effective utilization.

https://orcid.org/0009-0007-0405-5008
https://orcid.org/0009-0008-4067-1219
https://orcid.org/0009-0006-3065-9035
https://orcid.org/0000-0002-1399-0352
https://orcid.org/0000-0003-1829-2817
https://orcid.org/0000-0002-5382-1473
https://doi.org/10.1145/3721145.3725746
https://doi.org/10.1145/3721145.3725746

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2

7
1110

15 16

3

17

5

1413
1918

8 9
6

20
21

29

55
59

36

45
46 48

5756
61

52 54
49

63

33

4241
43

38
35

44

23

27
31

26

32

22
24

30

25
28

40
37

34
39

51
47

53
58
6260

50

64

(a) An example matrix A of size 16-by-16

0 3 6 10 13 0 1 3 0 1 2 0 1 2 3 0 2 3 1 2 7 10 11 12 15 16 3 17· 18 ····
bsr_row_ptr bsr_col_idx, len=13 bsr_val, len=13*16=208

0 0 0 0 0 0 15 15 15 15 15 15 0 2 4 13 14 15 4 8 9 10 11 13··· ··· 1 2 3 4 5 6 59 60 61 62 63 64···
coo_row_idx, len=64 coo_row_idx, len=64 coo_val, len=64

0 3 3 0 3 0 1 3 1 2··· ···0 0 3 1 2 3 0 1 2 1 3 3 3 17 18 21 22 29 51 55 59 50 64···
tile_coo_row_idx, len=18 tile_coo_col_idx, len=18 tile_coo_val, len=18

Same
Block's Data

(b) The representation of matrix data in GPU memory

12

4 0 6 9 14 20 23 26 28 32 36 39 42 45 50 54 58 0 2 4 13 14 15 ··· 4 8 9 10 1164 13 1 2 3 4 5 6 59 60 61 62 63 64···
csr_row_ptr, len=17 csr_col_idx, len=64 csr_val, len=64

0 2 3 6 0 4 7 10 0 2 1 0 1 3 0 1 0 1 2 1 2 3 1 2 7 10 11 12 15 16 ··· 46 47 48 61 62 63···· ··· ·
tile_csr_row_ptr, len=20 tile_csr_col_idx, len=46 tile_csr_col_idx, len=46

CSR

COO

B
SR

TileSpM
V

Figure 1: (a) illustrates a 16×16 example matrix divided into 4×4 sub-blocks, with 13 non-zero sub-blocks highlighted. (b) depicts the data
layout of the matrix in GPU global memory across four sparse storage formats (CSR, COO, BSR, TileSpMV), along with the memory access
patterns for retrieving the third non-zero element located at (0,4) in the example matrix.

Regarding load balance, block-based methods usually process
each sub-block at the warp level. However, the number of non-zero
elements within each sub-block varies significantly. Consequently,
the total number of non-zero elements that each thread block (gen-
erally composed of eight warps [13]) needs to process can differ
substantially. This imbalance results in uneven workloads across
streamingmultiprocessors (SMs), ultimately leading to performance
degradation. To accelerate SpMV calculation by improving the data
locality, hardware utilization, and load balance simultaneously, this
paper proposes Cache-friendly Block-based SpMV, CB-SpMV, in-
cluding a novel data convergent and adaptable 2D block structure
and a series of optimization policies: Intra-Block Data Aggregat-
ing to unite the different storage data formats within the sub-block;
Computation Adaptation for handling blocks with varying spar-
sity, and TB(Thread Bolck)-Load-Balance to ensure equitable
workload distribution across thread blocks.

The design of CB-SpMV stems from a key insight: after parti-
tioning a matrix into sub-blocks, the data within each sub-block is
independent and self-contained, with the coordinates of non-zero
elements relative to the sub-block itself. Leveraging this property,
CB-SpMV was developed to treat each sub-block as an indepen-
dent unit, compactly storing the different types of coordinates and
non-zero values via format uniting and an efficient virtual pointer
structure. This design significantly reduces scattered memory ac-
cess, enhancing data locality and improving L1 and L2 cache hit
rates. However, achieving optimal performance with CB-SpMV in-
troduces additional challenges, particularly in maintaining block
independence while addressing issues such as load balancing and
the trade-off between parallelism and utilization.

To address the hardware utilization challenge for varying spar-
sity levels, we apply a block-aware column aggregation strategy
for sparse sub-blocks and choose either CSR or Dense formats
for denser sub-blocks, optimizing computation efficiency. Addi-
tionally, a parallel load balancing algorithm leveraging priority
queues ensures equitable workload distribution, further enhanc-
ing performance. Experimental evaluations on 2,843 matrices from
SuiteSparse demonstrate the effectiveness of CB-SpMV. On the RTX
4090 GPU, the method increases L1 and L2 cache hit rates by 82%
and 19%, respectively, compared to TileSpMV[39], and achieves

improvements of 15.62× and 10.05× over cuSPARSE-BSR[14]. It
also delivers speedups of 2.95×, 3.06×, and 2.76× over cuSPARSE-
BSR, TileSpMV, and DASP[34]. The contributions of this paper are
summarized as follows:
• 2D Blocking Structure:We introduce an innovative 2D block-
ing structure whose design enhances sub-block independence
and enables faster, more convenient sub-block mapping to warps.
• Intra-Block Data Aggregation:We propose a data aggregating
method using a virtual pointer structure to unite the format of
different data within the sub-block.
• Computation Adaptation Strategy: To address varying spar-
sity levels among sub-blocks, we propose a computation adapta-
tion strategy that optimizes hardware utilization and improves
parallel efficiency.
• Thread-block Load Balancing Optimization:We develop a
parallel load balancing algorithm to mitigate workload disparities
among thread blocks.
• CB-SpMV Framework: Combining them all, we propose CB-
SpMV, a cache-friendly block-based framework for SpMV on
GPUs, leveraging data aggregation and balancing to boost perfor-
mance. Experiments on two GPUs demonstrate that CB-SpMV
achieves higher cache hit rates and outperforms SOTA methods.
The remainder of this paper is organized as follows: Section 2

describes the background of the sparse format and SpMV, with a
comprehensive discussion of its data locality, hardware utilization,
and load balance challenges. The proposed CB-SpMV and relative
optimization method are presented in Section 3. Section 4 presents
the evaluation results of the CB-SpMV on RTX 4090 and A100. We
discuss the related work in Section 5 and conclude this paper in
Section 6.

2 Background, Motivation and Challenge
2.1 Sparse Matrix Storage Format
Sparse matrices, characterized by a few non-zero elements per row,
require specialized storage formats to improve access efficiency.
The COO format is widely used for its simplicity and compatibility
with data storage, stores non-zero elements as (row_idx, col_idx,
coo_val) triplets, enabling rapid construction and easy conversion
to other formats. The CSR format, among the most widely adopted,

CB-SpMV:A Data Aggregating and Balance Algorithm for for Cache-Friendly Block-Based SpMV on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(a) General SpMV (b) Blocked SpMV

A0 x0 y0 A1 x1 y1

A3 x3 y3
y

× =

× = + × =

=

yx

0 0
0
1
2
3
4
5

0 1 2 3 4 5

× =

A

× =+

A2 x2 y2

Figure 2: An example of an SpMV that multiplies a 6-by-6 sparse
matrix 𝐴 by a vector 𝑥 to get a vector 𝑦.

organizes data into row_ptr, col_idx, and csr_val arrays, offering
compact storage and efficient row-wise operations. With the rise
of block accelerators such as Tensor Cores, block-based formats
like the Block Compressed Sparse Row (BSR) format have gained
traction. BSR partitions matrices into fixed-size blocks, using block-
level arrays (blk_row_ptr, blk_col_idx) and storing block data in
bsr_val, including both non-zero and zero elements. This structure
is particularly effective for dense matrices. Advanced methods such
as TileSpMV[39] further optimize block-based SpMV by employing
mixed storage formats at the block level to reduce zero storage
overhead, as illustrated in Fig.1.

2.2 SpMV and Motivation
SpMV calculates the product of a sparse matrix 𝐴 and a dense
vector 𝑥 , iterating over non-zero elements to update the output
vector 𝑦. As a core operation in sparse linear algebra, SpMV is
widely used in scientific computing and engineering applications as
a core operation in sparse linear algebra. Fig.2 and Alg.1 illustrate
its computation and logic.

Algorithm 1 A pseudocode of parallel CSR SpMV.
1: 𝑠_𝑥 ← 𝑥 ⊲ 𝑠_𝑥 is in shared memory
2: for 𝑖 = 0 to𝑚 in parallel do
3: 𝑠𝑢𝑚 ← 0
4: for 𝑗 = 𝑟𝑜𝑤_𝑝𝑡𝑟 [𝑖] to 𝑟𝑜𝑤_𝑝𝑡𝑟 [𝑖 + 1] do
5: //𝑚 + 1 elements are spanned from 𝑟𝑜𝑤_𝑝𝑡𝑟 to 𝑐𝑜𝑙_𝑖𝑑𝑥
6: 𝑣𝑎𝑙_𝑥 ← 𝑠_𝑥 [𝑐𝑜𝑙_𝑖𝑑𝑥 [𝑗]]
7: //𝑛𝑛𝑧 elements are spanned from 𝑐𝑜𝑙_𝑖𝑑𝑥 to 𝑐𝑠𝑟_𝑣𝑎𝑙
8: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑣𝑎𝑙_𝑥 × 𝑐𝑠𝑟_𝑣𝑎𝑙 [𝑗]
9: end for
10: 𝑦 [𝑖] ← 𝑠𝑢𝑚

11: end for

However, performing SpMV with the CSR format introduces
significant data locality issues. As shown in Fig.1, accessing the
element at (0,4) and other elements begins with querying row_ptr
to determine the starting positions of non-zero elements, which
exhibits high locality due to adjacent data. However, subsequent ac-
cesses to col_idx and csr_val involve significant memory jumps,
leading to a marked reduction in cache efficiency. These jumps
recur within rows, further degrading data locality and overall cache
performance. Unlike CPUs, which rely on hardware prefetchers to
mitigate memory latency[23], GPUs depend on high parallelism
to hide latency, offering limited prefetching capabilities. For ex-
ample, on an RTX 4090 GPU with 128 SMs, each with 128 KB of

(a) Proportion of Block Categories (b) Proportion of 4 Subcategories
in 1-32 Block Categories

1 2 3 4 5 6 7 8

20

40

60

80

100

2000 Matrices

P
ercentage

Categories

1
2

3
4

20

40

60

80

100

2000 Matrices
P

ercentage
Categories

Figure 3: Distribution of non-zero elements in 2000 matrices (with
over 10,000 non-zero elements) under 16×16 block partition: (a) Pro-
portion of sub-blocks across eight categories (1-32, 33-64, . . . , 225-
256); (b) Further subdivision of the 1-32 category into four subcate-
gories (1-8, 9-16, 17-24, 25-32).

L1 cache, the theoretical L1 cache per thread is only 64B when
scheduling multiple TBs per SM. Similarly, the shared 72MB L2
cache is insufficient to accommodate large memory spans, making
it challenging to leverage GPU caches effectively. Other formats
like COO and BSR also suffer from locality challenges. COO incurs
higher jumps due to the direct traversal of non-zero elements. At
the same time, BSR improves locality by processing data in blocks
but at the cost of storing zero elements, reducing efficiency for
sparse matrices. TileSpMV addresses some of BSR’s limitations by
compressing sub-blocks but fails to fully exploit the inherent local-
ity of BSR-dense sub-blocks, reintroducing issues similar to CSR,
as shown in Fig.1. These limitations motivate the design of a novel
sparse storage structure that preserves BSR’s locality advantages
while eliminating zero-element storage, enabling more efficient
SpMV computation.

Besides the data locality issue, we also observe that hardware
under-utilization and load imbalance limit the efficiency of block-
based SpMV. Regarding the hardware under-utilization, the BSR
format faces a critical limitation due to the significant variation in
sub-block sparsity after partitioning. For example, Nvidia GPUs
comprise 32 threads in a wrap. If the sub-blocks contain only a
few non-zero elements, most threads will be idle, wasting compu-
tational resources. Fig.3(a) illustrates the distribution of non-zero
elements in sub-blocks for 2000 SuiteSparse matrices (each with
over 10,000 non-zero elements) using a 16×16 block size. Sub-blocks
were categorized into eight ranges (1–32, 33–64, . . . , 225–256), with
over 90% of sub-blocks in most matrices falling within the 1–32
range, averaging 81.89% across all matrices. In Fig.3(b), the 1–32
range is further divided into four subcategories, revealing that sub-
blocks with 1–8 non-zero elements constitute 59.36% of the total,
and those with 9–16 elements account for 20.35%. This indicates
that 59.36% of sub-blocks have a warp-level thread utilization below
75%, while 20.35% falls below 50%, leading to significant efficiency
losses. Although TileSpMV[39] partially addresses this by consoli-
dating sparse sub-blocks and processing them with CSR5[33] while
handling the rest with TileSpMV, this approach incurs additional
overhead from merging and consolidation. Hence, more efficient
solutions to this issue are still needed.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian

(a) SD of non-zero element counts per thread block

(b) Total non-zero per thread blocks for processing

0

200

400

600

800
1000

St
an

da
rd

 D
ev

ia
tio

n

2000 Matrices

913.7

0

500

1000

1500

2000

T
he

 n
um

be
r

of
 n

on
-z

er
o

Thread Block ID
8

2048

TSC_OPF_1047.mtx

TSC_OPF_1047.mtx

Figure 4: Standard deviation and distribution of non-zero elements
per thread block: (a) Standard deviation across 2000 matrices; (b)
Distribution for a specific matrix (TSC_OPF_1047.mtx).

Regarding load imbalance, thread blocks(TBs) serve as the basic
scheduling units for SMs in GPU computation, with each block com-
prising multiple warps. Due to varying sparsity among sub-blocks,
the number of non-zero elements assigned to each thread block of-
ten differs significantly. Fig.4 highlights this imbalance across 2000
matrices (over 10,000 non-zero elements each) with a 16×16 block
size. The standard deviation of non-zero elements per thread block
varies widely, peaking at 913.7 for TSC_OPF_1047.mtx, indicating
severe load imbalance. Since GPU scheduling assigns thread blocks
to SMs in a round-robin manner, the execution time for an SM is dic-
tated by its slowest thread block, typically the one with the heaviest
load. This imbalance in workload distribution among thread blocks
can significantly degrade performance without proper mitigation.

2.3 Software and Hardware Constraints
We further observe that the programming model and GPU itself
raise significant constraints when designing mixed precision and
better data locality block-based SpMV. The constraints can be cat-
egorized into three aspects. First, GPU functions are designed to
process homogeneous data that contracts with sparse structures.
Taking memcpy() and malloc() as an example, only homogeneous
data types are supported during data transferring. However, sub-
block data often include mixed types and precisions—e.g., int for
coordinates and float or double for numerical values—making it
impossible to transfer these data types simultaneously, which in-
curs high data management overhead. Second, the GPU’s memory
alignment mechanism also introduces organizational challenges.
Different data types, such as int(4B) and double(8B), may not align
contiguously in memory, resulting in inefficient storage and access
patterns. Due to these two constraints, although the state-of-the-art
block-based structures partition large matrices into sub-blocks, they
cannot fully capture the data locality within sub-blocks. Moreover,
the parallel executed model poses significant difficulties in mapping

Start

Y

prop > th0

Block-aware column aggregation

blk_nnz < th1

N

blk_nnz > th2

N

COO CSR Dense

Y

Y

Intra-block data aggregation

Thread-block load balance

Sub-block
format

selection

N

End

Figure 5: The overview flow chart of CB-SpMV

imbalanced computing tasks to GPU hardware. For example, Nvidia
GPUs process threads within warps in a SIMD manner and group
multiple warps to form a thread block for resource scheduling. Since
each thread runs the same code and is scheduled simultaneously
by a single thread block, it is difficult to achieve highly flexible task
assignments for high hardware utilization and load balance.

Thus, by considering only the block-based SpMV itself without
breaking these software and hardware constraints, new bottlenecks
will emerge in this kind of SpMV.

3 CB-SpMV
To overcome the challenges of block-based SpMV, we propose a
cache-friendly block-based SpMV approach, CB-SpMV, specifically
designed for GPUs. This approach incorporates a novel mixed-
precision method and an adaptable 2D sparse structure tailored to
matrices with varying sparsity. In our design, CB-SpMV efficiently
transforms the input sparse matrix into the proposed high-locality
2D sparse structure during the data loading phase using innovative
data aggregation and balancing algorithms. To fully leverage the
benefits of the CB-SpMV format, we also redesign the computation
logic of the SpMV kernel. Notably, the threads within each block
are assigned in the original manner to ensure the high level of
parallelism inherent to GPUs is preserved.

As shown in Fig.5, the overview flow chart of CB-SpMV incor-
porates three main components: an intra-block data aggregation to
enhance data locality, a block-aware column aggregation, and an
efficient inter-block load balancing algorithm to improve warp and
block-level parallelism as well as hardware utilization. First, input
data is loaded as a block-based COO format, similar to HiCOO
[29]. After checking the characteristics of the input matrix, the

CB-SpMV:A Data Aggregating and Balance Algorithm for for Cache-Friendly Block-Based SpMV on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

restore_cols :
cols_offset :

type_per_blk :nnz_per_blk :

blk_col_idx :blk_row_idx :
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2

7
1110

15 16

3

17

5

1413
1918

8 9
6

20
21

29

55
59

36

45
46 48

5756
61

52 54
49

63

33

4241
43

38
35

44

23

27
31

26

32

22
24

30

25
28

40
37

34
39

51
47

53
58
6260

50

64

(a) An example matrix A

12

4
0 1 2 3 4 5 6 7 8 9 10 11
1 2

7
1110

15 16

3

17

5

1413
1918

8 9
6

20
21

29

55
59

46 48

5756
61

52 54
49

63

33

4241
43

38
35

44

23

27
31

26

32

22
24

30

25
28

40
37

34

51
47

53
58
6260 64

(c) The representation of matrix data in GPU memory with CB-SpMV

12

4

39
36

45
50

(b) Block-aware column aggregation

0 0 0 1 1 2 2 3 3 0 1 2 0 1 0 1 0 1

8 4 8 5 7 7 6 10 9 1 0 1 0 1 1 1 2 1
vp_per_blk :
p0 p1 p2 p3 p4 p5 p6 p7 p8

blk_num : 9

0 2 3 6 8 0 2 1 0 1 3 0 1 1 2 7 10 11 12 15 16 0 35 49 51 3 13 17 18 0 3 5 6 8

0 1 2 0 2 0 0 2 4 5 6 8 9 14 19 20

p0 p1 p2

p3
0 2 19 49 51 21 22 24 29 30 0 1 3 5 7

p4
0 1 3

0 2 1 3 23 25 26 27 28 31 32 0 2 3 6 7
p5

2 3 1 0 2 3 3 33 34 41 42 4337 40
p6
0 2 2 4

6 0 2 0 1 0 2
p7

35 38 4436 39 45 46 47 52 56 57 60 6151 55 59
p8
0 3 5 6 8

0 1 3 0 1 0 0 1 2 48 49 53 54 58 62 6350 64 Data of the same block

0 1 2 3 4 5 7 12 13 14 15 0 1 2 6 8 9 10 11 0 2 4 5 7 10 12 1 3 8 9 10 11 13 14

11 8 7 8

Figure 6: The storage format and memory organization of CB-SpMV. (a) illustrates a 16-by-16 example matrix, where different colors indicate
that sub-blocks adopt distinct storage formats. (b) depicts the matrix after column aggregation. (c) shows the 2D metadata of CB-SpMV. In
comparison, CB-SpMV aggregates different types of data within the sub-block for better data locality.

input data passes through the column aggregation to increase non-
zero value density. Then, the compressed matrix is transformed
into a 2D sparse structure, and the sub-block format is selected for
efficient processing. After that, the various types of data within
sub-blocks are aggregated to capture the data locality. Finally, the
load balancing is achieved via an inter-block exchange algorithm,
ensuring an even distribution of non-zero elements among thread
blocks, ultimately improving computational efficiency. We set dif-
ferent thresholds to convert the sparse matrix for optimal data
locality and parallelism, with the detailed threshold setting method
introduced alongside each component.

3.1 2D Sparse Structure
In this work, CB-SpMV divides the input sparse matrix into uniform
16×16 sub-blocks to balance data locality, parallelism, and thread
utilization, which serve as the fundamental computational units,
with each sub-block mapped to a warp for intra-block computation.
This block size ensures efficient warp-level execution on NVIDIA
GPUs, avoiding under-utilization from sparse sub-blocks or reduced
parallelism from overly large blocks. The method employs a two-
level metadata structure: a high-level structure for locating sub-
blocks and a low-level structure for managing data within each
sub-block. Fig.6 illustrates this 2D sparse structure.

The high-level metadata adopts the COO format for efficient
localization of sub-block positions and warp binding. It consists
of five arrays: blk_row_idx and blk_col_idx for row and column
indices of non-zero sub-blocks, nnz_per_blk for the number of
non-zero elements in each sub-block, vp_per_blk for the starting
GPU memory addresses of sub-block data, and type_per_blk to
specify the storage format of each sub-block. The low-level struc-
ture defaults to the COO format for rapid conversion from the input
data to the CB-SpMV structure. To treat the different types of data
within the sub-blocks as a united structure, these sub-blocks are
then aggregated into a single structure array (blk_data) on the
CPU and packed contiguously into a one-dimensional meta-data
(mtx_data) on the GPU via intra-block data aggregation.

0

blk0 blk1 blk2 blk3 blk4 blk5 blk6 blk7 blk8

35 49 51 133 17 18

0 0 2 3 3 1 3 2

0 2 3 6 8 0 2
1 0 1 3 0 1
1 2 7 10 11 12 15

16
46 47

52 56 57
60 61

0 0 0 51 0
55 0 0 59

uint8_t

double
or float

Pack data on CPU
An array of char

··········
GPU Global Mem

p0

p1
L2

Cache

(b) Memory alignment problem and solution diagram

Copy char
data to GPU

··········

··········
··········

··········

··········

L1
Cache

y[0] += val[3]×x[4]
row_idx=0, col_idx=4+0

val[3]

y[2] += val[13]×x[5]
row_idx=2,col_idx=4+1

val[13]

(a) Sub-block Data Transfer and GPU Memory Access Diagram
1B 1B 1B 1B 1B 1B 1B 1B

1B 1B 1B 1B 1B 1B 2B(4B)

2B(4B) 1B 1B 1B 1B 2B(8B)

1B 1B

1B 1B 1B 1B 1B 1B 1B 1B

1B 1B 1B 1B 1B 1B Padding

4B 1B 1B 1B 1B

8B6B(8B)

VP

··········
··········

Share
Memory

x[5]

x[4]

Figure 7: Sub-block Data Transfer and GPU Memory Access: (a)
Packaging of sub-block data on the CPU, transfer to GPU global
memory, and access via L1, L2 caches, and shared memory; (b) Mem-
ory alignment issue and its resolution.

3.2 Intra-Block Data Aggregation
To improve data locality and cache efficiency, CB-SpMV employs an
intra-block data aggregating strategy, as shown in Fig.7 to pack and
compress data within sub-blocks tightly. This approach leverages
the independence of non-zero element coordinates within each
sub-block after matrix partitioning, treating all sub-block data as a
single unit for fast and unified data packaging and transfer.

First, coordinate compression is utilized to reduce memory
consumption by encoding the row and column indices (row_idx and
col_idx) of 16×16 sub-blocks into a compact format. Each index
requires only 4 bits, and the two indices are combined into a single
uint_8 type using bitwise operations, as depicted in Fig.7. This ap-
proach is extended to other sparse formats, except for dense formats
where index storage is unnecessary. Second, a virtual pointer (VP)

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian

mechanism is introduced to enable efficient data transfer of mixed
sub-block data. The VP points to a contiguous memory region on
the GPUs, allocated as char data. Then, sub-block data of different
types and precisions is aggregated into a single uniform-format se-
quence on the CPU, which is then transferred to the GPU in a single
operation. Access on the GPU is performed via pointer offsets based
on the VP and the number of non-zero elements in each sub-block,
ensuring both efficiency and simplicity. Finally, since misalignment
may lead to incorrect computations when the GPU accesses multi-
ple bytes simultaneously. As shown in Fig.7(b), a padding strategy
is applied to address potential memory misalignment caused by
GPU’s data alignment constraints.

3.3 Computational Adaptation
Although CB-SpMV can have higher data locality after intra-block
data aggregation, we also face the under-utilize challenge to im-
plement SpMV: high sparsity sub-blocks cannot fully occupy the
threads within a warp, while dense sub-blocks stored in the COO
format incur memory overhead and require atomic operations, re-
ducing parallel efficiency. To address these challenges, CB-SpMV
introduces a computational adaptation strategy tailored to sub-
block sparsity.

3.3.1 Sparse Sub-blocks. For sparse sub-blocks, a block-aware col-
umn aggregation strategy is proposed. As shown in Fig.6(b),
columns with all-zero elements in a sub-block are removed, and the
remaining columns are shifted forward. Two arrays, restore_cols
and cols_offset, map aggregated columns back to their original
indices and record the number of non-zero columns, respectively.
This ensures that each non-zero sub-block contains at least 16 non-
zero elements, mitigating sparsity. However, block-aware column
aggregation introduces stridden memory access to the 𝑥 vector, as
aggregated column indices may no longer be contiguous. This pre-
vents pre-loading 𝑥 into shared memory, slightly increasing global
memory access. To balance trade-offs, we set a threshold, 𝑡ℎ0, to
determine if column aggregation is applied based on the sparsity
of sub-blocks. As we mentioned, over 90% of sub-blocks in most
matrices have lower than 32 non-zero values, which we call these
sub-blocks are super-sparse sub-blocks. Considering the rare cases
where the proportion of super-sparse sub-blocks to the total num-
ber of blocks is low after matrix partitioning, storing the 𝑥 data of
these sub-blocks in shared memory mitigates the performance gap.
Consequently, column aggregation is not applied to these matrices.
Thus, in our work, 𝑡ℎ0 is set to a relatively small value of 0.15.

3.3.2 Dense Sub-blocks. For excessively dense sub-blocks, CB-
SpMV employs a format selection strategy, storing sub-blocks
in one of three formats: COO for low-density blocks(the number
of non-zero elements in a block is less than 𝑡ℎ1), Dense for high-
density blocks(the number of non-zero elements in a block is more
than 𝑡ℎ2), and CSR for intermediate sparsity. Refer to previous work
TileSpMV[39], 𝑡ℎ1 and 𝑡ℎ2 are set to 32 and 128, respectively. This
approach minimizes branching overhead while optimizing intra-
block computation using the shfl function to enhance warp-level
performance, as Alg.3 and Alg.4 illustrate.

type_per_blk :

nnz_per_blk :

blk_col_idx :

blk_row_idx :

vp_per_blk :

Time line

3 -1

0 -1

10 -1

2 -1

p7 /

TB 0 1 2 7 10 11 12 15 16 3 13 17 18
TB 1 4 5 6 8 9 14 19 20 21 24 29
TB 2 23 25 26 27 28 31 32
TB 3 35 38 44 51 52 55 59

22 30
33 34 41 42 4337 40

TB 5 48 49 53 54 58 62 63
36 39 45 46 47 56 57 60 61

6450

TB 0

1 2 7 10 11 12 15 16
3 13 17 18TB 1

4 5 6 8 9 14 19 20
21 24 29TB 2

23 25 26 27 28 31 32
TB 3 35 38 44

51 52 55 59

22 30

33 34 41 42 4337 40TB 5

48 49 53 54 58 62 63

36 39 45

46 47 56 57 60 61
6450

Banlanced

3

1

9

1

p8

0

1

4

0

p1

0

0

8

1

p0

1

0

5

0

p3

0

2

8

1

p2

2

1

6

1

p6

1

1

7

1

p4

2

0

7

1

p5

(a) Thread block(TB) level balance policy (b) Balanced high-level format

Figure 8: Block level load balancing policy and high-level structure
after balancing

3.4 Inter-thread-block Load Balance
To address load imbalance among thread blocks, we proposed
an inter-block exchange strategy to adjust the sub-block alloca-
tion for each thread block while maintaining the total number
of sub-blocks of each thread block to be approximately equal.
This involves reorganizing the metadata arrays blk_row_idx,
blk_col_idx, nnz_per_blk, type_per_blk, and vp_per_blk by
priority queue(pq), as shown in Fig.8. The figure shows our load
balancing example for the matrix in Fig.6, with two warps per
thread block(TB), and the simplified pseudocode is shown in Alg.2.

Algorithm 2 A pseudocode of Thread Block Load Balance.
1: //The blk_idx_array contains 3 items: ori,end,nnz.
2: parallel sort(blk_idx_array, cmp_nnz);
3: //The pq contains 3 items: loads(min-heap), tb_id, warps.
4: for 𝑖 = 0 to 𝑏𝑙𝑘_𝑛𝑢𝑚 − 1 in parallel do
5: 𝑝𝑞𝑡𝑜𝑝 ← 𝑝𝑞.𝑡𝑜𝑝 (), then 𝑝𝑞.𝑝𝑜𝑝 ()
6: // Mapping sub-block to target thread block
7: 𝑏𝑙𝑘_𝑖𝑑𝑥_𝑎𝑟𝑟𝑎𝑦 [𝑖] .𝑒𝑛𝑑 ← 𝑝𝑞𝑡𝑜𝑝.𝑡𝑏_𝑖𝑑 × 8 + 𝑝𝑞𝑡𝑜𝑝.𝑤𝑎𝑟𝑝𝑠

8: 𝑝𝑞𝑡𝑜𝑝.𝑙𝑜𝑎𝑑𝑠 ← 𝑝𝑞𝑡𝑜𝑝.𝑙𝑜𝑎𝑑𝑠 + 𝑏𝑙𝑘_𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦 [𝑖] .𝑛𝑛𝑧
9: 𝑝𝑞𝑡𝑜𝑝.𝑤𝑎𝑟𝑝𝑠 ← 𝑝𝑞𝑡𝑜𝑝.𝑤𝑎𝑟𝑝𝑠 + 1
10: if 𝑝𝑞𝑡𝑜𝑝.𝑤𝑎𝑟𝑝𝑠 < 8 then
11: 𝑝𝑞.𝑝𝑢𝑠ℎ (𝑝𝑞𝑡𝑜𝑝)
12: end if
13: end for
14: parallel sort(blk_idx_array, cmp_end);
15: for 𝑖 = 0 to 𝑏𝑙𝑘_𝑛𝑢𝑚 − 1 in parallel do
16: 𝑣𝑝_𝑝𝑒𝑟_𝑏𝑙𝑘 [𝑖] ← 𝑣𝑝_𝑝𝑒𝑟_𝑏𝑙𝑘_𝑜𝑙𝑑 [𝑏𝑙𝑘_𝑖𝑑𝑥_𝑎𝑟𝑟𝑎𝑦 [𝑖] .𝑜𝑟𝑖]
17: //The high-level array (eg.blk_row_idx,...) op similarly
18: end for

This approach leverages two key innovations:
(1) The high-level independent COO structure enables flexible re-

arrangement of sub-block indices while ensuring efficient local-
ization within the global matrix.

(2) All data in each sub-block is stored contiguously, allowing the
virtual pointer (VP) to be directly retrieved for efficient compu-
tation access.
Compared to previous methods that use CSR as the high-level

format and store sub-block data non-contiguously, this strategy

CB-SpMV:A Data Aggregating and Balance Algorithm for for Cache-Friendly Block-Based SpMV on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

achieves superior load balancing by enabling dynamic and efficient
sub-block remapping without altering the total number processed
per thread block.

3.5 Kernel Implementation
To accommodate the proposed optimization measures, the SpMV
kernel’s computation logic and algorithm have been redesigned to
fully exploit the CB-SpMV format’s advantages.

Algorithm 3 A pseudocode of CB-SpMV with COO.
1: for each block matrix 𝐴𝑘 in the matrix 𝐴 in parallel do
2: 𝑏𝑙𝑘_𝑛𝑛𝑧← the nnz of 𝐴𝑘

3: 𝑉𝑃 ← the virtual pointer of 𝐴𝑘

4: // Unpacking data
5: 𝑏𝑙𝑘_𝑟𝑜𝑤_𝑖𝑑𝑥 ← the row block index of 𝐴𝑘

6: 𝑝𝑎𝑑𝑑𝑖𝑛𝑔← (𝑏𝑙𝑘_𝑛𝑛𝑧 × size(𝐼𝑑𝑥)) mod size(𝑉𝑎𝑙)
7: 𝑝𝑎𝑑𝑑𝑖𝑛𝑔← 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 ? size(𝑉𝑎𝑙) − 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 : 0
8: 𝑐𝑜𝑜_𝑖𝑑𝑥 ← 𝑉𝑃

9: 𝑐𝑜𝑜_𝑣𝑎𝑙 ← 𝑉𝑃 + 𝑏𝑙𝑘_𝑛𝑛𝑧 × size(𝐼𝑑𝑥) + 𝑝𝑎𝑑𝑑𝑖𝑛𝑔
10: for 𝑖 = 0 to 𝑏𝑙𝑘_𝑛𝑛𝑧 in parallel do
11: 𝑟𝑜𝑤_𝑖𝑑𝑥 ← 𝑏𝑙𝑘_𝑐𝑜𝑜_𝑖𝑑𝑥 [𝑖] &15
12: 𝑐𝑜𝑙_𝑖𝑑𝑥 ← 𝑏𝑙𝑘_𝑐𝑜𝑜_𝑖𝑑𝑥 [𝑖] ≫ 4
13: 𝑦_𝑖𝑑𝑥 ← 𝑏𝑙𝑘_𝑟𝑜𝑤_𝑖𝑑𝑥 × BLK_SIZE + 𝑟𝑜𝑤_𝑖𝑑𝑥
14: if column aggregation is not used then
15: // Corresponding x is preloaded into sm.
16: atomicADD(𝑦𝑦_𝑖𝑑𝑥 , 𝑐𝑜𝑜_𝑣𝑎𝑙 [𝑖] × 𝑠_𝑥𝑐𝑜𝑙_𝑖𝑑𝑥)
17: else
18: //Obtain the global pointer of x.
19: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑐𝑜𝑙𝑠_𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑏𝑙𝑘_𝑟𝑜𝑤_𝑖𝑑𝑥] + 𝑐𝑜𝑙_𝑖𝑑𝑥
20: 𝑐𝑜𝑙_𝑖𝑑𝑥_𝑜𝑟𝑖 ← 𝑟𝑒𝑠𝑡𝑜𝑟𝑒_𝑐𝑜𝑙𝑠 [𝑜 𝑓 𝑓 𝑠𝑒𝑡]
21: atomicADD(𝑦𝑦_𝑖𝑑𝑥 , 𝑐𝑜𝑜_𝑣𝑎𝑙 [𝑖] × 𝑑_𝑥𝑐𝑜𝑙_𝑖𝑑𝑥_𝑜𝑟𝑖)
22: end if
23: end for
24: end for

For sub-blocks stored in the COO format, a warp of 32 threads is
allocated to process all non-zero elements in one sub-block. Even
if the number of non-zero elements is less than 32, the column
aggregation strategy ensures that each sub-block contains at least 16
elements, improving hardware utilization to at least 50%. This marks
a significant improvement over traditional approaches, which often
leave most threads idle in sparse sub-blocks. The packed data for
each sub-block is parsed using the metadata arrays nnz and VP to
extract row_idx, col_idx, and val. The computation results are
then partially accumulated into the corresponding y vector using
the atomicAdd operation, ensuring correctness across concurrent
threads.

For sub-blocks stored in CSR or Dense formats, the kernel logic
is optimized to leverage GPU-specific instructions. Since 32 threads
collaboratively compute 16 y vector elements, the unpacking pro-
cess is followed by a warp-level reduction using the shfl instruc-
tion. This operation minimizes access to shared or global memory,
enhancing computational efficiency. The dense format further ben-
efits from optimized memory coalescing due to its regular structure,
reducing cache misses. Alg.3 and Alg.4 provide pseudocode for the
redesigned COO and Dense kernels. These kernels are categorized
based on whether column aggregation is applied. For sub-blocks
with column aggregation, the x vector is directly loaded from global

Algorithm 4 A pseudocode of CB-SpMV with Dense.
1: for each block matrix 𝐴𝑘 in the matrix 𝐴 in parallel do
2: 𝑏𝑙𝑘_𝑛𝑛𝑧 ← nnz of 𝐴𝑘

3: 𝑉𝑃 ← virtual pointer of 𝐴𝑘

4: 𝑏𝑙𝑘_𝑟𝑜𝑤_𝑖𝑑𝑥 ← row block index of 𝐴𝑘

5: 𝑑𝑒𝑛𝑠𝑒_𝑣𝑎𝑙 ← 𝑉𝑃

6: for 𝑡𝑖𝑑 = 0 to 𝑤𝑎𝑟𝑝𝑠𝑖𝑧𝑒 − 1 in parallel do
7: 𝑠𝑢𝑚 ← 0
8: 𝑟𝑜𝑤_𝑓 𝑡 ← (𝑡𝑖𝑑 < BLK_SIZE)?𝑡𝑖𝑑 : 𝑡𝑖𝑑 − BLK_SIZE
9: 𝑠𝑡𝑎𝑟𝑡 ← (𝑡𝑖𝑑 < BLK_SIZE)?0 : BLK_SIZE/2
10: 𝑒𝑛𝑑 ← (𝑡𝑖𝑑 < BLK_SIZE)?BLK_SIZE/2 : BLK_SIZE
11: for 𝑐𝑜𝑙 = 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 do
12: 𝑣𝑎𝑙 ← 𝑑𝑒𝑛𝑠𝑒_𝑣𝑎𝑙 [𝑟𝑜𝑤_𝑓 𝑡 × BLK_SIZE + 𝑐𝑜𝑙]
13: if column aggregation is not used then
14: 𝑠𝑢𝑚+ = 𝑣𝑎𝑙 × 𝑠_𝑥𝑐𝑜𝑙
15: else
16: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑐𝑜𝑙𝑠_𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑏𝑙𝑘_𝑟𝑜𝑤_𝑖𝑑𝑥] + 𝑐𝑜𝑙
17: 𝑐𝑜𝑙_𝑖𝑑𝑥_𝑜𝑟𝑖 ← 𝑟𝑒𝑠𝑡𝑜𝑟𝑒_𝑐𝑜𝑙𝑠 [𝑜 𝑓 𝑓 𝑠𝑒𝑡]
18: 𝑠𝑢𝑚+ = 𝑣𝑎𝑙 × 𝑑_𝑥𝑐𝑜𝑙_𝑖𝑑𝑥_𝑜𝑟𝑖
19: end if
20: end for
21: if 𝑡𝑖𝑑 < BLK_SIZE then
22: 𝑠𝑢𝑚 ← __shfl_xor_sync(0xffffffff, 𝑠𝑢𝑚, BLK_SIZE/2)
23: ⊲ Aggregate partial results within warp
24: end if
25: end for
26: for 𝑡𝑖𝑑 = 0 to BLK_SIZE in parallel do
27: 𝑦_𝑖𝑑𝑥 ← 𝑏𝑙𝑘_𝑟𝑜𝑤_𝑖𝑑𝑥 × BLK_SIZE + 𝑡𝑖𝑑
28: atomicAdd(𝑦𝑦_𝑖𝑑𝑥 , 𝑠𝑢𝑚)
29: end for
30: end for

memory into registers, requiring a remapping from aggregated to
original column indices. Conversely, for sub-blocks without column
aggregation, the corresponding portion of the x vector is pre-loaded
into shared memory to minimize memory latency during computa-
tion. This distinction ensures that the kernel adapts dynamically to
different sub-block sparsity levels, maximizing performance while
maintaining simplicity.

4 Evaluation
4.1 Experimental Setup
The experimental platform consists of two types of NVIDIA GPUs:
the NVIDIA A100 (Ampere architecture) and RTX 4090 (Ada
Lovelace architecture). Both GPUs are configured with driver ver-
sion 550.135 and CUDA version 12.4. On this platform, the proposed
method is comprehensively compared with the following state-
of-the-art approaches: The cusparse_bsrmv()[14] kernels from
cuSPARSE v12.4 for SpMV using BSR formats; the state-of-the-art
block-based SpMV method TileSpMV[39]; and the latest based on
CSR format and Tensor Core-accelerated SpMV method DASP[34].
The table below lists the specifications of the tested GPUs and the
algorithms. The evaluation dataset comprises 2843 matrices from
the SuiteSparse Matrix Collection[15].

4.2 SOTA Technology Comparison
In this subsection, we evaluate the performance of CB-SpMV (with
val in FP64 format) against the SOTA block-based SpMV algorithms

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian

0
3

6
9

Sp
ee

du
p

ov
er

 B
SR

1 2 3 4 5 6 7 8
0
3

6
9

Sp
ee

du
p

ov
er

 T
ile

Sp
M

V

size of log10(nnz)

0
3

6
9

Sp
ee

du
p

ov
er

 B
SR

1 2 3 4 5 6 7 8
0
3

6
9

Sp
ee

du
p

ov
er

 T
ile

Sp
M

V

size of log10(nnz)
(a) CB-SpMV performance and speedups on NVIDIA RTX 4090 GPU (b) CB-SpMV performance and speedups on NVIDIA A100 GPU

0

100

200

300

400

500 cuSPARSE-BSR
DASP
TileSpMV
CB-SpMV(this work)

Pe
rf

or
m

an
ce

(G
flo

ps
)

0
2

4
6

 S
pe

ed
up

ov
er

 D
A

SP

0

60

120

180

240

300 cuSPARSE-BSR
DASP
TileSpMV
CB-SpMV(this work)

Pe
rf

or
m

an
ce

(G
flo

ps
)

0
1

2
3

 S
pe

ed
up

ov
er

 D
A

SP

Figure 9: Performance comparison between CB-SpMV and the SOTA SpMV algorithm on RTX4090 and A100 GPUs

Table 1: The two GPUs and four algorithms evaluated.

Two NVIDIA GPUs Four Algorithms
(1) NVIDIA A100 (Ampere), 6912
CUDA cores @ 1410 MHz, 40 GB,
B/W 1.56 TB/s
(2) NVIDIA RTX4090 (Ada Lovelace),
16384 CUDA cores @ 2520 MHz,
24GB, B/W 1.01 TB/s

(1) cuSPARSE [14]
(2) TileSpMV [39]
(3) DASP [34]
(4) CB-SpMV
(this work)

(e.g., cuSPARSE-BSR[14], TileSpMV[39]) and other recent SpMV
methods (DASP[34]), focusing on Gflop/s (Gflops) as the primary
performance metric. We run each kernel 1000 times to obtain aver-
age Gflops values. For cuSPARSE-BSR, we use the best-performing
block size from 2×2, 4×4, 8×8, and 16×16 while for TileSpMV and
our work, we set the block size as 16x16. Additionally, we analyze
the impact of the intra-subblock data aggregation strategy on L1
and L2 cache hit rates.
4.2.1 Performance Comparison. As shown in Fig.9, CB-SpMV sig-
nificantly outperforms BSR on both GPUs. On the RTX 4090, CB-
SpMV achieves an average speedup of 2.95× and a maximum
speedup of 37.54× (on TSOPF_FS_b39_c30). On the A100, the aver-
age and maximum speedups are 2.99× and 54.27× (on boyd1). These
improvements stem from CB-SpMV’s use of sparse formats for
low-level sub-blocks, avoiding the dense storage overhead of BSR
and reducing underutilization in sparse sub-blocks. CB-SpMV also
consistently outperforms TileSpMV. For smaller matrices (𝑛𝑛𝑧 less
than 105), the primary gains arise from enhanced data locality via
intra-subblock data aggregation. For larger matrices, strategies like
column aggregation, format selection, and load balancing further

boost performance. On the RTX 4090 and A100, CB-SpMV achieves
average speedups of 3.06× and 3.95×, with maximum speedups of
8.56× (on piston) and 10.34× (on rgg_n_2_21_s0).

The comparison with DASP, which leverages Tensor Core de-
signs, is particularly noteworthy. On the RTX 4090 and A100 GPUs,
CB-SpMV achieves average speedup factors of 2.76× and 1.21×,
respectively. The reduced performance advantage of the A100 is
primarily due to its design as a high-performance computing GPU,
offering significantly higher FP64 Tensor Core computational capa-
bilities compared to the RTX 4090, which is optimized for graphics
processing. Nevertheless, despite DASP’s reliance on the powerful
Tensor Core hardware, CB-SpMV still achieves approximately 20%
speedup on the A100. This is likely because DASP’s data layout
strategy fails to fully exploit the potential of Tensor Cores, as dis-
cussed in Section 1. Addressing this issue will be a key focus of our
future work.

4.2.2 Cache Hit Rate Comparison. To vividly illustrate the im-
provements in data locality achieved by sub-block data aggre-
gation and the associated strategies, we selected 15 represen-
tative matrices, as shown in the table 2. Using the Nsight
Compute tool on the RTX 4090, we analyzed parameters
such as l1tex__t_sector_hit_rate for L1 Cache hit rate and
lts__t_request_hit_rate for L2 Cache hit rate. These metrics
were used to evaluate the Gflops and average L1 and L2 cache hit
rates for the three methods mentioned earlier when applied to these
15 matrices.

As shown in Fig.10, CB-SpMV achieves L1 cache hit rates 14.4×
and 1.93× higher than BSR and TileSpMV, respectively, and L2
hit rates 5.89× and 1.19× higher. Additionally, matrices with more
dense sub-blocks, such as mouse_gene and sme3Da, exhibit higher

CB-SpMV:A Data Aggregating and Balance Algorithm for for Cache-Friendly Block-Based SpMV on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

41
.8

9

34
.4

7

16
0.

02

73
.4

4

56
.7

4

71
.3

8

11
6.

71

17
.6

1

18
.0

7

22
.2

1

17
3.

18

21
3.

31

16
8.

90

34
7.

02

10
7.

27

61
.7

6

10
6.

13

84
.4

5

12
8.

75

25
7.

45

46
.5

8

31
.4

4

48
.9

6 13
1.

56

14
7.

62

17
0.

72

17
8.

59

15
4.

38 39
1.

71

13
7.

31

95
.4

9

13
1.

77

16
9.

01

14
4.

04

33
1.

34

23
6.

45

20
2.

52

10
5.

95

23
8.

51

97
.7

6 18
6.

48

17
7.

48 39
8.

41 47
7.

82

39
9.

26

0

100

200

300

400

500

Pe
rf

or
m

an
ce

(G
flo

ps
)

 cuSPARSE-BSR TileSpMV CB-SpMV(this work)
1.

62 2.
99 5.
47

3.
92

3.
04

1.
98

2.
44

2.
53

1.
3 3.
61

3.
71

2.
63

2.
72 3.
74

3.
07

21
.5

6

43
.2

5 55
.2

4

35
.4

3

13
.7

4 28
.9

7

5.
45

19
.8

4

50
.9

1

53
.1

6

38
.1

3 47
.5

1

3.
75 5.
5

5.
95

27
.0

2

47
.0

7 61
.0

4

51
.6

6

38
.6

2

46
.3

3

24
.6

1

27
.0

1

52
.1

3

43
.3

2

51
.2

4

55
.6

3

10
.7

1

18
.5

5

19
.7

3

0

20

40

60

80

100

H
it

ra
te

(%
)

cuSPARSE-BSR (L1) TileSpMV(L1) CB-SpMV(this work)(L1)

6.
11

4.
81 6.
06

6.
21

6.
28

6.
71

7.
24

5.
29 6.
36

4.
28 6.
71

6.
04

5.
93

5.
01

5.
32

66
.9

1

68
.9

8

56
.0

8 55

32
.2

1

35
.5

9

21
.8

66
.8

4

65
.9

2

66
.2

53
.6

5

55
.5

2

14
.0

1

15
.9

9

23
.8

4

79
.4

7

73
.8

2

63
.6

1

61
.3

6

40
.8

3

59
.0

1

26
.6

6 69
.6

5

66
.9

7

70
.2

2

69
.9

7

57
.9

3

16
.9

3

23
.4

8

25
.1

mou.. hum.. nem.. in-.. tor.. hea.. qc2.. sme.. Tre.. myc.. Ben.. Cou.. exd.. TSO.. TSC..
0

20

40

60

80

100

H
it

ra
te

(%
)

cuSPARSE-BSR (L2) TileSpMV(L2) CB-SpMV(this work)(L2)

Figure 10: Performance comparison of 15 typical sparse matrices on RTX 4090 GPU and L1 & L2 Cache hit ratio

5 6 7 8
0
4
8

12
16 CB-SpMV-Ⅱ Speedup Over CB-SpMV-Ⅰ

Sp
ee

du
p

size in log10(nnz)
5 6 7 8

0
1
2
3
4
5 CB-SpMV-Ⅲ Speedup Over CB-SpMV-Ⅱ

Sp
ee

du
p

size in log10(nnz)

(a) Performance comparison of different optimization on 15 representative matrices

(b) Performance speedup of different optimization on RTX 4090 GPU

9.
36 16
.5

0 12
5.

25

10
6.

88 16
8.

99

11
5.

96

94
.1

0

26
.5

1

40
.9

3

47
.9

0

18
2.

03

17
7.

44

15
9.

87

17
6.

49

14
1.

31

28
.3

5

50
.3

4 13
5.

69

14
4.

04

18
6.

59

10
6.

79

93
.0

0

75
.3

9 14
5.

38

43
.9

0

18
4.

06

17
9.

48

21
3.

87

23
6.

65

15
5.

83

95
.4

9

13
1.

77

16
9.

01

13
5.

04

33
1.

34

23
6.

45

20
2.

52

10
5.

95

23
8.

51

97
.7

6 18
6.

48

17
7.

48 39
8.

41 47
7.

82

39
9.

26

mou.. hum.. nem.. in-.. tor.. hea.. qc2.. sme.. Tre.. myc.. Ben.. Cou.. exd.. TSO.. TSC..0

100

200

300

400

500

Pe
rf

or
m

an
ce

(G
flo

ps
)

 CB-SpMV-Ⅰ CB-SpMV-Ⅱ CB-SpMV-Ⅲ

205%

161% 10% 77% 255%

64% 33% 86%

Ⅰ:Data aggregation Ⅱ:Data aggregation + Block-aware column aggregation + Format Selection
Ⅲ:Data aggregation + Block-aware column aggregation + Format Selection + Thread Block-Banlance

Fig.4(b) matrix

10%

156%

Figure 11: Performance comparison of 15 typical sparse matrices using different optimization measures using CB-SpMV on RTX 4090 GPUs.

L2 cache hit rates. This is because dense sub-blocks, after aggrega-
tion, often require larger storage spaces, leading to more frequent
evictions and reloads in the L1 cache. In contrast, matrices with
more sparse sub-blocks, such as nemeth07 and CoupCons3D, tend
to have higher L1 cache hit rates. This is because sparse sub-blocks
contain fewer data elements, allowing the L1 cache to accommodate
more of their content. These patterns underscore the adaptability of
CB-SpMV in improving data locality across matrices with varying
structural characteristics.

4.3 Ablation Performance Analysis
To address the challenges outlined in Section 2, we proposed tar-
geted optimization strategies in Section 3. This section evaluates
their individual and combined impacts on CB-SpMV’s performance,
focusing on 15 representative matrices with 𝑛𝑛𝑧 > 100, 000, as pre-
processing selectively applies these optimizations based on matrix
characteristics.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian

Table 2: Information of the 15 Representative Matrices.

Name Plot Size (𝑚 × 𝑛) 𝑛𝑛𝑧

mouse_gene 45101×45101 28967291

human_gene1 22283×22283 24669643

nemeth07 9506×9506 394812

in-2004 1382908(m=n) 16917053

torso1 116158×116158 8516500

heart2 2339×2339 682797

qc2534 2534×2534 463360

sme3Da 12504×12504 874887

Trec14 3159×15905 2872265

mycielskian15 24575×24575 11111110

BenElechi1 245874×245874 13150496

CoupCons3D 416800×416800 22322336

exdata_1 6001×6001 2269501

TSOPF_RS_b6.. 35696×35696 8781949

TSC_OPF_1047 8140×8140 2016902

Fig.11 highlights the contributions of each optimization strategy.
Compared to using only intra-block data aggregation (CB-SpMV-I),
the column aggregation and format selection strategy achieves an
average speedup of 2.22×, and the thread block-level load balancing
strategy provides an additional 1.09× improvement compared to
using sub-block data aggregation, column aggregation and format
selection (CB-SpMV-II). When combined, these strategies deliver
an average performance gain of 2.37×. The column aggregation and
format selection strategy addresses issues in matrices with extreme
sub-block sparsity or density. For example, in human_gene1, this
optimization mitigates reduced parallelism caused by dense sub-
blocks, achieving a 205% improvement. Conversely, for exdata_1,
it enhances warp utilization in sparse sub-blocks, delivering a 33%
gain. The thread block-level load balancing strategy effectively
distributes the workload among thread blocks, resolving imbalances
in matrices with mixed dense and sparse regions, such as torso1
and exdata_1, achieving 77% and 86% improvements, respectively.

4.4 Overhead Analysis
In this section, we evaluate the advantages and disadvantages of the
proposed method in terms of storage overhead and preprocessing
time and compare it with other sparse matrix storage formats.

(b) Comparison of preprocessing costs of SpMV methods

(a) Comparison of memroy size of SpMV methods

2 3 4 5 6 7 8−3
−2
−1

0
1
2
3
4
5

cuSPARSE-BSR
TileSpMV
CB-SpMV(this work)Pr

ep
ro

ce
ss

in
g

tim
e

(m
s,l

og
10

 sc
al

e)

size in log10(nnz)

0 1 2 3 4 5 6 7 8−5

−3

−1

1

3

5
 cuSPARSE-CSR
 cuSPARSE-BSR
 CB-SpMV(this work)

M
em

or
y

Si
ze

 (M
B

,lo
g 10

 sc
al

e)

size in log10(nnz)

Figure 12: Comparison of memory usage and preprocessing time
across different SpMV storage formats.

4.4.1 storage overhead. To evaluate storage overhead, we modeled
the space usage of CSR, BSR, and CB-SpMV under simplified as-
sumptions: position information is stored as int32, and numerical
values are stored as FP64. For a matrix of size𝑚 × 𝑛 with 𝑛𝑛𝑧 non-
zero elements, the CSR format requires (𝑚+1)×4+𝑛𝑛𝑧×4+𝑛𝑛𝑧×8B.
For the BSR format, assuming a block size of 16 × 16, with 𝑛𝑛𝑧𝑏

non-zero sub-blocks and 𝑏𝑙𝑘_𝑚 row blocks, the required storage
is 256 × 8 × 𝑛𝑛𝑧𝑏 + (𝑏𝑙𝑘_𝑚 + 1) × 4 + 𝑛𝑛𝑧𝑏 × 4B. For CB-SpMV,
where each sub-block uses COO storage, the storage overhead is
𝑛𝑛𝑧𝑏×(4+4+4+1+8)+𝑛𝑛𝑧×(1+8)B. Column aggregation costs are
excluded, as the reduction in block count offsets high-level storage
costs. As shown in Fig.12(a), CB-SpMV achieves storage efficiency
comparable to CSR, thanks to its compressed sub-block storage and
smaller indices. In contrast, BSR incurs significantly higher over-
head due to storing numerous FP64 zero elements within sub-blocks.
This demonstrates that CB-SpMV effectively balances storage effi-
ciency and computational adaptability.

4.4.2 preprocessing time overhead. The preprocessing time re-
quired to convert COO matrices into the formats used by various
algorithms is shown in Fig.12(b). CB-SpMV consistently outper-
forms TileSpMV and cuSPARSE-BSR for matrices with 𝑛𝑛𝑧 less
than 106. For matrices with 𝑛𝑛𝑧 greater than one million, CB-SpMV
remains comparable to those of TileSpMV and BSR. Despite the
modest increase in preprocessing time for largermatrices, CB-SpMV
remains competitive, particularly for iterative solvers that require
repeated SpMV operations. The preprocessing overhead is a small
trade-off for the significant performance improvements achieved
during computation.

CB-SpMV:A Data Aggregating and Balance Algorithm for for Cache-Friendly Block-Based SpMV on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

5 Related Work
There has been extensive prior research on SpMV; here, we focus
only on reviewing works relevant to this study.

Block-based Methods:In recent years, with the rise of block
and tensor core, block-based approaches about GPUs have gar-
nered significant attention in these studies[3, 5, 7, 8, 17, 28, 35, 38–
40, 42, 45, 48]. Researchers like Labini and Bernaschi [28] leveraged
reordering and blocking techniques and dense accelerators such
as NVIDIA Tensor Cores to achieve efficient sparse matrix multi-
plications. Buluç[8–11] et al. introduced the CSB format to exploit
block layouts and cache locality, which Martone further improved
using recursive methods. Yan[47] et al. developed the BCCOO for-
mat to store dense 2D blocks, and Niu[39] et al. extended this idea
with TileSpMV by supporting seven internal sub-block structures.
Compared to these studies, our approach aggregates and packs data
within each sub-block, treating each as an independent unit with
tightly adjacent data. This method achieves better memory locality
among block-based algorithms, significantly improving the cache
hit rate for blocked matrix computations. Beyond advancing the
theoretical understanding of block-based sparse matrix SpMV, this
approach also opens new avenues for applying blocked matrices to
other computations, such as SpMM and SpGEMM.

Formats for SpMV: Widely adopted strategies for accelerat-
ing SpMV computations focus on designing novel storage formats
and optimizing algorithms[12, 16, 19, 21, 25, 33, 44, 50]. Among
them, numerous ELL and CSR-based formats have been proposed
to enhance performance. Notable examples include the HYB for-
mat combining ELL and CSR/COO[4] and the clSpMV framework
integrating multiple formats. Variants of ELL[1, 3, 27, 31, 33, 46]
and CSR[2, 26, 33, 36, 43] formats have demonstrated significant ad-
vantages, especially on GPUs. Yesil et al.[49] further improved data
locality by separating matrices into dense and sparse regions with
customized representations. Despite these advances, the irregular
distribution of nonzero elements in matrices limits the efficiency of
single-format solutions. Our approach segments matrices into inde-
pendent sub-blocks and applies computation-specific optimizations
such as column aggregation and adaptive format selection, achiev-
ing enhanced flexibility and performance across diverse matrices.

Load Balance: Load balancing is a critical factor in improving
parallel sparse matrix-vector multiplication (SpMV) performance[1,
6, 20, 22, 23, 30, 33, 36, 37, 41, 43]. The uneven distribution of
nonzero elements often causes workload imbalances, reducing ef-
ficiency. Various strategies have been proposed to address this
issue, including the Merge-Path algorithm for fine-grained work-
load decomposition[36] and methods for balancing computation
and communication loads in distributed systems[37]. Osama[41] et
al introduces an abstraction model that decouples load balancing
from task execution, using a hierarchical structure of work units,
tiles, and sets, along with a programmable scheduling interface,
to achieve GPU static and dynamic load balancing. Additionally,
thread block-level strategies such as DTC-SpMM have significantly
improved sparse matrix-matrix multiplication (SpMM)[18]. Despite
these advances, achieving ideal thread block-level load balancing
in SpMV remains challenging. Our proposed CB-SpMV format
introduces a priority queue mechanism to adjust sub-block task

assignments dynamically, significantly improves workload distribu-
tion and computational efficiency between different thread blocks,
and offers new insights for optimizing sparse matrix computations.

6 Conclusion
In this work, we propose a novel cache-friendly SpMV computation
method, CB-SpMV, which is designed to optimize data locality and
computational efficiency through a block-based structure. Specif-
ically, the matrix is partitioned into independent and uniformly
sized sub-blocks, where various types of data within each sub-block
are aggregated using virtual pointers to improve access patterns.
To handle the challenges posed by varying sparsity levels across
sub-blocks, we introduce a block-wise column aggregation strat-
egy that consolidates sparse data and a format-adaptive selection
mechanism that chooses suitable storage for each sub-block. Addi-
tionally, a thread block-level load-balancing algorithm is developed
to mitigate the imbalance in processing non-zero elements across
thread blocks. Experimental results on two GPUs demonstrate that
our CB-SpMV method achieves higher cache hit rates and superior
performance compared to state-of-the-art SpMV approaches.

Acknowledgments
The work is supported by the Natural Key Research and Develop-
ment Program of China (2023YFB3002902) and National Natural
Science Foundation of China (No.62322201 and U23B2020).

References
[1] Hartwig Anzt, Terry Cojean, Chen Yen-Chen, Jack Dongarra, Goran Flegar, Pratik

Nayak, Stanimire Tomov, Yuhsiang M Tsai, and Weichung Wang. 2020. Load-
balancing sparse matrix vector product kernels on gpus. ACM Transactions on
Parallel Computing (TOPC) 7, 1 (2020), 1–26.

[2] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarath, and P
Sadayappan. 2014. Fast sparse matrix-vector multiplication on GPUs for graph
applications. In SC’14: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 781–792.

[3] Arash Ashari, Naser Sedaghati, John Eisenlohr, and P Sadayappan. 2014. An effi-
cient two-dimensional blocking strategy for sparse matrix-vector multiplication
on GPUs. In Proceedings of the 28th ACM international conference on Supercom-
puting. 273–282.

[4] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the conference
on high performance computing networking, storage and analysis. 1–11.

[5] Deshun Bi, Xiaowen Tian, Shengguo Li, and Dezun Dong. 2023. Efficiently
Running SpMV on Multi-Core DSPs for Block Sparse Matrix. In 2023 IEEE 29th
International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 1912–
1919.

[6] Haodong Bian, Jianqiang Huang, Lingbin Liu, Dongqiang Huang, and Xiaoying
Wang. 2021. Albus: A method for efficiently processing spmv using simd and
load balancing. Future Generation Computer Systems 116 (2021), 371–392.

[7] Urban Borštnik, Joost VandeVondele, Valéry Weber, and Jürg Hutter. 2014. Sparse
matrix multiplication: The distributed block-compressed sparse row library. Par-
allel Comput. 40, 5-6 (2014), 47–58.

[8] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. 233–244.

[9] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. IEEE, 1–11.

[10] Aydin Buluç and John RGilbert. 2012. Parallel sparsematrix-matrixmultiplication
and indexing: Implementation and experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[11] Aydin Buluç, Samuel Williams, Leonid Oliker, and James Demmel. 2011. Reduced-
bandwidth multithreaded algorithms for sparse matrix-vector multiplication.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xing Cong, FuKai Sun, YiFan Chen, Chenhao Xie, Yi Liu, and Depei Qian

In 2011 IEEE International Parallel & Distributed Processing Symposium. IEEE,
721–733.

[12] Genshen Chu, Yuanjie He, Lingyu Dong, Zhezhao Ding, Dandan Chen, He Bai,
Xuesong Wang, and Changjun Hu. 2023. Efficient Algorithm Design of Opti-
mizing SpMV on GPU. In Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing. 115–128.

[13] Shane Cook. 2012. CUDA programming: a developer’s guide to parallel computing
with GPUs. Newnes.

[14] NVIDIA Corporation. 2024. cuSPARSE: GPU-Accelerated Sparse Matrix Library.
https://developer.nvidia.com/cusparse. Version 12.4.

[15] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[16] Zhen Du, Jiajia Li, Yinshan Wang, Xueqi Li, Guangming Tan, and Ninghui Sun.
2022. Alphasparse: Generating high performance spmv codes directly from sparse
matrices. In SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–15.

[17] Ryan Eberhardt and Mark Hoemmen. 2016. Optimization of block sparse matrix-
vector multiplication on shared-memory parallel architectures. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 663–672.

[18] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridging the Gap
in Accelerating General Sparse Matrix Multiplication with Tensor Cores. In
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. 253–267.

[19] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo.
2017. Sparse matrix-vector multiplication on GPGPUs. ACM Transactions on
Mathematical Software (TOMS) 43, 4 (2017), 1–49.

[20] Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo.
2017. Sparse Matrix-Vector Multiplication on GPGPUs. ACM Trans. Math. Softw.
43, 4, Article 30 (Jan. 2017), 49 pages. https://doi.org/10.1145/3017994

[21] Jianhua Gao, Weixing Ji, Zhaonian Tan, Yizhuo Wang, and Feng Shi. 2022. Taichi:
A hybrid compression format for binary sparse matrix-vector multiplication
on gpu. IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022),
3732–3745.

[22] Joseph L. Greathouse and Mayank Daga. 2014. Efficient Sparse Matrix-Vector
Multiplication on GPUs Using the CSR Storage Format. In SC ’14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 769–780. https://doi.org/10.1109/SC.2014.68

[23] Jihu Guo, Rui Xia, Jie Liu, Xiaoxiong Zhu, and Xiang Zhang. 2024. CAMLB-SpMV:
An Efficient Cache-Aware Memory Load-Balancing SpMV on CPU. In Proceedings
of the 53rd International Conference on Parallel Processing. 640–649.

[24] Haonan Ji, Huimin Song, Shibo Lu, Zhou Jin, Guangming Tan, and Weifeng Liu.
2022. Tilespmspv: A tiled algorithm for sparse matrix-sparse vector multiplication
on gpus. In Proceedings of the 51st International Conference on Parallel Processing.
1–11.

[25] Kwangrae Kim and Ki-Seok Chung. 2024. CAMPuS: Concurrent Acceleration of
Memory Access and Parallel Processing in Near-Memory SpMV Architecture.
IEEE Access (2024).

[26] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris.
2011. CSX: an extended compression format for spmv on shared memory systems.
ACM SIGPLAN Notices 46, 8 (2011), 247–256.

[27] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R
Bishop. 2014. A unified sparse matrix data format for efficient general sparse
matrix-vector multiplication on modern processors with wide SIMD units. SIAM
Journal on Scientific Computing 36, 5 (2014), C401–C423.

[28] Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri, and
Flavio Vella. 2022. Blocking Sparse Matrices to Leverage Dense-Specific Multipli-
cation. In 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and
Algorithms (IA3). IEEE, 19–24.

[29] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical storage of
sparse tensors. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 238–252.

[30] Wenxuan Li, Helin Cheng, Zhengyang Lu, Yuechen Lu, and Weifeng Liu. 2023.
Haspmv: Heterogeneity-aware sparse matrix-vector multiplication on modern
asymmetric multicore processors. In 2023 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 209–220.

[31] Yun Liang,Wai Teng Tang, Ruizhe Zhao, Mian Lu, Huynh Phung Huynh, and Rick
Siow Mong Goh. 2017. Scale-free sparse matrix-vector multiplication on many-
core architectures. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36, 12 (2017), 2106–2119.

[32] Lifeng Liu, Meilin Liu, Chongjun Wang, and Jun Wang. 2015. LSRB-CSR: A
low overhead storage format for SpMV on the GPU systems. In 2015 IEEE 21st
International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 733–
741.

[33] Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication. In Proceedings of the 29th ACM on
International Conference on Supercomputing. 339–350.

[34] Yuechen Lu and Weifeng Liu. 2023. DASP: Specific Dense Matrix Multiply-
Accumulate Units Accelerated General Sparse Matrix-Vector Multiplication. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–14.

[35] Zhengyang Lu, Yuyao Niu, and Weifeng Liu. 2020. Efficient block algorithms for
parallel sparse triangular solve. In Proceedings of the 49th International Conference
on Parallel Processing. 1–11.

[36] Duane Merrill and Michael Garland. 2016. Merge-based parallel sparse matrix-
vector multiplication. In SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 678–689.

[37] Hongli Mi, Xiangrui Yu, Xiaosong Yu, Shuangyuan Wu, and Weifeng Liu. 2023.
Balancing computation and communication in distributed sparse matrix-vector
multiplication. In 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). IEEE, 535–544.

[38] Juan J Navarro, Elena García-Diego, Josep-L Larriba-Pey, and Toni Juan. 1996.
Block algorithms for sparse matrix computations on high performance work-
stations. In Proceedings of the 10th international conference on Supercomputing.
301–308.

[39] YuyaoNiu, Zhengyang Lu,MeichenDong, Zhou Jin,Weifeng Liu, and Guangming
Tan. 2021. Tilespmv: A tiled algorithm for sparse matrix-vector multiplication
on gpus. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 68–78.

[40] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu.
2022. TileSpGEMM: A tiled algorithm for parallel sparse general matrix-matrix
multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 90–106.

[41] Muhammad Osama, Serban D Porumbescu, and John D Owens. 2023. A program-
ming model for GPU load balancing. In Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming. 79–91.

[42] James O’Neil and Daniel B Szyld. 1990. A block ordering method for sparse
matrices. SIAM J. Sci. Statist. Comput. 11, 5 (1990), 811–823.

[43] Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. 2017. Globally homo-
geneous, locally adaptive sparse matrix-vector multiplication on the GPU. In
Proceedings of the International Conference on Supercomputing. 1–11.

[44] Abdul Rehman Tareen, Marius Meyer, Christian Plessl, and Tobias Kenter. 2024.
HiHiSpMV: Sparse Matrix Vector Multiplication with Hierarchical Row Reduc-
tions on FPGAs with High Bandwidth Memory. In 2024 IEEE 32nd Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 32–42.

[45] Richard W Vuduc and Hyun-Jin Moon. 2005. Fast sparse matrix-vector multi-
plication by exploiting variable block structure. In High Performance Computing
and Communications: First International Conference, HPCC 2005, Sorrento, Italy,
September 21-23, 2005. Proceedings 1. Springer, 807–816.

[46] Chenhao Xie, Jieyang Chen, Jesun Firoz, Jiajia Li, Shuaiwen Leon Song, Kevin
Barker, Mark Raugas, and Ang Li. 2021. Fast and scalable sparse triangular solver
for multi-gpu based hpc architectures. In Proceedings of the 50th International
Conference on Parallel Processing. 1–11.

[47] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014. yaSpMV: Yet
another SpMV framework on GPUs. Acm Sigplan Notices 49, 8 (2014), 107–118.

[48] Wangdong Yang, Kenli Li, and Keqin Li. 2018. A parallel computing method
using blocked format with optimal partitioning for SpMV on GPU. Journal of
computer and system sciences 92 (2018), 152–170.

[49] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. 2020. Speed-
ing up SpMV for power-law graph analytics by enhancing locality & vectorization.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15.

[50] Yichen Zhang, Shengguo Li, Fan Yuan, Dezun Dong, Xiaojian Yang, Tiejun Li,
and Zheng Wang. 2023. Memory-aware optimization for sequences of sparse
matrix-vector multiplications. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 379–389.

https://developer.nvidia.com/cusparse
https://doi.org/10.1145/3017994
https://doi.org/10.1109/SC.2014.68

	Abstract
	1 Introduction
	2 Background, Motivation and Challenge
	2.1 Sparse Matrix Storage Format
	2.2 SpMV and Motivation
	2.3 Software and Hardware Constraints

	3 CB-SpMV
	3.1 2D Sparse Structure
	3.2 Intra-Block Data Aggregation
	3.3 Computational Adaptation
	3.4 Inter-thread-block Load Balance
	3.5 Kernel Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 SOTA Technology Comparison
	4.3 Ablation Performance Analysis
	4.4 Overhead Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

