MARS: Processing-In-Memory Acceleration of Raw
Signal Genome Analysis Inside the Storage Subsystem

Melina Soysal Konstantina Koliogeorgi Can Firtina
ETH Zurich ETH Zurich ETH Zurich
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland
melina.soysal@tum.de kkoliogeorgi@ethz.ch canfirtina@gmail.com
Nika Mansouri Ghiasi Rakesh Nadig Haiyu Mao
ETH Zurich ETH Zurich King’s College London

Zurich, Switzerland
n.mansorighiasi@gmail.com

Zurich, Switzerland
rakesh.nadig@gmail.com

London, United Kingdom
maohaiyu1993@gmail.com

Geraldo Francisco de Yu Liang Klea Zambaku
Oliveira Junior ETH Zurich ETH Zurich

ETH Zurich Zurich, Switzerland Zurich, Switzerland

Zurich, Switzerland yulianglenny@gmail.com kzambaku@ethz.ch

geraldofojunior@gmail.com

Mohammad Sadrosadati
ETH Zirich
Zurich, Switzerland
m.sadr89@gmail.com

Abstract

Conventional genome analysis relies on translating the noisy
raw electrical signals generated by DNA sequencing tech-
nologies into nucleotide bases (i.e., A, C, G, and T) through
a computationally-intensive process called basecalling. Raw
signal genome analysis (RSGA) has emerged as a promising
approach towards enabling real-time genome analysis by
directly analyzing raw electrical signals without the need
for basecalling. However, rapid advancements in sequenc-
ing technologies make it increasingly difficult for software-
based RSGA to match the throughput of raw signal genera-
tion. Hardware-based RSGA acceleration has the potential to
bridge the gap between software-based RSGA and sequenc-
ing throughput.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ICS °25, Salt Lake City, UT, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3730428

Onur Mutlu
ETH Zurich
Zurich, Switzerland
omutlu@gmail.com

This paper demonstrates that while (i) conventional hard-
ware acceleration techniques (e.g., specialized ASICs) in tan-
dem with (ii) memory-centric approaches (e.g., Processing-
In-Memory) can significantly accelerate RSGA, the high vol-
ume of genomic data greatly shifts the performance and
energy bottleneck from computation to I/O data movement.
As sequencing throughput increases, I/O overhead becomes
the dominant contributor to both runtime and energy con-
sumption, limiting the scalability of both processor-centric
and main-memory-centric accelerators. Therefore, there is a
pressing need to design a high-performance, energy-efficient
system for RSGA that can both alleviate the data movement
bottleneck and provide large acceleration capabilities.

We propose MARS, a storage-centric system that lever-
ages the heterogeneous resources available within modern
storage systems (e.g., storage-internal DRAM, storage con-
troller, flash chips) alongside their large storage capacity to
tackle both data movement and computational overheads
of RSGA in an area-efficient and low-cost manner. MARS
accelerates RSGA through a novel hardware/software co-
design approach using three major techniques. First, MARS
modifies the RSGA pipeline via a previously unexplored
combination of two filtering mechanisms and a quantization
scheme, reducing hardware demands and optimizing for in-
storage execution. Second, MARS accelerates the modified

https://orcid.org/0009-0000-2378-6737
https://orcid.org/0000-0003-0064-7616
https://orcid.org/0000-0002-6548-7863
https://orcid.org/0000-0002-0833-0042
https://orcid.org/0000-0002-4709-2323
https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0003-1557-4819
https://orcid.org/0000-0003-1557-4819
https://orcid.org/0000-0002-7754-9427
https://orcid.org/0000-0001-7951-7720
https://orcid.org/0000-0002-4029-0175
https://orcid.org/0000-0002-0075-2312
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3730428

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

RSGA steps directly within the storage device by leverag-
ing both Processing-Near-Memory and Processing-Using-
Memory paradigms, tailored to the internal architecture of
the storage system. Third, MARS orchestrates the execution
of all steps via a streamlined control and data flow to fully
exploit in-storage parallelism and minimize data movement.
Our evaluation shows that MARS outperforms basecalling-
based software and hardware-accelerated state-of-the-art
read mapping pipelines by 93x and 40X, on average across
different datasets, while reducing their energy consumption
by 427% and 72X. MARS improves the performance of state-
of-the-art RSGA-based read mapping pipeline by 28x while
reducing its energy consumption by 180X on average across
different datasets.

CCS Concepts

- Computer systems organization — Special purpose
systems; « Hardware — External storage.

Keywords

Processing-In-Memory, Genome Analysis, In Storage Pro-
cessing, Processing-Near-Memory

ACM Reference Format:

Melina Soysal, Konstantina Koliogeorgi, Can Firtina, Nika Mansouri
Ghiasi, Rakesh Nadig, Haiyu Mao, Geraldo Francisco de Oliveira
Junior, Yu Liang, Klea Zambaku, Mohammad Sadrosadati, and Onur
Mutlu. 2025. MARS: Processing-In-Memory Acceleration of Raw
Signal Genome Analysis Inside the Storage Subsystem. In 2025
International Conference on Supercomputing (ICS °25), June 08—11,
2025, Salt Lake City, UT, USA. ACM, New York, NY, USA, 22 pages.
https://doi.org/lo.l145/3721145.3730428

1 Introduction

Identifying and analyzing an organism’s DNA sequence,
i.e., genome analysis, has led to important advances in ar-
eas such as personalized medicine [33, 71, 201], outbreak
tracing [39, 229], and evolutionary biology [62, 169, 175].
Genome sequencing is the experimental process of determin-
ing the nucleotide sequence of an organism’s DNA. As cur-
rent technologies cannot generate a single long sequence
for an entire genome, DNA is first fragmented into short se-
quences, called reads, which serve as input to computational
analyses [1, 20, 36, 68, 119, 128, 129, 135, 168, 234] to recon-
struct the genome and extract biological insights. The analy-
sis typically starts with mapping reads to a known reference
genome [21, 26], followed by identifying mutations and other
genetic variations [1, 36, 38, 68, 119, 128, 129, 135, 168, 234]
during downstream analyses.

Nanopore sequencing technology [53, 103, 104, 122, 123,
186, 234] enables DNA sequencing by passing DNA strands

Melina Soysal, Konstantina Koliogeorgi et al.

through nano-scale pores, known as nanopores, and mea-
suring the resulting fluctuations in electrical current. These
current fluctuations, referred to as raw signals, correspond
to distinct sequences of DNA nucleotides and form the
basis for downstream analyses. The small dimensions of
the nanopores enable sequencing in compact devices [103],
paving the way for portable, scalable, and low-cost [189] se-
quencing for a wide range of applications, including outbreak
tracing and disease diagnosis [77, 108]. Nanopore sequencers’
rapid adoption is further driven by their unique capability
of early termination of sequencing when further data is no
longer needed [144, 164], reducing the sequencing time
and cost and enabling real-time analysis [68, 190].

Typical genome analysis pipelines first translate noisy raw
electrical signals into sequences of nucleobase characters
through a process called basecalling [1, 96, 186, 196]. Subse-
quent downstream analyses are then performed on these text-
based sequences. However, basecalling is computationally in-
tensive and represents a major bottleneck for real-time anal-
ysis, as it relies heavily on sophisticated deep learning mod-
els [60, 153, 196, 234]. Given the increasing demand for real-
time processing, there is a pressing need for developing fun-
damentally new algorithmic approaches to keep up with the
rapid advances in nanopore sequencing in terms of perfor-
mance, energy consumption, and cost [60, 68, 70, 135, 215].

Raw signal genome analysis (RSGA) [36, 60, 61, 68—
70, 119, 135, 159, 164, 179, 190, 193, 234] has been proposed
as a new paradigm that bypasses traditional basecalling
by operating directly on raw electrical signals. Instead of
translating signals into nucleotide sequences, RSGA ana-
lyzes the raw signals themselves to perform genomic tasks
such as read mapping and variant detection. RSGA can
complement basecalling by serving as a lightweight pre-
basecalling filter [45] to reduce redundant basecalling oper-
ations or even replace basecalling entirely by directly ana-
lyzing raw signals in real-time without translating them
to nucleotide sequences first [60, 68, 70, 135]. RSGA can
lead to more comprehensive [119, 135, 220] genome anal-
ysis as it preserves richer sequencing information in the
raw signals [19, 135, 170, 194, 198, 210, 217]. These key
benefits have fueled rapid research progress in the field of
RSGA [36, 68, 70, 119, 135, 159, 164, 179, 193, 234], opening
new directions such as direct alignment [60, 120, 135] and
de novo assembly [69] on raw signals.

As advancements in sequencing technologies continue at
a rapid pace, scalability challenges arise, placing increasing
pressure on software-based RSGA to match the through-
put of raw signal generation and meet the real-time re-
quirements. To bridge the widening gap between sequenc-
ing throughput and downstream analysis, hardware accel-
eration is required to either process larger data volumes

https://doi.org/10.1145/3721145.3730428

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

with the same computational resources or reduce execu-
tion time and energy consumption. Research efforts have
targeted the computational bottlenecks of RSGA by us-
ing GPUs (e.g., [36, 74, 82, 178, 184]) or co-designing algo-
rithms with specialized hardware architectures and ASICs
(e.g., [60, 141, 180, 190, 200]). While these approaches effec-
tively reduce computational overhead, they largely overlook
the impact of I/O data movement from the storage subsystem
on the end-to-end RSGA pipeline. Our motivational analysis
(§3) shows that as computational bottlenecks of RSGA are
accelerated, the contribution of I/O becomes dominant and
ultimately emerges as the primary bottleneck in the end-
to-end analysis. For instance, as the accelerator speedups
increase, the adverse impact of the storage subsystem domi-
nates the accelerated end-to-end execution latency, reaching
up to 78% of total execution time for large genomes (see §3.2).
This motivational study highlights the need for an architec-
ture for RSGA that (i) alleviates the large data movement
overhead, (ii) accelerates the computational steps of RSGA,
and (iii) scales to the large volumes of genomic datasets.

Our goal in this work is to design a high-performance,
energy-efficient, and scalable system for RSGA by effectively
addressing both the data movement and computation over-
heads of the end-to-end RSGA pipeline for read mapping.
Our key idea is to design a storage-centric system that lever-
ages the heterogeneous compute-capable resources (e.g., SSD
internal DRAM, SSD controller), alongside the large storage
capacity available within modern storage systems to alleviate
I/O data movement and computational bottlenecks within
the RSGA pipeline in an area-efficient and low-cost man-
ner. To this end, we propose MARS (Processing-In-Memory
Acceleration of Raw Signal Genome Analysis Inside the
Storage Subsystem), the first In-Storage-Processing (ISP) de-
sign combining Processing-Using-DRAM and Processing-
Near-DRAM within a storage system.

Challenges. Despite ISP’s promising potential, designing
a storage-centric system for RSGA presents several key chal-
lenges. First, RSGA steps (e.g., event detection, seeding and
chaining) exhibit high memory demands and irregular data
access patterns. In contrast, SSDs lack architectural support
for fine-grained (i.e., small-size) memory operations and are
optimized for sequential access to fully utilize the high flash
memory channel bandwidth inside the SSD. Second, exploit-
ing heterogeneous resources and computation capabilities
within the storage system introduces a complex design space
and a rich set of tuning parameters. Third, deploying the end-
to-end RSGA pipeline consisting of multiple steps inside the
storage system creates contention over shared resources, re-
quiring careful coordination and isolation. Addressing these
challenges necessitates a carefully-constructed design to en-
sure a synergistic and efficient orchestration of the available
in-storage resources.

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

We address these challenges through a novel hardware/-
software co-design approach that modifies and enables RSGA
computational primitives to leverage in-storage execution
capabilities, while carefully taking into account storage
system constraints. First, we propose two software modi-
fications: (1) a novel combination of two filtering mecha-
nisms [70, 128, 133, 136] that selectively remove redundant
or low-quality candidate matches between the input and
reference genomes early in the RSGA pipeline, reducing
both computational workload and intermediate data stor-
age requirements and (2) an arithmetic conversion scheme
that reduces the precision of intermediate signal representa-
tions to lower storage and computation overheads, carefully
placed in the RSGA pipeline to preserve accuracy. Second,
we augment the storage system’s functionality to support
the RSGA pipeline by placing accelerators for individual
steps in different parts of the storage subsystem, leveraging
different Processing-In-Memory’ paradigms: (i) inside the
memory array of the storage-internal DRAM through the
‘Processing-Using-DRAM’ approach, (ii) near the subarrays
of the storage-internal DRAM using the Processing-Near-
DRAM’ approach and (iii) inside the storage controller via
the ‘Processing-Near-DRAM’ approach, which operates on
data fetched from the storage-internal DRAM. MARS orches-
trates these individual components through a unified control
and data flow that minimizes data movement and efficiently
exploits the available bandwidth between them.

We evaluate MARS-based read mapping in terms of ac-
curacy, latency and energy consumption across five diverse
genomic input datasets from different species. We compare
our design against four state-of-the-art software and hard-
ware baselines using both RSGA and basecalling-based ap-
proaches and make four major observations. First, MARS
outperforms the state-of-the-art CPU-based RSGA imple-
mentation for read mapping [70] by 28% on average across all
datasets while improving the energy consumption by 180x
on average. Second, MARS provides an average speedup of
93x over a hybrid CPU/GPU-accelerated basecalling-based
pipeline [2, 128], while improving energy consumption by
427x on average. Third, MARS is superior to GenPIP [153], a
state-of-the-art Processing-In-Memory-based read mapping
system relying on basecalling, achieving a speedup of 40x
and energy savings of 72X on average across all five datasets.
Fourth, MARS provides analysis accuracy on par with the
conventional basecalling-based pipeline.

This work makes the following key contributions:

o It is the first work to demonstrate the I/O bottleneck
of hardware-accelerated Raw Signal Genome Analysis
(RSGA) and propose In-Storage-Processing of RSGA.

o We propose MARS, the first In-Storage-Processing sys-
tem for RSGA, which mitigates both I/O data movement

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

and computational overheads through a tightly integrated
hardware/software co-design.

o To our knowledge, MARS is the first architecture to in-
tegrate multiple Processing-In-Memory paradigms within
the storage system. We implement accelerators inside the
SSD’s DRAM, near the subarrays of the SSD’s DRAM as
well as inside the SSD controller leveraging both Processing-
Using-DRAM and Processing-Near-DRAM paradigms to
efficiently enable diverse RSGA computation primitives.

o We extensively compare MARS to state-of-the-art soft-
ware and hardware baselines that use both RSGA and
basecalling. We show that MARS improves performance
over software and hardware-accelerated state-of-the-art
read mapping pipelines by a factor of 93x and 40x while
reducing their energy consumption by 427X and 72X on
average across five real-world datasets.

2 Background
2.1 Genome Analysis

Raw Signal Genome Analysis. Nanopore sequencing can
sequence relatively long fragments of DNA [53, 103, 104,
122, 123, 186, 234], called reads, by measuring the electrical
current changes caused when a DNA fragment traverses a
tiny pore, called nanopore. The generated sequence data [53,
103, 104, 122, 123, 186, 234], referred to as raw signals, are
then used in downstream analysis, e.g., for read mapping [36,
68, 70, 119, 190, 234] and alignment [60, 120, 135] purposes.
In the conventional genome analysis approach, raw signals
are first translated into sequences of nucleobase characters
(ie, A, C,G,T)during the basecalling process [1, 2, 24, 26, 45],
and then mapped to a reference genome to find similarities
and differences [1, 96, 195, 196, 228, 230]. In contrast, RSGA
eliminates the need for basecalling by directly operating on
raw signals [36, 60, 68, 70, 119, 159, 179, 193, 234].

RSGA requires comparing sequences from the reference
genome with sequences derived from each input query, i.e.,
the raw electrical signals generated by the sequencer for
a given DNA sample. To enable this comparison, both ref-
erence subsequences and raw signals are converted into
events, i.e., a series of values corresponding to genomic sub-
sequences of certain length. These event sequences are then
passed through a quantization step that accounts for sequenc-
ing noise and enables robust signal-domain comparisons be-
tween reference and input query. A typical state-of-the-art
RSGA pipeline for read mapping, illustrated in Fig. 1, consists
of two main stages @ Indexing and B) Mapping.

@) Indexing (offline): The reference genome is converted
into events through reference-to-event conversion and quan-
tization. These events are then stored in an efficient data
structure, e.g., a hash table, to enable fast lookup of match-
ing signal patterns. B) Mapping (online): This stage maps

Melina Soysal, Konstantina Koliogeorgi et al.

(A)INDEXING (offline)

MAPPING (online)

Reference Genome (RG) G\ Raw Nanopore Signal (RS) |%
ACTTTGAAT... | . ——— 0
(&)
(Reference-to-Event) 1 Signal-to-Event) 1w
lw
: IE
12
[Quantization] I [Quantization] S
_______________ >
@
(Hash Value)] (Hash Value] 1o
12
1 |é
= 1
(Build Hash Table) i (Query Hash Table) :ﬁ
seed (0x01 hash value)®_ ______________
Hash Seed Positions . ffj_hit_s __ _.ecanchor-. 19
Value in RG] I'-L — e ! 12
: i 2
0x01 BT e Y S—— 12
0x02 15,48, 117, .. [>eed h'ts: (" Identify Most Similar Regions | Iz

workflow based on a hash-table for indexing,.

raw signals to the reference genome using the previously
constructed index. The first step (D in mapping is event de-
tection, which performs the signal-to-event conversion of
raw signals and applies quantization. In the second step (2),
called seeding, consecutive events are grouped to generate
hash values which represent signal segments known as seeds
and are used to query the reference index. Matching en-
tries, referred to as seed hits, represent candidate matches
between the input and reference. During the last step (3),
called chaining, seeds are sorted based on their positions in
the reference genome. Seeds that are both spatially close and
colinear, i.e., those that maintain consistent relative positions
in the reference and input query, are grouped into anchors,
which form the basis for constructing chains representing
high-confidence matching regions between the query and
the reference genome.

Filtering Techniques. Filtering techniques [22, 23, 25,
27, 38, 86, 115, 121, 128, 133, 161, 174, 225-227] are ex-
tensively used in genome analysis pipelines to reduce the
need for costly alignment operations by eliminating unlikely
candidate matches early during the read mapping process.
One popular filtering approach, adopted in both conven-
tional [128] and RSGA [70] approaches, is frequency filter-
ing. The goal of frequency filtering is to identify and elim-
inate the seeds that cause a large number of seed hits in
the reference genome. These frequent seed hits usually ap-
pear due to repetitions in the genome or hash collisions,
which can cause ambiguity [67] in read mapping and in-
crease the computational cost of the subsequent steps [26],
such as chaining. To eliminate these issues, these seed hits
are not considered in the subsequent chaining stage, effec-
tively reducing the computational load. A dataset-specific
value defines the threshold for filtering out such frequent
matches. Another promising method is the seed-and-vote

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

filtering technique [133, 136] that has been applied in con-
ventional basecalling-based pipelines to discard anchors that
are unlikely to generate valid alignments. As shown in Fig. 2,
the reference genome is partitioned into overlapping, equal-
length windows W;. Each anchor votes for the window(s)
it appears in (see orange X’s in Fig. 2). We define as voting
threshold the minimum number of votes per window, so that
it contains correct alignments. A region whose vote count
falls below this predefined threshold is excluded from further
analysis, reducing the computational load of chaining.

P W1:9votes v o W,: 3 votes % -
h W2:7vot7es:‘~/ .
XXX XXXKX - X X %

[O00 0000 - seeds OC QO]

& anchor vote R discard « retain Reference Genome
Figure 2: Overview of the seed-and-vote filtering tech-

nique for a threshold value of 5.

2.2 SSD Architecture

Fig. 3 depicts the architecture of a typical modern NAND
flash-memory-based Solid State Drive (SSD) [156], which
consists of three main components: (1) an array of NAND
flash chips, (2) SSD controller, and (3) DRAM.

______________ 1 _—e—e——————1
SSD Controller & Flash Chips

! (Flash Controllers ,LI - 1
' @ : g 000 - DJI
| I !
' i

Flash Controllers

______ @________J_ -8,
ternal DRAM]

Bank Bank Bank

: . ':;:, : < Subarrays
Bank s Bank) {

Figure 3: Organizational overview of a modern SSD.

NAND Flash Memory. NAND flash memory consists of
multiple flash chips [16, 41], which are connected to the SSD
controller via multiple parallel flash channels. Each flash
chip typically contains one or more independent dies. Each
die has multiple (e.g., 2 or 4) planes and each plane contains
thousands of blocks. A block includes hundreds to thousands
of pages, each of which is 4-16 KiB in size.

SSD Controller. The SSD controller [41, 42, 156] consists of
two primary components: (1) multiple general-purpose cores
running the SSD firmware, i.e., the flash translation layer
(FTL), and (2) per-channel hardware flash controllers. The
FTL manages communication with the host system, main-
tains logical-to-physical (L2P) address mappings for read
operations, handles internal I/O scheduling, and performs
various SSD management functions to hide the complexities
of NAND flash memory from the host processor. Flash con-
trollers handle (i) requests between the SSD controller and
the flash chips and (ii) error-correcting codes ECC for the
NAND flash chips [41, 42, 203, 235].

1/0

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

SSD-Internal DRAM. Modern SSDs employ DRAM to store
metadata crucial for SSD management (e.g., L2P page map-
ping table) and to cache frequently accessed pages [83, 134,
155, 192, 204, 237]. Typically, the DRAM takes up 0.1% of
the SSD’s capacity (e.g., 4GB LPDDR4 DRAM [105] for a
4TB SSD [182]). As shown in Fig. 4, DRAM is organized in
a hierarchical structure. At the highest level, a DRAM mod-
ule comprises multiple chips, each containing several banks
(e.g., 8-16), subdivided into multiple subarrays (e.g., 64-128).
A subarray is a 2D array of cells organized into multiple rows
(e.g., 512-1024) and columns (e.g., 2-8kB) [116, 124]. Cells in
a row share a wordline while cells in the same column share
a bitline. The bitline is used to read from and write to the
cells via the row buffer, which contains sense amplifiers (SA
in Fig.4).

Wordline

DRAM Module

Subarrayy ;.

Local Row Buffer

(_ subarray,, _H
| Local Row Buffer 1
(_Subarray, |

Subarray,

Local Row Buffer

Local Row Buffer
Figure 4: Organizational overview of a DRAM module.

SSD I/0 Bandwidth. SSDs are characterized by the exter-
nal and internal bandwidth (BW). The external BW, e.g.,
PCle [63, 165] lane BW, refers to the data transfer rate be-
tween the SSD and the host system and is determined by the
number of PCle lanes. In contrast, the internal BW refers to
the bandwidth between the NAND flash chips and the SSD
controller. The internal BW typically exceeds the external
BW. For example, recent enterprise SSD controllers [29] sup-
port 6.55GB/s external and 19.2GB/s internal BW, distributed
over 16 channels operating at 1.2 GB/s each [109]. To bridge
the performance gap between main memory and storage
systems, modern SSDs integrate cutting-edge PCle-Gen4
interfaces, e.g., 7 GB/s PCle in Samsung PM1735 [183].

Global Row Decoder
Local Row Decoder

aulg

g
)
o
3
o

=

3 Motivation and Key idea

3.1 Computational Requirements of RSGA

RSGA is a promising approach for bridging the performance
gap between sequencing technologies, such as Nanopore
sequencing [53, 103, 104, 122, 123, 186, 234], and analysis
times. It can reduce the basecalling workload by serving as
a pre-basecalling filtering approach [45] or enable real-time
analysis by completely bypassing the costly deep-learning
based basecalling step [1, 2, 96, 195, 196, 228, 230]. How-
ever, given the rapid growth of sequencing throughput, it
becomes exceedingly challenging for software-based RSGA
to meet the requirements of real-time analysis [60]. The in-
creasing number of flow cells and nanopores per flow cell
lead to scalability challenges in processing generated data

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

simultaneously and in real-time. Real-time RSGA [36, 60, 68,
70, 144, 190, 234], particularly for large genomes and exten-
sive data sets, requires medium to large-sized server-grade
systems to meet the significant computational and mem-
ory needs [68, 119, 234]. For example, mapping a human
genome with RSGA on our server-grade system (configu-
ration in §7) requires 52 CPU threads and 128 GB DRAM
capacity to meet the real-time analysis requirements of a
single portable palm-sized sequencing device [70]. Recent
state-of-the-art works [60, 190] meet real-time requirements
for small genomes, but fail to scale to larger inputs due to
the computationally costly operations of full-genome align-
ment, which slows down the system at quadratic rates as
the genome size increases. To further understand the accel-
eration obstacles of RSGA workflows and exploit the full
potential for acceleration, a systematic analysis is required.

We focus on RawHash2 [68], the state-of-the-art RSGA
pipeline for read mapping that uses efficient quantization
and a lightweight hash-based similarity search to scale to
larger genomes. We choose RawHash2 as it introduces a
highly efficient seed search mechanism, that leads to a better
accuracy-throughput trade-off in comparison to prior RSGA
read mapping mechanisms, Sigmap [234], UNCALLED [119]
and RawHash [68]. We execute RawHash2 on a high-end,
latency-optimized SSD [183] with a PCle Gen4 interface
(PCIe) [165]. Fig. 5 shows the breakdown of RawHash2 into
the steps described in §2 (i.e., event detection, seeding, chain-
ing) as well as I/O overhead. We measure I/O overhead by
executing the pipeline once with data fully preloaded in
memory (i.e., without I/O overhead), and once with no data
preloaded into memory (i.e., with full I/O overhead from stor-
age). The difference in total runtime between the two runs
reflects the I/O data movement time from SSD to memory.
We use five different datasets as inputs, enumerated from
the smallest (D1, viral SARS-CoV-2 genome) to the largest
one (D5, human genome). For all genome sizes, chaining is
consistently a primary computational overhead, contribut-
ing between 33.1% (D1) and 94.9% (D5) of the total execution
time. Seeding takes up 4.3%-9.3% of the execution time. Event
detection and I/O data overhead are considerable bottlenecks
especially for small datasets (D1, D2, D3), taking up to 20.48%
and 40.84% of the execution time respectively.

HI/O MmEvent detection M Seeding [Chaining

40.8% 20.5 4.3% 33.1%
D1 |)
24.4% 15.2% 5% 50.7%
D2 I I]
14.3% 6.9% 8% 70.6%
D3 |
9.3% 91.3%
D4 N |
5.1% 94.9%
D5 N |
0% 20% 40% 60% 80% 100%

Figure 5: RawHash2 runtime breakdown for real-world
genomic datasets, from smallest (D1) to largest (D5).

Melina Soysal, Konstantina Koliogeorgi et al.

While no prior work has accelerated the full RSGA read
mapping pipeline end-to-end, several of its individual com-
pute primitives have been the focus of hardware accelera-
tion efforts [21, 24, 66, 160]. Chaining acceleration has
received significant attention in the literature. Researchers
have employed GPUs [82, 177] as well as FPGAs and cus-
tom hardware architectures [80, 82, 141, 143, 190], achieving
performance improvements ranging from 5.4X to 277X com-
pared to their respective software baselines. More recently,
novel computing paradigms have been explored to acceler-
ate chaining, including PIM architectures [46] and RISC-V
custom instructions [142]. Seeding acceleration has simi-
larly been investigated. Custom hardware designs [93] and
GPU-based implementations [52, 132] have demonstrated
the potential for significant performance gains. In particular,
hash-based seeding has emerged as a promising target for
in-memory acceleration, with several works proposing PIM-
based solutions [97, 99, 100, 102, 232, 239]. For example, [153]
implements a ReRAM-based accelerator for hash-based seed-
ing within basecalling pipelines, leveraging similar compute
primitives as the seeding step in RSGA. pLUTo [65], an in-
DRAM accelerator optimized for lookup-table (LUT) opera-
tions, is a promising approach for accelerating hash-based
seeding and achieves speedups of up to 700X over CPU base-
lines for seeding-relevant workloads.

3.2 Impact of Data Movement on Hardware
Accelerated RSGA

Despite the promising results of these standalone accelera-
tors, there are no mature end-to-end accelerated systems for
RSGA. Current works overlook the impact of storage I/O on
the end-to-end accelerated system. As more RSGA pipeline
steps are accelerated to meet the real-time requirements and
the growing throughput of modern sequencing devices, time
distribution across RSGA read mapping will change drasti-
cally. We expect I/O to emerge as the dominant bottleneck
in the end-to-end analysis as the computational steps are
increasingly accelerated and thus minimized.

We validate this hypothesis through a motivational experi-
ment that analyses RawHash2 [68] using the same real-world
datasets and hardware setup as introduced in our previous
experiment (§3.1). We assume a scenario that applies state-of-
the-art accelerators to the two most frequently accelerated
steps: seeding and chaining. We model the latency of the
accelerated workflow by incrementally reducing the latency
of the seeding and chaining steps by 10% until we reach 100%
total latency reduction, i.e., zero execution time. The results
are shown in Fig. 6.

Fig. 6 shows how I/O data movement overhead progres-
sively dominates end-to-end execution time as latency reduc-
tion increases. We make the key observation that as latency

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

H
1<)
=]

maximum 1I/0
bottleneck

—&—D1 —=—D2 -e-D3
-%-D4 —e—D5

®
S

-
S

40%

_—-e--"*
' ERE 12.2%1,—3(
___)(-—--)(-"’e

1/0 % of total
execution time
B
8

N
S]

¢--0---&--0 "7

0 10 20 30 40 50 60 70 80 90 100
Latency Reduction of Seeding and Chaining %
Figure 6: Impact of I/O on overall execution time under

increasing acceleration of computation bottlenecks.

reduction increases, the I/O data overhead becomes the limit-
ing factor across all datasets. In particular, for small genome
datasets (D1-D3), I/O overhead reaches up to 66% of the total
execution time. For larger genomes, I/O overhead remains
modest until a large latency reduction of 90%. However, as
computation bottlenecks are further minimized, storage I/O
emerges as the primary performance limiter. For example,
I/0 overhead accounts for 57% and 78% of the total exe-
cution time for D5 and D4 respectively when execution
time of seeding and chaining is reduced by 100%. These
results indicate that accelerating the seeding and chaining
alone is insufficient, and that I/O data movement from SSDs
becomes the dominant overhead in accelerated RSGA.

3.3 Our Goal

Based on our motivational analysis, acceleration of RSGA
is critical for achieving real-time genome analysis. While
computational complexity is a key challenge, I/O data move-
ment from SSDs becomes the dominant bottleneck across all
genome datasets once computational steps are heavily accel-
erated. In-Storage processing (ISP) can, therefore, be a key en-
abler for designing a real-time system for RSGA. Specifically,
ISP can uniquely address the I/O data movement bottleneck,
manage the high volume of genomic data, and provide fine-
grained parallelism to accelerate the computational steps.
However, designing an ISP system for RSGA is challenging
due to architectural constraints of SSDs. Limited hardware
resources (such as main memory capacity) and inefficient
random accesses prevent a straightforward implementation
of the RSGA pipeline inside storage. Our goal in this work
is to leverage ISP capabilities in a careful way to accelerate
RSGA by alleviating the I/O overheads and accelerating key
computational steps.

4 MARS Key Idea

The core design idea for MARS is to enable multiple
Processing-In-Memory paradigms within the SSD and lever-
age the high SSD-internal flash channel bandwidth to create
a highly-parallel heterogeneous computing environment for
RSGA inside the storage system. Our optimization strategy
consists of two key components: First, we propose targeted
software modifications on existing RSGA pipelines that take

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

into account SSD limitations and parallelization capabilities
while maintaining accuracy. Second, we provide specialized
near-memory computation units within the SSD for individ-
ual computational steps of the RSGA pipeline and orchestrate
the data flow between them. We leverage two computational
approaches within the SSD: (i) Processing-Using-DRAM,
which exploits the analog properties of DRAM arrays in
SSD to perform massively parallel in-memory operations
with minimal data movement overhead. (ii) Processing-Near-
DRAM, which adds lightweight compute logic close to the
SSD’s internal DRAM, either near the DRAM subarrays or
inside the SSD controller, tailored to the demands of each
RSGA step.

5 MARS Genome Analysis Workflow

MARS implements a genome analysis workflow based on
the state-of-the-art RSGA approach presented in Fig. 1. The
scope of MARS’s software modifications is to reduce both
computational workload and intermediate storage require-
ments, resulting in a version of RSGA that is optimized for
efficient in-storage execution.

5.1 Filtering Techniques

We adopt two distinct filtering techniques to reduce the load
on the computationally intensive and resource-demanding
chaining step.

Frequency Filters. First, we leverage frequency filters [70,
128] to only examine unique, meaningful matches between
signal queries, e.g., seeds, and reference genomes. Frequency
filters are applied to the hash values created by multiple
seeds (§2.1), and discard seeds that appear within the ref-
erence genome above a predefined threshold frequency
(thresh_freq.).

Seed-and-Vote Filtering Second, we adopt the seed-and-
vote filtering technique [133, 136] to discard anchors unlikely
to generate a correct alignment. As described in Section 2, we
partition the reference genome into windows, and anchors
vote for windows that contain exact matches. A window
with a high number of votes is more likely to contain the cor-
rect alignment. Only windows receiving a number of votes
above (thresh_voting) are retained for further processing.
This threshold is selected to balance accuracy (measured
via F1-score) and performance, ensuring sufficient anchors
are preserved for sensitivity, while discarding redundant
matches to reduce workload. This is the first work to apply
the seed-and-vote technique to raw signals. For raw signals,
this process is particularly challenging because reads and
references, when converted to events, can include noise. To
address this, we apply the seed-and-vote technique after the
quantization and hash-table query steps, to preserve accuracy.

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

Based on the size and characteristics of the target
genome, parameter values for both filtering techniques, i.e.,
thresh_freq, thresh_voting and the window size for seed-
and-vote filtering may vary. To ensure robust performance
across a wide range of datasets, we perform an offline pa-
rameter space exploration to tune the parameter values and
achieve a fair trade-off between accuracy and performance
of the analysis. Our exploration space is defined by the tu-
ple (thresh_freq, thresh_voting, voting_window). We test
different configurations on a subset of each dataset (0.5-2%)
and observe that genomes with similar properties (e.g., size
or complexity) consistently benefit from the same parameter
configurations. Small genomes yield the best trade-off be-
tween accuracy and performance across different datasets for
values of (2000, 5, 256) and large genomes for (20000, 2, 256).
Although the values cover a representative set of diverse
genomes, they are easily reconfigurable for new genome
types. The parameter exploration is performed only once
offline and therefore does not impact the end-to-end runtime
and energy.

5.2 Arithmetic Conversion Techniques

We improve the utilization of the internal flash-channel band-
width available within the SSD by using arithmetic conver-
sion techniques. The key idea of this optimization is to con-
vert floating-point values to fixed-point and benefit from
reduced storage requirements (i.e., mostly reduced bit-width
from 64 or 32 bits to 16 bits) for intermediate data, as well
as enable resource-efficient and less time-consuming fixed-
point operations. We perform an experimental analysis at
software level and evaluate the accuracy achieved for fixed-
point arithmetic using 32, 16 and 8 bytes. The use of 16 bytes
leads to small accuracy loss compared to floating point and
significant resource utilization savings.

Our goal is to maximize savings by applying arithmetic
conversion as early as possible in the pipeline. However,
adopting fixed-point arithmetic at the beginning of the
pipeline is challenging due to the noise of raw signals, i.e.,
leveraging fewer bits for raw signals interferes with subse-
quent signal-to-event conversion and quantization leveraged
in typical RSGA pipelines [70], leading to much lower accu-
racy. Applying early quantization, i.e., applying quantization
directly on the raw signal before signal-to-event conversion,
alleviates this challenge. It increases stability against possible
noise and facilitates the adoption of fixed-point arithmetic.
Unlike previous works [70], our workflow first applies quan-
tization, followed by converting floating-point to fixed-point
arithmetic, and then executes the signal-to-event conversion.
We show the accuracy results of our implementation for both
fixed- and floating-point in §8.

Melina Soysal, Konstantina Koliogeorgi et al.

6 MARS Architecture and System

We propose MARS, the first ISP system designed for accel-
erating RSGA by reducing data movement overheads and
leveraging highly parallel computation capabilities present
inside modern storage systems. We design MARS as an end-
to-end In-Storage-Processing system that expands the capa-
bilities of state-of-the-art SSDs and autonomously executes
the RSGA pipeline without host intervention.

6.1 MARS In-Storage Architecture

6.1.1 Overview. Fig. 7 shows a high-level overview of our
system and the application flow.! MARS consists of five types
of components: MARS Control Unit @, Sorter Unit (L), Merger
Unit @, Arithmetic Unit @ and Querying Unit (V).

SSD Controller Components: MARS Control Unit, Sorter
Unit and Merger Unit are placed inside the SSD controller.
MARS Control Unit @ acts as a Finite State Machine (FSM)
that controls and coordinates the data flow between MARS’s
computation units. MARS’s Sorter Unit (@) (§6.4) is an accel-
erator that sorts sequences up to a predefined length. The
Merger Unit (TI) (§6.4) efficiently combines short sorted se-
quences into longer ones. Both units follow the Processing-
Near-DRAM approach, operating on data that originates
from SSD-internal DRAM. One Sorter and Merger pair is
added per Flash Controller, adding up to 8 instances.
SSD-internal DRAM Components: The Arithmetic
Unit @ and Querying Unit (V) are placed inside the SSD-
internal DRAM chips. The Arithmetic Unit @ (§6.2) performs
arithmetic and logical operations. It leverages the Processing-
Near-DRAM approach: An Arithmetic Unit is placed at the
edge of each pair of subarrays’ peripheral logic, leading to
256 instances. The Querying Unit (V) (§6.3) performs efficient
hash-table lookups. It leverages the Processing-Using-DRAM
paradigm: It exploits the analog operational properties of
the SSD-internal DRAM. We implement one Querying Unit
per subarray, i.e., 512 instances.

SSD Controller

Flash Memory

Flash Controller @—
- Orl® §.
g ontro
: Unit
Flash Controller
Merger
D-Internal |
N Subarrays
Ba_nk 7 V) Querying (V) Querying V) Querying V) Querying
-/ it (e it (e i i
Bank
% V) Arithmetic Unit V) Arithmetic Unit
\
V| @QEOOOOO

\STEPS: (DEvent Detection (a,b) @Seeding (c,d,e,f) @Chaining (g,h,i) \
Figure 7: High-level overview of MARS architecture.

ITo ease readability, Fig. 7 and 10 exclude control paths.

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

6.1.2 Mapping Workflow to Compute Units. We per-
form a detailed analysis of the RSGA workflow to partition
the RSGA steps (i.e., event detection, seeding, chaining) into
more fine-grained tasks such as arithmetic (e.g., addition,
multiplication, division), querying and sorting operations.
The entire RSGA workflow is described as a pipeline of these
fine-grained tasks and each one is mapped to one of the
available computation units (Arithmetic, Querying, Sorter,
or Merger Unit) for efficient execution. The MARS Control
Unit encodes the pipeline steps and the order of their execu-
tion into a Finite State Machine and sequentially orchestrates
them at runtime. While the pipeline sequence is predefined,
actual computations in each step are triggered dynamically
based on the availability of inputs. Each compute unit is ac-
tivated only when its inputs are available, ensuring resource
efficiency and avoiding contention.

6.1.3 Control and Data Flow. Each step in MARS’s
pipeline begins as soon as the previous one finishes. Be-
fore starting execution, the index and raw input data are
distributed uniformly in terms of size across all SSD chan-
nels. Data is transferred to the MARS’s Arithmetic Units @,
close to the SSD-internal DRAM subarrays. The Arithmetic
Units @ perform the event detection step (1) consisting of
signal-to-event conversion ({3 and quantization @, executed
sequentially. Next, as part of the seeding step (2), the Arith-
metic Units execute the hash-value generation (¢) and the
frequency filter (@. The filtered hash values are used for
querying () the hash-table for seed hits inside the DRAM at
the Querying Units (V). The seed-and-vote filtering (f) step
discards non-promising seed hits by leveraging once more
the Arithmetic Units @ During the chaining step (3), the
data is first bucketized (g) within the Arithmetic Units @ and
transferred to the Sorter (@) and Merger Units () inside the
SSD controller for the sorting (b) step. The sorted data frag-
ments are consolidated back in the SSD-internal DRAM for
the final part of chaining, i.e., a dynamic programming-based
algorithm () implemented within the Arithmetic Units @

6.2 Event Detection Implementation

We map event detection (i.e., signal-to-event conversion and
quantization §2.1) to the Arithmetic Unit as it mainly com-
prises additions and multiplications. One Arithmetic Unit is
placed next to two SSD-internal DRAM subarrays to perform
arithmetic operations close to the data and leverage the large
subarray-level parallelism available within the DRAM. MARS
is the first work to implement Processing-Near-DRAM inside
the storage-internal DRAM.

Arithmetic Unit Architecture and Mechanism. Our de-
sign is inspired by a previous DRAM-based design, FUL-
CRUM [126]. Fig. 8 illustrates the main components of the
design. A single-word ALU (1) is placed next to a DRAM

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

subarray and performs addition, comparison, multiplica-
tion, and bitwise operations. Registers (2) are placed near
the ALU to store intermediate results. A programmable In-
struction Buffer (3) stores pre-decoded information for po-
tential instructions, i.e., different operands and branch out-
comes. Column-Selection Latches (3) are placed on each col-
umn of each subarray to enable sequential access to individ-
ual columns [126]. A Control Unit (5) determines the order
of instructions and location of next access to the memory

array.
2 Instruction
Buffer

DRAM Subarra

I
5) Control
Unit

1

®

gy

operands

= = =
@Column-SeIection Latches
Figure 8: Overview of the MARS’s Arithmetic Unit near

a DRAM subarray

In order to map the operations of signal-to-event con-
version and quantization to the Arithmetic Unit, we first
break each of them down into arithmetic, predicate-based
and condition-based operations. We construct pre-decoded
instructions for all potential branches of execution within
these operations and store them in the programmable in-
struction buffer. Based on the outcome of the previous oper-
ation, the Control Unit (i) selects the next instruction from
the Instruction Buffer and (ii) identifies the columns of the
subarray that need to be accessed. This ensures that the
Column-Selection Latches either capture the correct input
operands (read from the subarray) or hold the correct target
values before writing them back to the subarray.

6.3 Seeding Implementation

The hash-value generation, frequency filter and seed-and-
vote filtering steps in seeding comprise arithmetic operations
and pairwise comparisons. To execute those operations ef-
ficiently, we use the Arithmetic Unit described in Section
6.2. However, hash table querying presents unique chal-
lenges due to the hash table’s large size and the frequent
random memory accesses it requires. To address this, we im-
plement the hash-querying mechanism inside SSD-internal
DRAM leveraging Processing-Using-Memory, in particular
the pLUTo [65] approach. This method exploits DRAM’s
high storage density to enable massively parallel storage
and querying of lookup tables (LUTs), ensuring efficient and
scalable operations.

Querying Unit Architecture and Mechanism. Fig. 9
shows the architecture and step-by-step control flow of the
Querying Unit. The hash table is stored in the SSD-internal
DRAM and is queried by subsequently activating DRAM

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

rows using custom match logic and gated sense amplifiers
(SA) [65] (highlighted in orange). The custom match logic,
located adjacent to the row buffer, uses comparators to com-
pare the currently activated row index against the key values
loaded into the source row buffer. A matchline is imple-
mented as part of the custom match logic to enable the gated
SA to selectively copy the corresponding value into the out-
put buffer, when a match is detected. A single query proceeds
in four steps. 1) Key Loading. The source row buffer is pop-
ulated with the input keys (e.g., in Fig. 9: random values K, O,
V). @ Row Sweeping & Matching. DRAM rows containing
candidate hash entries are sequentially activated. For each
row, the match logic compares the row index to the loaded
keys. If a match is detected, the corresponding matchline is
asserted. (3) Selective Copying. The gated sense amplifiers
sense and copy only those values in the currently activated
row that correspond to matched keys. @ Result Assembly.
The matched hash values (e.g., in Fig. 9: 6, 1, 4) are assembled
in the row buffer.

Selective Copying & Result Assembly

T o

Row Sweeping & Matching

? vi?

Key Loading
source row buffer

orr-e

current ke
? 20?0 @@,l 2| o VRV, e
sHO—O0 HO—00|: [HOo—00|/ |F |
3 3 : ! 2 ! It
2HO—0O0 IRIO) @ " [EHOo—©O|
2 U I T
rowutrer [JRL LY Car) OGEE

Figure 9: Overview of our hash table query mechanism
in the SSD-internal DRAM.

If the DRAM size allows it, we store several copies of
the hash table in the computation-enhanced subarrays to
query multiple values in parallel. If the genome index ex-
ceeds DRAM capacity, MARS adopts a partitioning strategy:
large indexes (e.g., 52 GB for the human genome in D5) are
divided into smaller regions (e.g., 2.6 GB), which are loaded
into the SSD DRAM and queried sequentially. To minimize
performance impact, MARS overlaps computation with data
loading, effectively hiding the data movement latency.

6.4 Chaining Implementation

Chaining (§2.1) consists of a sorting step (i.e., to sort seed
positions) and a dynamic programming algorithm to extend
chains from sorted seeds. While the dynamic programming
part, based on additions and min operations, is efficiently
handled by our near-DRAM Arithmetic Unit, sorting large
sets of seeds directly near DRAM would be either slow or
require substantial area due to custom comparator logic. In-
stead, we implement a highly parallel, custom sorter design
inside the storage controller and benefit from increased scal-
ability provided by the available SSD controller resources.

Melina Soysal, Konstantina Koliogeorgi et al.

Key Idea. The main implementation challenge is efficiently
sorting input sequences of variable length with high through-
put and minimal area overhead. We address this challenge
by designing a resource-efficient hierarchical mechanism
consisting of (1) a Sorter Unit that processes input sequences
of up to 128 elements and (2) a Merger Unit that combines
smaller sorted subsequences into larger sorted outputs, en-
abling scalability beyond 128 elements.

Sorter and Merger Unit Architecture. MARS’s Sorter and
Merger Unit is based on the bitonic sorter and merger, respec-
tively [37, 181, 197], to benefit from their inherent parallelism
and hardware-friendly structure and operations. Sorter and
merger units are throughput-matched to prevent pipeline
stalls and are sized to balance area efficiency with maximum
utilization of the available internal SSD bandwidth.
Mechanism. MARS’s Control Unit manages the sorting
and merging process, including data movement between the
SSD-internal DRAM and the Sorter and Merger Units. Fig. 10
shows the Sort-and-Merge mechanism flow.

unsorted

5 Jbucketl Flash Controller

§ Merger

€ Sorted subsequences Sorted & merged

S Bucket 1 Bucket 1 @

[=) OEEIEE merge
n

]

CIGIEIE HEER

ch?ate i @ Bucket 182
| |lconcate-
pucket i| | [nate - IEI E’
§ § 1]
| sequences concatenated
Arithmetic Unit | ’_ Arithmetic Unit |

Figure 10: Simplified overview of our Sort-and-Merge
workflow.

As shown in Fig. 10, (T) the Contol Unit groups unsorted
seeds stored in SSD-internal DRAM into eight buckets, with
each bucket corresponding to a non-overlapping region of
the genome. (2) It transfers each bucket to one of eight par-
allel Sorter—Merger units located near the storage controller.
Each Sorter Unit splits its assigned bucket into smaller subse-
quences, i.e., shorter than or equal to 128 elements, and sorts
them locally using bitonic sorting. 3) If a bucket contains
longer sequences, the Sorter Unit forwards the sorted subse-
quences to the Merger Unit. The Merger Unit then merges
these short, sorted input sequences into a longer fully sorted
sequence using a streaming, one-pass merge strategy with
no intermediate buffering or feedback. This design enables
continuous, one-pass merging with low control complexity
and high throughput, especially for long or variable-length
inputs. @ The Control Unit writes the sorted outputs back to
the SSD-internal DRAM. Since buckets are non-overlapping,
they can be directly concatenated without further merging. If
local registers near the Merger Units are insufficient, the Con-
trol Unit temporarily buffers intermediate results in DRAM.

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

The final sorted sequences are subsequently consumed by
the dynamic programming stage of chaining.

6.5 System Integration

MARS is integrated into a modern SSD with two different
modes of operation: conventional and accelerator. In con-
ventional mode, the SSD operates as a storage device only.
In accelerator mode, a MARS-enabled SSD only performs
RSGA. This dual-mode of operation is feasible through small
changes to the Flash Translation Layer (FTL).

MARS FTL and Data Placement. At the beginning of ac-
celerator mode, the Control Unit flushes all metadata es-
sential to the conventional mode (e.g., the page status table,
block read counts, logical-to-physical (L2P) mapping etc.) to
the flash storage. MARS leverages the access pattern of the
RSGA workflow to apply a storage-efficient custom logical-
to-physical (L2P) mapping for the accelerator mode. Since
the access pattern of the genome index and reference is se-
quential, data is placed on the flash chips in a log-structured
manner. The Control Unit then accesses the data in a sequen-
tial manner from the starting LPA and reads across channels
in a round robin manner. Thus, this design allows to keep a
small mapping data structure consisting of: (1) the mapping
between the start logical page address (LPA) and the physical
page address (PPA), (2) the database size, and (3) a sequence
of physical block addresses (PBAs) rather than the complete
LPA-to-PPA mappings to store the genomic data.

SSD Management Tasks. Error Correction, Read Distur-
bance and Data Retention: Since MARS ’s accelerators oper-
ate within the SSD controller and the SSD-internal DRAM,
all data is accessed by the Control Unit after ECC decod-
ing [41, 42, 203, 235]. MARS effectively tackles read distur-
bance and data retention impact [41, 43, 44, 85, 148, 149]
since: (i) The sequential access pattern of the RSGA pipeline
minimizes repeated reads to the same page within short in-
tervals, reducing the likelihood of read disturbances [43, 85],
(if) Commodity SSDs automatically apply data refresh poli-
cies that refresh pages once their read counts exceed prede-
fined thresholds, (iii) The time interval between subsequent
refreshes does not exceed the duration of RSGA, which is sub-
stantially shorter than the manufacturer-specified threshold
for reliable retention age (e.g., one year [157]).
Wear-leveling: MARS effectively mitigates the impact of
writes on flash lifetime thanks to two design choices: (i)
Our design employs an out-of-place write policy and selects
new blocks for writing based on their age, thereby effec-
tively reducing long-term degradation, and (ii) flash writes
are minimized as the Control Unit only writes the final read
mapping results from the SSD-internal DRAM to the flash
memory at the end of the RSGA workflow.

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

Storage Interface Commands. MARS operates indepen-
dently of the host during RSGA execution, using the FSM in
the SSD controller. Our design introduces two new NVMe
commands, i.e., standardized interfaces used by the host to
communicate with SSDs, for the host to support MARS exe-
cution: (i) MARS_Init initiates the RSGA analysis and signals
the SSD to switch from the conventional into the accelerator
mode, (ii) MARS_Write command updates both the MARS
FTL and regular FTL at the end of the application when
the read mapping results are written from the SSD-internal
DRAM to flash cells.

7 Evaluation Methodology

Evaluated Systems. We evaluate MARS by comparing it
against state-of-the-art RSGA and conventional basecalling-
based read-mapping systems in terms of accuracy, perfor-
mance and energy. As a baseline for RSGA-based read map-
ping, we select state-of-the-art RawHash2 [70], which of-
fers a better accuracy-throughput trade-off compared to
prior RSGA tools and techniques, including RawHash [68],
Sigmap [234] and UNCALLED [119].

We evaluate the following systems: (1) BC: a baseline
pipeline for basecalling-based read mapping comprised of
GPU-based basecaller Dorado [2] and minimap2 [128] read-
mapping tool (Version 2.24-r1122). To simulate a real-time
setting, we assume the basecaller processes raw signal
chunks incrementally as they are generated by the sequencer
rather than waiting for the full completion of each read’s
raw signal. (2) RH2: RawHash2 [70] RSGA-based read map-
ping baseline running on a state-of-the-art server-grade
CPU [7]. (3) MS-CPUg;q;: MARS executed on CPU using
floating-point arithmetic and the filtering optimizations pre-
sented in Section 5. (4) MS=CPUg;,.q4: MARS executed on CPU
using both fixed-point arithmetic and filtering optimiza-
tions. (5) MARS: our proposed in-storage design of MARS
using fixed-point arithmetic, implemented as described in
Section 6. (6) MS-EXT: a variant of MARS that add all com-
putation units outside (external to) the SSD. Sorting is of-
floaded to a near-CPU ASIC based on our custom design,
while arithmetic and hash querying operations are executed
in DRAM-based PIM units [65, 126]. This configuration rep-
resents a PIM-only system that avoids any in-storage com-
putation and serves as a comparison point to evaluate the
benefits of tightly integrated compute within the storage
hierarchy. (7) MS-SIMDRAM: a MARS variant that replaces
the Processing-Near-DRAM-based Arithmetic Unit with a
SIMDRAM-based [89] Arithmetic Unit. (8) GenPIP [153]:
a state-of-the-art hardware-accelerated, basecalling-based
read mapping pipeline combining non-volatile memory
(NVM)-based PIM with algorithmic optimizations (9) MS-
SmartSSD [125]: an existing system [224] which directly

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

connects an FPGA with the SSD via an external 3 GB/s
link [213]. We map MARS’s Sorter and Merger Logic Units
to the FPGA (300 MHz clock frequency [224]) and our PIM-
components (§6.2,6.3) in the SSD-internal DRAM.

CPU and GPU Configurations. For the CPU-based sys-
tems, we use a high-end server with two 64-core AMD EPYC
7742 CPUs [7], 1TB of DDR4 DRAM [105] and a performance-
optimized SSD [183] connected to the CPU via a PCle4 inter-
face [165]. For the BC system, the basecalling step (Dorado [2])
runs on an NVIDIA RTX A6000 GPU [11]. All software tools
support multi-threaded processing where each raw signal
sequence is handled by a separate thread. We run all tools
with the best-performing configuration of 128 threads to
compare against our system.

SSD and DRAM Configurations. To evaluate MARS and
MS-SIMDRAM, we consider a performance-optimized SSD with
internal LPDDR4 DRAM [105] (Table 1). Since accelerators
and compute units operate sequentially, we simulate each
component individually, including the data movement be-
tween them. For DRAM-based components (i.e., Arithmetic
and Querying Units), we use timing parameters extracted
from the LPDDR4 DRAM model in CACTI7 [34]. We as-
sume that single-word ALUs embedded in SSD-internal
DRAM operate at 164 MHz. For SSD components we use
MQSim [78, 204], a widely-adopted simulator for modern
SSDs. Our Sorter and Merger Unit are implemented in Verilog
HDL and synthesized using Synopsys Design Compiler [202]
at 1 GHz to obtain timing, area, and energy results. We model
data movement overheads by calculating the transfer latency
between each computing and storage element based on the
size of the data to be transferred and the available bandwidth
between components. We combine the simulation results
from DRAM and SSD simulators, the Verilog synthesis and
the data movement overheads to evaluate the end-to-end
performance of MARS.

Table 1: Simulation configuration of our design.
Component Detailed Configuration
SSD NVMe, PCle 4.0, PCIe lane BW: 1.2 GB/s, TLC,
8 channels, 8 chips/channel, tDMA: 16us, tR (TLC): 22.5us,
flash channel BW: 1 GB/s, 4 ARM Cortex R7
SSD-Internal DRAM 4 GB LPDDR4 DRAM, 16 banks, 512 subarrays,
256 rows/subarray, row size: 2048 bytes

Sorter and Merger Unit Frequency: 1 GHz
Arithmetic Unit Frequency: 164 MHz

Datasets.We evaluate MARS on five real-world datasets
from different organisms, covering a wide range of genome
sizes. Table 2 summarizes the dataset characteristics [5, 8—
10, 12, 14] and reference genomes [3, 4, 6, 13, 158, 171], all
obtained from public repositories. We use the fast5 file format
for our input data and assume that the data is already cor-
rectly placed, i.e. sequentially and evenly distributed across
all SSD channels, for all evaluated systems.

Melina Soysal, Konstantina Koliogeorgi et al.

Table 2: Details of datasets used in our evaluation.

Organism Reads (#) Bases (#) Genome Size (bp) Dataset Size
D1 SARS-CoV-2 1,382,016 594 M 29,903 11 GB
D2 E. coli 353,317 2,365M 5M 27 GB
D3 Yeast 49,989 380 M 12M 39 GB
D4 Green Algae 29,933 609 M 111 M 74 GB

D5 Human HG001 269,507 1,584 M 3,117 M 39 GB

8 Evaluation

8.1 Accuracy Analysis

We evaluate RH2, MS-CPUp;, .y and MS-CPUg,,; accuracy
based on the ground truth generated by basecalling reads
with Dorado [2] and mapping the generated basecalled
reads to the reference genome using minimap2 [128]. All
hardware systems implement MS-CPUpj,,; workflow and
thus achieve the same accuracy. We use UNCALLED paf-
stats [119] tool to identify true positives (TP: correct map-
pings), false positives (FP: incorrect mappings), and false neg-
atives (FN: unmapped reads that are mapped in the ground
truth) based on the mapping position distance from the re-
spective ground truth. Using these values, we calculate pre-
cision (P = TP/ (TP+FP)), recall (R = TP/ (TP+FN)), and the
F; score (F; = 2x(PxR)/(P+R)).

We make two observations based on the accuracy results
reported in Table 3. (1) MS-CPUF;y.q outperforms RH2 in terms
of recall and F; score for all evaluated datasets, while main-
taining on-par precision for small genomes and only a slight
reduction in precision for larger genomes. This improvement
is due to the integration of our two proposed filtering tech-
niques (§5.1) and early quantization (§5.2) which together
eliminate ambiguous or redundant candidate matches, i.e.,
matches that are frequent, low-quality or non-specific, and
allow the pipeline to focus on signal regions that are more
likely to represent correct alignments. (2) The use of fixed-
point and integer operations instead of floating-point opera-
tions only minimally decreases accuracy for all datasets.

8.2 Performance Analysis

We evaluate the performance of all seven systems described
in §7 leveraging the five diverse datasets of Table 2. Fig. 11
shows the execution time speedup achieved by each eval-
uated system over CPU-based RawHash2 RH2. We make
three observations. First, MARS outperforms all other base-
lines across all datasets. Compared to the GPU-accelerated
basecalling based pipeline BC, MARS delivers a speedup of
93X on average across all five datasets with larger speedups
for smaller genomes. This is because MARS (i) eliminates
basecalling, (ii) applies filtering mechanisms, (iii) reduces
data movement, and (iv) enables highly parallel in-storage
execution.

Second, MARS outperforms all prior hardware-accelerated
solutions: MS-EXT, MS-SIMDRAM, GenPIP, and MS-SmartSSD.

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

Table 3: Mapping accuracy of three RSGA pipelines compared to basecalling-based ground truth.

D1 SARS-CoV-2 D2 E.coli D3 Yeast D4 Green Algae D5 Human HG001
Prec. Recall F; Prec. Recall F; Prec. Recall F Prec. Recall F Prec. Recall F
RH2 0.9868 0.8735 0.9267 | 0.9573 0.9009 0.9282 | 0.9862 0.8412 0.9079|0.9691 0.7015 0.8139 | 0.8949 0.4054 0.5582
MS-CPUpixeq || 0.9917 0.9694 0.9803 | 0.9854 0.9574 0.9712|0.9533 0.9643 0.9588 | 0.9125 0.9166 0.9141 | 0.8723 0.6318 0.7300
MS-CPUfrjq; || 0.9939 0.9796 0.9867 | 0.9893 0.9616 0.9753 | 0.9551 0.9655 0.9603 | 0.9254 0.9438 0.9354 | 0.8763 0.6729 0.7612
nBC O MS-CPUp,eq ® MS-SIMDRAM B MS-EXT & MARS Table 4: Throughput of MARS. A single nanopore has a

S GenPIP @ MS-SmartSSD == RawHash2

44.5

bod
8o
o
S

=} 2
> < o]
<
0 ~ ol 3 o I ;
S R X '
-Qg -D S
8 &
o
D3

D1 D2 D4 D5 GEOMEAN
Figure 11: End-to-end execution time speedup of each

system over RH2.

q:l
&9 20.6
7
%10.1
. 10.

ki3’
9.1
£ 9.6

o1 W

Specifically, MARS improves performance by 3.1X on aver-
age over MS-EXT, which adopts PIM solutions (MARS-based
ASIC and PIM accelerator) outside the storage. This compar-
ison point shows that MS-EXT fails to fundamentally solve
the I/O data movement overhead problem and highlights the
importance and need for in-storage processing for RSGA.
MS-SmartSSD performs worse than MARS, due to its limited
3 GB/s bandwidth between SSD and FPGA [125], which re-
stricts the use of internal SSD bandwidth between flash and
storage controller, fully utilized by MARS. While MS-SIMDRAM
addresses I/O overhead through in-storage computation, its
use of bit-serial operations for arithmetic (e.g., multiplica-
tion, division) results in execution time 21.4X slower than
MARS. MARS is the only design that both eliminates the I/O
bottleneck and meets the computational demands of RSGA
acceleration.

Third, our algorithmic improvements alone (MS-CPUF;ycq),
i.e., without leveraging ISP capabilities, provide a consid-
erable speedup of 1.2-10.2X over RH2 for medium- to large-
sized genomes (i.e., D3-D5) and on-par performance for small
genomes (i.e., D1,D2). This demonstrates the effectiveness of
our software optimizations, including filtering, in reducing
the computational load, particularly during chaining.
Throughput evaluation. We compare MARS’s throughput
with the throughput of a single sequencer, which is 450 bases
per second (i.e., 4000 - 5000 samples per second) [216]. As
Table 4 shows, MARS’s throughput is substantially higher than
450 bp/sec for all datasets. In fact, MARS outperforms the real-
time analysis requirement of a full MinION sequencer [103],
which processes data at 230,400 bp/s, by 46X on average
across all datasets (between 1.2X for large genomes (D5) to
202X for small genomes (D1)).

throughput of 450 bp/sec; an entire MinION sequencer
achieves 230,400 bp/sec.

D1 D2 D3 D4 D5
Throughput [bp/sec] 46,655,128 5,274,148 1,277,764 286,728

1,202,660

8.3 Energy Analysis

To demonstrate the energy benefits of MARS, we measure the
energy consumption of all components (i.e., SSD, DRAM,
CPU and if applicable GPU) involved in the respective sys-
tems. We use AMD pProf [28] to measure the energy con-
sumption for CPU-based systems, and the CACTI7 [34]
DDR4 model to estimate the power overheads on our PIM-
enabled DRAM design. We synthesize logic components with
the Synopsys Design Compiler [202] using a 65nm process
node to estimate their power consumption.

Fig. 12 shows the end-to-end energy reduction achieved by
all evaluated systems over RawHash2 (RH2). We make three
observations. (1) All hardware-accelerated systems, i.e., MARS,
MS-EXT, MS-SIMDRAM, GenPIP achieve greater energy reduc-
tion compared to CPU-based setups, i.e., BC and MS-CPUF;yeq-
(2) Only MS-SIMDRAM yields higher energy reduction com-
pared to MARS (by 3.5X on average across datasets), due
to its simplified Arithmetic Unit based on bit-serial, in-
memory execution. However, because of MS-SIMDRAM’s sig-
nificantly higher latency (§8.2), MARS still provides a more fa-
vorable trade-off between latency and energy consumption.
(3) MS-EXT reduces energy by 22.3x as opposed to MARS’s
79.4% reduction over RH2, due to high data movement from
the storage to the host and accelerators and a greater re-
liance on the CPU for orchestration, which increases energy
use on the host side. Overall, MARS achieves the best energy
consumption and performance trade-off among all designs.

OBC B MS-EXT

= MARS
o

I
R

B MS-SIMDRAM
.. RawHash2

BMS-CPUy, g
GenPIP

H
o
2171
4663
2118
507.3
295.9
269.6
629.9

n
0
o

o <
2 o
2
3
o~ - =)
I 0 ~Hr
< ‘[s d
| S N o
o ~ bl © ~ = -
ge S ~ v - 1 ~ <™ Ty
© ix ? NN o lm S i
(=] =] = — &
NI -

S
Fal
D D5 GEOMEAN

1 D2 D3 D4
Figure 12: Energy reduction of each system compared
to RH2.

=
=)

0.3
3.1

[

Energy Reduction
S

o
i

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

8.4 Area Analysis

SSD-internal DRAM overhead. We estimate the base area of
our PIM-enabled DRAM with CACTI7 [34] to be 55.48 mm?
in a 22nm technology. Each Arithmetic Unit occupies 0.0295
mm?, leading to 7.56 mm? [126, 127] total overhead for all 256
Arithmetic Units. Each LUT-based Querying Unit occupies
0.018 mm?, leading to 9.22 mm? [65] for 512 instances. The
total DRAM overhead of our design, i.e., 16.78 mm?, is low
compared to the total SSD area available, i.e., at least 6400
mm? for our SSD configuration of 8 channels and 8 typical
100 mm? NAND flash chips per channel.

SSD Controller Logic overhead. We estimate the area over-
head of our logic components using Synopsys Design Com-
piler [202] with UMC 65nm technology node [208]. The area
for the Sorter, Merger and Controller Unit is 0.78 mm?, 0.14
mm? and 0.002 mm?, respectively. Compared to a 14nm In-
tel Processor [218], the Sorter and Merger introduce only
0.028% area overhead (the area is 0.09 mm? when scaled to
14nm [199]).

Table 5: Area analysis overview per component.

Placement Unit Instances Area [mm?] Area [mm?]
in SSD Number per Unit Total
SSD-internal DRAM Arithmetic 256 0.0295 7.56
Querying 512 0.018 9.22
SSD controller Sorter 8 0.78 6.24
Merger 8 0.14 1.12
Control 1 0.002 0.002

8.5 Sensitivity to SSD-Internal DRAM Size

We perform a sensitivity analysis to examine the scalability
of ISP designs MARS and MS-SIMDRAM for different sizes of
the SSD-internal DRAM, i.e., 2 GB, 4GB (base configuration)
and 8 GB. Fig. 13 shows that MARS’s performance increases
by 1.70x on average when we double the internal DRAM size,
while MS-SIMDRAM’s performance increases almost by 1.99x
on average. Therefore, the proposed design scales well when
increasing internal DRAM resources and is not bound by
the internal bandwidth. MS-SIMDRAM’s slightly better scaling
indicates that increasing the DRAM capacity yields better
results for PuM-based computations.

= Ms-SIMDRAM-2GB

= MS-SIMDRAM-4GB = MS-SIMDRAM-8GB

~ = MARS-2GB = MARS-4GB = \VARS-8GB

I

o 100 i

c 1 L70x ,
g f 7

o 10 |

Q. 1

p=}]

a =¥ 1.99x
A o01 :

D1 D2 D3 D4 D5 GEOMEAN
Figure 13: Sensitivity to SSD-internal DRAM size.

9 Related Work

Melina Soysal, Konstantina Koliogeorgi et al.

To our knowledge, this is the first work to 1) enable in-storage
acceleration of Raw Signal Genome Analysis and 2) combine
the use of processing near memory and processing using
memory inside the storage system. In this section, we briefly
review prior work on hardware acceleration for genome
analysis and ISP.

Hardware Acceleration for RSGA. Prior hardware accel-
eration works on RSGA propose FPGA-based [141, 180, 190,
200] and GPU-based [36, 74, 82, 178] systems. Specifically,
Squigglefilter [60] proposes an edge-GPU-based system for
RSGA that performs contamination analysis for small, vi-
ral genomes based on a 1D systolic array. HARU [190] uses
an MPSoC with an on-chip FPGA to accelerate RSGA and
f5¢ [74] presents a GPU-based accelerator. None of these
systems 1) consider the impact of I/O data movement on
end-to-end execution of RSGA and 2) provide a system for
genome analysis that is scalable to medium- and larger-sized
genomes, due to the use of costly dynamic time-warping
alignment operations [60, 135, 184]. A comparison of MARS
with SquiggleFilter and HARU is out of scope, as these works
focus on performing read alignment for small, mostly viral
genomes. MARS can be integrated into these tools to help
them quickly identify seed hits, thus avoid searching the
entire genome and enable scaling to large genomes.
Hardware Acceleration for Genome Analysis. Multi-
ple prior works propose accelerator designs for basecalling-
based genome analysis targeting basecalling and read map-
ping steps with different architectures like ASICs [72, 150,
207], GPUs [17, 51, 57, 82, 94, 95, 137-140, 162, 219, 231], FP-
GAs [35, 47-50, 64, 73, 76, 88, 90, 91, 130, 143, 176, 209, 221],
ISP [152], and PIM [30, 84, 98, 114, 131, 185, 233, 238]. Base-
calling accelerators [32, 145, 146, 153, 188, 195, 222, 223, 228]
speed up the translation of raw signals into nucleotide se-
quences, a step that is entirely bypassed by our RSGA-based
design. Read mapping accelerators [31, 40, 47, 48, 50, 51, 59,
80, 81, 87, 94, 97, 101, 111, 112, 114, 121, 143, 152, 167, 236]
are not applicable to RSGA as they do not consider the noise
within raw signals.

In-Storage-Processing. Prior works explore ISP through
various approaches using (1) Processing-Near-Flash mem-
ory by integrating processing capabilities into the SSD con-
troller in a general-purpose [15, 79, 110, 113, 212, 240] or
application-specific way [58, 107, 117, 151, 166, 172, 173,
187, 214], (2) Processing-using-Flash memory by exploit-
ing the analog properties of flash memory [56, 75, 92,
147, 154, 163, 191, 206, 211] or by (3) closely integrating
SSDs with GPUs [54] or FPGAs [18, 106, 118, 205] (e.g.,
SmartSSD [125, 213]). While SmartSSD [125] places an FPGA
near the SSD, MARS integrates computation inside the SSD-
internal DRAM and controllers. Several works also consider
other storage technologies like HDDs [55, 113, 172, 173] for

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

computation. None of these works leverages SSD’s computa-
tional capabilities and enhances them to accelerate RSGA.

10 Conclusion

We propose MARS, the first in-storage processing architec-
ture that enables multiple Processing-In-Memory paradigms
within the SSD to reduce both data movement and computa-
tion overheads of RSGA read mapping. MARS (1) proposes
targeted software modifications, such as early signal quan-
tization and read filtering, to minimize hardware resources
while maintaining accuracy, and (2) provides near-memory
computation units within the SSD for accelerating compu-
tational steps of the RSGA pipeline. MARS improves per-
formance over software and hardware-accelerated state-of-
the-art read mapping pipelines by a factor of 93x and 40x
while reducing their energy consumption by 427x and 72x
on average across five real-world dataset.

Acknowledgments

We thank the anonymous reviewers of ICS 2025, ISCA 2025
and HPCA 2025 for their feedback. We thank the SAFARI
group members for the feedback and stimulating intellectual
environment they provide. We acknowledge the generous
gifts from our industrial partners including Google, Huawei,
Intel, and Microsoft. This work is supported in part by the
ETH Future Computing Laboratory (EFCL), Huawei ZRC
Storage Team, Semiconductor Research Corporation, AI Chip
Center for Emerging Smart Systems (ACCESS), sponsored
by InnoHK funding, Hong Kong SAR, and European Union’s
Horizon programme for research and innovation [101047160
- BioPIM].

References

[1] [n.d.]. Bonito. https://github.com/nanoporetech/bonito.

[2] [n.d.]. Dorado. https://github.com/nanoporetech/dorado.

[3] 2002. Escherichia coli Reference Genome GCA_000007445.1.
https://ftp.ncbinlm.nih.gov/genomes/all/GCA/000/007/445/GCA _
000007445.1_ASM744v1/GCA_000007445.1_ASM744v1_genomic.
fna.gz.

[4] 2014. Yeast Reference Genome GCA_000146045.2. https:
//hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/sacCer3.fa.
gz.

[5] 2017. Human Genome Dataset, SRA Accession: FAB42260. http:
//s3.amazonaws.com/nanopore-human-wgs/rel6/MultiFast5Tars/
FAB42260-4177064552_Multi_Fast5.tar.

[6] 2018. Green Algae Reference Genome GCF_000002595.2.
https://ftp.ncbinlm.nih.gov/genomes/all/GCF/000/002/595/GCF_
000002595.2_Chlamydomonas_reinhardtii_v5.5/GCF_000002595.2_
Chlamydomonas_reinhardtii_v5.5_genomic.fna.gz.

[7] 2019. AMD® EPYC® 7742 CPU. https://www.amd.com/en/products/
cpu/amd-epyc-7742.

[8] 2019. Green Algae Genome Dataset, SRA Accession:
ERR3237140. https://sra-pub-src-2.s3.amazonaws.com/ERR3237140/

Chlamydomonas_0.tar.gz.
[9] 2019. Oxford Nanopore Human Reference Datasets. https://github.

com/nanopore-wgs-consortium/NA12878.

(10]

(11]
(12]

(13

=

(14]

[15]

(16]

(17]

(18]

(19

[

[20

[t

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

2019. Yeast Genome Dataset, SRA Accession: SRR8648503.
https://sra-pub-src-1.s3.amazonaws.com/SRR8648503/GLU1II_
basecalled_fast5_1.tar.gz.

2020. NVIDIA RTX A6000. https://www.nvidia.com/en-us/design-
visualization/rtx-a6000/.

2020. SARS-Cov-2 Genome Dataset. https://cadde.s3.climb.ac.uk/SP1-
raw.tgz.

2020. SARS-Cov-2 Reference Genome GCF_009858895.2. https://ftp.
ncbi.nlm.nih.gov/genomes/all/GCF/009/858/895/GCF_009858895.2_
ASM985889v3/GCF_009858895.2_ASM985889v3_genomic.fna.gz.
2021. Escherichia coli Genome Dataset, SRA Accession:
ERR9127551. https://sra-pub-src-2.s3.amazonaws.com/ERR9127551/
ecoli_r9.tar.gz.

Anurag Acharya, Mustafa Uysal, and Joel Saltz. 1998. Active Disks:
Programming Model, Algorithms and Evaluation. ASPLOS (1998).
Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis,
Mark Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD
Performance. In USENIX ATC.

Nauman Ahmed, Jonathan Levy, Shanshan Ren, Hamid Mushtagq,
Koen Bertels, and Zaid Al-Ars. 2019. GASAL2: a GPU Accelerated
Sequence Alignment Library for High-throughput NGS data. BMC
bioinformatics (2019).

Mohammadamin Ajdari, Pyeongsu Park, Joonsung Kim, Dongup
Kwon, and Jangwoo Kim. 2019. CIDR: A Cost-effective in-line Data
Reduction System for terabit-per-second Scale SSD Arrays. In HPCA.
Alexandra Sneddon, Agin Ravindran, Nadine Hein, Nikolay Shirokikh,
and Eduardo Eyras. 2022. Real-time Biochemical-free Targeted Se-
quencing of RNA species with RISER. bioRxiv (2022).

Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay,
Francesca Antonacci, Fereydoun Hormozdiari, Jacob O Kitzman, Carl
Baker, Maika Malig, Onur Mutlu, S Cenk Sahinalp, Richard A Gibbs,
and Evan E Eichler. 2009. Personalized Copy Number and Segmen-
tal Duplication Maps Using Next-Generation Sequencing. Nature
Genetics (2009).

Mohammed Alser, Ziilal Bing6l, Damla Senol Cali, Jeremie Kim,
Saugata Ghose, Can Alkan, and Onur Mutlu. 2020. Accelerating
Genome Analysis: A Primer on An Ongoing Journey. Micro (2020).
Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and
Can Alkan. 2019. Shouji: A Fast and Efficient Pre-alignment Filter
for Sequence Alignment. Bioinformatics (2019).

Mohammed Alser, Hasan Hassan, Hongyi Xin, Onur Ergin, Onur
Mutlu, and Can Alkan. 2017. GateKeeper: a new Hardware Archi-
tecture for Accelerating Pre-alignment in DNA Short Read Mapping.
Bioinformatics (2017).

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun,
Haiyu Mao, Gagandeep Singh, Juan Gomez-Luna, and Onur Mutlu.
2022. From Molecules to Genomic Variations: Accelerating Genome
Analysis via Intelligent Algorithms and Architectures. CSBJ (2022).
Muhammed Alser, Onur Mutlu, and Can Alkan. 2017. MAGNET:
Understanding and improving the accuracy of genome pre-Alignment
filtering.

Mohammed Alser, Jeremy Rotman, Kodi Taraszka, Huwenbo Shi,
Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev,
Benjamin D Singer, Brunilda Balliu, et al. 2021. Technology Dic-
tates Algorithms: Recent Developments in Read Alignment. Genome
Biology (2021).

Mohammed Alser, Taha Shahroodi, Juan Gémez-Luna, Can Alkan,
and Onur Mutlu. 2020. SneakySnake: A Fast and Accurate Universal
Genome Pre-alignment Filter for CPUs, GPUs and FPGAs. Bioinfor-
matics (2020).

AMD. [n.d.]. AMD pProf. https://www.amd.com/en/developer/uprof.
html.

https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/dorado
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/007/445/GCA_000007445.1_ASM744v1/GCA_000007445.1_ASM744v1_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/007/445/GCA_000007445.1_ASM744v1/GCA_000007445.1_ASM744v1_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/007/445/GCA_000007445.1_ASM744v1/GCA_000007445.1_ASM744v1_genomic.fna.gz
https://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/sacCer3.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/sacCer3.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/bigZips/sacCer3.fa.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel6/MultiFast5Tars/FAB42260-4177064552_Multi_Fast5.tar
http://s3.amazonaws.com/nanopore-human-wgs/rel6/MultiFast5Tars/FAB42260-4177064552_Multi_Fast5.tar
http://s3.amazonaws.com/nanopore-human-wgs/rel6/MultiFast5Tars/FAB42260-4177064552_Multi_Fast5.tar
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/595/GCF_000002595.2_Chlamydomonas_reinhardtii_v5.5/GCF_000002595.2_Chlamydomonas_reinhardtii_v5.5_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/595/GCF_000002595.2_Chlamydomonas_reinhardtii_v5.5/GCF_000002595.2_Chlamydomonas_reinhardtii_v5.5_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/595/GCF_000002595.2_Chlamydomonas_reinhardtii_v5.5/GCF_000002595.2_Chlamydomonas_reinhardtii_v5.5_genomic.fna.gz
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://sra-pub-src-2.s3.amazonaws.com/ERR3237140/Chlamydomonas_0.tar.gz
https://sra-pub-src-2.s3.amazonaws.com/ERR3237140/Chlamydomonas_0.tar.gz
https://github.com/nanopore-wgs-consortium/NA12878
https://github.com/nanopore-wgs-consortium/NA12878
https://sra-pub-src-1.s3.amazonaws.com/SRR8648503/GLU1II_basecalled_fast5_1.tar.gz
https://sra-pub-src-1.s3.amazonaws.com/SRR8648503/GLU1II_basecalled_fast5_1.tar.gz
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://cadde.s3.climb.ac.uk/SP1-raw.tgz
https://cadde.s3.climb.ac.uk/SP1-raw.tgz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/009/858/895/GCF_009858895.2_ASM985889v3/GCF_009858895.2_ASM985889v3_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/009/858/895/GCF_009858895.2_ASM985889v3/GCF_009858895.2_ASM985889v3_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/009/858/895/GCF_009858895.2_ASM985889v3/GCF_009858895.2_ASM985889v3_genomic.fna.gz
https://sra-pub-src-2.s3.amazonaws.com/ERR9127551/ecoli_r9.tar.gz
https://sra-pub-src-2.s3.amazonaws.com/ERR9127551/ecoli_r9.tar.gz
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

AnandTech. 2020. New Enterprise SSD Controllers.
https://www.anandtech.com/show/16275/new-enterprise-ssd-
controllers-from-silicon-motion-phison-fadu.

Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. 2019. Aligns:
A Processing-in-Memory Accelerator for DNA Short Read Alignment
leveraging sot-mram. In DAC.

Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. 2020. PIM-
Aligner: A Processing-in-MRAM Platform for Biological Sequence
Alignment. In DATE.

Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu,
Martin Foltin, R. Stanley Williams, Paolo Faraboschi, Wen mei Hwu,
John Paul Strachan, Kaushik Roy, and Dejan S Milojicic. 2019. PUMA:
A Programmable Ultra-efficient Memristor-based Accelerator for Ma-
chine Learning Inference.

Euan A. Ashley. 2016. Towards Precision Medicine. Nature Reviews
Genetics (2016).

Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar,
Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7: New Tools for
Interconnect Exploration in Innovative Off-Chip Memories. ACM
Trans. Archit. Code Optim. (2017).

Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin Lim, Zbig-
niew T Kalbarczyk, Deming Chen, Steven S Lumetta, and Ravis-
hankar K Iyer. 2018. ASAP: Accelerated Short-Read Alignment on
Programmable Hardware. TC (2018).

Yuwei Bao, Jack Wadden, John R. Erb-Downward, Piyush Ranjan,
Weichen Zhou, Torrin L. McDonald, Ryan E. Mills, Alan P. Boyle,
Robert P. Dickson, David Blaauw, and Joshua D. Welch. 2021. Squig-
gleNet: Real-time, Direct Classification of Nanopore Signals. Genome
Biology (2021).

Kenneth E Batcher. 1968. Sorting Networks and their Applications.
In AFIPS.

Zilal Bing6l, Mohammed Alser, Onur Mutlu, Ozcan Ozturk, and Can
Alkan. 2021. GateKeeper-GPU: Fast and Accurate Pre-Alignment
Filtering in Short Read Mapping. IPDPSW (2021).

Joshua S Bloom, Laila Sathe, Chetan Munugala, Eric M Jones, Molly
Gasperini, Nathan B Lubock, Fauna Yarza, Erin M Thompson, Kyle M
Kovary, Jimin Park, et al. 2021. Massively Scaled-Up Testing for SARS-
CoV-2 RNA via Next-Generation Sequencing of Pooled and Barcoded
Nasal and Saliva Samples. Nature Biomedical Engineering (2021).
Luk Burchard, Max Xiaohang Zhao, Johannes Langguth, Aydin Bulug,
and Giulia Guidi. 2023. Space Efficient Sequence Alignment for
SRAM-Based Computing: X-Drop on the Graphcore IPU. SC (2023).
Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu.
2017. Error Characterization, Mitigation, and Recovery in Flash-
Memory-based Solid-State Drives. Proc. IEEE (2017).

Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu.
2018. Errors in Flash-Memory-based Solid-State Drives: Analysis,
Mitigation, and Recovery. Inside Solid State Drives (2018).

Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. 2015. Read Disturb
Errors in MLC NAND Flash Memory: Characterization, Mitigation,
and Recovery. In DSN.

Yu Cali, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur Mutlu. 2015.
Data Retention in MLC NAND Flash Memory: Characterization, Op-
timization, and Recovery. In HPCA.

Meryem Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can
Firtina, Joel Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghi-
asi, Can Alkan, and Onur Mutlu. 2024. TargetCall: Eliminating the
Wasted Computation in Basecalling via Pre-Basecalling Filtering.
Frontiers in Genetics (2024).

Fan Chen, Linghao Song, Yiran Chen, et al. 2020. PARC: A Processing-
In-CAM Architecture for Genomic Long Read Pairwise Alignment

Melina Soysal, Konstantina Koliogeorgi et al.

using ReRAM. In ASP-DAC.
[47] Peng Chen, Chao Wang, Xi Li, and Xuehai Zhou. 2014. Accelerat-

ing the Next Generation Long Read Mapping with the FPGA-based
System. TCBB (2014).

Yen-Lung Chen, Bo-Yi Chang, Chia-Hsiang Yang, and Tzi-Dar Chiueh.
2021. A High-Throughput FPGA Accelerator for Short-Read Mapping
of the Whole Human Genome. TPDS (2021).

Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei.
2016. When Spark Meets FPGAs: A Case Study for Next-Generation
DNA Sequencing Acceleration. In HotCloud.

Yu-Ting Chen, Jason Cong, Jie Lei, and Peng Wei. 2015. A Novel High-
Throughput Acceleration Engine for Read Alignment. In FCCM.

[51] Haoyu Cheng, Yong Zhang, and Yun Xu. 2018. Bitmapper2: A GPU-
accelerated All-Mapper based on the Sparse q-gram Index. TCBB
(2018).

Yiran Cheng, Xibo Sun, and Qiong Luo. 2024. RapidGKC: GPU-
Accelerated K-Mer Counting. In ICDE.

[53] G. M. Cherf, K. R. Lieberman, H. Rashid, C. E. Lam, K. Karplus, and M.
Akeson. 2012. Automated Forward and Reverse Ratcheting of DNA
in a Nanopore at 5-A Precision. Nature Biotechnology (2012).
Benjamin Y Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro.
2013. Xsd: Accelerating Mapreduce by Harnessing the GPU Inside
an SSD. In WoNDP.

Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin
Yi, and Gregory R Ganger. 2013. Active Disk Meets Flash: A Case for
Intelligent SSDs. In ICS.

[56] Won Ho Choi, Pi-Feng Chiu, Wen Ma, Gertjan Hemink, Tung Thanh
Hoang, Martin Lueker-Boden, and Zvonimir Bandic. 2020. An In-
Flash Binary Neural Network Accelerator with SLC NAND Flash
Array. In ISCAS.

Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Mar-
torell, Eduard Ayguade, George Teodoro, and Alba Cristina Magalhaes
Melo. 2016. CUDAlign 4.0: Incremental Speculative Traceback for
Exact Chromosome-wide Alignment in GPU Clusters. TPDS (2016).
Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park,
Kwanghyun Park, and David J DeWitt. 2013. Query Processing on
Smart SSDs: Opportunities and Challenges. In SIGMOD.

Max Doblas, Oscar Lostes-Cazorla, Quim Aguado-Puig, Nicholas
Cebry, Pau Fontova-Musté, Christopher Batten, Santiago Marco-Sola,
and Miquel Moreté. 2023. GMX: Instruction Set Extensions for Fast,
Scalable, and Efficient Genome Sequence Alignment. In MICRO.

[60] Tim Dunn, Harisankar Sadasivan, Jack Wadden, Kush Goliya, Kuan-
Yu Chen, David Blaauw, Reetuparna Das, and Satish Narayanasamy.
2021. SquiggleFilter: An Accelerator for Portable Virus Detection. In
MICRO.

Harrison S. Edwards, Raga Krishnakumar, Anupama Sinha, Sara W.
Bird, Kamlesh D. Patel, and Michael S. Bartsch. 2019. Real-Time
Selective Sequencing with RUBRIC: Read Until with Basecall and
Reference-Informed Criteria. Sci. Rep. (2019).

Hans Ellegren and Nicolas Galtier. 2016. Determinants of Genetic
Diversity. Nature Reviews Genetics (2016).

Kam Eshghi and Rino Micheloni. 2018. SSD Architecture and PCI
Express Interface. In SSDs.

Xia Fei, Zou Dan, Lu Lina, Man Xin, and Zhang Chunlei. 2018. FP-
GASW: Accelerating Large-scale Smith-Waterman Sequence Align-
ment Application with Backtracking on FPGA Linear Systolic Array.
Interdisciplinary Sciences: Computational Life Sciences (2018).

Jo#o Dinis Ferreira, Gabriel Falcao, Juan Gémez-Luna, Mohammed
Alser, Lois Orosa, Mohammad Sadrosadati, Jeremie S. Kim, Geraldo F.
Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu. 2022. pLUTo:
Enabling Massively Paralle] Computation in DRAM via Lookup Ta-
bles. In MICRO.

(48

=

(49

[’

(50

[t

[52

=

[54

[l

[55

—

[57

—

[58

=

[59

—

[61

—

(62

—

(63

[t

(64

=

(65

=

https://www.anandtech.com/show/16275/new-enterprise-ssd-controllers-from-silicon-motion-phison-fadu
https://www.anandtech.com/show/16275/new-enterprise-ssd-controllers-from-silicon-motion-phison-fadu

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

[66]

(67]

(68]

[69]

[70]

(71]

[72]

(73]

[74]

(75]

[76]

[77]

(78]

[79]

(80]

(81]

Can Firtina. 2025. Enabling Fast, Accurate, and Efficient Real-Time
Genome Analysis via New Algorithms and Techniques. arXiv preprint
arXiv:2503.02997 (2025).

Can Firtina and Can Alkan. 2016. On Genomic Repeats and Repro-
ducibility. Bioinformatics (2016).

Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu. 2023. RawHash:
Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore
Signals for Large Genomes. Bioinformatics (2023).

Can Firtina, Maximilian Mordig, Harun Mustafa, Sayan Goswami,
Nika Mansouri Ghiasi, Stefano Mercogliano, Furkan Eris, Joél Lindeg-
ger, Andre Kahles, and Onur Mutlu. 2024. Rawsamble: Overlapping
and Assembling Raw Nanopore Signals using a Hash-based Seeding
Mechanism. arXiv (2024).

Can Firtina, Melina Soysal, Joél Lindegger, and Onur Mutlu. 2024.
RawHash2: Mapping Raw Nanopore Signals Using Hash-Based Seed-
ing and Adaptive Quantization. Bioinformatics (2024).

Mauricio Flores, Gustavo Glusman, Kristin Brogaard, Nathan D Price,
and Leroy Hood. 2013. P4 Medicine: How Systems Medicine Will
Transform the Healthcare Sector and Society. Personalized Medicine
(2013).

Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetu-
parna Das, David Blaauw, and Satish Narayanasamy. 2018. GenAx: A
Genome Sequencing Accelerator. In ISCA.

Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David Blaauw,
Satish Narayanasamy, and Reetuparna Das. 2020. SeedEx: A Genome
Sequencing Accelerator for Optimal Alignments in Subminimal Space.
In MICRO.

Hasindu Gamaarachchi, Chun Wai Lam, Gihan Jayatilaka, Hiruna
Samarakoon, Jared T. Simpson, Martin A. Smith, and Sri
Parameswaran. 2020. GPU Accelerated Adaptive Banded Event Align-
ment for Rapid Comparative Nanopore Signal Analysis. BMC Bioin-
formatics (2020).

Congming Gao, Xin Xin, Youyou Lu, Youtao Zhang, Jun Yang, and
Jiwu Shu. 2021. ParaBit: Processing Parallel Bitwise Operations in
NAND Flash Memory Based SSDs. In MICRO.

Amit Goyal, Hyuk Jung Kwon, Kichan Lee, Reena Garg, Seon Young
Yun, Yoon Hee Kim, Sunghoon Lee, and Min Seob Lee. 2017. Ultra-fast
Next Generation Human Genome Sequencing Data Processing using
DRAGENTM bio-IT Processor for Precision Medicine. Open Journal
of Genetics (2017).

Alexander L. Greninger, Samia N. Naccache, Scot Federman, Guixia
Yu, Placide Mbala, Vanessa Bres, Doug Stryke, Jerome Bouquet,
Sneha Somasekar, Jeffrey M. Linnen, Roger Dodd, Prime Mulem-
bakani, Bradley S. Schneider, Jean-Jacques Muyembe-Tamfum, Su-
san L. Stramer, and Charles Y. Chiu. 2015. Rapid Metagenomic Identifi-
cation of Viral Pathogens in Clinical Samples by Real-time Nanopore
Sequencing Analysis. Genome Medicine (2015).

CMU SAFARI Research Group. 2018. MQSim: A Framework for SSD
Simulation - GitHub. https://github.com/CMU-SAFARI/MQSim.
Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, Jacheon Jeong, and Duckhyun Chang. 2016. Biscuit:
A Framework for near-Data Processing of Big Data Workloads. In
ISCA.

Yufeng Gu, Arun Subramaniyan, Tim Dunn, Alireza Khadem, Kuan-
Yu Chen, Somnath Paul, Md Vasimuddin, Sanchit Misra, David Blaauw,
Satish Narayanasamy, et al. 2023. GenDP: A Framework of Dy-
namic Programming Acceleration for Genome Sequencing Analysis.
In ISCA.

Venkateshwarlu Yellaswamy Gudur, Sidharth Maheshwari, Amit
Acharyya, and Rishad Shafik. 2021. An FPGA based Energy-Efficient

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

Read Mapper with Parallel Filtering and In-Situ Verification. TCBB

(2021).

Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong.

2019. Hardware Acceleration of Long Read Pairwise Overlapping in

Genome Sequencing: A Race between FPGA and GPU. In FCCM.

[83] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A
Flash Translation Layer Employing Demand-based Selective Caching
of Page-level Address Mappings. In ASPLOS.

[84] Saransh Gupta, Mohsen Imani, Behnam Khaleghi, Venkatesh Kumar,
and Tajana Rosing. 2019. RAPID: A ReRAM Processing In-Memory
Architecture for DNA Sequence Alignment. In ISLPED.

[85] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. 2015. An Integrated
Approach for Managing Read Disturbs in High-density NAND Flash
Memory. TCAD (2015).

[86] Faraz Hach, Iman Sarrafi, Farhad Hormozdiari, Can Alkan, Evan E

Eichler, and S Cenk Sahinalp. 2014. mrsFAST-Ultra: A Compact,

SNP-Aware Mapper for High Performance Sequencing Applications.

Nucleic acids research (2014).

Abbas Haghi, Lluc Alvarez, Jordi Front, Juan Miguel De Haro Ruiz,

Roger Figueras, Max Doblas, Santiago Marco-Sola, and Miquel Moreto.

2023. WFAsic: A High-Performance ASIC Accelerator for DNA Se-

quence Alignment on a RISC-V SoC. In ICPP.

Abbas Haghi, Santiago Marco-Sola, Lluc Alvarez, Dionysios Diaman-

topoulos, Christoph Hagleitner, and Miquel Moreto. 2021. An FPGA

Accelerator of the Wavefront Algorithm for Genomics Pairwise Align-

ment. In FPL.

Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, Jodo Dinis

Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser,

Saugata Ghose, Juan Gémez-Luna, and Onur Mutlu. 2021. SIMDRAM:

A Framework for Bit-Serial SIMD Processing Using DRAM. In ASP-

LOS.

Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee,

Seong Hoon Seo, U Gyeong Song, Young H Oh, Krste Asanovic, Jae W

Lee, and Lisa Wu Wills. 2020. Genesis: A Hardware Acceleration

Framework for Genomic Data Analysis. In ISCA.

Tae Jun Ham, Yejin Lee, Seong Hoon Seo, U Gyeong Song, Jae W Lee,

David Bruns-Smith, Brendan Sweeney, Krste Asanovic, Young H Oh,

and Lisa Wu Wills. 2021. Accelerating Genomic Data Analytics with

Composable Hardware Acceleration Framework. Micro (2021).

[92] Runze Han, Peng Huang, Yachen Xiang, Chen Liu, Zhen Dong,

Zhiqiang Su, Yongbo Liu, Lu Liu, Xiaoyan Liu, and Jinfeng Kang.

2019. A Novel Convolution Computing Paradigm based on NOR Flash

Array with High Computing Speed and Energy Efficiency. TCAS I

(2019).

Seunghee Han, Seungjae Moon, Teokkyu Suh, JaeHoon Heo, and Joo-

Young Kim. 2024. BLESS: Bandwidth and Locality Enhanced SMEM

Seeding Acceleration for DNA Sequencing. In ISCA.

Ernst Joachim Houtgast, VladMihai Sima, Koen Bertels, and Zaid

AlArs. 2017. An Efficient GPU-accelerated Implementation of Ge-

nomic Short Read Mapping with BWA-MEM. ACM SIGARCH Com-

puter Architecture News (2017).

Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid

Al-Ars. 2018. Hardware Acceleration of BWA-MEM Genomic Short

Read Mapping for Longer Read Lengths. Computational biology and

chemistry (2018).

[96] Neng Huang, Fan Nie, Peng Ni, Feng Luo, and Jianxin Wang. 2020.

SACall: A Neural Network Basecaller for Oxford Nanopore Sequenc-

ing Data Based on Self-Attention Mechanism. TCBB (2020).

Yi Huang, Lingkun Kong, Dibei Chen, Zhiyu Chen, Xiangyu Kong,

Jianfeng Zhu, Konstantinos Mamouras, Shaojun Wei, Kaiyuan Yang,

and Leibo Liu. 2023. CASA: An Energy-Efficient and High-Speed

CAM-based SMEM Seeding Accelerator for Genome Alignment. In

82

—

(87

—

(88

=

(89

—

[90

=

[91

—

[93

[t

(94

=

[95

=

[97

—

https://github.com/CMU-SAFARI/MQSim

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

MICRO.

Wengin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. 2018.
RADAR: A 3D-ReRAM based DNA Alignment Accelerator Archi-
tecture. In DAC.

W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie. 2019. MEDAL:
Scalable DIMM-based Near Data Processing Accelerator for DNA
Seeding Algorithm. In MICRO.

W. Huangfu, K. T. Malladi, S. Li, P. Gu, and Y. Xie. 2020. NEST:
DIMM-based Near-Data-Processing Accelerator for K-mer Counting.
In ICCAD.

Zuher Jahshan, Itay Merlin, Esteban Garzén, and Leonid Yavits. 2023.
DASH-CAM: Dynamic Approximate SearcH Content Addressable
Memory for genome classification. MICRO (2023).

Z.Jahshan and L. Yavits. 2024. MajorK: Majority Based kmer Matching
in Commodity DRAM. CAL (2024).

Miten Jain, Olsen Hugh E., Benedict Paten, and Mark Akeson. 2016.
The Oxford Nanopore MinION: Delivery of Nanopore Sequencing to
the Genomics Community. Genome Biology (2016).

Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand,
Thomas A Sasani, John R Tyson, Andrew D Beggs, Alexander T
Dilthey, Ian T Fiddes, Sunir Malla, Hannah Marriott, Tom Nieto,
Justin O’Grady, Hugh E Olsen, Brent S Pedersen, Arang Rhie, Hollian
Richardson, Aaron R Quinlan, Terrance P Snutch, Louise Tee, Benedict
Paten, Adam M Phillippy, Jared T Simpson, Nicholas J Loman, and
Matthew Loose. 2018. Nanopore Sequencing and Assembly of a
Human Genome with Ultra-Long Reads. Nature Biotechnology (2018).

JESD209-4B JEDEC. 2017. Low Power Double Data Rate 4 (LPDDR4)
Standard.

Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn,
Myron King, Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance
for Big Data Analytics. ISCA (2015).

Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind.
2018. GraFBoost: Using Accelerated Flash Storage for External Graph
Analytics. In ISCA.

Liana E. Kafetzopoulou, Kyriakos Efthymiadis, Kuiama Lewandowski,
Ant Crook, Dan Carter, Jane Osborne, Emma Aarons, Roger Hewson,
Julian A. Hiscox, Miles W. Carroll, Richard Vipond, and Steven T.
Pullan. 2018. Assessment of Metagenomic Nanopore and Illumina Se-
quencing for Recovering Whole Genome Sequences of Chikungunya
and Dengue Viruses Directly from Clinical Samples. Euro Surveill
(2018).

Dae-Hyun Kang, Min-Soo Kim, Sung-Chul Jeon, Woo-Sung Jung, Jin-
Young Park, Gyu-Tae Choo, Dae-Kee Shim, Anil Kavala, Seung-Bum
Kim, Kyu-Min Kang, Jae-Hyun Lee, Ki-Young Ko, Hyun-Woo Park,
Byung-Joon Min, Chan Yu, Sung-Kyu Yun, Nam Kim, Yong Jung,
Seung Seo, Sangwoo Kim, Min-Kyu Lee, Joon-Young Park, Jin-Chul
Kim, Young-Su Cha, Kyung Kim, Yong Jo, Hyun Kim, Yong Choi,
Jihoon Byun, Jin-Ho Park, Ki Kim, Tae-Hyoung Kwon, Young Min,
Chang Yoon, Young Kim, Dong-Hyun Kwak, Eui Lee, Woo-Geun
Hahn, Kyu-Seok Kim, Ki Kim, Eui Yoon, Woo-Tae Kim, Inhee Lee,
Sang-Ho Moon, Jong Ihm, Do-Seung Byeon, Kyung-Won Song, Sung
Hwang, and Chong-Ho Kyung. 2019. A 512Gb 3-Bit/Cell 3D 6th-
Generation V-NAND Flash Memory with 82MB/s Write Throughput
and 1.2Gb/s Interface. In ISSCC.

Yangwook Kang, Yang-suk Kee, Ethan L. Miller, and Chanik Park.
2013. Enabling Cost-Effective Data Processing with Smart SSD. In
MSST.

Roman Kaplan, Leonid Yavits, and Ran Ginosar. 2018. RASSA: Re-
sistive Prealignment Accelerator for Approximate DNA Long Read
Mapping. Micro (2018).

Roman Kaplan, Leonid Yavits, and Ran Ginosasr. 2020. BioSEAL: In-
Memory Biological Sequence Alignment Accelerator for Large-Scale

Melina Soysal, Konstantina Koliogeorgi et al.

Genomic Data. In SYSTOR.

[113] Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. 1998.
A Case for Intelligent Disks (IDISKs). SIGMOD Rec. (1998).

[114] S Karen Khatamifard, Zamshed Chowdhury, Nakul Pande, Meisam

Razaviyayn, Chris Kim, and Ulya R Karpuzcu. 2021. GeNVoM: Read

Mapping Near Non-Volatile Memory. TCBB (2021).

Jeremie S Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata

Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan,

and Onur Mutlu. 2018. GRIM-Filter: Fast Seed Location Filtering

in DNA Read Mapping Using Processing-in-memory Technologies.

BMC Genomics (2018).

Jeremie S Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. 2018.

Solar-DRAM: Reducing DRAM Access Latency by Exploiting the

Variation in Local Bitlines. In ICCD.

Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won

Lee, and Bongki Moon. 2016. In-Storage Processing of Database Scans

and Joins. Information Sciences (2016).

Gunjae Koo, Kiran Kumar Matam, Te I, HV Krishna Giri Narra, Jing

Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram. 2017.

Summarizer: Trading Communication with Computing Near Storage.

In MICRO.

[119] Sam Kovaka, Yunfan Fan, Bohan Ni, Winston Timp, and Michael C.
Schatz. 2021. Targeted Nanopore Sequencing by Real-time Mapping
of Raw Electrical Signal with UNCALLED. Nature Biotechnology
(2021).

[120] Sam Kovaka, Paul W. Hook, Katharine M. Jenike, Vikram Shivaku-

mar, Luke B. Morina, Roham Razaghi, Winston Timp, and Michael C.

Schatz. 2024. Uncalled4 Improves Nanopore DNA and RNA Modi-

fication Detection via Fast and Accurate Signal Alignment. Nature

Methods (2024).

Ann Franchesca Laguna, Hasindu Gamaarachchi, Xunzhao Yin,

Michael Niemier, Sri Parameswaran, and X Sharon Hu. 2020. Seed-

and-vote based In-Memory Accelerator for DNA Read Mapping. In

ICCAD.

Andrew H Laszlo, Ian M Derrington, Henry Brinkerhoff, Kyle W

Langford, Ian C Nova, Jenny Mae Samson, Joshua] Bartlett, Mikhail

Pavlenok, and Jens H Gundlach. 2013. Detection and Mapping of 5-

methylcytosine and 5-hydroxymethylcytosine with Nanopore MspA.

PNAS (2013).

[123] A.H.Laszlo, I. M. Derrington, B. C. Ross, H. Brinkerhoff, A. Adey, L. C.

Nova, J. M. Craig, K. W. Langford, J. M. Samson, R. Daza, K. Doering,

J. Shendure, and J. H. Gundlach. 2014. Decoding Long Nanopore

Sequencing Reads of natural DNA. Nature Biotechnology (2014).

Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri,

and Onur Mutlu. 2017. Design-Induced Latency Variation in Modern

DRAM Chips: Characterization, Analysis, and Latency Reduction

Mechanisms. In SIGMETRICS.

Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-

thy, Xiaodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA-

accelerated Near-Storage Data Analytics on SSD. CAL (2020).

[126] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen

Li, Yuan Xie, Ameen Akel, Sean Eilert, Mircea R. Stan, and Kevin

Skadron. 2020. Fulcrum: A Simplified Control and Access Mechanism

Toward Flexible and Practical In-Situ Accelerators. In HPCA.

Marzieh Lenjani and Kevin Skadron. 2022. Supporting Moderate Data

Dependency, Position Dependency, and Divergence in PIM-Based

Accelerators. Micro (2022).

[128] Heng Li. 2018. Minimap2: Pairwise Alignment for Nucleotide Se-

quences. Bioinformatics (2018).

Heng Li and Jue Ruan. 2008. Mapping Short DNA Sequencing Reads

and Calling Variants Using Mapping Quality Scores. Genome research

[115

=

[116

=

[117

—

[118

[t

[121

—

[122

—

[124

flan?

[125

[

[127

—

[129

[

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

(2008).

[130] Luyi Li, Jun Lin, and Zhongfeng Wang. 2021. PipeBSW: A two-stage
pipeline structure for Banded Smith-Waterman Algorithm on FPGA.
In ISVLSL

[131] Xue-Qi Li, Guang-Ming Tan, and Ning-Hui Sun. 2021. PIM-align: a
Processing-In-Memory Architecture for FM-index Search Algorithm.
Journal of Computer Science and Technology (2021).

[132] Yifan Li and Giulia Guidi. 2024. High-Performance Sorting-Based
K-mer Counting in Distributed Memory with Flexible Hybrid Paral-
lelism. In ICPP.

[133] Yang Liao, Gordon K Smyth, and Wei Shi. 2013. The Subread Aligner:
Fast, Accurate and Scalable Read Mapping by Seed-and-Vote. Nucleic
acids research (2013).

[134] Sang-Phil Lim, Sang-Won Lee, and Bongki Moon. 2010. FASTer FTL
for Enterprise-Class Flash Memory SSDs. In SNAPL

[135] Joél Lindegger, Can Firtina, Nika Mansouri Ghiasi, Mohammad
Sadrosadati, Mohammed Alser, and Onur Mutlu. 2024. RawAlign:
Accurate, Fast, and Scalable Raw Nanopore Signal Mapping via Com-
bining Seeding and Alignment. IEEE Access (2024).

[136] Song Liu, Yi Wang, and Fei Wang. 2016. A Fast Read Alignment
Method based on Seed-and-Vote for Next Generation Sequencing.
BMC bioinformatics (2016).

[137] Yongchao Liu, Douglas L Maskell, and Bertil Schmidt. 2009. CUD-
ASW++: Optimizing Smith-Waterman Sequence Database Searches
for CUDA-enabled Graphics Processing Units. BMC research notes
(2009).

[138] Yongchao Liu and Bertil Schmidt. 2015. GSWABE: faster GPU-
accelerated Sequence Alignment with Optimal Alignment Retrieval
for Short DNA Sequences. Concurrency and Computation: Practice
and Experience (2015).

[139] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. 2010. CUD-
ASW++ 2.0: Enhanced Smith-Waterman Protein Database Search on
CUDA-enabled GPUs based on SIMT and Virtualized SIMD Abstrac-
tions. BMC research notes (2010).

[140] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. 2013. CUD-
ASW++ 3.0: Accelerating Smith-Waterman Protein Database Search
by Coupling CPU and GPU SIMD Instructions. BMC bioinformatics
(2013).

[141] Kisaru Liyanage, Hasindu Gamaarachchi, Roshan Ragel, and Sri
Parameswaran. 2023. Cross Layer Design Using HW/SW Co-Design
and HLS to Accelerate Chaining in Genomic Analysis. TCAD (2023).

[142] Kisaru Liyanage, Hasindu Gamaarachchi, Hassaan Saadat, Tuo Li,
Hiruna Samarakoon, and Sri Parameswaran. 2024. Accelerating
Chaining in Genomic Analysis Using RISC-V Custom Instructions.
In DATE.

[143] Kisaru Liyanage, Hiruna Samarakoon, Sri Parameswaran, and
Hasindu Gamaarachchi. 2023. Efficient End-to-End Long-read Se-
quence Mapping using Minimap2-FPGA integrated with hardware-
accelerated Chaining. Scientific Reports (2023).

[144] Matthew Loose, Sunir Malla, and Michael Stout. 2016. Real-time
Selective Sequencing using Nanopore Technology. Nat. Methods
(2016).

[145] Qian Lou, Sarath Chandra Janga, and Lei Jiang. 2020. Helix: Algo-
rithm/Architecture co-design for Accelerating Nanopore Genome
Base-calling. In PACT.

[146] Qian Lou and Lei Jiang. 2018. Brawl: A Spintronics-based Portable
Basecalling-In-Memory Architecture for Nanopore Genome Sequenc-
ing. CAL (2018).

[147] Hang-Ting Lue, Po-Kai Hsu, Ming-Liang Wei, Teng-Hao Yeh, Pei-
Ying Du, Wei-Chen Chen, Keh-Chung Wang, and Chih-Yuan Lu. 2019.
Optimal Design Methods to Transform 3D NAND Flash into a High-
Density, High-Bandwidth and Low-Power Nonvolatile Computing In

[148

=

[149

[

[150

=

[151

—

[152]

[153]

[154

=

[155

=

[156]

[157

—

[158

=

[159]

[160]

[161]

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

Memory (nvCIM) Accelerator for Deep-Learning Neural Networks
(DNN). In IEDM.

Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu.
2015. WARM: Improving NAND Flash Memory Lifetime with Write-
Hotness Aware Retention Management. In MSST.

Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu.
2018. Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation. POMACS (2018).
Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. [n.d.].
Race Logic: A hardware acceleration for dynamic programming algo-
rithms. In ISCA.

Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng,
Simon Garcia De Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong,
Jian Huang, and Wen-mei Hwu. 2019. Deepstore: In-storage Acceler-
ation for Intelligent Queries. In MICRO.

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim,
Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina,
Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nan-
dita Vijaykumar, Mohammed Alser, and Onur Mutlu. 2022. GenStore:
A High-Performance in-Storage Processing System for Genome Se-
quence Analysis. In ASPLOS.

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina,
Akanksha Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almad-
houn Alserr, and Onur Mutlu. 2022. GenPIP: In-Memory Acceleration
of Genome Analysis via Tight Integration of Basecalling and Read
Mapping. In MICRO.

Farnood Merrikh-Bayat, Xinjie Guo, Michael Klachko, Mirko Prezioso,
Konstantin K Likharev, and Dmitri B Strukov. 2017. High-
Performance Mixed-Signal Neurocomputing with Nanoscale Floating-
Gate Memory Cell Arrays. TNNLS (2017).

Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A
Large-Scale Study of Flash Memory Failures in the Field. In ACM
SIGMETRICS.

Rino Micheloni, Alessia Marelli, and Kam Eshghi. 2018. Inside Solid
State Drives (SSDs). (2018).

Micron. 2016. Product Flyer: Micron 3D NAND Flash Mem-
ory. https://www.micron.com/-/media/client/global/documents/
products/product-flyer/3d_nand_flyer.pdf?la=en.

Karen H. Miga, Sergey Koren, Arang Rhie, Mitchell R. Vollger, Ariel
Gershman, Andrey Bzikadze, Shelise Brooks, Edmund Howe, David
Porubsky, Glennis A. Logsdon, Valerie A. Schneider, Tamara Potapova,
Jonathan Wood, William Chow, Joel Armstrong, Jeanne Fredrickson,
Evgenia Pak, Kristof Tigyi, Milinn Kremitzki, Christopher Markovic,
Valerie Maduro, Amalia Dutra, Gerard G. Bouffard, Alexander M.
Chang, Nancy F. Hansen, Amy B. Wilfert, Francoise Thibaud-Nissen,
Anthony D. Schmitt, Jon-Matthew Belton, Siddarth Selvaraj, Megan Y.
Dennis, Daniela C. Soto, Ruta Sahasrabudhe, Gulhan Kaya, Josh Quick,
Nicholas J. Loman, Nadine Holmes, Matthew Loose, Urvashi Surti,
Rosa ana Risques, Tina A. Graves Lindsay, Robert Fulton, Ira Hall,
Benedict Paten, Kerstin Howe, Winston Timp, Alice Young, James C.
Mullikin, Pavel A. Pevzner, Jennifer L. Gerton, Beth A. Sullivan,
Evan E. Eichler, and Adam M. Phillippy. 2020. Telomere-to-telomere
Assembly of a Complete Human X Chromosome. Nature (2020).
Andrew J Mikalsen and Jaroslaw Zola. 2023. Coriolis: Enabling
Metagenomic Classification on Lightweight Mobile Devices. Bioin-
form. (2023).

Onur Mutlu and Can Firtina. 2023. Accelerating Genome Analysis
via Algorithm-Architecture Co-Design. In DAC.

Gene Myers and Webb Miller. 1995. Chaining multiple-alignment
fragments in sub-quadratic time. In ACM-SIAM Symposium on Discrete
Algorithms.

https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Takahiro Nishimura, Jacir L Bordim, Yasuaki Ito, and Koji Nakano.
2017. Accelerating the Smith-waterman Algorithm using Bitwise
Parallel Bulk Computation technique on GPU. In IPDPSW.

Jisung Park, Roknoddin Azizi, Geraldo F Oliveira, Mohammad
Sadrosadati, Rakesh Nadig, David Novo, Juan Gémez-Luna, Myung-
suk Kim, and Onur Mutlu. 2022. Flash-Cosmos: In-Flash Bulk Bitwise
Operations Using Inherent Computation Capability of NAND Flash
Memory. In MICRO.

Alexander Payne, Nadine Holmes, Thomas Clarke, Rory Munro, Bis-
rat J. Debebe, and Matthew Loose. 2021. Readfish Enables Targeted
Nanopore Sequencing of gigabase-sized Genomes. Nature Biotech-
nology (2021).

PCI-SIG. [n. d.]. PCI Express Base Specification Revision 4.0, Version
1.0. https://pcisig.com/specifications.

Shuyi Pei, Jing Yang, and Qing Yang. 2019. REGISTOR: A Platform for
Unstructured Data Processing inside SSD Storage. ACM TOS (2019).
Minh Pham, Yicheng Tu, and Xiaoyi Lv. 2023. Accelerating BWA-
MEM Read Mapping on GPUs. In ICS.

Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz,
Thomas Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco,
Nam Nguyen, Pegah T Afshar, Sam S Gross, Lizzie Dorfman, Cory Y
McLean, and Mark A DePristo. 2018. A Universal SNP and Small-Indel
Variant Caller Using Deep Neural Networks. Nature Biotechnology
(2018).

Javier Prado-Martinez, Peter H. Sudmant, Jeffrey M. Kidd, Heng Li,
Joanna L. Kelley, Belen Lorente-Galdos, Krishna R. Veeramah, Au-
gust E. Woerner, Timothy D. O’Connor, Gabriel Santpere, Alexander
Cagan, Christoph Theunert, Ferran Casals, Hafid Laayouni, Kasper
Munch, Asger Hobolth, Anders E. Halager, Maika Malig, Jessica
Hernandez-Rodriguez, Irene Hernando-Herraez, Kay Priifer, Marc Py-
bus, Laurel Johnstone, Michael Lachmann, Can Alkan, Dorina Twigg,
Natalia Petit, Carl Baker, Fereydoun Hormozdiari, Marcos Fernandez-
Callejo, Marc Dabad, Michael L. Wilson, Laurie Stevison, Cristina
Camprubi, Tiago Carvalho, Aurora Ruiz-Herrera, Laura Vives, Marta
Mele, Teresa Abello, Ivanela Kondova, Ronald E. Bontrop, Anne Pusey,
Felix Lankester, John A. Kiyang, Richard A. Bergl, Elizabeth Lons-
dorf, Simon Myers, Mario Ventura, Pascal Gagneux, David Comas,
Hans Siegismund, Julie Blanc, Lidia Agueda-Calpena, Marta Gut, Lu-
cinda Fulton, Sarah A. Tishkoff, James C. Mullikin, Richard K. Wilson,
Ivo G. Gut, Mary Katherine Gonder, Oliver A. Ryder, Beatrice H. Hahn,
Arcadi Navarro, Joshua M. Akey, Jaume Bertranpetit, David Reich,
Thomas Mailund, Mikkel H. Schierup, Christina Hvilsom, Aida M.
Andrés, Jeffrey D. Wall, Carlos D. Bustamante, Michael F. Hammer,
Evan E. Eichler, and Tomas Marques-Bonet. 2013. Great Ape Genetic
Diversity and Population History. Nature (2013).

Arthur C Rand, Miten Jain, Jordan M Eizenga, Audrey Musselman-
Brown, Hugh E Olsen, Mark Akeson, and Benedict Paten. 2017. Map-
ping DNA Methylation with High-throughput Nanopore Sequencing.
Nature Methods (2017).

Arang Rhie, Sergey Nurk, Monika Cechova, Savannah J. Hoyt, Dy-
lan J. Taylor, Nicolas Altemose, Paul W. Hook, Sergey Koren, Mikko
Rautiainen, Ivan A. Alexandrov, Jamie Allen, Mobin Asri, Andrey V.
Bzikadze, Nae-Chyun Chen, Chen-Shan Chin, Mark Diekhans, Paul
Flicek, Giulio Formenti, Arkarachai Fungtammasan, Carlos Garcia
Giron, Erik Garrison, Ariel Gershman, Jennifer L. Gerton, Patrick G.S.
Grady, Andrea Guarracino, Leanne Haggerty, Reza Halabian, Nancy F.
Hansen, Robert Harris, Gabrielle A. Hartley, William T. Harvey, Ma-
rina Haukness, Jakob Heinz, Thibaut Hourlier, Robert M. Hubley,
Sarah E. Hunt, Stephen Hwang, Miten Jain, Rupesh K. Kesharwani,
Alexandra P. Lewis, Heng Li, Glennis A. Logsdon, Julian K. Lucas,
Wojciech Makalowski, Christopher Markovic, Fergal J. Martin, Ann

[172

[173

[174

[175

[176

[177

[178

[179

[180

[181

[182
[183

[184

[185

[186

= S

=

]

]

—

[t

-

[t

—

—_ =

]

=

—

Melina Soysal, Konstantina Koliogeorgi et al.

M. Mc Cartney, Rajiv C. McCoy, Jennifer McDaniel, Brandy M. Mc-
Nulty, Paul Medvedev, Alla Mikheenko, Katherine M. Munson, Ter-
ence D. Murphy, Hugh E. Olsen, Nathan D. Olson, Luis F. Paulin,
David Porubsky, Tamara Potapova, Fedor Ryabov, Steven L. Salzberg,
Michael E.G. Sauria, Fritz J. Sedlazeck, Kishwar Shafin, Valery A.
Shepelev, Alaina Shumate, Jessica M. Storer, Likhitha Surapaneni,
Angela M. Taravella Oill, Frangoise Thibaud-Nissen, Winston Timp,
Marta Tomaszkiewicz, Mitchell R. Vollger, Brian P. Walenz, Allison C.
Watwood, Matthias H. Weissensteiner, Aaron M. Wenger, Melissa A.
Wilson, Samantha Zarate, Yiming Zhu, Justin M. Zook, Evan E. Eich-
ler, Rachel J. O’Neill, Michael C. Schatz, Karen H. Miga, Kateryna D.
Makova, and Adam M. Phillippy. 2023. The Complete Sequence of a
Human Y Chromosome. Nature (2023).

Erik Riedel, Christos Faloutsos, Garth A Gibson, and David Nagle.
2001. Active Disks for Large-Scale Data Processing. Computer (2001).
Erik Riedel, Garth Gibson, and Christos Faloutsos. 1998. Active
Storage for Large-Scale Data Mining and Multimedia Applications.
VLDB (1998).

Guillaume Rizk and Dominique Lavenier. 2010. GASSST: Global
Alignment Short Sequence Search Tool. Bioinformatics (2010).

J Romiguier, Philippe Gayral, Marion Ballenghien, Arnaud Bernard,
Vincent Cahais, A Chenuil, Ylenia Chiari, R Dernat, L Duret, Nicolas
Faivre, et al. 2014. Comparative Population Genomics in Animals
Uncovers the Determinants of Genetic Diversity. Nature (2014).
Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti,
Marcelo Naiouf, and Manuel Prieto-Matias. 2018. SWIFOLD: Smith-
Waterman Implementation on FPGA with OpenCL for Long DNA
Sequences. BMC systems biology (2018).

Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer,
Johnny Israeli, and Satish Narayanasamy. 2023. Accelerating Min-
imap?2 for Accurate Long Read Alignment on GPUs. Journal of biotech-
nology and biomedicine (2023).

Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli,
and Satish Narayanasamy. 2023. Accelerated Dynamic Time Warping
on GPU for Selective Nanopore Sequencing. j. Biomed Biotechnol
(2023).

Harisankar Sadasivan, Jack Wadden, Kush Goliya, Piyush Ran-
jan, Robert P. Dickson, David Blaauw, Reetuparna Das, and Satish
Narayanasamy. 2023. Rapid Real-time Squiggle Classification for
Read Until Using RawMap. Arch. Clin. Biomed. Res. (2023).

Suneth Samarasinghe, Pubudu Premathilaka, Wishma Herath,
Hasindu Gamaarachchi, and Roshan Ragel. 2021. Energy Efficient
Adaptive Banded Event Alignment using OpenCL on FPGAs. In ICI-
AfS.

Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-
Chung Frank Chang, and Jason Cong. 2020. Bonsai: High-
Performance Adaptive Merge Tree Sorting. In ISCA.

Samsung. 2018. Samsung SSD 860 PRO. https://www.samsung.com/
semiconductor/minisite/ssd/product/consumer/860pro/.

Samsung. 2020. Samsung SSD PM1735. https://www.samsung.com/
semiconductor/ssd/enterprise-ssd/MZPLJ3T2HBJR-00007/.

Doruk Sart, Abdullah Mueen, Walid Najjar, Eamonn Keogh, and Vit
Niennattrakul. 2010. Accelerating Dynamic Time Warping Subse-
quence Search with GPUs and FPGAs. In ICDM.

Damla Senol Cali, Gupreet Kalsi, Zulal Bing6l, Lavanya Subrama-
nian, Can Firtina, Jeremie Kim, Rachata Ausavarungnirun, Mo-
hammed Alser, Anant Nori, Juan Luna, et al. 2020. GenASM: A
High-Performance, Low-Power Approximate String Matching Accel-
eration Framework for Genome Sequence Analysis. In MICRO.
Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, and
Onur Mutlu. 2018. Nanopore Sequencing Technology and Tools for
Genome Assembly: Computational Analysis of the Current State,
Bottlenecks and Future Directions. Briefings in Bioinformatics (2018).

https://pcisig.com/specifications
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860pro/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZPLJ3T2HBJR-00007/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZPLJ3T2HBJR-00007/

MARS: Processing-In-Memory Acceleration of
Raw Signal Genome Analysis Inside the Storage Subsystem

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yangqin Jin, Yang Liu, and Steven Swanson. 2014.
Willow: A User-Programmable SSD. In USENIX OSDL

Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel
Lindegger, Can Firtina, Stephan Wong, Onur Mutlu, and Said Ham-
dioui. 2023. Swordfish: A Framework for Evaluating Deep Neu-
ral Network-based Basecalling using Computation-In-Memory with
Non-Ideal Memristors. In MICRO.

Jay Shendure, Shankar Balasubramanian, George M. Church, Walter
Gilbert, Jane Rogers, Jeffery A. Schloss, and Robert H. Waterston. 2017.
DNA Sequencing at 40: Past, Present and Future. Nature (2017).

Po Jui Shih, Hassaan Saadat, Sri Parameswaran, and Hasindu
Gamaarachchi. 2023. Efficient Real-time Selective Genome Sequenc-
ing on Resource-Constrained Devices. GigaScience (2023).

Wonbo Shim and Shimeng Yu. 2022. GP3D: 3D NAND Based In-
Memory Graph Processing Accelerator. JETCAS (2022).

Jung-Yeon Shin, Zhi-Lin Xia, Ning-Yi Xu, Rui Gao, Xiao-Fei Cai, Se-
ungryoul Maeng, and Fang-Hsien Hsu. 2009. FTL Design Exploration
in Reconfigurable High-Performance SSD for Server Applications. In
ICS.

Vikram S. Shivakumar, Omar Y. Ahmed, Sam Kovaka, Mohsen Zakeri,
and Ben Langmead. 2024. Sigmoni: Classification of Nanopore Signal
with a Compressed Pangenome Index. Bioinfromatics (2024).

Jared T Simpson, Rachael E Workman, P C Zuzarte, Matei David, L J
Dursi, and Winston Timp. 2017. Detecting DNA Cytosine Methylation
using Nanopore Sequencing. Nature Methods (2017).

Gagandeep Singh, Mohammed Alser, Kristof Denolf, Can Firtina,
Alireza Khodamoradi, Meryem Banu Cavlak, Henk Corporaal, and
Onur Mutlu. 2024. RUBICON: A Framework for Designing Efficient
Deep Learning-Based Genomic Basecallers. Genome Biology (2024).
Gagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof
Denolf, Can Firtina, Meryem Banu Cavlak, Henk Corporaal, and Onur
Mutlu. 2024. RUBICON: A Framework for Designing Efficient Deep
Learning-Based Genomic Basecallers. Genome Biology (2024).

Wei Song, Dirk Koch, Mikel Lujan, and Jim Garside. 2016. Parallel
Hardware Merge Sorter. In FCCM.

William Stephenson, Roham Razaghi, Steven Busan, Kevin M. Weeks,
Winston Timp, and Peter Smibert. 2022. Direct Detection of RNA Mod-
ifications and Structure using Single-Molecule Nanopore Sequencing.
Cell Genomics (2022).

Aaron Stillmaker and Bevan Baas. 2017. Scaling Equations for the
Accurate Prediction of CMOS Device Performance from 180nm to
7nm. Integration (2017).

VK Sundaresan, Sanjay Nichani, N Ranganathan, and Ravi Sankar.
1992. A VLSI Hardware Accelerator for Dynamic Time Warping. In
ICPR.

Nathaly M Sweeney, Shareef A Nahas, Shimul Chowdhury, Sergey
Batalov, Michelle Clark, Sara Caylor, Julie Cakici, John J Nigro, Yan
Ding, Narayanan Veeraraghavan, et al. 2021. Rapid Whole Genome
Sequencing Impacts Care and Resource Utilization in Infants with
Congenital Heart Disease. NPJ Genomic Medicine (2021).

Inc. Synopsys. [n.d.]. Design Compiler. https://www.synopsys.com/
implementation-and- signoff/rtl-synthesis-test/design-compiler-
graphical.html.

Shuhei Tanakamaru, Yuki Yanagihara, and Ken Takeuchi. 2013. Error-
Prediction LDPC and Error-Recovery Schemes for Highly Reliable
Solid-State Drives (SSDs). IEEE J. Solid-State Circuits (2013).

Arash Tavakkol, Juan Gémez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. 2018. MQSim: A Framework for Enabling
Realistic Studies of Modern Multi-Queue SSD Devices. In FAST.
Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Hosein
Bobarshad, Vladimir Alves, and Nader Bagherzadeh. 2019. Catalina:

[206]

[207

—

[208]

[209

—

[210]

[211

—

[212

—

[213

=

[214

[l

[215

=

[216]

[217]

[218

=

[219

—

[220

=

[221

—

[222]

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

In-storage Processing Acceleration for Scalable Big Data Analytics.
In Euromicro PDP.

Po-Hao Tseng, Feng-Ming Lee, Yu-Hsuan Lin, Liang-Yu Chen, Yung-
Chun Li, Han-Wen Hu, Yun-Yuan Wang, Chih-Chang Hsieh, Ming-
Hsiu Lee, Hsiang-Lan Lung, et al. 2020. In-Memory-Searching Archi-
tecture Based on 3D-NAND Technology with Ultra-High Parallelism.
In IEDM.

Yatish Turakhia, Gill Bejerano, and William J Dally. 2018. Darwin:
A Genomics Co-processor Provides up to 15,000 x Acceleration on
Long Read Assembly. In ASPLOS.

UMC. [n.d.]. 55/ 65/ 90nm, https://www.umc.com/en/Product/
technologies/Detail/55_65_90nm.

Hasitha Muthumala Waidyasooriya and Masanori Hariyama. 2015.
Hardware-Acceleration of Short-Read Alignment based on the
Burrows-Wheeler Transform. TPDS (2015).

Yuk Kei Wan, Christopher Hendra, Ploy N Pratanwanich, and
Jonathan Goke. 2022. Beyond Sequencing: Machine Learning Al-
gorithms Extract Biology Hidden in Nanopore Signal Data. Trends in
Genetics (2022).

Panni Wang, Feng Xu, Bo Wang, Bin Gao, Huagiang Wu, He Qian, and
Shimeng Yu. 2018. Three-Dimensional NAND flash for Vector-Matrix
Multiplication. TVLSI (2018).

Xiaohao Wang, Yifan Yuan, You Zhou, Chance C Coats, and Jian
Huang. 2019. Project Almanac: A Time-Traveling Solid-State Drive.
In EuroSys.

Yitu Wang, Shiyu Li, Qilin Zheng, Linghao Song, Zongwang Li, An-
drew Chang, and Yiran Chen. 2024. NDSEARCH: Accelerating Graph-
Traversal-Based Approximate Nearest Neighbor Search through Near
Data Processing. In ISCA.

Yuyue Wang, Xiurui Pan, Yuda An, Jie Zhang, and Glenn Reinman.
2024. BeaconGNN: Large-Scale GNN Acceleration with Out-of-Order
Streaming In-Storage Computing. In HPCA.

Yunhao Wang, Yue Zhao, Audrey Bollas, Yuru Wang, and Kin Fai
Au. 2021. Nanopore Sequencing Technology, Bioinformatics and
Applications. Nature Biotechnology (2021).

Shan Wei, Zachary R Weiss, and Zev Williams. 2018. Rapid Multi-
plex Small DNA Sequencing on the MinION Nanopore Sequencing
Platform. G3 Genes/Genomes|Genetics (2018).

R.R. Wick, L. M. Judd, and K. E. Holt. 2019. Performance of Neural
Network Basecalling Tools for Oxford Nanopore Sequencing. Genome
Biology (2019).

WikiChip. [n.d.]. Cascade Lake SP - Intel. https://en.wikichip.org/
wiki/intel/cores/cascade_lake_sp.

Richard Wilton, Tamas Budavari, Ben Langmead, Sarah] Whee-
lan, Steven L Salzberg, and Alexander S Szalay. 2015. Arioc: High-
Throughput Read Alignment with GPU-accelerated Exploration of
the Seed-and-Extend Search Space. Peer (2015).

Rachael E. Workman, Alison D. Tang, Paul S. Tang, Miten Jain, John R.
Tyson, Roham Razaghi, Philip C. Zuzarte, Timothy Gilpatrick, Alexan-
der Payne, Joshua Quick, Norah Sadowski, Nadine Holmes, Jaque-
line Goes de Jesus, Karen L. Jones, Cameron M. Soulette, Terrance P.
Snutch, Nicholas Loman, Benedict Paten, Matthew Loose, Jared T.
Simpson, Hugh E. Olsen, Angela N. Brooks, Mark Akeson, and Win-
ston Timp. 2019. Nanopore Native RNA Sequencing of a Human
Poly(A) Transcriptome. Nature Methods (2019).

Lisa Wu, David Bruns-Smith, Frank A Nothaft, Qijing Huang, Sagar
Karandikar, Johnny Le, Andrew Lin, Howard Mao, Brendan Sweeney,
Krste Asanovic, et al. 2019. FPGA Accelerated INDEL Realignment
in the Cloud. In HPCA.

Z. Wu, K. Hammad, A. Beyene, Y. Dawji, E. Ghafar-Zadeh, and S.
Magierowski. 2022. An FPGA Implementation of a Portable DNA Se-
quencing Device Based on RISC-V. In IEEE International New Circuits

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.umc.com/en/Product/technologies/Detail/55_65_90nm
https://www.umc.com/en/Product/technologies/Detail/55_65_90nm
https://en.wikichip.org/wiki/intel/cores/cascade_lake_sp
https://en.wikichip.org/wiki/intel/cores/cascade_lake_sp

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

and Systems Conference (NEWCAS).

[223] Z.Wu, K. Hammad, E. Ghafar-Zadeh, and S. Magierowski. 2020. FPGA-
Accelerated 3rd Generation DNA Sequencing. IEEE Transactions on
Biomedical Circuits and Systems (TBCS) (2020).

[224] Xilinx 2021. SmartSSD Computational Storage Drive Installation and
User Guide. Xilinx. https://fpga.eetrend.com/files/2022-02/wen_
zhang_/100558024-244024-ug1382-smartssd-csd.pdf

[225] Heliang Xin, Jason Greth, Justin Emmons, Gennady Pekhimenko,
Carl Kingsford, Can Alkan, and Onur Mutlu. 2015. Shifted Ham-
ming distance: a fast and accurate SIMD-friendly filter to accelerate
alignment verification in read mapping. Bioinformatics (2015).

[226] Hongyi Xin, David Lee, Farhad Hormozdiari, Shanshan Yedkar, Onur
Mutlu, and Can Alkan. 2013. Accelerating Read Mapping with
FastHASH. BMC Genomics (2013).

[227] Heliang Xin, Shihe Nahar, Rui Zhu, Justin Emmons, Gennady Pekhi-
menko, Carl Kingsford, Can Alkan, and Onur Mutlu. 2016. Optimal
seed solver: optimizing seed selection in read mapping. Bioinformatics
(2016).

[228] Z. Xu, Y. Mai, D. Liu, W. He, X. Lin, C. Xu, L. Zhang, X. Meng, J.
Mafofo, W.A. Zaher, et al. 2021. Fast-bonito: A Faster Deep Learning
Based Basecaller for Nanopore Sequencing. Artificial Intelligence in
the Life Sciences (2021).

[229] Ramesh Yelagandula, Aleksandr Bykov, Alexander Vogt, Robert
Heinen, Ezgi Ozkan, Marcus Martin Strobl, Juliane Christina Baar,
Kristina Uzunova, Bence Hajdusits, Darja Kordic, et al. 2021. Multi-
plexed Detection of SARS-CoV-2 and Other Respiratory Infections in
High Throughput by SARSeq. Nature Communications (2021).

[230] Jia Zeng, Hao Cai, Hao Peng, Haotian Wang, Yadong Zhang, and
Tatsuya Akutsu. 2020. Causalcall: Nanopore Basecalling using a
Temporal Convolutional Network. Frontiers in Genetics (2020).

[231] Alberto Zeni, Giulia Guidi, Marquita Ellis, Nan Ding, Marco D Santam-
brogio, Steven Hofmeyr, Aydin Buluc, Leonid Oliker, and Katherine

Melina Soysal, Konstantina Koliogeorgi et al.

Yelick. 2020. Logan: High Performance GPU-based X-drop Long-Read

Alignment. In IPDPS.

F. Zhang, S. Angizi, N. A. Fahmi, W. Zhang, and D. Fan. 2021. PIM-

Quantifier: A Processing-In-Memory Platform for mRNA Quantifica-

tion. In DAC.

Fan Zhang, Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan.

2023. Aligner-D: Leveraging In-DRAM Computing to Accelerate

DNA Short Read Alignment. JETCAS (2023).

Haowen Zhang, Haoran Li, Chirag Jain, Haoyu Cheng, Kin Fai Au,

Heng Li, and Srinivas Aluru. 2021. Real-time Mapping of Nanopore

Raw Signals. Bioinformatics (2021).

Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning

Zheng, and Tong Zhang. 2013. LDPC-in-SSD: Making Advanced

Error Correction Codes Work Effectively in Solid State Drives. In

FAST 13.

Hongtao Zhong, Zhonghao Chen, Wenqin Huangfu, Chen Wang,

Yixin Xu, Tianyi Wang, Yao Yu, Yongpan Liu, Vijaykrishnan

Narayanan, Huazhong Yang, et al. 2023. ASMCap: An Approximate

String Matching Accelerator for Genome Sequence Analysis Based

on Capacitive Content Addressable Memory. DAC (2023).

[237] You Zhou, Fei Wu, Ping Huang, Xubin He, Changsheng Xie, and
Jian Zhou. 2015. An Efficient Page-level FTL to Optimize Address
Translation in Flash Memory. In EuroSys.

[238] Farzaneh Zokaee, Hamid R Zarandi, and Lei Jiang. 2018. Aligner:
A Process-In-Memory Architecture for Short Read Alignment in
ReRAMs. CAL (2018).

[239] F. Zokaee, M. Zhang, and L. Jiang. 2019. FindeR: Accelerating FM-
index-based Exact Pattern Matching in Genomic Sequences through

ReRAM Technology. In PACT.
[240] Chen Zou and Andrew A Chien. 2022. Assasin: Architecture Sup-

port for Stream Computing to Accelerate Computational Storage. In
MICRO.

[232

—

[233

=

[234

=

[235

[

[236

=

https://fpga.eetrend.com/files/2022-02/wen_zhang_/100558024-244024-ug1382-smartssd-csd.pdf
https://fpga.eetrend.com/files/2022-02/wen_zhang_/100558024-244024-ug1382-smartssd-csd.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Genome Analysis
	2.2 SSD Architecture

	3 Motivation and Key idea
	3.1 Computational Requirements of RSGA
	3.2 blackImpact of Data Movement on Hardware Accelerated RSGA
	3.3 Our Goal

	4 blackMARS Key Idea
	5 MARSblack Genome Analysis Workflow
	5.1 Filtering Techniques
	5.2 Arithmetic Conversion Techniques

	6 MARS Architecture and System
	6.1 MARS In-Storage Architecture
	6.2 Event Detection Implementation
	6.3 Seeding Implementation
	6.4 Chaining Implementation
	6.5 System Integration

	7 Evaluation Methodology
	8 Evaluation
	8.1 Accuracy Analysis
	8.2 blackPerformance Analysis
	8.3 Energy Analysis
	8.4 Area Analysis
	8.5 Sensitivity to blackSSD-Internal DRAM Size

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

