Cherry: Breaking the GPU Memory Wall for
Large-Scale GNN Training via Micro-Batching

Yan Wang!, Qinghua Guo?!, Haoran Kong??, Kai Sheng!,

Zhen Xie®, Hao Chen*, Weile Jia>*, Dingwen Tao*’, Xin He!*
!Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, China
2SKLP, Institute of Computing Technology, CAS, Bejing, China
3University of Chinese Academy of Sciences, Beijing, China
4CSEE, Hunan University, Changsha, Hunan, China
5Binghamton University, Binghamton, NY, USA
{wang-yan,guo-qgh}@stu.xidian.edu.cn,{hexin,kaisheng}@xidian.edu.cn
{taodingwen,jiaweile}@ict.ac.cn,zxie3@binghamton.edu,haochen@hnu.edu.cn,buaakhr@gmail.com

Abstract

Graph Neural Networks (GNNs) have shown remarkable
performance across a variety of graph-related tasks. Recent
efforts indicate that GNN performance can be enhanced
through more sophisticated strategies, such as employing
advanced aggregators, increasing aggregation depth, and
utilizing larger sampling rates, etc. While these strategies
yield promising results, it also incurs a significantly larger
memory footprint that can easily surpass the GPU memory
capacity. Micro-batching has emerged as a promising method
to mitigate GPU memory bottleneck while preserving model
accuracy. Nevertheless, integrating micro-batches into GNN
training presents two significant challenges: (1) achieving
load balancing while minimizing node redundancy, and (2)
managing the high overhead associated with data prepara-
tion. Current solutions struggle to effectively address both
load balancing and node redundancy while also inducing
prohibitively high data preparation overhead, hindering the
practicality and performance of applying micro-batching
techniques to GNN training.

In this paper, we introduce Cherry, an efficient micro-
batching method designed to make GNN training more ac-
cessible and scalable. The key enabling idea behind Cherry is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS °25, June 8—11, 2025, Salt Lake City, UT, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1537-2/2025/06
https://doi.org/10.1145/3721145.3730429

to leverage an innovative combination of partitioning tech-
niques aided by message-passing flow graphs and micro-
batch based data loading mechanism, which collectively
serve to reduce redundancy and load imbalance within the
micro-batches and lower the overhead associated with data
preparation in the training process. Our evaluation demon-
strates that Cherry can enable billion-scale GNN training
with sophisticated strategies on a single-GPU machine, sig-
nificantly outperforming state-of-the-art baselines.

CCS Concepts

« Computer systems organization — Single instruction,
multiple data.

Keywords

graph neural network, micro-batching, graph partitioning,
load balancing, redundancy reduction.

1 Introduction

Graph Neural Networks (GNNs) have emerged as powerful
tools for learning from graph-structured data and achieved
remarkable performance across a variety of graph-related
tasks, such as link prediction [35, 52], node classification [34,
44], and graph classification [18, 53].

Recent advancements indicate that the efficiency and ac-
curacy of GNN training can be enhanced through several
strategies, including the use of larger batch sizes (e.g., tran-
sitioning from mini-batch to full-batch training) [12, 15],
employing more sophisticated aggregators (e.g., LSTM and
attention networks) [24, 36], increasing aggregation depth
(e.g., from 1 to 112) [20], utilizing larger sampling rates (i.e.,
incorporating more neighbors for aggregation) [55], and de-
ploying deeper and wider neural encoders [20], etc. While

*Corresponding author: Xin He.



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

yielding promising results, these strategies often incur signif-
icantly increased memory consumption. For instance, GNNs
iteratively aggregate features from neighboring nodes to
learn node vector representations. Increasing aggregation
depth results in exponential growth in the number of feature
vectors that must be loaded into memory for aggregation.
Given that device memory on hardware accelerators like
GPU is a scarce resource, using strategies like deep aggrega-
tion can easily run out of memory (OOM). As a result, this
memory capacity wall restricts many methods to small-scale
graphs (e.g., hundreds of thousands of nodes) or shallow
architectures (e.g., fewer than three layers) in GNN models,
limiting their ability to explore node dependencies before
exhausting memory.

In an effort to break the GPU memory capacity wall, recent
years have seen numerous research efforts on both algorith-
mic and system optimizations. Algorithmically, a typical
method is sampling [9, 11, 49], which involves sampling a
subset of neighbors to compute features for a specific node
or subgraph. By reducing the sampling rate, the number of
neighbors participating in aggregation decreases, leading to
lower memory consumption. However, this approach neces-
sitates careful consideration of the sampling strategy, as it
may result in the loss of important neighbor information that
ultimately harms the model accuracy [11]. On the system
front, dedicated GNN frameworks like DGL [40], PyG [5],
and NeuGraph [25] have been developed to boost GNN train-
ing efficiency by implementing highly efficient graph op-
eration primitives. However, these frameworks encounter
challenges in memory scalability when handling large graphs
or sophisticated GNN architectures. An alternative is to par-
tition and process large graphs in a distributed fashion us-
ing distributed frameworks like DistDGL [54], leveraging
the combined memory of multiple GPUs and/or computing
nodes to scale out model training. This approach, albeit ef-
fective, typically entails a significantly higher hardware cost,
which is unrealistic for researchers and practitioners with
limited hardware budgets.

Among the various methods, micro-batching has emerged
as a promising technique in deep learning [14, 27, 30, 31]. It
involves partitioning a batch into K smaller micro-batches
and accumulating gradients from these micro-batches to up-
date model weights. This approach reduces training memory
footprint while maintaining model convergence and qual-
ity. Unlike traditional Neural Network (NN) models, GNNs
exhibit more complex dependencies (e.g., N:M) between out-
puts/labels and input features within a batch, rather than a
simple 1:1 mapping. Adapting micro-batching to GNN mod-
els presents unique challenges in terms of node redundancy,
load imbalance, and data preparation overhead, as discussed
in Section 3. Recent work, such as Betty [46], has explored
micro-batching for GNNs. While it effectively reduces node

Yan Wang, Xin He, et al.

redundancy;, it fails to address the load balancing issue effi-
ciently (as discussed in Section 3.2), leading to suboptimal
reduction of peak memory consumption. Moreover, it suf-
fers from high data preparation overhead (as discussed in
Section 3.3), resulting in poor training efficiency.

In this paper, we present Cherry, an efficient micro-batching
method to enable large-scale GNN training. The key enabling
idea behind Cherry lies in combining partitioning techniques
aided by message-passing flow graphs with a micro-batch-
specific data loading mechanism.

To reduce redundancy and load imbalance, we utilize an
out-degree centric partitioning approach aided by auxiliary
graphs constructed using message-passing flow for graph
partitioning. This method assigns the weight to edges based
on the out-degrees of the source node. Leveraging the out-
degree information embedded in the auxiliary graphs, this
method can effectively group destination nodes sharing the
same source node into the same micro-batch while main-
taining load balance by distributing high out-degree nodes
across micro-batches as evenly as possible.

To reduce data preparation overhead, we adapt the out-
degree centric graph partitioning with global message-passing
flow graph to avoid repetitive partitioning overhead. Ad-
ditionally, we introduce a micro-batch-specific data load-
ing mechanism to enhance data loading efficiency of micro-
batching-based GNN training. These techniques collectively
mitigate redundancy and load imbalance within micro-batches,
and reduce data preparation overhead in micro-batching-
based GNN training, making it feasible and efficient to train
GNN with sophisticated strategies on large graphs.

In summary, we make the major contributions as follows.

e We conduct an in-depth analysis of the challenges and
issues of micro-batching for GNN training as well as
the limitations of current micro-batching framework.

e We propose an efficient out-degree centric partition-
ing technique that can effectively balance loads while
reducing node redundancy among micro-batches.

e We introduce a global message-passing flow graph
as an auxiliary graph for partitioning and develop a
micro-batch-specific data loading mechanism, which
collectively reduce high data preparation overhead.

e We build Cherry on top of DGL, and evaluate it with
real-world large graphs. Our evaluation shows Cherry
can enable efficient large-scale GNN training beyond
GPU memory capacity while maintaining comparable
model convergence and accuracy to full-batch training
without requiring any changes to hyperparameters.
Compared with the state-of-the-art (SOTA) method,
Cherry achieves an average reduction of 10.8% (up to
18.8%) in memory consumption and 94.9% (up to 98.8%)
in training time, respectively.



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

2 Background
2.1 Graph Neural Network

GNN models are a kind of neural networks designed to cap-
ture complex relationships among nodes in a graph, includ-
ing node and edge attributes. In GNNs, nodes represent enti-
ties like users in a social network, each with unique feature
vectors, while edges denote relationships between nodes,
characterized by edge weights.

In a GNN model, a computation layer combines graph
operations and neural operations. Graph operations include a
central node gathering feature from neighbors, aggregating
them, and updating its own features to encode the graph’s
structure. Neural operations are performed independently or
following center-neighbor patterns, leveraging relationships
within the neighborhood to conduct operations for each
central node based on its neighbors’ features.

The core of GNNs involves recursively aggregating neigh-
bor information through message passing and applying fea-

ture transformation. For instance, in the GraphSAGE model [11],

the training process for a single computation layer can be
formulated as follows:

R =o (Wk - Aggregate ({h’,j_l,u € N(v)}) I h’;_l) (1)

where N (v) denotes the set of neighbors of node v. In
the k-th convolution layer, each node v aggregates its neigh-
bors’ feature vectors from the the (k — 1)-th layer using an
aggregator function (e.g., Sum, Mean, Pooling, LSTM). The
aggregated result is concatenated with v’s own feature vec-
tor from the previous layer, then multiplied by a learnable
weight matrix W and transformed using a nonlinearity acti-
vation function o (e.g., ReLU) to produce the hidden feature
vector for node v in the k-th layer.

As the number of layers increases in a GNN, nodes must
aggregate information from more distant neighbors (i.e., ex-
panding from the i-hop neighbors to the j-hop neighbors
for j > i). However, aggregating all neighbors can lead to
prohibitive memory consumption. Hence, a fanout degree
bound is often imposed by practitioners, restricting the num-
ber of neighbors considered for aggregation through graph
sampling techniques. After training across all K layers, the
final feature vector for each node v is fed into a task-specific
mapping function for downstream tasks.

2.2 Batching Techniques for GNN Training

GNNss are essential for learning from graph-structured data
and have succeeded in various graph-based applications.
However, they face challenges in navigating trade-offs be-
tween training accuracy, model generalization, memory re-
quirements, and computational efficiency. Various batching

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

techniques, such as full-batching, mini-batching, and micro-
batching, address these challenges by offering distinct solu-
tions tailored to different aspects of GNN training.

Full-batching involves processing the entire graph in one
forward and backward pass, leveraging the complete graph
structure during optimization. This approach offers a com-
prehensive view of the graph, often leading to improved
accuracy and generalization from the global context utilized.
Full-batch training is ideal for small to medium-sized graphs,
where memory and computational demands are moderate.
However, its scalability is limited by graph size, as mem-
ory usage increases rapidly with the number of nodes and
edges. Consequently, full-batch training becomes infeasi-
ble for large-scale graphs, necessitating alternative batching
strategies.

Full-batch training —— Small-batch training|

Test Accuracy
© o oo
w ~ 01O

e
© O«
-~ N

T

0 100 200 300 400 500
Epoch

Figure 1: The convergence curves for full-batch and
mini-batch training.

Mini-batching is a widely adopted approach that partitions
the full-batch into multiple mini-batches and independently
updates the model parameters for each mini-batch. While
smaller mini-batch sizes can effectively decrease memory
consumption, they can adversely affect model convergence
and generalization. Figure 1 compares training convergence
curves between full-batch and mini-batch training using
GraphSAGE on the ogbn-products dataset with consistent
hyperparameter settings. Although smaller mini-batch sizes
lower memory consumption, the accuracy curves show sig-
nificant differences. Specifically, mini-batch training exhibits
a rapid increase in accuracy at the beginning, but after sev-
eral epochs, the training curve experiences significant fluc-
tuations and struggles to converge. This difference can be
attributed to variations in effective batch size, a critical hy-
perparameter for GNN training that influences both conver-
gence speed and model quality. Adjusting the effective batch
size is generally non-trivial, often requiring modifications
to other hyperparameters like learning rate schedules and
weight decay to maintain convergence quality. Consequently,
it is imperative to mitigate memory bottlenecks and enhance



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

the scalability of GNNs in a manner that remains transparent
to users.

(Epoch t Epoch t+1

Figure 2: Workflow of different batching techniques.
Each block shows an independent execution of forward
and backward pass.

Micro-batching divides a full batch into multiple micro-
batches for independent gradient computation, followed by
accumulating the gradients from all micro-batches to per-
form a single update to the model parameters. Figure 2 shows
the differences in computation and gradient updates among
three batching techniques. Full-batching computes gradients
and updates parameters once per epoch. Mini-batching does
so for each mini-batch. In contrast, micro-batching computes
gradients per micro-batch but accumulates them to update
the model parameters once per epoch. This enables the model
to train with a significantly reduced memory footprint while
maintaining model convergence and quality without changes
to hyperparameters or optimizers. This optimization is trans-
parent to the training process, facilitating a more efficient
training experience. Hence, in this work, we focus on explor-
ing micro-batching for GNN training.

3 Motivation

In this section, we first analyze the memory performance of
different batching techniques, which motivated our choice
of micro-batch training. Then we dissect the challenges and
issues of applying micro-batching to GNN training, including
balancing load while reducing node redundancy and high
overhead in data preparation. Additionally, we analyze the
limitations of the SOTA approach, Betty, in tackling these
challenges, which motivates our work.

3.1 Memory Capacity Bottleneck in GNNs

Despite the significant success of GNNs in various graph-
based learning tasks, a major challenge is their substantial
memory consumption, which often leads to out-of-memory
(OOM) errors, even when using mini-batching. To illustrate
the memory requirements of GNNs, we profile the full-batch
and mini-batch (4 batches) training on the large dataset

Yan Wang, Xin He, et al.

[E=—1 Full-batch RS Mini-batch

R S OOMENY]  40F - - - - QaMz - H
=30; — 30t o —
> — 1 —
G 201 - = 201 = ——
EMY ] ENAY
S /Ew BN BN BN fE. Be EN E
15 45 90 135 8 16 32 9
Hidden Size Fanout
(a) (b)

Figure 3: Full-batch & mini-batch in memory consum-
ing cases.

Ogbn-Products using an NVIDIA A100 (40GB). Figure 3(a)
depicts the training memory consumption under a three-
layer GAT model for different hidden sizes, revealing that
both full-batch and mini-batch approaches encounter OOM
errors when the hidden size is set to 135. Figure 3(b) shows
the memory consumption of a one-layer GraphSAGE model
using the advanced LSTM aggregator with various fanout
degrees. The fanout degree in GNN training regulates the
number of neighboring nodes sampled at each layer, directly
affecting memory requirements. The full-batch training ex-
perienced OOM at a fanout of 32, while mini-batch training
faced OOM at a fanout of 96. Thus, although mini-batching
reduces memory consumption compared to full-batching, it
still poses significant memory demands during GNN training.
Furthermore, adjusting the mini-batch size can jeopardize
the convergence quality of the model, as discussed in Sec-
tion 2.2. However, as shown in Figure 8, utilizing micro-batch
training with Cherry effectively addresses these OOM cases
and enable large-scale GNN training on a single GPU.

3.2 Challenges in Balancing Load While
Reducing Node Redundancy

As discussed in Section 2.2, micro-batching can reduce mem-
ory consumption during training while ensuring the same
convergence quality. However, there are two issues that im-
pacts the memory consumption reduction and training effi-
ciency: (1) Node redundancy: High redundancy not only
increases memory usage but also leads to redundant com-
putations, harming training efficiency. (2) Load balancing;:
Poor load balancing can increase the maximum memory foot-
print on the GPU, as one or a few micro-batches may have an
unbalanced load, often due to the chosen partition strategies.
Therefore, effectively addressing these issues is crucial for
optimizing both memory usage and training efficiency in
micro-batching.

Reducing node redundancy and load balancing are often
competing objectives in graph partitioning. Reducing node
redundancy typically involves grouping neighboring nodes



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

into the same partition to minimize cross-partition edges, po-
tentially causing imbalanced workloads. Conversely, load bal-
ancing requires evenly distributing nodes and edges across
partitions, often increasing redundancy due to the splitting of
neighborhoods. Striking a balance between these objectives
is critical, as it directly impacts both memory comsumption
and computational efficiency in GNN training.

Current frameworks like DGL, typically use Metis for
graph partitioning, trying to balance the workload across par-
titions but introduces significant redundancy. Betty, a SOTA
micro-batching method, proposes a Redundancy Embedded
Graph (REG) based partitioning algorithm to reduce redun-
dancy (detailed in Section 7). However, Betty’s approach does
not directly address the load balancing but increases micro-
batch counts to avoid OOM errors, which is computationally
inefficient.

8 1.4
7 125
6 1.0 ©
=5 El_
I3 4 0.8 = I
e, 0623
C
> 04
L Jo2F
0 0.0

3 4 5 6 7
# of micro-batches

Figure 4: The tendency of memory consumption and
training time (without data preparing) per epoch as
the number of micro-batches increases in Betty.

Figure 4 shows memory consumption and training time
trends for GraphSAGE on the ogbn-products dataset across
varying numbers of micro-batches using Betty. While more
micro-batches helps decrease memory consumption, it does
not directly improve load balance within the micro-batches.
Even worse, a consistent degradation in computational effi-
ciency and long training times is observed as the number of
micro-batches increases.

3.3 High Overhead in Data Preparation
with Micro-Batching

While micro-batching can effectively mitigate GPU mem-
ory bottleneck, it introduces two types of overhead in data
preparation. First, graph partitioning is a critical step in the
micro-batching, inevitably adding time overhead. Both the
partitioning object size and partitioning frequency during
training contribute to time overhead. Second, data loading
for micro-batching requires extracting data from the original
batch, since micro-batches are subdivisions of it.

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Table 1: The proportion of time spent on training (with-
out data preparing) and data preparation (data extrac-
tion, index mapping, and partitioning) within a train-
ing epoch in Betty

Dataset Training (%) Data Preparing
Data Extraction (%) | Index Mapping (%) | Partitioning(%)
Reddit 0.45 3.37 3.70 92.46
Ogbn-Arxiv 0.67 7.21 10.00 82.10
Ogbn-Products 1.07 21.40 29.18 48.34

For instance, Table 1 shows profiling results detailing the
average epoch time for training a 3-layer GraphSAGE model
with a hidden size of 256 and 4 micro-batches across three
datasets using an A100 GPU. Results show that data prepara-
tion—extraction, index mapping, and partitioning—significa-
ntly surpasses the actual computation time for training. This
discrepancy arises because Betty’s graph partitioning strat-
egy mandates partitioning at each epoch, such re-partitioning
overhead cannot be amortized over training epochs. More-
over, the auxiliary graph REG constructed by Betty is consid-
erably more complex than the original input graph, with
edges increased by 11.9x, 39.9x, and 48.3x for the Ogbn-
Products, Ogbn-Arxiv, and Reddit datasets, respectively. Fur-
thermore, Betty’s data loading process is inefficient, involv-
ing layer-by-layer index mapping and data extraction to
ensure alignment between the micro-batch data and the orig-
inal batch data blocks.

4 Proposed Method

In this section, we introduce Cherry, a solution to address
the challenges in micro-batch GNN training. We begin with
an overview of our design, followed by detailing the pro-
posed techniques, including out-degree centric partitioning,
the global message-passing flow graph, and a micro-batch-
specific data loading mechanism. To maximize memory con-
sumption reduction during micro-batch training while mini-
mizing the overhead associated with data preparation, we
present Cherry, a novel micro-batching method specifically
tailored large-scale GNN training. Cherry utilizes an aux-
iliary graph concept known as the message-passing flow
graph (MFG) and incorporates two key techniques: (1) an
out-degree centric partitioning algorithm to tackle redun-
dancy and load imbalance(Section 4.2), and (2) a repetitive-
partitioning elimination mechanism paired with a micro-
batch-specific data loading mechanism to reduce both parti-
tioning and data loading overhead (Section 4.3).

4.1 Overview

Figure 5 overviews Cherry. First, Cherry constructs the Global
Message-passing Flow Graph (GMFG) by tracing the nodes
and edges involved in the GNN’s message-passing flow. Then,
using an out-degree centric partitioning approach, Cherry



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

O GMFG
Construction

8 o
r'd a
@ Out-Degree

Graph Centric Partitioning
Data
]
Micro-Batch Loader, | ... | Micro-Batch Loader,
© MBLs ! | N
Generation 1 Micro-Batch Training

‘ Micro-Batch Data ‘

‘ Micro-Batch Data ”

Figure 5: Overview of Cherry. Directions of edges in
graphs are omitted for brevity.

partitions the GMFG into subgraphs representing individual
micro-batches based on a predetermined number of micro-
batches. This partitioning minimizes redundancy and load
imbalance within micro-batches and eliminates the repet-
itive partitioning across training epochs. Similar to Betty,
Cherry employs a memory estimation-based technique to
determine the optimal number of micro-batches before parti-
tioning. Finally, Cherry uses the partitioned input node lists
to instantiate a Micro-Batch Loader (MBL) to load the cor-
responding graph data independently for each micro-batch.
which facilitates efficient data loading for the subsequent
micro-batch training.

4.2 Reducing Redundancy and
Load-Imbalance

In Section 3, we highlight the challenges of redundancy and
load imbalance in current graph partitioning methods, which
limit micro-batch training’s effectiveness for GNNs in reduc-
ing memory usage and improving efficiency. Unlike prior
approaches focusing on minimizing edge-cut weights to bal-
ance the number of edges or nodes in subgraphs without
addressing redundancy, Cherry introduces an Out-degree
Centric Graph Partitioning method to balance load while
reducing redundancy for enhanced performance. The key
innovation of our out-degree-centric graph partitioning ap-
proach lies using an MFG-based auxiliary graph alongside a
corresponding MFG-aided graph partitioning algorithm. The
MFG represents the GNN message-passing process, with di-
rected edges indicating message flow. This representation ef-
fectively captures the computational processes and memory
requirements during GNN training, enabling us to navigate
the trade-off between redundancy and load balance. Aided
by the out-degree information from the MFG, our method
transforms redundancy and load imbalance into an edge-cut
weight minimization problem. This allows Cherry to balance
load while reducing redundancy within micro-batches. In

Yan Wang, Xin He, et al.

Section 4.2, we use the Local Message-passing Flow Graph
(LMFG) as the auxiliary graph for out-degree centric par-
titioning. This implementation of Cherry is referred to as
Cherry-LMFG.

4.2.1 LMFG construction. The data shuffling operation in
each training epoch alters the message passing paths, which
subsequently changes the MFG for that epoch. To achieve
optimal partitioning results, a straightforward approach is
to partition the batches at each epoch, ensuring effective
redundancy reduction and load balance. Consequently, we
construct the MFG for each training epoch to assist in graph
partitioning. Here we refer to the MFG as “local” in the
sense that there is a distinct message-passing flow graph
for each training epoch. The LMFG dynamically captures
the directional relationships between nodes during the mes-
sage aggregation process in each epoch. Specifically, for each
layer in the GNN, the input nodes (dst_nodes) aggregate fea-
tures from their neighboring nodes (src_nodes), and these
src_nodes from one layer become the dst_nodes for the sub-
sequent layer. By tracking this process, we can construct an
LMFG (as illustrated in Figure 7) that reflects the directional-
ities utilized in the training process. In each training epoch,
the LMFG changes with data shuffling.

4.2.2 Out-degree centric graph partitioning. As dis-
cussed in Section 3.2, the redundancy of nodes and the imbal-
ance of load within micro-batches after partitioning substan-
tially affect memory consumption and training efficiency.
Consequently, developing an effective graph partitioning
algorithm to create micro-batches is imperative. However,
existing graph partitioning algorithms primarily focus on
minimizing or maximizing cut edge weights (as shown in
Equation 2), neglecting the inherent computational charac-
teristics of message-passing in GNNs that could facilitate
redundancy reduction and load balancing during the parti-
tioning process.

Minimize / Maximize Z Wyo (2)

(1,0) €Ecut

To leverage the structural and computational character-
istics inherent in message-passing for graph partitioning,
Cherry assigns the out-degree of source nodes in the MFG
as edge weights. The out-degree effectively models the work-
load and redundancy between subgraphs. In terms of load
balancing, both computational and storage loads are taken
into account. The computational load correlates with the
amount of message passing, while the storage load depends
on the number of nodes and edges. Both factors are positively
correlated with the out-degree of the subgraph (as demon-
strated in Equation 3, where L(G;) represents the workload
of subgraph G;). Equation 4 outlines the objective of load



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

balancing: to minimize load differences between subgraphs
by uniformly distributing out-degrees across them, in accor-
dance with Equation 3.

L(G) & ) dou(0). (3)
veG;
minmax L(G;) — min L(G;) (4)

In terms of redundancy reduction, the goal is to ensure
that nodes, particularly high out-degree nodes connected to
multiple neighbors, appear in as few subgraphs as possible to
mitigate redundancy. The number of redundant nodes can be
quantified using Equation 5, where cross_subgraph_count(v)
indicates the number of subgraphs that node v appears in.
For each node v, cross_subgraph_count(v) is positively cor-
related with its out-degree (as shown in Equation 6, where
P is the probability of crossing subgraphs). Thus, minimiz-
ing the occurrence of high out-degree nodes across multiple
subgraphs is crucial for reducing redundancy.

Redundant nodes = Z cross_subgraph_count(v) (5)
veV

cross_subgraph_count(v) o doyt(v) - P (6)

Utilizing the informative properties of MFG-based par-

titioning, Cherry-LMFG adopts an out-degree-centric ap-

proach to partition the LMFG at each training epoch, con-

structing micro-batches. This method effectively reduces

peak memory consumption during training, as illustrated in
Figure 9.

Algorithm 1: Out-Degree Centric Graph Partition-
ing

input :Message-Passing Flow Based Graph: LMFG

The number of micro-batches: K
output:batched_train_nodes_list

src_nids, dst_nids = Get_edges(LMFG);

graphcopy = Graph_create(src_nids, dst_nids);
out_degrees = Get_out_degrees(graphcopy, src_nids);
graphous degree = Set_weights(graphcopy, out_degrees);

[

)

(%)

'

5 graphout_degree = remove_non_output_nodes(self);
6 graphout degree = remove_self_loop(self);

7 subgraphs = Metis_partition(graphous_degrees K);

s for part in subgraphs do

nids = Get_dst_nids(part);

10 batched_train_nodes_list.append(nids);

11 end

©

12 return batched train_nodes_list;

Algorithm 1 presents the out-degree centric graph par-
titioning process. Initially, the algorithm takes the LMFG

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

here and the specified number of micro-batches as input. It
begins by extracting the source nodes src_nids and destina-
tion nodes dst_nids from the LMFG (Line 1 in Algorithm
1), which are then used to create a graph structure (Line
2). Subsequently, the out-degree of each src_node is calcu-
lated and set as the edge weight in the graph (Lines 3-4),
reflecting the influence of each source node on the train-
ing nodes. Nodes with higher out-degrees receive greater
weights, indicating their higher impact on the peak memory
consumption during training. The algorithm then refines the
graph by eliminating non-output nodes and self loops (Lines
5-6), ensuring a focused and efficient partitioning process.

Next, an existing partitioning algorithm is applied to par-
tition the weighted LMFG into subgraphs corresponding to
individual micro-batches (Line 7). In our work, we use Metis
for its scalability in handling large-scale graph partitioning
tasks [54]. This step ensures equitable distribution of nodes
with high out-degrees across micro-batches, promoting load
balance and thus minimizing peak memory consumption. Fi-
nally, the algorithm iterates over the subgraphs, extracts the
dst_nids, and appends them to the batched_train_nodes_list
(Lines 8-12), serving as the output of the partitioning process.
This list delineates the nodes assigned to each micro-batch,
facilitating micro-batch training with reduced peak memory
consumption and balanced computational load. Note that the
construction and storage of the MFG-based auxiliary graphs,
as well as the out-degree centric partitioning, are performed
on the host side without incurring extra overhead on the
GPU.

I () Potential

Case
/
Co, O 4
botential "%,.o"aoe Cut Weights: 9
otential R, .
Case "'b',fse Redundant nodes: 4
o

Cut Weights: 7
Redundant nodes: 3

(a) (b)

Cut Weights: 6
Redundant nodes: 2

Figure 6: An example to depict out-degree centric par-
titioning.



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Figure 6 illustrates a concrete example demonstrating the
partitioning of a specific LMFG into two micro-batches with
minimal redundant nodes. The figure showcases the actual
partitioning results achieved by our method (Figure 6(b)). For
comparative analysis, the figure also displays two additional
partitioning outcomes corresponding to alternative partition-
ing approaches that do not prioritize minimizing edge-cut
weights (Figure 6(a) and Figure 6(c)). Our out-degree centric
partitioning technique, focused on minimizing the aggre-
gate weight of cut edges, successfully cuts edges with a total
weight of 6. This process results in two distinct subsets of
training nodes, denoted as set AC and set B, with only 2 re-
dundant nodes. In contrast, the two alternative partitioning
methods yield cut edges with total weights of 7 and 9, lead-
ing to the creation of 3 and 4 redundant nodes, respectively.
This example showcases the efficiency of our approach in
reducing redundancy.

4.3 Reducing Partitioning and Data
Loading Overhead

Current micro-batch GNN training methods like Betty suffer
from high data preparation overhead due to repetitive parti-
tioning and inefficient data loading across training epochs
(as discussed in Section 3.3).Cherry-LMFG faces same issues
due to the repetitive LMFG-based partitioning in each epoch
and using Betty’s data loading mechanism. To tackle the
two problems, we introduce the Global Message-Passing
Flow Graph (GMFG) ,an improved version of LMFG to aid
in out-degree centric partitioning and data loading. The
GMEFG offers a constant global representation during training
while encompassing the complete information of the original
graph. Leveraging the GMFG, we propose two remedies: (1)
adapting the out-degree centric graph partitioning to enable
one-time partitioning results for reuse across epochs, elimi-
nating repetitive partitioning, and (2) crafting a micro-batch-
specific data loading mechanism based on the partitioning
results to enhance data loading efficiency in micro-batch
GNN training.

4.3.1 Eliminating the repetitive-partitioning overhead.
In Betty, the input graph’s dynamic topology requires fresh
partitioning in each training epoch due to data shuffling
across epochs, which improves the model’s generalization
by altering neighboring nodes and edges associated with
each training node. Notably, Cherry-LMFG introduced in Sec-
tion 4.2 faces similar demands. While Cherry-LMFG, lever-
aging the auxiliary graph LMFG, effectively mitigates redun-
dancy and load imbalance, it still mandates a fresh partition-
ing step with the updated LMFG in each epoch.

The need for re-partitioning stems from two main limita-
tions of the LMFG: (1) The LMFG is dynamic, only capturing
a snapshot of the MFG for the current epoch and undergoes

Yan Wang, Xin He, et al.

changes due to shuffling operations between epochs. (2) The
LMFG offers an incomplete or potentially biased represen-
tation of the original graph structure and node distribution.
Essentially, as a subgraph sampled from the original graph,
it often uses methods like neighborhood sampling, which
select a fixed number of destination nodes per source node.
This can result in uniform out-degrees across all nodes, dis-
rupting the original degree distribution, such as the long-tail
distribution in power-law graphs [45].

To address this limitation, we construct a global graph
representation, the GMFG, which remains constant during
training and encompasses the original graph’s complete in-
formation. Similar to the LMFG, the GMFG follows the MFG’s
layer-wise construction by tracking training nodes in the
message-passing path. However, unlike the LMFG, which
only monitors the current epoch’s message-passing path, the
GMFG sampling all training nodes, thereby tracking all the
message passing paths.

=== Message-Passing Flow

LMFG

—
~
Input Graph

GMFG

Figure 7: The construction process of LMFG and GMFG.

For instance, in Figure 7, node A has only two message
passing paths in the LMFG, while it has four in the GMFG.
This comprehensive sampling ensures that the GMFG is
solely dependent on the dataset itself and the number of
model layers, where the dataset provides the original graph
information and the number of layers dictates the hops
of message passing. Furthermore, comprehensive sampling
guarantees that the edge information of nodes in the GMFG
remains consistent with the edge information of the corre-
sponding nodes in the original graph, thereby preserving
the original degree distribution. Consequently, we adapt our
Out-Degree Centric Graph Partitioning methodology based
on GMFG.

In this refined approach, instead of utilizing a new LMFG
for each epoch, we apply the proposed graph partitioning
algorithm directly on the GMFG to create a batched list of
reusable micro-batch training nodes. This strategy allows
one-time partitioning results can be reused across all train-
ing epochs, eliminating the repetitive partitioning during the



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

micro-batch GNN training process. Importantly, the transi-
tion from LMFG to GMFG does not compromise the effective-
ness of our partitioning technique in reducing redundancy
and load imbalances, as the GMFG preserves the same essen-
tial partitioning-aided properties as LMFG.

4.3.2 Optimizing the data loading efficiency. As dis-
cussed in Section 3.3, Betty’s data loading is inefficient due to
cumbersome data extraction and index mapping. To address
this, Cherry-GMFG introduces a micro-batch specific data
loading mechanism to streamline the data loading process.
Leveraging DGL’s optimized data loader, we create a dedi-
cated Micro-Batch Loader (MBL) for each micro-batch. As
mandated by DGL, constructing a DGL’s DataLoader Class re-
quires fixed training nodes [40] which can be easily satisfied
by GMFG-based out-degree centric partitioning.

Algorithm 2 illustrates the generation process of MBLs,
The GMFG is constructed first with the training nodes and
the input graph (Line 1). With the constructed GMFG, Cherry-
GMFG performs the out-degree centric partitioning to obtain
the batched training nodes list (Line 2). Then, the algorithm
iterates through this list to instantiate a dedicated MBL for
each micro-batch (Line3-6), and finally returns a list of MBLs
(Line 7). These MBLs can be reused across training epochs
for micro-batch based data loading.

Algorithm 2: The Generation of Micro-Batch Data
Loaders
input :Input Graph: g
training nodes: t_nids
The number of micro-batches: K
output:micro_batch_loaders
1 GMFG = Full_MFG_construction(g, t_nids);
2 batched train_nodes_list =
Out_Degree_Centric_Partitioning(GMFG, K);
3 for node_list in batched_train_nodes_list do
4 dataloader = gen_dataloader(node_list, g);
5 micro_batch_loaders.append(dataloader);
6 end

7 return micro_batch_loaders;

Within Cherry-GMFG, each MBL operates as an iterable
entity, shuffling data independently to segregate data load-
ing for distinct micro-batches. This ensures that Cherry’s
data loading is independent of the full-batch data loader,
eliminating cumbersome data extraction and index mapping
procedures as in Betty. All MBLs are stored in host memory
and work on the same input graph as the full-batch data
loader. We observe that MBLs add only tens of megabytes
of extra memory overhead, which is acceptable in practical
that host memory resources are generally abundant.

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Notably, using MBLs, the same training node may aggre-
gate features from distinct neighbors compared to using the
full-batch loader due to their different shuffling process for
training nodes and neighboring nodes. Each MBL shuffles
nodes independently, whereas the full-batch loader shuffles
all nodes at once. Despite this difference, since MBLs op-
erate on the same input graph as the full-batch loader, the
neighboring nodes and their features for each training node
remain consistent across methods, ensuring similar model
convergence (validated in Section 6.3).

5 Implementation

Cherry! is implemented using DGL 2.0.0 [40] and PyTorch
2.0.1 [28] for GNN training. It utilizes DGL’s APIs for GMFG
construction, out-degree centric partitioning, and micro-
batch data loading. Cherry can be used as a Python module
compatible with DGL, enabling large-scale GNN training
beyond the memory capacity wall.

GMEFG construction. Cherry constructs the GMFG by
tracing the message-passing process for all training nodes.
It creates a dgl.dataloader with sampling nodes covering all
neighbors, enabling iteration through the dataloader layer by
layer to retrieve neighboring nodes used in message-passing
for training nodes. This process forms a dgl.graph represent-
ing the GMFG.

Out-degree centric graph partitioning. Cherry uses
dgl.graph.edges()[0] to obtain source node indices and calcu-
lates their out-degrees with dgl.graph.out_degrees(). These
out-degrees serve as edge weights after removing self-loops
by dgl.rm_self_loop(). Subsequently, the graph is partitioned
via dgl.metis(), and the partitions are iteratively handled to
extract training nodes for micro-batches.

Micro-batch data loader. Cherry utilizes training nodes
and the original graph to create a dgl.dataloader for each
micro-batch and are then aggregated into a list of micro-
batch data loaders, facilitating efficient retrieval of data for
each micro-batch layer by layer during micro-batch training.

Multi-GPU support. Since we focus on using single-GPU
scenario to demonstrate Cherry’s ability in breaking the
memory capacity wall, the experimental version of Cherry
is single-GPU based. Note that Cherry is not restricted to
single-GPU setup. Cherry can be easily adapted to a data-
parallel multi-GPU environment due to the independence
between MBLs. Specifically, we need to convert the model
into a torch.distributed model and utilize dgl.dist_graph and
dgl.dist_dataloader to construct MBLs. Subsequently, we
must establish the correspondence between MBLs and GPUs,
ensuring that each MBL is exclusively assigned to a single
GPU. Other computational processes remain consistent with
those on a single GPU.

!https://github.com/cherryWangY/Cherry



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

6 Evaluation

In this section, we compare Cherry-LMFG and Cherry-GMFG
to three micro-batching based methods: DGL-Random, DGL-
Metis, Betty. We first describe the experimental setup and
then we test the overall performance of all methods in terms
of memory and time consumption. Then we evaluate the
accuracy and convergence of micro-batch training. Next,
we evaluate node redundancy, load balance, computation
efficiency. Finally, we compare our micro-batching method
with mini-batching. Notably, we only compare Cherry-LMFG
and Cherry-GMFG in Section 6.2. In other experiments, we
use Cherry-GMFG due to its better overall performance.

6.1 Experimental Setup

Platform and Tools. We use a system with a 16-core AMD
EPYC 7543 CPU at 2.80 GHz and an Nvidia A100 GPU. The
system runs on CentOS 7.9, offering 40GB of GPU memory
and 256GB of host memory. We use CUDA 11.8/cuDNN 8.7
for GPU computation. For model training, we use Python
3.10, Pytorch v2.0.1, and DGL v2.0.0.

Table 2: Training datasets

Dataset #Node #Edge Avg Degree Feature Classes
Reddit 232,965 114,615,892 492 602 41
Ogbn-Arxiv 169,343 2,315,598 13.7 128 40
Ogbn-Products 2,400,608 123,718,024 51.5 100 47
Amazon 1,569,960 264,339,468 168 200 107

Ogbn-Papers100M 111,059,956 1,615,685,872 14.5 128

Datasets. As shown in Table 2, our evaluation includes five
real-world large datasets: Reddit, Ogbn-Arxiv, Ogbn-Products,
Amazon, and Ogbn-Papers100M, each with distinct features
relevant to its domain. The Avg Degree column indicates the
average node degree, reflecting the graph’s density by the
ratio of edges to nodes.

Models. We use three representative GNN models: Graph-
SAGE [11], GCN [17], and GAT [38]. The neighbor sampling
algorithm [11] is utilized for graph input sampling. The aggre-
gator used in GraphSage is Mean, unless specified otherwise.
Baselines.

We compare Cherry-GMFG, incorporating all the pro-
posed techniques, against four micro-batch baselines: (1)
The DGL-Random splits full-batch nodes into n sequen-
tial random segments for micro-batches, implemented using
DGL as an oracle partition method. (2) DGL-Metis [16]
,a well-known graph partitioning algorithm for its parallel
processing efficiency in handling large graph. We use DGL’
API to apply Metis in our experiments. (3) Betty [46] ,the
SOTA micro-batch GNN training method, with redundancy-
embedded graphs and memory-aware partitioning to miti-
gate redundancy and load imbalance. We use its open-source
code in our evaluation. (4) Cherry-LMFG(Section 4.2) uses

10

Yan Wang, Xin He, et al.

LMFG based out-degree centric partitioning and the same
data loading technique as Betty.

[E=—1 Betty BB Cherry-GMFG|
=, 0 %
45 90 135 180 1 2 3 4
Hidden Size # of Layers
(a) (b)
D40k ————— - ¢ OOME_ _ a0k - ———— OOMH _
3o} 30}
>
6 20+ 20+
510! 10}
= gl =m 0
mean pool Istm 64 9% 13 164
Aggregator Fanout

(c) (d)

Figure 8: Cherry vs. Betty in memory-consuming cases.

6.2 Overall Performance

6.2.1 Breaking the memory capacity wall. We evaluate Cherry-
GMFG against Betty in four memory-consuming cases, each
employing an advanced GNN training method: wider hidden
size, deeper aggregation, sophisticated aggregator, or larger
fanout degree. In all experiments shown in Figure 8, we use
Ogbn-Products dataset and 4 micro-batches both for Betty
and Cherry. In Figure 8(a), with a 3-layer GAT model, Betty
fails with a hidden size of 180, while Cherry trains success-
fully. In Figure 8(b), with a GAT model and hidden size of
80, Betty encounters OOM error in the 4-layer model, while
Cherry enables this case. In Figure 8(c), with a 2-layer Graph-
SAGE model and a hidden size of 192, Cherry is able to train
with the LSTM aggregator while Betty fails. In Figure 8(d),
with a 1-layer GraphSAGE model, an LSTM aggregator, and
a hidden size of 256, Cherry enables training with a fanout
degree of 164 while Betty encounters OOM error. These re-
sults highlight Cherry’s superiority in overcoming memory
constraints.

6.2.2 Peak Memory Consumption. Figure 9 compares the
peak GPU memory consumption during training for Random,
Metis, Betty, Cherry-LMFG, and Cherry-GMFG across three
GNN models (GraphSAGE, GCN, GAT) and five datasets. We
use torch.max_memory_allocated to record the maximum
GPU memory allocated during training, a critical metric for
large-scale GNN training on GPU. Each model employs a
three-layer architecture with a hidden size of 256 for GCN
and GraphSAGE, and 4 attention heads with a hidden size of
128 for GAT. All experiments use 8 micro-batches.

Figure 9 shows that both Cherry-LMFG and Cherry-GMFG
consistently exhibit the lowest memory consumption across



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

H:l DGL-Random DGL-Metis E=—=] Betty B&S] Cherry-LMFG [N Cherry-GMFG‘

86 40 OO0M|
b 30
% ¢ ) %
22| Vg | | Tiem| 72 om0 < Vi [ Vim | M (7m0 |
=" "SAGE GCN GAT SAGE GCN GAT SAGE GCN GAT SAGE GCN GAT SAGE GCN GAT
(a)Reddit (b)Ogbn-Products (c)Ogbn-Arxiv (d)Amazon (e)Ogbn-Papers100M

Figure 9: The peak memory consumption of DGL-Random, DGL-Metis, Betty, Cherry-LMFG, and Cherry-GMFG

for training three GNN models on five datasets.

200

180} {== Betty
160/ BB Cherry-LMFG |
140! I Cherry-GMFG|

# of micro-batches

Figure 10: The training time (with data preparing) per
epoch of Betty, Cherry-LMFG, and Cherry-GMFG.

I Forward[_ |Backward[ | Data Transfer[ | Data Preparation
E—1 Partitioning R\ Data Extraction [[[[]] Index Mapping

NN
—— NI
Cherry-GMFG o 10 20 30 40 50 60 70 80
Cherry-LMFG [ ] j 3
Betty | ” §
0.0 0.5 60 75
Time (s)

Figure 11: The breakdown of training time (with data
preparing) per epoch for Cherry and Betty.

all cases. Despite minor variations in some cases, their over-
all memory consumption remains comparable. Specifically,
Cherry-GMFG reduces memory usage by 37.6% and 37.4%
on average compared to Random and Metis, and by 10.8%
on average (up to 18.8%) compared to Betty. This demon-
strates Cherry’s superiority in reducing peak memory usage
thanks to its efficient partitioning strategy addressing node
redundancy and load imbalance.

Notably, in our experiments, Betty fails to handle the two
largest datasets, Amazon and Ogbn-Papers100M, because

11

(1) it exhausts 256GB of main memory during graph parti-
tioning on the Amazon, likely due to the excessive redun-
dant edges as discussed in Section 3.3. (2) Betty’s data load-
ing technique encounters an index mapping issue on Ogbn-
Papers100M due to node length mismatches from errors in
Betty’s bookmarking process related to the large dataset
size. Consequently, Cherry-LMFG, which employs the same
data loading technique, also fails on Ogbn-Papers100M. In
contrast, Cherry-GMFG successfully manages all datasets,
demonstrating Cherry’s practicability for GNN training on
real-world large graphs.

6.2.3 Training Time. We evaluate the training efficiency of
three memory-efficient methods (Betty, Cherry-LMFG and
Cherry-GMFGQ) in terms of training time. Figure 10 compares
the per-epoch training time (with data preparation) using
a three-layer GraphSAGE on ogbn-products across differ-
ent batch numbers. We run each experiment 50 epochs and
discard the first 10 warm-up epochs to average the results.
Cherry outperforms all baselines in all cases significantly.
Specifically, Cherry-GMFG reduces training time by 90.5%
on average (up to 96.2%) compared to Cherry-LMFG and
by 94.9% on average (up to 98.8%) compared to Betty. This
highlights Cherry’s superior training efficiency, making it a
more practical micro-batch training solution for large-scale
GNN training.

z | i - FuII-‘batch
<204 e e = =Cherry 2 micro-batch| .
-— ' ' === Cherry 4 micro-batch| |
8 10 N [ = = Cherry 8 micro-batch| |
= 0 ‘ ‘
0 50 100 150 200
# of Epochs

Figure 12: Convergence curves for full-batch and micro-
batch training with three different numbers of batches.

To further dissect Cherry’s significant training time re-
duction, we break down the training time per epoch for



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Cherry-GMFG, Cherry-LMFG, and Betty using the Ogbn-
Products dataset with a 3-layer GraphSAGE model, hidden
size of 256, and 4 micro-batches. Figure 11 shows the re-
sults. Given that Cherry’s one-time partitioning overhead
is amortized across successive training epochs, we do not
show the partitioning time for Cherry. We see that Cherry
has a far lower data preparation time than both Betty and
Cherry-LMFG. Such huge data preparation time reduction is
mainly because Cherry circumvents those time-consuming
operations (repetitive partitioning, data generation, and in-
dex mapping) involved in Betty’s data preparation phase
by employing a micro-batch specific data loading and a
repetitive-partitioning elimination mechanism. Moreover,
Cherry reduces the time for forward pass and backward pass
by 18.8% and 14.1%, respectively, compared to Betty. This
mainly comes from Cherry’s more sufficient node redun-
dancy reduction as verified in Section 6.4.2.

6.3 Training Accuracy and Convergence

Table 3: DGL vs. Cherry in training accuracy

Dataset ‘ Model ‘ DGL/Acc(%) ‘ Cherry/Acc(%)
GraphSAGE | 86.14 +0.28 86.59 + 0.37
Reddit GCN 94.34 £+ 0.61 94.13 £ 0.32
GAT 89.64 £ 1.85 89.71 £ 1.97
GraphSAGE | 71.32 +0.09 71.07 £ 0.05
ogbn-arxiv GCN 68.51 £ 0.33 68.79 £ 0.08
GAT 69.67 £ 0.21 69.31 £0.17
ogbn-products GraphSAGE | 74.39 +0.33 76.18 £ 0.17
GCN 75.51 £ 0.24 75.87 £0.13

Table 3 presents the training accuracy of DGL using full-
batch training and Cherry using micro-batch training across
different datasets and models. As GAT cannot use ogbn-
products dataset, no results are shown for it. Also, no results
are shown for Amazon and Ogbn-Papers100M datasets as
DGL fails on our platform. The results indicate that micro-
batch training enabled by Cherry achieves comparable train-
ing accuracy to full-batch training, as they are mathemati-
cally equivalent.

To evaluate whether Cherry affects convergence, we sam-
ple accuracy per epoch to show GCN’s convergence curves
on Ogbn-Arxiv. Figure 12 compares Cherry’s micro-batch
training with 2, 4, and 8 batches to full-batch training under
identical hyperparameters. The figure shows nearly iden-
tical convergence curves for both methods. This confirms
Cherry’s micro-batch training maintains full-batch conver-
gence behavior without losing accuracy. Similar results are
observed across all other datasets and models.

12

Yan Wang, Xin He, et al.

[o2)
T
2N
g3

H
@
=
m
@

Memory (GB)
(2]
T
(B
ol

—§-

L

L
Ll

o

16
# of micro-batches

Figure 13: Betty vs. Cherry in load balancing with dif-
ferent numbers of micro-batches.

6.4 Load Balance and Redundancy
Reduction

6.4.1 Load Balance. We evaluate Cherry’s effectiveness in
load balancing. Figure 13 shows memory consumption varia-
tion across micro-batches using GraphSAGE on Ogbn-Products.
Cherry consistently shows narrower memory fluctuation
ranges, indicating lower variation within micro-batches than
Betty. This advantage grows as batch numbers increases.
For instance, from 16 batches to 32 batches, Cherry shows
reduced memory fluctuation, while Betty shows a slightly
larger fluctuation. This indicates Cherry’s superiority in load
balancing. By balancing memory consumption across micro-
batches, Cherry reduces peak memory usage significantly,
facilitating larger-scale GNN training without encountering
OOM errors, as shown in Figure 8. In contrast, Betty requires
more batches to avoid OOM errors in this case, sacrificing
training efficiency.

L JRandom| R
Metis
E—Betty

®Wcherry [ T

N
(S}

N
o
T

N
o
T

(&)
T

%
]

better
“Normalized Redundancy
o

32
# of micro-batches

Figure 14: Normalized redundancy of Random, Metis,
Betty, and Cherry across different numbers of micro-
batches.

6.4.2 Redundancy Reduction. We evaluate Cherry’s effec-
tiveness in reducing redundancy. Figure 14 shows normalized
redundancy results using a three-layer GraphSAGE model
on Ogbn-Products. Normalized redundancy, ratio of the sum
of nodes in micro-batches to the total nodes in the full batch,



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

indicates node redundancy after partitioning. Cherry-GMFG
reduces redundant nodes by 13.2% to 54.9% compared to Ran-
dom and Metis. Even compared to Betty, Cherry achieves
a 3.7% average reduction. Such advantage becomes particu-
larly pronounced as the number of batches increases. Overall,
Cherry maintains lower normalized redundancy across all
configurations, showcasing its superiority in reducing redun-
dancy, especially with more micro-batches.

6.5 Computation Efficiency

We evaluate Cherry’s computation efficiency against Betty.
Computation efficiency is defined as the inverse of compu-
tation overhead. The fluctuation in computation efficiency
across different epochs during the training process reflects
the computation stability, i.e., less fluctuation indicates better
computation stability. Figure 15(a) compares computation
efficiency of Cherry-GMFG and Betty over 50 epochs when
training GraphSAGE model on the Ogbn-Products dataset
with 4 batches. We see that Cherry’s computation efficiency
remains steady at around 0.473, while Betty’s fluctuates sig-
nificantly between 0.448 and 0.474 due to the million-level
computation nodes variations. This indicates that Cherry has
significantly more stable and higher computation efficiency
over Betty.

0.50 0.8
—— Cherry-GMFG —=— Cherry-GMFG
Betty 0.6 \+ Mini-batch

N

better
Computation Efficiency

0.4
0.45} 0.2 \\t>\
000 Joob—
0 10 20 30 40 50 2 4 8 16 32
(a) # of Epochs (b) # of Batches

Figure 15: Comparison of computation efficiency
among Cherry, Betty, and mini-batch.

6.6 Time and Memory Reduction
Comparing with Mini-batch

Table 4 illustrates the performance differences between mini-
batch and Cherry-enabled micro-batch under the same batch
size, utilizing the Ogbn-Products dataset with a 3-layer Graph-
SAGE model as a case study. Compared to mini-batch train-
ing, micro-batch training achieves an average reduction of
32.7% (up to 53.9%) in training time (with data preparing), and
34.0% (up to 40.1%) in memory consumption. Moreover, these
advantages become increasingly pronounced as the number
of batches increases. Figure 15(b) also shows that Cherry
achieves an average of 1.9x (up to 2.6x) improvement com-
putational efficiency compared to mini-batch training. The
reduction in memory consumption primarily results from

13

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

decreased node redundancy and improved load balancing,
while the training time reduction is attributed to improved
computational efficiency, efficient data loading and the elim-
ination of re-partitioning. This highlights the effectiveness
of Cherry-enabled micro-batch training.

Table 4: Time and memory consumption between
micro-batch and mini-batch training.

‘ ‘ Training time per epoch (sec) ‘ CUDA Memory consumption (GB) ‘

# of batches | Mini-batch Micro-batch Mini-batch Micro-batch
2 1.019 1.031 10.748 7.982
4 1.743 1.311 8.959 5.883
8 2.933 1.815 7.271 4.567
16 4.728 2.457 6.061 3.632
32 7.584 3.494 4.791 3.216

7 Related Work

GNN Frameworks and Graph Partitioning. A number of
GNN systems [1, 4, 5, 10, 13, 15, 23, 25, 26, 40, 54, 56] have
emerged in recent years, with DGL [40] being a popular
framework. DistDGL [54], its distributed version, utilizes the
Metis partition algorithm [16] to reduce inter-GPU commu-
nication. Cluster-GCN [4] constructs small clusters using
METIS for SGD updates. AliGraph [56] and DistGNN [26]
follow similar strategies for improved performance. Neu-
Graph [25] maximizes edge numbers in diagonal chunks
using the Kernighan-Lin algorithm. Roc [15] achieves bal-
anced partitioning with a linear-regression-based approach
but may lead to unbalanced computational loads. WiseG-
raph [13] explores partitioning graph data and GNN opera-
tions jointly. PaGraph [23] partitions graphs based on a train-
ing vertex’s neighborhood but incurs high memory overhead.
DGCL [1] distributes physical edges and features among
machines using a partitioning algorithm. PyG [5] employs
feature-based partitioning for distributed GNN learning.

The above graph partitioning efforts mostly focus on bal-
ancing loads between GPUs. In contrast, Cherry identifies
the significant impact of both node redundancy and load
imbalance on GNN training efficiency, and minimizes both
simultaneously via an out-degree centric partitioning strat-
egy.

Memory Optimization for NN Training. Various meth-
ods [2, 6, 29, 32, 33, 37] have been proposed to tackle mem-
ory challenges in traditional NN training. Capuchin [29]
enhances memory management by monitoring tensor access
dynamically. ZeRO-Offload [33] offloads tasks to the CPU
for large models. ZeRO-Infinity [32] scales NN model train-
ing using GPU, CPU, and NVMe memory. Zico [22] tracks
memory usage during GPU computation for efficient man-
agement. FlexNN [21] optimizes memory utilization through
joint planning of slicing-loading-computing. However, their



ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

direct applicability to GNNs operating on large-scale graphs
is limited.

Several studies use off-chip memory to reduce GPU mem-
ory usage for GNN training. P3 [7] minimizes network com-
munication overhead to utilize host memory for graph stor-
age. MariusGNN [39] utilizes the entire storage hierarchy, in-
cluding SSDs, for large-scale GNN training. BeaconGNN [43]
enhances training throughput with a multi-tier flash memory
architecture. PyTorch-BigGraph [19] reduces GPU memory
usage by swapping partition embeddings to the hard drive.
HongTu [41] stores vertex data in CPU memory and offloads
training to the GPU for billion-scale full-graph training. In
contrast, Cherry focuses on micro-batching to lower GPU
memory consumption, which is orthogonal to these systems.

Graph Sampling. Graph sampling algorithms are essen-
tial in GNNs to reduce input size and computational com-
plexity. Node-wise sampling methods like GraphSAGE [11]
and VR-GCN [48] sample neighboring nodes. Layer-wise
sampling techniques, such as FastGCN [3] and AS-GCN [50],
sample a fixed number of nodes per layer using pre-computed
probabilities. Subgraph-based sampling approaches like Graph-
SAINT [51] and Cluster-GCN [4] partition graph for training.
However, these sampling methods may reduce memory re-
quirements at the cost of potential model accuracy loss.

Micro-Batch Training. GPipe [14] and p-cuDNN [27]
first introduce micro-batching to optimize traditional NN

training via a pipeline approach. Works like MBP [30], Melon [42]

and Sage [8] extend micro-batching to for memory efficiency
and larger batch sizes for NN models. However, applying
micro-batching to GNNs faces challenges due to complex
dependencies (e.g., N:M) between outputs/labels and input
features within a batch, unlike the 1:1 mapping in traditional
NNss. Betty [46] is the first method to apply micro-batching
in GNN training, effectively addressing the memory capac-
ity bottleneck. It formulates micro-batch partitioning as a
multi-level bipartite graph partitioning problem and pro-
poses a graph partitioning algorithm based on a redundancy-
embedded graph to reduce node redundancy. However, as
mentioned in Section 3, Betty improves load balancing by
sacrificing computational efficiency and suffers from high
data preparation overhead. Buffalo [47] is built upon Betty
and solves Betty’s bucket explosion problem through bucket
partitioning. However, due to their shared design paradigm,
Buffalo still suffers from the same repartitioning and data
extraction overhead as Betty.

8 Conclusion

Despite the widespread success of GNN in graph-based appli-
cations, training GNN with sophisticated strategies on large
graphs has long been a challenging endeavor, primarily due
to the memory scalability and computational efficiency con-
cerns. This paper introduces Cherry, a novel micro-batching

14

Yan Wang, Xin He, et al.

method tailored to GNN that makes large-scale GNN training
more efficient and accessible. Cherry incorporates message-
passing flow graph-aided partitioning techniques and micro-
batch-specific data loading mechanism, effectively alleviat-
ing the redundancy and load imbalance issues as well as re-
ducing the overhead associated with data preparation, which
traditionally plague micro-batch based GNN training. Evalu-
ation results show the superiority of Cherry over existing
training methods, highlighting its potential to significantly
enhance the scalability and efficiency of large-scale GNN
training.

9 Acknowledgment

We sincerely thank our anonymous reviewers for their valu-
able comments. We thank Dr. Wenqian Dong and Dr. Mingzhen
Li for the valuable feedback to the paper. This work is sup-
ported by the following funding: Natural Science Founda-
tion of Guangdong Province (2022A1515110073), National
Natural Science Foundation of China (Grant Nos. 62032023,
T2125013, 92270206, 62372435, 61972377, and T2293702), In-
novation Funding of ICT, CAS (Grant No. E461050), CAS
Project for Young Scientists in Basic Research (Grant No.
YSBR-005).

References

[1] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu.
2021. DGCL: An efficient communication library for distributed GNN
training. In Proceedings of the 16th European Conference on Computer
Systems. 130-144.

[2] Hao Chen, Yuanchen Bei, Qijie Shen, Yue Xu, Sheng Zhou, Wenbing
Huang, Feiran Huang, Senzhang Wang, and Xiao Huang. 2024. Macro
graph neural networks for online billion-scale recommender systems.
In Proceedings of the ACM on Web Conference 2024. 3598-3608.

[3] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgen: fast learning with

graph convolutional networks via importance sampling. arXiv preprint

arXiv:1801.10247 (2018).

Wei-Lin Chiang, Xuanqging Liu, Si Si, Yang Li, Samy Bengio, and Cho-

Jui Hsieh. 2019. Cluster-gen: An efficient algorithm for training deep

and large graph convolutional networks. In Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data

mining. 257-266.

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation

learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428

(2019).

[6] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. 2021.
Gnnautoscale: Scalable and expressive graph neural networks via
historical embeddings. In International conference on machine learning.
3294-3304.

[7] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed
deep graph learning at scale. In 15th USENLX Symposium on Operating
Systems Design and Implementation. 551-568.

[8] InGim and JeongGil Ko. 2022. Memory-efficient dnn training on mobile
devices. In Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services. 464-476.

[9] Ping Gong, Renjie Liu, Zunyao Mao, Zhenkun Cai, Xiao Yan, Cheng Li,
Minjie Wang, and Zhuozhao Li. 2023. gSampler: General and efficient

[4

[l

5

—



Cherry: Breaking the GPU Memory Wall for Large-Scale GNN Training via Micro-Batching

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

GPU-based graph sampling for graph learning. In Proceedings of the
29th Symposium on Operating Systems Principles. 562—-578.

Daniele Grattarola and Cesare Alippi. 2021. Graph neural networks in
tensorflow and keras with spektral application notes. IEEE Computa-
tional Intelligence Magazine 16, 1 (2021), 99-106.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive rep-
resentation learning on large graphs. Advances in neural information
processing systems 30 (2017).

Yaochen Hu, Amit Levi, Ishaan Kumar, Yingxue Zhang, and Mark
Coates. 2021. On Batch-size Selection for Stochastic Training for
Graph Neural Networks. (2021).

Kezhao Huang, Jidong Zhai, Liyan Zheng, Haojie Wang, Yuyang Jin,
Qihao Zhang, Runging Zhang, Zhen Zheng, Youngmin Yi, and Xipeng
Shen. 2024. WiseGraph: Optimizing GNN with Joint Workload Parti-
tion of Graph and Operations. In Proceedings of the Nineteenth European
Conference on Computer Systems. 1-17.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing
systems 32 (2019).

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020.
Improving the Accuracy, Scalability, and Performance of Graph Neural
Networks with Roc. In Proceedings of Machine Learning and Systems,
Vol. 2. 187-198.

George Karypis. 1997. METIS: Unstructured graph partitioning and
sparse matrix ordering system. Technical report (1997).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification
with graph convolutional networks. arXiv preprint arXiv:1609.02907
(2016).

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph classifica-
tion using structural attention. In Proceedings of the 24th ACM Interna-
tional Conference on Knowledge Discovery & Data Mining. 1666—1674.
Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alex Peysakhovich. 2019. Pytorch-BigGraph: A Large
Scale Graph Embedding System. In Proceedings of Machine Learning
and Systems, Vol. 1. 120-131.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020.
Deepergen: All you need to train deeper gens.  arXiv preprint
arXiv:2006.07739 (2020).

Xiangyu Li, Yuanchun Li, Yuanzhe Li, Ting Cao, and Yunxin Liu.
2024. FlexNN: Efficient and Adaptive DNN Inference on Memory-
Constrained Edge Devices. In Proceedings of the 30th Annual Interna-
tional Conference on Mobile Computing and Networking. 709-723.
Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and
Myeongjae Jeon. 2021. Zico: Efficient GPU memory sharing for con-
current DNN training. In 2021 USENIX Annual Technical Conference.
161-175.

Zhigi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.
Pagraph: Scaling gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on Cloud Comput-
ing. 401-415.

Zhilong Lu, Weifeng Lv, Zhipu Xie, Bowen Du, and Runhe Huang.
2019. Leveraging graph neural network with Istm for traffic speed pre-
diction. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE,
74-81.

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. 2019. NeuGraph: Parallel deep neural network

15

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

computation on large graphs. In 2019 USENIX Annual Technical Con-
ference. 443-458.

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty,
Evangelos Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nes-
reen K Ahmed, and Sasikanth Avancha. 2021. Distgnn: Scalable dis-
tributed training for large-scale graph neural networks. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1-14.

Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, and Satoshi Matsuoka.
2018. Accelerating deep learning frameworks with micro-batches.
In 2018 IEEE International Conference on Cluster Computing. IEEE,
402-412.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019).

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based gpu memory
management for deep learning. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and
Operating Systems. 891-905.

XinYu Piao, DoangJoo Synn, JooYoung Park, and Jong-Kook Kim. 2021.
Micro Batch Streaming: Allowing the Training of DNN Models to Use a
large Batch Size in Memory Constrained Environments. arXiv preprint
arXiv:2110.12484 (2021).

XinYu Piao, DoangJoo Synn, JooYoung Park, and Jong-Kook Kim. 2023.
Enabling Large Batch Size Training for DNN Models Beyond the Mem-
ory Limit While Maintaining Performance. IEEE Access (2023).
Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith,
and Yuxiong He. 2021. Zero-infinity: Breaking the gpu memory wall
for extreme scale deep learning. In Proceedings of the international
conference for high performance computing, networking, storage and
analysis. 1-14.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. Zero-offload: Democratizing billion-scale model training. In 2021
USENIX Annual Technical Conference. 551-564.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019.
Dropedge: Towards deep graph convolutional networks on node clas-
sification. arXiv preprint arXiv:1907.10903 (2019).

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Mati-
nata, and Paolo Merialdo. 2021. Knowledge graph embedding for link
prediction: A comparative analysis. ACM Transactions on Knowledge
Discovery from Data 15, 2 (2021), 1-49.

Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tieniu Tan.
2019. An attention enhanced graph convolutional Istm network for
skeleton-based action recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. 1227-1236.
Zhanhong Tan, Zijian Zhu, and Kaisheng Ma. 2024. Cocco: Hardware-
Mapping Co-Exploration towards Memory Capacity-Communication
Optimization. arXiv preprint arXiv:2402.00629 (2024).

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention net-
works. arXiv preprint arXiv:1710.10903 (2017).

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2023. Mariusgnn: Resource-efficient out-of-core train-
ing of graph neural networks. In Proceedings of the 18th European
Conference on Computer Systems. 144-161.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph
library: A graph-centric, highly-performant package for graph neural



ICS

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

’25, June 8-11, 2025, Salt Lake City, UT, USA

networks. arXiv preprint arXiv:1909.01315 (2019).

Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He. 2023.
HongTu: Scalable Full-Graph GNN Training on Multiple GPUs. Proc.
of the ACM on Management of Data 1, 4 (2023), 1-27.

Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin
Jin, Gang Huang, Yunxin Liu, and Xuanzhe Liu. 2022. Melon: Breaking
the memory wall for resource-efficient on-device machine learning.
In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services. 450-463.

Yuyue Wang, Xiurui Pan, Yuda An, Jie Zhang, and Glenn Reinman.
2024. BeaconGNN: Large-Scale GNN Acceleration with Out-of-Order
Streaming In-Storage Computing. In Proceedings of 2024 IEEE In-
ternational Symposium on High-Performance Computer Architecture.
330-344.

Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. 2022.
Graph neural networks in node classification: survey and evaluation.
Machine Vision and Applications 33, 1 (2022), 4.

Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed
power-law graph computing: Theoretical and empirical analysis. Ad-
vances in neural information processing systems 27 (2014).

Shuangyan Yang, Minjia Zhang, Wenqian Dong, and Dong Li. 2023.
Betty: Enabling large-scale gnn training with batch-level graph par-
titioning. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, Volume 2. 103-117.

Shuangyan Yang, Minjia Zhang, and Dong Li. 2025. Buffalo: Enabling
Large-Scale GNN Training via Memory-Efficient Bucketization. In Pro-
ceedings of the 2025 IEEE International Symposium on High-Performance
Computer Architecture (HPCA).

Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. 2019. A
vectorized relational graph convolutional network for multi-relational
network alignment.. In Proceedings of International Joint Conference
on Artificial Intelligence. 4135-4141.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. 2018. Graph convolutional neural net-
works for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data
mining. 974-983.

Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang, Hanghang
Tong, and Jiawei Han. 2021. AS-GCN: Adaptive semantic architecture
of graph convolutional networks for text-rich networks. In 2021 IEEE
International Conference on Data Mining. 837-846.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kan-
nan, and Viktor Prasanna. 2019. Graphsaint: Graph sampling based
inductive learning method. arXiv preprint arXiv:1907.04931 (2019).
Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph
neural networks. Advances in neural information processing systems
31 (2018).

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018.
An end-to-end deep learning architecture for graph classification. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 32.
Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. 2020. Distdgl:
distributed graph neural network training for billion-scale graphs. In
2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures
and Algorithms. IEEE, 36-44.

Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George
Karypis. 2022. Distributed hybrid cpu and gpu training for graph
neural networks on billion-scale heterogeneous graphs. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 4582-4591.

16

Yan Wang, Xin He, et al.

[56] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai,

Yong Li, and Jingren Zhou. 2019. Aligraph: A comprehensive graph
neural network platform. arXiv preprint arXiv:1902.08730 (2019).



