
CoLa: Towards Communication-efficient Distributed
Sparse Matrix-Matrix Multiplication on GPUs
Lixing Zhang

Beijing University of Posts and

Telecommunications

Beijing, China

zhanglixing@bupt.edu.cn

Yingxia Shao
∗

Beijing University of Posts and

Telecommunications

Beijing, China

shaoyx@bupt.edu.cn

Shigang Li

Beijing University of Posts and

Telecommunications

Beijing, China

lishigang@bupt.edu.cn

Abstract
Sparse Matrix-Matrix Multiplication (SpMM) is a critical

operator in many applications, such as graph neural net-

works (GNNs). However, when SpMM is scaled to multi-

ple GPUs, existing works face significant challenges: (1)

massive redundant communication and (2) unawareness of

heterogeneous links. To address the issue of massive re-

dundant communication, we introduce a communication

redundancy-free distributed SpMM algorithm that efficiently

reutilizes fetched remote data to reduce communication vol-

ume. To tackle the unawareness of heterogeneous links, we

propose two link-aware optimization techniques: commu-

nication fusion, which leverages local GPUs as embedding

caches to reduce communication over slow links; and request-

coalesced communication, which coalesces necessary re-

quested remote data into bulk transfers to maximize band-

width utilization and minimize communication volume over

proxy-based links. Based on these techniques, we develop

CoLa, a highly communication-efficient distributed SpMM

framework. Extensive evaluations on real-world datasets

under different multi-GPU settings demonstrate that CoLa

achieves geomean speedups of 8.56×, 9.12×, and 57.97× over
CAGNET, MGGCN, and MGG, respectively.

CCS Concepts
• Computing methodologies→ Distributed computing
methodologies.

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1537-2/25/06

https://doi.org/10.1145/3721145.3730425

Keywords
Sparse Matrix, SpMM, Distributed Algorithms

ACM Reference Format:
Lixing Zhang, Yingxia Shao, and Shigang Li. 2025. CoLa: Towards

Communication-efficient Distributed Sparse Matrix-Matrix Multi-

plication on GPUs. In 2025 International Conference on Supercomput-
ing (ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3721145.3730425

1 Introduction
Sparse Matrix-Matrix Multiplication (SpMM) is a key opera-

tor in many scientific and graph learning applications. For

example, as a growing family of graph learning techniques,

graph neural networks (GNNs) [25, 35, 40] use the spatial

structure of graph data to learn embeddings for tasks includ-

ing node classification [18], graph classification [48], and

link prediction [47]. In GNNs, each target node aggregates

the embeddings of neighboring nodes to update its own em-

bedding. This process can be represented as SpMM, where

the sparse matrix is the adjacency matrix of a graph, and the

dense input and output matrices are original embeddings and

updated embeddings, respectively. In this paper, we name

one row of an input or output dense matrix as an embedding

for simplicity.

Recently, the increasing memory demands for SpMM on

real-world graphs exceed the capacity of a single GPU [7, 33,

38]. One prevalent approach is scaling SpMM on multiple

GPUs. However, developing an efficient distributed SpMM

on multiple GPUs faces the following two challenges:

MassiveRedundantCommunication. Existing distributed
SpMM solutions [7, 9, 26, 31, 33, 38] have high communica-

tion cost due to the massive redundant GPU-to-GPU commu-

nication. They either transfer unnecessary remote embed-

dings or transfer the same remote embeddings repeatedly.

SUMMA-like [34] algorithms, including CAGNET [33] and

MGGCN [7] among others [9, 26, 31] employ coarse-grained

collective communication strategies, broadcasting all local

embeddings from one GPU to others at each stage. While the

SUMMA paradigm is originally designed for dense-dense ma-

trix multiplication, it is sparsity-unaware and results in un-

necessary communication of remote embeddings that are not

https://orcid.org/0009-0008-7377-9269
https://orcid.org/0000-0002-8559-2628
https://orcid.org/0000-0003-0022-7865
https://doi.org/10.1145/3721145.3730425
https://doi.org/10.1145/3721145.3730425

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

required for subsequent computation in distributed SpMM.

By contrast, based on multi-GPU shared memory [2–4, 44],

MGG [38] introduces a sparsity-aware fine-grained com-

munication pipeline, where each communication request

fetches one remote embedding at a time. It adopts a row-

wise SpMM pattern, where each worker processes a sparse

row independently and only fetches the required remote

embeddings according to the column indices of nonzeros

within the sparse row. Despite avoiding the communication

of unnecessary remote embeddings, MGG’s row-wise SpMM

pattern still results in redundant communication. Specifi-

cally, when multiple workers process different sparse rows

containing nonzeros with the same column indices, the same

remote input embeddings are fetched repeatedly.

Unawareness of Heterogeneous Links. Multi-node

multi-GPU platforms typically have heterogeneous links

across GPUs [28]. These diverse links bring in two critical

issues: (1) Frequent communication over slow links. There are
diverse links with different communication bandwidths, in-

cluding NVLink (300 GB/s), PCIe (20 GB/s), QPI (12 GB/s),

and IB (18 GB/s). Given a typical multi-node multi-GPU

setting in modern HPC clusters, there exists a significant

bandwidth gap that the intra-node link of NVLink (300 GB/s)

offers an order of magnitude higher bandwidth than the

inter-node link of IB (18 GB/s). However, existing distributed

SpMM methods, including CAGNET, MGG, MGGCN, and

others [7, 9, 31, 33, 38] do not consider the bandwidth gap,

resulting in frequent embedding communication over slower

links and performance degradation. (2) Inefficient communi-
cation over proxy-based links. Communication over heteroge-

neous links relies on different transport mechanisms. While

NVLink, PCIe, and QPI enable on-board transport across

GPUs, inter-node links like IB depend on proxy-based trans-

port (e.g., IBRC, UCX) across GPUs [5]. Proxy-based trans-

port introduces additional overhead, which significantly de-

grades communication throughput when handling frequent

small messages. Without considering the different transport

mechanisms of heterogeneous links, MGG [38] sticks to its

fine-grained communication pipeline over proxy-based links,

suffering from severe performance degradation. On the other

hand, CAGNET and others [9, 26, 31] adopt coarse-grained

collective communication over all types of links, missing the

opportunity to leverage fine-grained communication over

on-board transport for reducing redundant transfers.

To eliminate redundant communication, we first conduct

an in-depth analysis of communication redundancy associ-

ated with different communication strategies for distributed

SpMM. Based on the analysis, we propose a communication

redundancy-free distributed SpMM algorithm, where each

necessary remote embedding is fetched exactly once, and the

communication volume is significantly reduced. This new al-

gorithm eliminates redundant communication by efficiently

reutilizing the shared remote embeddings among nonzeros

from the same sparse columns.

To address the two issues caused by the unawareness of

heterogeneous links, we further introduce two link-aware

optimization techniques: (1) communication fusion to re-

duce frequent communication over slow links. For commu-

nication fusion, we group GPUs into different workgroups

based on multi-GPU communication topology, where inter-

workgroup links are slower than intra-workgroup links. We

leverage GPUs within a workgroup as embedding buffers

to cache remote embeddings from other workgroups, avoid-

ing repeated inter-workgroup communication for the same

remote embeddings across different workgroups, thereby

effectively reducing expensive inter-workgroup communica-

tion over slow links. (2) request-coalesced communication

to optimize inefficient communication over proxy-based links.
We coalesce the requested remote embeddings into a large

message for communication over proxy-based links. This

approach simultaneously achieves minimal communication

volume by transferring only necessary embeddings while

maintaining high bandwidth utilization by avoiding the over-

head of frequent small messages over proxy-based links.

Finally, we craft a highly communication-efficient dis-

tributed SpMM framework, namely CoLa
1
(Communication

redundancy-free and Link-aware). Additionally, CoLa ap-

plies pipeline optimization and community-aware graph

reordering to further boost the overall performance. With

extensive evaluations on a multi-GPU cluster, CoLa consis-

tently outperforms the state-of-the-art baselines across vari-

ous real-world datasets. Under different multi-GPU settings,

CoLa achieves geomean speedups of 8.56× over CAGNET

[33], 9.12× over MGGCN [7], and 57.97× over MGG [38].

We summarize our contributions as follows:

• We give an in-depth analysis of the redundant communi-

cation for remote embeddings under different communi-

cation strategies in distributed SpMM (Section 3.1).

• We introduce a communication redundancy-free algorithm

to eliminate redundant communication for remote embed-

dings in distributed SpMM (Section 3.2).

• We present two link-aware optimization techniques for the

challenges of heterogeneous links: communication fusion

to reduce frequent communication over slow links (Section
4.2) and request-coalesced communication to optimize in-
efficient communication over proxy-based links (Section 4.3).
• We craft CoLa, a high-performance distributed SpMM

framework, with careful design of pipeline optimization

and community-aware graph reordering to further boost

the performance. Extensive evaluations demonstrate that

CoLa achieves significant speedups over state-of-the-art

baselines across various real-world datasets.

1
https://github.com/zzzlxhhh/CoLa

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 1: Notations

Notations Description

𝑨𝑛×𝑛 input sparse matrix

𝑩𝑛×𝑘 input dense matrix

𝑪𝑛×𝑘 output dense matrix

P number of total GPUs

𝑨𝒊,𝒋 𝑖th row and 𝑗th column sparse chunk

𝑃𝑖 the 𝑖th GPU

𝑨𝒊
𝑹 remote sparse chunk in 𝑃𝑖

𝑨𝒊
𝑳 local sparse chunk in 𝑃𝑖

W number of workgroups

G number of GPUs in a workgroup

𝑨𝒊,𝒋
the sparse data for 𝑃𝑖 ’s stage- 𝑗 SpMM

𝑨𝒊,𝒋
𝑹 the remote sparse chunink for 𝑃𝑖 ’s stage- 𝑗 SpMM

𝑨𝒊,𝒋
𝑳 the local sparse chunk for 𝑃𝑖 ’s stage- 𝑗 SpMM

2 Preliminaries
In this section, we provide preliminaries about SpMM compu-

tation, basic distributed SpMM procedure, and communica-

tion on multi-GPU platforms. The frequently used notations

in this paper are listed in Table 1.

2.1 SpMM Computation
In this paper, SpMM is represented as 𝑨𝑛×𝑛𝑩𝑛×𝑘 = 𝑪𝑛×𝑘 ,
where elements in these matrices are 4-byte. There are two

SpMM computing methods on GPUs: row-wise and col-wise

(column-wise) SpMM.

In row-wise SpMM, one worker (e.g., a thread warp) is

allocated with a sparse row of 𝑨 as illustrated by Figure 1

(a). First, the worker sequentially loads and aggregates the

embeddings from 𝑩 based on the column indices of nonzeros

in the sparse row, buffering the aggregated embedding in the

worker’s scratchpad memory (e.g., local registers). Second,

once the aggregation is complete, a single write operation

accumulates the aggregation results to 𝑪 .

(b)col-wise SpMM(a)row-wise SpMM

𝑖𝑑
0

𝑖𝑑
1

𝑖𝑑
𝑛

𝐴 𝐶

…

…

𝐵𝑇

𝑖𝑑
2

load embedding

buffer

𝑖𝑑
0

𝐴 𝐶

𝐵𝑇

buffer

…

… …

worker

…

worker

accumulate embedding

Figure 1: Examples of row-wise and col-wise SpMM

In col-wise SpMM, a worker is allocated a sparse column

of 𝑨 as demonstrated by Figure 1 (b). First, the embedding

requested from 𝑩 is buffered in scratchpad memory based

on the column index of the allocated sparse column. Second,

the worker loads the buffered embedding to compute partial

results and sequentially accumulates the partial results to

𝑪 for each nonzero. An essential feature of col-wise SpMM

is reusing the embedding among nonzeros from the same

sparse column.

2.2 Basic Distributed SpMM Procedure
Supposing we have P GPUs, where 𝑃𝑖 is the 𝑖-th GPU with

𝑖 ranging from 0 to P − 1. For a basic distributed SpMM, 𝑨
is partitioned into P × P equal-sized sparse matrix chunks.

𝑩 and 𝑪 are partitioned into P equal-sized row panels. The

partitioning is defined as:

𝑨 =
©­­«

𝑨0,0 · · · 𝑨0,P−1
...

. . .
...

𝑨P−1,0 · · · 𝑨P−1,P−1

ª®®¬ (1)

𝑩 =
©­­«

𝑩0
...

𝑩P−1

ª®®¬ , 𝑪 =
©­­«

𝑪0
...

𝑪P−1

ª®®¬ (2)

where 𝑨𝒊,:, 𝑩𝒊 , and 𝑪𝒊 are placed on 𝑃𝑖 .

Subsequently,𝑨𝒊,: onGPU 𝑃𝑖 is arranged into a local sparse

chunk (LSC) 𝑨𝒊
𝑳 and a remote sparse chunk (RSC) 𝑨𝒊

𝑹 . The

LSC and RSC of 𝑨𝒊,: on 𝑃𝑖 are formally defined as:

𝑨𝒊,: = (𝑨𝒊
𝑳, 𝑨

𝒊
𝑹), 𝑨

𝒊
𝑳 = 𝑨𝒊,𝒊, 𝑨

𝒊
𝑹 =

P−1∑︁
𝑗=0, 𝑗≠𝑖

𝑐𝑜𝑛𝑐𝑎𝑡 (𝑨𝒊,𝒋) (3)

For LSC SpMMon𝑨𝒊
𝑳 , GPU 𝑃𝑖 can directly access all required

embeddings from its local memory 𝑩𝒊 . For RSC SpMM on

𝑨𝒊
𝑹 , GPU 𝑃𝑖 needs to fetch remote embeddings as they are

out of the range of local embeddings 𝑩𝒊 .

The computation of 𝑪𝒊 on 𝑃𝑖 is formulated as:

𝑪𝒊 = 𝑨𝒊
𝑳𝑩︸︷︷︸

LSC SpMM

+ 𝑨𝒊
𝑹𝑩︸︷︷︸

RSC SpMM

= 𝑨𝒊,𝒊𝑩𝒊 +
P−1∑︁

𝑗=0, 𝑗≠𝑖

𝑨𝒊,𝒋𝑩𝒋 (4)

where the computation consists of LSC SpMM and RSC
SpMM.

2.3 Communication on Multi-GPU
Platforms

For distributed SpMM on multi-GPU platforms, input and

output embeddings 𝑩 and 𝑪 are partitioned across GPUs.

Both fine-grained communication and coarse-grained com-

munication can be utilized to exchange embeddings between

GPUs.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

For fine-grained communication in distributed SpMM,

the granularity of a transferred message is a single remote

embedding. This approach leverages the distributed shared

memory paradigm [2–4, 44], where GPUs share a unified

memory space. It enables direct GPU-to-GPU data access

within CUDA kernels, eliminating CPU-side overhead. Each

worker (e.g., a thread warp) can independently fetch remote

embeddings on demand without CPU intervention, allow-

ing precise control of each embedding movement. There-

fore, fine-grained communication for distributed SpMM (e.g.,

MGG [38]) is sparsity-aware, where direct remote embedding

access can be utilized to exchange only necessary embed-

dings across GPUs based on the sparsity structure of 𝑨.
For coarse-grained communication, the granularity of a

transferred message is multiple remote embeddings. Follow-

ing the message passing paradigm, it enables GPU-to-GPU

data transfers in bulk but requires CPU-side orchestration

and synchronization. Compared to fine-grained communica-

tion, it introduces additional synchronization overhead and

lacks the flexibility of precise access for each remote embed-

ding within CUDA kernels. Some existing sparsity-unaware

distributed SpMMmethods [7, 9, 31, 33] apply coarse-grained

collective communication (e.g., broadcast, allreduce), without

considering the sparsity structure of 𝑨.

3 Communication Redundancy-free
Distributed SpMM

In this section, we first provide an in-depth analysis of the

communication redundancy of different communication strate-

gies in distributed SpMM. Then, we detail the algorithm of

our communication redundancy-free distributed SpMM.

3.1 Analysis of Communication
Redundancy

Following the basic distributed SpMM procedure illustrated

in Section 2.2, there are different communication methods

to load remote embeddings.

3.1.1 Coarse-grained Collective Communication. Existing
works like MGGCN [7] and CAGNET [33] utilize coarse-

grained collective communication for distributed SpMM. The

distributed SpMM is divided into P stages, where each GPU

takes turns broadcasting its local embeddings of densematrix

𝑩. For instance, when it is 𝑃𝑖 ’s turn, it needs to broadcast 𝑩𝒊 .

However, not all the broadcasted embeddings are necessary

for subsequent computing due to the sparsity of 𝑨. There-
fore, distributed SpMM based on coarse-grained collective

communication is sparse-unaware, causing redundant com-

munication for the embeddings of 𝑩. The communication

volume in the context of coarse-grained collective communi-

cation is represented as:

𝑉𝐶𝐺 =
4𝑛

P 𝑘 (P − 1)P = 4𝑛𝑘 (P − 1) (5)

where 𝑘 is the column width of 𝑩, and each GPU broadcasts

𝑛
P𝑘 elements of its whole local embeddings to other (P − 1)
GPUs in each stage, for a total of P stages.

3.1.2 Fine-grained communication. As discussed in Section

2.3, fine-grained communication in multi-GPU distributed

shared memory systems enables co-scheduling of computa-

tion and communication within CUDA kernels, where re-

mote embeddings are accessed on-demand during compu-

tation. This tight coupling between computation and com-

munication means that the RSC SpMM computation pattern

directly shapes the communication behavior. Consequently,

fine-grained communication for distributed SpMM is nat-

urally aware of the sparsity structure of 𝑨. In this section,

with fine-grained communication, we analyze its communi-

cation volume for RSC SpMM under row-wise and col-wise

computation pattern, respectively.

Row-wiseRSC SpMM.When performing row-wise SpMM

on RSC (e.g., MGG [38]), each worker processes a single

sparse row and fetches remote embeddings based on the

column indices of nonzeros within that row. However, this

approach leads to redundant communication since some re-

mote embeddings are repeatedly accessed. More specifically,

given an RSC, when multiple nonzeros in different rows

share the same column index, they require the same remote

embedding. However, since each worker operates indepen-

dently, these shared embeddings must be fetched repeatedly.

The resulting communication volume is:

𝑉𝐹𝑅 = 4𝐸𝑅𝑘 (6)

(b)col-wise RSC SpMM

(a)row-wise RSC SpMM
𝐵𝑇

𝐴

a b c d

e f

g h i j k

l

m n

q r

o p

s t

u v

x y

w

z

𝐵0
0 𝐵0

1 𝐵1
0 𝐵1

1 𝐵2
0 𝐵2

1 𝐵3
0 𝐵3

1

𝑃0

𝑃1

𝑃2

𝑃3

remote sparse chunk
(RSC)

local sparse chunk
(LSC)

𝐶0
0

𝐶0
1

𝐶1
0

𝐶1
1

𝐶2
0

𝐶2
1

𝐶3
0

𝐶3
1

𝐶
c d

e f

d

f

c

e
𝐶0
0

𝐶0
1

worker0

buffer

buffer

buffer

𝐵1
1 𝐵3

0

𝐵1
1 𝐵3

0

𝐵1
1

𝐵3
0 buffer

worker1

worker0

worker1

𝐶0
0

𝐶0
1

remote
load

local
load

accumulate

𝐴𝑅
0

Figure 2: Row-wise and col-wise RSC SpMM on𝑨0
𝑹 over

multi-GPU distributed shared memory.

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

where 𝐸𝑅 is the total number of nonzeros from all theRSC of

𝑨. An example of row-wise RSC SpMM on 𝑨0
𝑹 is illustrated

in Figure 2 (a). Despite {c,e} both requiring the remote embed-

ding 𝑩1
1, two different workers have to access 𝑩1

1 separately.

It is a similar case for {d,f} and 𝑩0
3. This inability to reuse the

embeddings leads to four remote embedding loads for RSC
SpMM on 𝑨0

𝑹 .

Col-wise RSC SpMM. We observe that nonzeros in one

sparse column require the same remote embedding. This

characteristic presents a significant optimization opportu-

nity: fetching each remote embedding once and enabling its

reuse across nonzeros in the corresponding column. This

optimization eliminates redundant communication, which is

overlooked by existing approaches [7, 9, 26, 31, 33, 38].

The above opportunity aligns perfectly with the feature

of the col-wise SpMM,where eachworker reuses the buffered

embedding across a sparse column of nonzeros. Consequently,

col-wise RSC SpMM can fetch only necessary remote em-

beddings for the nonempty columns of RSC. The communi-

cation volume is:

𝑉𝐹𝐶 = 4𝑁𝑅𝑘 (7)

where 𝑁𝑅 is the total number of nonempty columns from all

the RSC of 𝑨. Figure 2 (b) demonstrates the col-wise RSC
SpMM on 𝑨0

𝑹 . 𝑩
1
1 and 𝑩0

3 are reused among the nonzeros in

the same columns by two workers, resulting in two remote

embedding loads, fewer than the row-wise RSC SpMM.

3.1.3 Comparison of Communication Volume and Commu-
nication Redundancy. Supposing that the RSC has no empty

columns, we have 𝑉𝐹𝐶 = 𝑉𝐶𝐺 since 𝑁𝑅 = 𝑛(P − 1). How-
ever, due to the sparsity of real-world matrices, many empty

columnsmay emerge inRSC after partitioning for distributed

SpMM as illustrated in Figure 2, where 𝑉𝐹𝐶 is less than 𝑉𝐶𝐺 .

𝑉𝐶𝐺 is thus the upper bound of 𝑉𝐹𝐶 . Assuming another ex-

treme scenario that each nonempty column in RSC contains

only one nonzero, with 𝐸𝑅 = 𝑁𝑅 , there is 𝑉𝐹𝑅 = 𝑉𝐹𝐶 . 𝑉𝐹𝐶 is

thus the lower bound of 𝑉𝐹𝑅 . Consequently, col-wise RSC
SpMM theoretically has the least communication volume:

𝑉𝐹𝐶 = 𝑂 (𝑉𝐶𝐺), 𝑉𝐹𝑅 = Ω(𝑉𝐹𝐶). (8)

For distributed SpMM, the column indices of nonempty

columns in RSC determine which remote embeddings are

necessary for SpMM on RSC. Therefore, the necessary com-

munication volume for these necessary embeddings is thus

defined as:

𝑉𝑅 = 4𝑁𝑅𝑘 (9)

where 𝑉𝑅 is the communication volume for the necessary

remote embeddings, and 𝑁𝑅 is the number of nonempty

columns in RSC. Obviously, we have 𝑉𝑅 = 𝑉𝐹𝐶 , where col-

wise RSC SpMM is thus communication redundancy-free.

We conduct empirical comparisons of the communication

volumes of these three communication patterns on 16 GPUs

Table 2: Communication volume (MB) and the ratio
of redundant communication of different communica-
tion patterns when SpMM is run on 16 GPUs (2 nodes,
8 GPUs per node).

Matrix 𝑉𝐶𝐺 𝑉𝐹𝑅 𝑉𝐹𝐶

CLJ 7320.49 (89%) 2481.61 (66%) 835.425(0%)
COK 5625.81 (69%) 12964.64 (87%) 1723.121(0%)
CYT 2078.05 (96%) 271.85 (66%) 92.75(0%)
CIT 5361.26 (95%) 858.12 (67%) 285.828(0%)
PRD 4484.31 (89%) 2714.10 (82%) 497.932(0%)
SLJ 8876.17 (91%) 2681.62 (69%) 822.492(0%)
SPK 2989.75 (81%) 1491.62 (61%) 575.964(0%)
SSO 4764.36 (83%) 2910.63 (72%) 818.91(0%)

(2 nodes, 8 GPUs per node) with a column width of 𝑘 = 32.

The results are presented in Table 2, where the details of these

real-world sparse matrices are listed in Table 5. The ratio of

redundant communication of each communication pattern

is also listed in parentheses. It is clear that 𝑉𝐹𝐶 consistently

has the minimal communication volumes, highlighting the

effectiveness of col-wise RSC SpMM in removing redundant

communication.

3.2 Algorithm of Communication
Redundancy-free Distributed SpMM

Based on the analysis in Section 3.1, we adopt col-wise SpMM

on RSC to avoid redundant communication for remote em-

beddings. From the perspective of a worker, Algorithm 1 de-

tails the communication redundancy-free distributed SpMM

on 𝑃𝑖 , where ℎ = 𝑛/P is the height of 𝑩𝒊 and 𝑪𝒊 .

For LSC SpMM, the worker is allocated a sparse row of

nonzeros in LSC (Line 3), whose row index also identifies the

target output embedding position 𝐶𝑟𝑜𝑤 in 𝑪𝒊 (Line 4). For

each nonzero element in the row, it retrieves the correspond-

ing local embedding from 𝑩𝒊 based on the local column index

𝐴𝑐𝑜𝑙 (Lines 6-7). To minimize global memory access over-

head, the algorithm maintains an intermediate buffer 𝐶𝑒𝑚𝑏

in the worker’s scratchpad memory to accumulate partial

results (Line 9). Once all nonzeros in the sparse row are pro-

cessed, the final aggregated result is written to 𝑪𝒊 [𝐶𝑟𝑜𝑤] [:]
(Line 11).

For RSC SpMM, the worker is allocated a sparse column

of nonzeros in RSC (Line 13-14). It then identifies the posi-

tion of the remote input embedding by (𝑡, 𝑝𝑜𝑠) (Line 15-16),
where 𝑝𝑜𝑠 indicates the embedding’s position in target GPU

𝑃𝑡 ’s 𝑩𝑡
. Notably, the remote embedding is fetched once and

buffered in the worker’s scratchpad memory without con-

suming global memory (Line 18), enabling its reuse across all

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

Algorithm 1 Communication Redundancy-free Distributed

SpMM

1: function DistSpMM(LSC, RSC, 𝑩𝒊)

2: /*LSC SpMM*/

3: 𝐿𝑁𝑍 ← nonzeros in a row of LSC
4: 𝐶𝑟𝑜𝑤 ← the row index of 𝐿𝑁𝑍

5: for 𝑥 ∈ 𝐿𝑁𝑍 do
6: 𝐴𝑐𝑜𝑙 ← 𝑥 .𝑐𝑜𝑙𝐼𝑑𝑥%ℎ

7: 𝐵𝑒𝑚𝑏 ← 𝑩𝒊 [𝐴𝑐𝑜𝑙] [:]
8: /*Buffer the aggregated embedding in 𝐶𝑒𝑚𝑏*/

9: 𝐶𝑒𝑚𝑏 ← 𝐶𝑒𝑚𝑏 + 𝑥 .𝑣𝑎𝑙 ∗ 𝐵𝑒𝑚𝑏

10: end for
11: 𝑪𝒊 [𝐶𝑟𝑜𝑤] [:] ← 𝑪𝒊 [𝐶𝑟𝑜𝑤] [:] +𝐶𝑒𝑚𝑏

12: /*RSC SpMM*/

13: 𝑅𝑁𝑍 ← nonzeros in a column of RSC
14: 𝐴𝑐𝑜𝑙 ← the common column index of 𝑅𝑁𝑍

15: 𝑡 ← 𝐴𝑐𝑜𝑙/ℎ
16: 𝑝𝑜𝑠 ← 𝐴𝑐𝑜𝑙%ℎ

17: /*Buffer the remote embedding in 𝐵𝑒𝑚𝑏*/

18: 𝐵𝑒𝑚𝑏 ← 𝑩𝒕 [𝑝𝑜𝑠] [:]
19: for 𝑥 ∈ 𝑅𝑁𝑍 do
20: 𝐶𝑟𝑜𝑤 ← 𝑥 .𝑟𝑜𝑤𝐼𝑑𝑥

21: 𝑪𝒊 [𝐶𝑟𝑜𝑤] [:] ← 𝑪𝒊 [𝐶𝑟𝑜𝑤] [:] + 𝑥 .𝑣𝑎𝑙 ∗ 𝐵𝑒𝑚𝑏

22: end for
23: end function

nonzeros in the sparse column. For each nonzero, the algo-

rithm computes and directly accumulates the partial result

to the corresponding position in 𝑪𝒊 (Lines 19-22).

4 Link-aware Optimization Techniques
In this section, we first present the optimization opportuni-

ties for two issues caused by heterogeneous links, including

Issue #1: frequent communication over slow links, and Issue
#2: inefficient communication over proxy-based links. Subse-
quently, for Issue #1, we introduce communication fusion to

fuse the communication over slow links, thereby improving

communication efficiency. Lastly, for Issue #2, we propose
request-coalesced communication to further improve the

communication efficiency over proxy-based links.

4.1 Optimization Opportunities for
Heterogeneous Links

In this section, we analyze the performance issues caused by

heterogeneous interconnects and identify key optimization

opportunities. The experiments in this section to demon-

strate the performance issues are conducted on a typical

multi-node multi-GPU setting commonly found in modern

HPC, which has inter-node links of IB and intra-node links

of NVLink.

Table 3: Communication volumes (MB) over IB on a
2-node setting with 8 GPUs per node. 𝑉 𝐼𝐶𝐺 : coarse-
grained communication; 𝑉 𝐼𝐹𝑅 : row-wise SpMM; 𝑉 𝐼𝐹𝐶 :
column-wise SpMM; 𝑉 𝐼𝐶𝑜𝐿𝑎: CoLa with link-aware op-
timizations.

Matrix 𝑉 𝐼𝐶𝐺 𝑉 𝐼𝐹𝑅 𝑉 𝐼𝐹𝐶 𝑉 𝐼𝐶𝑜𝐿𝑎

CLJ 309.65 1078.84 421.88 164.75

COK 3904.26 5415.27 891.75 306.01

CYT 1108.29 124.03 46.86 25.77

CIT 2859.34 381.14 132.09 86.50

PRD 165.37 808.43 195.89 99.67

SLJ 2391.63 1580.39 436.14 194.61

SPK 129.43 618.48 281.52 109.98

SSO 894.95 1184.79 381.87 140.34

Issue #1: frequent communication over slow links. The
bandwidth gaps among heterogeneous links significantly

impact distributed SpMM performance, where frequent com-

munication over slow links degrades its performance. To

quantify this issue, we conduct experiments on a 2-node

setting (8 GPUs per node) with NVLink for intra-node and

IB for inter-node communication. We measure the communi-

cation volumes over IB (𝑉 𝐼) under different communication

strategies introduced in Section 3.1. They all demonstrate

massive IB communication volumes across all matrices. The

table also presents our optimized 𝑉 𝐼𝐶𝑜𝐿𝑎 . 𝑉 𝐼𝐶𝑜𝐿𝑎 achieves

the minimal IB communication volume, demonstrating the

effectiveness of our proposed optimization.

Opportunity #1. The above Issue #1 motivates us to

propose a communication optimization strategy considering

the communication topology. GPUs can be organized into

different workgroups based on the communication topology,

where intra-workgroup links are faster than inter-workgroup

links. This organization can be applied to common multi-

GPU settings with heterogeneous links. For multi-node plat-

forms with NVLink and IB, a node with multiple NVLink-

connected GPUs is a workgroup. For a single-node NUMA

platform with PCIe and QPI, each NUMA domain with mul-

tiple PCIe-connected GPUs is a workgroup.

Consider the basic distributed SpMM in Section 2.2, where

RSC SpMM on 𝑨𝒊
𝑹 is

∑P−1
𝑗=0, 𝑗≠𝑖 𝑨𝒊,𝒋𝑩𝒋 (Equation 4). When

GPUs 𝑃𝑖 and 𝑃𝑘 are in the same workgroup connected via

fast intra-workgroup link, while 𝑃 𝑗 is in a different work-

group connected to 𝑃𝑖 and 𝑃𝑘 through slow inter-workgroup

link, 𝑨𝒊,𝒋 and 𝑨𝒌,𝒋 assigned to 𝑃𝑖 and 𝑃𝑘 both require em-

beddings of 𝐵 𝑗 from 𝑃 𝑗 . This presents an opportunity for

communication fusion: instead of having 𝑃𝑖 and 𝑃𝑘 commu-

nicate repeatedly with 𝑃 𝑗 over the slow link, we can buffer 𝐵 𝑗

to 𝑃𝑖 through an inter-workgroup transfer, then allowing 𝑃𝑘
to access 𝑩𝒋 from 𝑃𝑖 via the fast intra-workgroup link. This

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 4: Latency (ms) for transferring various data sizes
(MB) using fine-grained (FG) and coarse-grained (CG)
communication over NVLink and IB.

Data size 0.25 0.5 1 2 4 8

FG-NVLink 17.13 18.10 19.93 25.55 29.01 41.46

CG-NVLink 19.00 23.48 26.50 25.69 32.30 44.31

FG-IB 3607.78 7477.82 15414.77 31248.01 63377.97 128245.72

CG-IB 64.47 79.67 104.81 160.20 274.22 495.09

insight leads to our communication fusion strategy detailed

in Section 4.2.

Issue #2: inefficient communication over proxy-based links.
To demonstrate this performance issue, we conduct profil-

ing experiments
2
by comparing the data transfer latencies

of fine-grained communication and coarse-grained commu-

nication over NVLink and proxy-based IB. The results are

presented in Table 4. While fine-grained communication

excels on NVLink, its performance severely degrades on

proxy-based IB due to proxy queue congestion caused by

frequent small messages.

Opportunity #2. Issue #2 naturally suggests to use coarse-
grained communication over proxy-based links for higher

bandwidth utilization. However, existing approaches using

naive coarse-grained collective communication [7, 9, 26, 31,

33] are sparsity-unaware, leading to redundant embedding

transfers as analyzed in Section 3.1.1. This dilemma moti-

vates our key idea: we can achieve both high bandwidth

utilization and minimal communication volume by coalesc-

ing the necessary remote embeddings into a bulk message

before communication. This approach not only maximizes

bandwidth utilization by avoiding proxy queue congestion

but also eliminates redundant communication by making

the coarse-grained communication sparsity-aware. Building

on this insight, we introduce request-coalesced communi-

cation in Section 4.3 to improve communication efficiency

over proxy-based links.

4.2 Communication Fusion over Slow Links
In this section, we introduce our communication fusion strat-

egy to reduce communication over slow links. As claimed

in Opportunity #1, GPUs can be grouped into different

workgroups based on the communication topology, where

intra-workgroup links are faster than inter-workgroup links.

Correspondingly, the distributed SpMM presented in Algo-

rithm 1 can be divided into multiple stages according to the

number of workgroups, each consisting of inter-workgroup
embedding distribution involving communication over slow

2
In this profiling, fine-grained communication is implemented with GPU-

side nvshmemx_float_get_warp where each warp transfers a 32-float em-

bedding. Coarse-grained communication is implemented with CPU-side

nvshmemx_float_get_on to transfer all data at once.

inter-workgroup links and intra-workgroup SpMM involving

communication over fast intra-workgroup links. Communi-

cation fusion is applied to inter-workgroup embedding distri-
bution to reduce communication over slow inter-workgroup

links.

4.2.1 Multi-stage Distributed SpMM. Given a multi-GPU

platformwith P GPUs, they are divided intoW workgroups,

where each workgroup contains G GPUs (i.e., P = WG).
On GPU 𝑃𝑖 , the computation of 𝑪𝒊 is divided intoW stages:

𝑪𝒊 =

W−1∑︁
𝑗=0

𝑪 𝒊,𝒋 =

W−1∑︁
𝑗=0

G−1∑︁
𝑘=0

𝑨𝒊,G𝒋+𝒌𝑩G𝒋+𝒌 (10)

where 𝑪 𝒊,𝒋
represents the partial results computed during

stage- 𝑗 , requiring remote embeddings from workgroup- 𝑗 .

4.2.2 Inter-workgroup Embedding Distribution. Communi-

cation fusion is achieved by leveraging local GPUs within a

workgroup to buffer remote embeddings from other work-

groups, avoiding different GPUs within a workgroup from

repeatedly communicating for the same embeddings from

another workgroup, thereby reducing slow inter-workgroup

communication. We name this buffering process as inter-
workgroup embedding distribution.
More specifically, before entering stage- 𝑗 SpMM in 𝑃𝑖 ,

stage- 𝑗 inter-workgroup embedding distribution distributes re-
mote embeddings from GPUs in workgroup- 𝑗 to GPUs in 𝑃𝑖 ’s

workgroup. The distribution follows a local-rank-matching

principle: each GPU buffers embeddings from its counter-

part GPU with the same local rank in a remote workgroup.

Consequently, all GPUs within 𝑃𝑖 ’s workgroup can access

remote embeddings required for stage- 𝑗 SpMM computation

through fast intra-workgroup links.

4.2.3 Intra-workgroup SpMM. Following stage- 𝑗 inter-workgroup
embedding distribution, the stage- 𝑗 SpMM on 𝑃𝑖 can then be

formulated as intra-workgroup SpMM:

𝑨𝒊,𝒋 = (𝑨𝒊,𝒋
𝑳 , 𝑨𝒊,𝒋

𝑹), 𝑨𝒊,𝒋
𝑳 = 𝑨𝒊,G𝒋+𝒊, 𝑨

𝒊,𝒋
𝑹 =

G−1∑︁
𝑘=0

𝑐𝑜𝑛𝑐𝑎𝑡 (𝑨𝒊,G𝒋+𝒌)

(11)

𝑪 𝒊,𝒋 = 𝑨𝒊,𝒋
𝑳 𝑩︸︷︷︸

LSC SpMM

+ 𝑨𝒊,𝒋
𝑹 𝑩︸︷︷︸

RSC SpMM

= 𝑨𝒊,G𝒋+𝒊𝑩G𝒋+𝒊+
G−1∑︁

𝑘=0,𝑘≠𝑖

𝑨𝒊,G𝒋+𝒌𝑩G𝒋+𝒌

(12)

where 𝑨𝒊,𝒋
is the sparse data processed by 𝑃𝑖 in stage- 𝑗 .

𝑨𝒊,𝒋
𝑳 and 𝑨𝒊,𝒋

𝑹 are the local and remote sparse chunk pro-

cessed by 𝑃𝑖 in stage- 𝑗 , respectively. Notably, the communica-

tion redundancy-free Algorithm 1 can be directly applied to

𝑃𝑖 ’s stage- 𝑗 intra-workgroup SpMM, whose SpMM is divided

into LSC SpMM and RSC SpMM, and the communication

redundancy-free property is maintained.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

Algorithm 2 Request-coalesced Communication for inter-
workgroup embedding distribution

1: function CoalComm(𝑖, 𝑡, 𝑟𝑒𝑐𝑣𝐵𝑢𝑓) ⊲ 𝑖 is the

source GPU’s rank, 𝑡 and 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 are the target GPU’s

rank and buffer address

2: 𝐶𝑜𝑙𝑠 ← ∅, 𝑠𝑒𝑛𝑑𝐵𝑢𝑓 ← ∅
3: /*Indices of necessary embeddings*/

4: for 𝑗 = 0 to G − 1 do
5: 𝑘 = 𝑗 + ⌊𝑡/G⌋ ∗ G
6: 𝑛𝑒𝐶𝑜𝑙𝑠 ← indices of nonempty columns in 𝑨𝒌,𝒕

7: 𝐶𝑜𝑙𝑠 ← 𝐶𝑜𝑙𝑠 ∪ 𝑛𝑒𝐶𝑜𝑙𝑠
8: end for
9: /*Coalesce embeddings based on 𝑐𝑜𝑙*/

10: for 𝑐𝑜𝑙 ∈ 𝐶𝑜𝑙𝑠 do
11: 𝐵𝑐𝑜𝑙 ← 𝑐𝑜𝑙%ℎ

12: 𝑠𝑒𝑛𝑑𝐵𝑢𝑓 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑩𝒊 [𝐵𝑐𝑜𝑙])
13: end for
14: Put(𝑠𝑒𝑛𝑑𝐵𝑢𝑓 , 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 , 𝑡)

15: end function

4.3 Request-coalesced Communication over
Proxy-based Links

In this section, we introduce the request-coalesced commu-

nication for the efficient embedding communication over

proxy-based links based on Opportunity #2.
For inter-workgroup embedding distribution (Section 4.2.2),

its communication needs to be optimized when the inter-

workgroup links are proxy-based (e.g., IB). With request-

coalesced communication, requested embeddings for inter-
workgroup embedding distribution are coalesced into a bulk

message before communication. It improves the communi-

cation throughput over proxy-based links through coarse-

grained communication, simultaneouslymaintaining sparsity-

awareness by coalescing the necessary remote embeddings.

Algorithm 2 details the request-coalesced communication.

For a given source-target GPU pair (𝑃𝑖 , 𝑃𝑡), the algorithm
begins by initializing empty sets 𝐶𝑜𝑙𝑠 and 𝑠𝑒𝑛𝑑𝐵𝑢𝑓 (Line 2).

𝐶𝑜𝑙𝑠 indicate the necessary embeddings in𝐵𝑖 required by 𝑃𝑡 ’s

workgroup for inter-workgroup embedding distribution, while
𝑠𝑒𝑛𝑑𝐵𝑢𝑓 is the buffer to store the coalesced embeddings in

𝑃𝑖 ’s local memory that are later sent to 𝑃𝑡 . It then collects

indices of necessary embeddings to 𝐶𝑜𝑙𝑠 by examining the

nonempty column indices of the sparse matrix chunk 𝑨𝒌,𝒕 ,

where 𝑘 ranges over the ranks of GPUs within 𝑃𝑡 ’s work-

group (Lines 4-8). Subsequently, for each collected index 𝑐𝑜𝑙

in𝐶𝑜𝑙𝑠 , it is first transformed to local embedding index in 𝑩𝒊

using 𝑐𝑜𝑙%ℎ, and the corresponding embedding in 𝑩𝒊 is then

appended to 𝑠𝑒𝑛𝑑𝐵𝑢𝑓 (Lines 10-13). Finally, the coalesced

embeddings are transferred to the target GPU 𝑃𝑡 ’s receiv-

ing buffer 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 through a single bulk communication

operation (Line 14). This algorithm significantly improves

communication throughput for inter-workgroup embedding
distribution by coalescing the requested embeddings into a

single bulk transfer, while maintaining minimal communica-

tion volume by transferring only the necessary embeddings.

Notably, we use PUT initiated by 𝑃𝑖 rather than GET initiated

by 𝑃𝑡 as the GPU-to-GPU communication primitive, as the

coalescing of requested embeddings from 𝑩𝒊 can only be

achieved within the memory of the source GPU 𝑃𝑖 .

5 Implementation of CoLa
We present CoLa, a high-performance distributed SpMM

framework that integrates our three key optimization tech-

niques: communication redundancy-free algorithm, commu-

nication fusion, and request-coalesced communication. In

this section, we further introduce pipeline optimization and

community-aware graph reordering to improve the perfor-

mance of CoLa.

5.1 Pipeline Optimization
As introduced in Section 4.2, communication fusion divides

the complete distributed SpMM intoW stages, each con-

sisting of intra-workgroup SpMM and inter-workgroup em-
bedding distribution. This multi-stage structure presents an

opportunity for pipeline optimization, where the execution

of intra-workgroup SpMM and inter-workgroup embedding
distribution can be overlapped.

To avoid confusion, we distinguish between two terms:

"stage" refers to the logical decomposition of multi-stage

distributed SpMM described in Section 4.2 and Equations 12,

where the GPU 𝑃𝑖 ’s stage- 𝑗 SpMM on 𝐴𝑖, 𝑗
requires embed-

dings from workgroup- 𝑗 ; and "phase" refers to the pipeline

execution order according to our scheduling.

The pipeline employs a double-buffer mechanism, with

each GPU 𝑃𝑖 maintaining two buffers (𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [0] and
𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [1]): one for the current-phase intra-workgroup
SpMM and another for buffering remote embeddings for

the next-phase inter-workgroup embedding distribution. The
pipeline begins with phase-0 intra-workgroup SpMM using lo-

cally available embeddings, bypassing phase-0 inter-workgroup
embedding distribution while asynchronously performing

phase-1 inter-workgroup embedding distribution. Afterwards,
the phase- 𝑗 intra-workgroup SpMM is thus overlapped with

the phase- 𝑗 + 1 inter-workgroup embedding distribution.
Algorithm 3 details the pipeline scheduling. For GPU

𝑃𝑖 , it first sets 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [0] to local 𝑩𝒊 and 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [1]
to empty (Line 3). The main pipeline consists of W − 1

phases (Lines 4-12), each starting with a global synchroniza-

tion (Line 5) to ensure the availability of embeddings for

phase- 𝑗 intra-workgroup SpMM. 𝑔 = (⌊𝑖/G⌋ + 𝑗) modW
(Line 7) is to determine the sparse data 𝐴

𝑖,𝑔

𝐿
and 𝐴

𝑖,𝑔

𝑅
for

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Algorithm 3 Link-aware Distributed SpMM Pipeline

1: function LinkAwarePipeline(𝑖) ⊲ 𝑖 is GPU 𝑃𝑖 ’s rank

2: /*Initialize 𝑃𝑖 ’s 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 with local 𝑩𝒊*/

3: 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [0] ← 𝑩𝒊 , 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [1] ← ∅
4: for 𝑗 = 0 toW − 2 do
5: GlobalSync()

6: /*Phase-j Intra-workgroup SpMM*/

7: 𝑔 = (⌊𝑖/G⌋ + 𝑗) modW
8: DistSpMM(𝑨𝒊,𝒈

𝑳 , 𝑨𝒊,𝒈
𝑹 , 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [𝑗%2])

9: /*Phase-j+1 Inter-workgroup embedding distribution*/
10: 𝑡 = (𝑖 − G ∗ (𝑗 + 1)) mod P
11: Async.CoalComm(𝑖, 𝑡, 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑡] [(𝑗 + 1)%2])
12: end for
13: GlobalSync()

14: 𝑔 = (⌊𝑖/G⌋ +W − 1) modW
15: DistSpMM(𝑨𝒊,𝒈

𝑳 , 𝑨𝒊,𝒈
𝑹 , 𝑟𝑒𝑐𝑣𝐵𝑢𝑓 [𝑖] [(W − 1)%2])

16: end function

𝑃𝑖 ’s phase- 𝑗 intra-workgroup SpMM. It then performs phase-

𝑗 intra-workgroup SpMM using Algorithm 1 (Line 8). Fol-

lowing this, according to the local-rank-matching principle

mentioned in Section 4.2, it calculates the target GPU rank

𝑡 = (𝑖 − G ∗ (𝑗 + 1)) mod P (Line 10) for phase- 𝑗 + 1 inter-
workgroup embedding distribution. Subsequently, it initiates
asynchronous request-coalesced communication (Line 11)

for phase- 𝑗 + 1 inter-workgroup embedding distribution. After
finishing the main pipeline, the pipeline concludes with a

final intra-workgroup SpMM phase (Lines 13-15).

5.2 Incorporation with Community-aware
Graph Reordering

Graph reordering techniques [13, 17, 20, 23, 24, 27] have

been widely used to accelerate graph applications. Since

communication in CoLa is aware of the sparsity pattern of

a sparse matrix, to further reduce communication volume,

we integrate community-aware graph reordering as a pre-

processing step to optimize the sparsity pattern of the input

sparse matrix (i.e., the adjacency matrix of a graph).

Community-aware graph reordering techniques, such as

Rabbit Reordering [6], can efficiently transform a graph’s ad-

jacency matrix into an approximate block-diagonal pattern

in highly parallel, requiring minimal time. Consequently,

the number of nonzeros in RSC is reduced, resulting in less

remote embedding access for nonempty columns. Simulta-

neously, nonzeros in LSC enjoy better data locality, thereby

improving the performance of LSC SpMM. Synergizing with

CoLa, the community-aware graph reordering is a default

preprocessing step.

Table 5: Datasets for evaluation. 𝑛 is the number of
rows, 𝑛𝑛𝑧 is the number of nonzeros. Density is 𝑛𝑛𝑧

𝑛2
.

Matrix Name 𝑛 𝑛𝑛𝑧 Density

com-LiveJournal(CLJ) 4.00M 69.36M 4.34𝑒−6

com-Orkut(COK) 3.07M 234.37M 2.48𝑒−5

com-Youtube(CYT) 1.13M 5.98M 4.64𝑒−6

ogbl-citation2(CIT) 2.93M 30.39M 3.54𝑒−6

ogbn-products(PRD) 2.45M 123.72M 2.06𝑒−5

soc-LiveJournal(SLJ) 4.85M 68.99M 2.94𝑒−6

soc-Pokec(SPK) 1.63M 30.62M 1.15𝑒−5

sx-stackoverflow(SSO) 2.60M 36.23M 5.35𝑒−6

5.3 Implementation Details
There are several multi-GPU distributed shared memory pro-

gramming supports, such as the Unified Memory (UM) [4],

and NVSHMEM [3], among which NVSHMEM is based on

the Partitioned Global Address Space (PGAS) model [44].

NVSHMEM offers both GPU-side fine-grained communica-

tion and CPU-side coarse-grained communication primitives.

For convenience, all the communication operations in CoLa

are implemented based on NVSHMEM. Its GPU-side fine-

grained communication primitives are used to implement

communication redundancy-free intra-workgroup SpMM. Its

CPU-side coarse-grained communication primitives are used

to implement request-coalesced communication for inter-
workgroup embedding distribution.

6 Experiment Evaluations
In this section, we evaluate the performance of CoLa, validate

the effectiveness of the proposed techniques, and demon-

strate CoLa’s performance in accelerating GNNs.

6.1 Experimental Setup
6.1.1 Datasets. We collect eight large-scale sparse matrices

from SuiteSparse [16] and OGB [21], whose corresponding

graphs have million-scale nodes, as listed in Table 5.

6.1.2 Experimental Platforms. We conduct experiments on

two platforms with different communication topologies:

• A800 platform:Amulti-node multi-GPU platform, where

each node has 8 NVLink-connected Nvidia A800 GPUs,

with different nodes connected with IB. Each A800 GPU

has 1381 GB/s global memory bandwidth and a compute

capability of 8.6. This platform serves as our main experi-

mental platform.

• V100 platform: A single-node multi-GPU platform con-

sists of 2 NUMA domains connected with QPI, with each

domain housing 4 Nvidia V100 GPUs linked with PCIe.

Each V100 GPU has 725 GB/s global memory bandwidth

and a compute capability of 7.0.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

Table 6: The comparison of CoLa to baselines on single-node multi-GPU settings.
A800-#nGPU 2 4 8

Methods CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa

CLJ 27.44 (10.16×) 8.43 (3.12×) 19.30 (7.15×) 2.70 22.21 (12.10×) 5.29 (2.88×) 13.16 (7.17×) 1.84 17.69 (14.20×) 4.91 (3.94×) 9.00 (7.23×) 1.25

COK 52.81 (8.25×) 19.18 (3.00×) 46.43 (7.26×) 6.40 38.72 (8.41×) 10.50 (2.28×) 30.77 (6.68×) 4.60 21.75 (6.69×) 6.42 (1.97×) 21.74 (6.69×) 3.25

CYT 4.62 (9.69×) 1.58 (3.32×) 7.55 (15.83×) 0.48 3.43 (11.83×) 1.67 (5.74×) 8.14 (28.06×) 0.29 2.75 (13.47×) 2.78 (13.60×) 8.77 (42.97×) 0.20

CIT 13.41 (9.73×) 4.68 (3.40×) 9.02 (6.55×) 1.38 8.30 (9.46×) 3.41 (3.88×) 5.46 (6.22×) 0.88 6.80 (11.26×) 3.89 (6.45×) 3.08 (5.10×) 0.60

PRD 28.79 (9.73×) 10.76 (3.63×) 20.35 (6.87×) 2.96 18.14 (10.12×) 6.14 (3.42×) 12.90 (7.19×) 1.79 13.63 (11.49×) 4.37 (3.68×) 7.32 (6.17×) 1.19

SLJ 30.01 (10.70×) 8.98 (3.20×) 20.67 (7.37×) 2.81 24.17 (12.64×) 5.68 (2.97×) 11.69 (6.11×) 1.91 19.57 (14.42×) 5.64 (4.16×) 8.72 (6.42×) 1.36

SPK 11.97 (10.01×) 3.64 (3.05×) 9.10 (7.61×) 1.20 9.47 (10.05×) 2.58 (2.74×) 5.66 (6.01×) 0.94 6.92 (9.25×) 2.86 (3.82×) 3.70 (4.95×) 0.75

SSO 15.08 (9.23×) 4.68 (2.86×) 17.57 (10.75×) 1.63 11.89 (9.52×) 3.23 (2.59×) 14.04 (11.24×) 1.25 9.24 (9.33×) 3.58 (3.61×) 13.01 (13.12×) 0.99

Geo. spd 9.66× 3.19× 8.29× 1.00× 10.42× 3.18× 8.40× 1.00× 10.95× 4.41× 8.50× 1.00×

Table 7: The comparison of CoLa to baselines on multi-node multi-GPU settings.
A800-#nGPU 16 24 32

Methods CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa

CLJ 23.06 (7.50×) 85.52 (27.84×) 715.59 (232.94×) 3.07 25.31 (7.18×) 96.38 (27.33×) 636.89 (180.63×) 3.53 29.64 (8.05×) 100.62 (27.34×) 940.76 (255.64×) 3.68

COK 25.77 (4.37×) 66.13 (11.22×) 12095.38 (2051.80×) 5.90 25.17 (3.45×) 75.23 (10.31×) 5357.47 (734.20×) 7.30 27.23 (3.46×) 78.81 (10.01×) 6317.69 (802.45×) 7.87

CYT 6.92 (11.19×) 23.57 (38.14×) 420.17 (679.89×) 0.62 9.15 (12.91×) 27.65 (38.99×) 96.13 (135.58×) 0.71 12.57 (14.68×) 30.20 (35.28×) 231.85 (270.85×) 0.86

CIT 17.16 (10.38×) 62.81 (38.02×) 803.36 (486.29×) 1.65 19.96 (10.67×) 70.47 (37.68×) 568.43 (303.97×) 1.87 20.66 (9.90×) 72.84 (34.89×) 636.57 (304.87×) 2.09

PRD 15.50 (7.93×) 52.32 (26.76×) 1042.96 (533.48×) 1.96 17.26 (5.74×) 60.37 (20.08×) 1798.72 (598.38×) 3.01 20.17 (7.36×) 62.40 (22.78×) 766.68 (279.91×) 2.74

SLJ 28.17 (7.45×) 103.09 (27.25×) 7588.86 (2006.04×) 3.78 32.72 (8.68×) 116.13 (30.80×) 734.60 (194.80×) 3.77 34.42 (6.88×) 122.25 (24.42×) 4252.88 (849.39×) 5.01

SPK 9.92 (4.80×) 34.09 (16.48×) 752.78 (364.01×) 2.07 12.14 (5.27×) 39.24 (17.02×) 637.61 (276.62×) 2.31 15.22 (6.19×) 42.07 (17.11×) 452.21 (183.90×) 2.46

SSO 14.43 (5.56×) 56.13 (21.62×) 1476.79 (568.87×) 2.60 17.30 (5.88×) 61.58 (20.93×) 746.64 (253.78×) 2.94 21.17 (6.76×) 66.78 (21.33×) 768.29 (245.46×) 3.13

Geo. spd 7.04× 24.20× 657.72× 1.00× 6.92× 23.44× 285.97× 1.00× 7.36× 22.61× 340.76× 1.00×

6.1.3 Baselines. We evaluate CoLa against state-of-the-art

open-source distributed SpMM from two categories:

• SUMMA-like methods: CAGNET [33] and MGGCN [7]

are based on coarse-grained collective communication as

discussed in Section 3.1.1. CAGNET implements a bunch

of SUMMA-like distributed SpMM algorithms, including

1D, 1.5D, and 2D, among which we choose the one with

the best performance for comparison. MGGCN, originally

designed for single-node multi-GPU settings, employs a

1D SUMMA algorithm with pipelined communication-

computation overlap. We have tried our best to extend

MGGCN to multi-node multi-GPU settings based on the

implementation details in their paper, in order to provide

a comprehensive comparison with CoLa.

• Fine-grained communication based:MGG [38] is based

on fine-grained communication adopting row-wise RSC
SpMM pattern as discussed in Section 3.1.2. Since MGG

is based on fine-grained communication and is sparsity-

aware, community-aware graph reordering is also applied

as a default preprocessing step in its comparison with

CoLa. As for the effectiveness of community-aware graph

reordering on different distributed SpMM methods, a de-

tailed analysis is provided in Section 6.5.

CAGNET, MGGCN, and MGG accelerate GNN over whole

graphs through optimized distributed SpMM kernels. We

separately extract their SpMM kernels for comparison as

CAG-SpMM, MGGCN-SpMM, and MGG-SpMM.

6.2 Overall Performance
To comprehensively evaluate the performance of CoLa across

different communication topologies, we conduct experiments

on the A800 platform with both single-node multi-GPU and

multi-node multi-GPU settings. Table 6 and Table 7 report

the distributed SpMM execution time of CoLa and baselines

on single-node multi-GPU settings and the multi-node multi-

GPU settings, respectively. The performance is reported as

a tuple of execution time (ms) and the speedup achieved by

CoLa. The geomean speedups of CoLa over baselines across

datasets are also listed.

6.2.1 Performance on Single-node Multi-GPU Settings. CoLa
shows remarkable speedups over baselines, consistently show-

ing great performance across all datasets. To further summa-

rize, with the number of GPUs from {2,4,8}, CoLa achieves

geomean speedups of 10.33×, 3.55×, and 8.39× over CAG-

SpMM, MGG-SpMM, and MGGCN-SpMM, respectively.

With all GPUs connected by NVLink on a single node, the

performance gap of baselines over CoLa stems from the re-

dundant communication. The deficiency of MGGCN-SpMM

and CAG-SpMM primarily comes from the communication

for unnecessary embeddings using coarse-grained collec-

tive communication. MGGCN-SpMM partially mitigates this

through pipeline optimization, therefore performing better

compared to other baselines. Despite MGG-SpMM’s use of

fine-grained communication to fetch only necessary remote

embeddings, some remote embeddings are fetched repeatedly

since its application of row-wise RSC SpMM. In contrast,

CoLa consistently outperforms baselines by eliminating re-

dundant communication using Algorithm 1.

6.2.2 Performance on Multi-node Multi-GPU Settings. CoLa
maintains its dominant performance on multi-node multi-

GPU settings. Overall, on configurations with 2-node (16

GPUs), 3-node (24 GPUs), and 4-node (32 GPUs), CoLa achieves

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

geomean speedups of 7.10×, 23.41×, and 400.19× over CAG-
SpMM, MGG-SpMM, and MGGCN-SpMM, respectively.

On multi-node settings with heterogeneous links (faster

intra-node NVLink vs. slower inter-node IB), CoLa’s link-

aware optimization techniques provide significant advan-

tages. For the multi-node multi-GPU settings here, CoLa

treats each node’s 8 GPUs as a workgroup, achieving excep-

tional performance through its optimization of communica-

tion redundancy-free Intra-workgroup SpMM and link-aware

inter-workgroup embedding distribution. Despite being both-

ered by redundant communication, CAG-SpMM has the best

performance among baselines, since its 1.5D algorithm can re-

duce the communication over inter-node IB. MGGCN-SpMM,

without link-aware optimization, suffers from massive in-

efficient communication over inter-node IB. MGG-SpMM

performs the worst mainly due to its notorious application

of fine-grained communication over proxy-based IB, where

frequent small messages over IB are extremely inefficient,

and yet without optimizing the communication volume.

6.3 The Effectiveness of Proposed
Techniques

6.3.1 Ablation Studies. We validate the effectiveness of the

proposed techniques through ablation studies. With dis-

tributed SpMM scaled on 4 nodes with 32 A800 GPUs in total,

Table 8 compares the performance of the basic method (i.e.,

applying row-wise SpMM on RSC using fine-grained commu-

nication under static 1D partitioning like MGG [38]), RF (i.e.,

communication redundancy-free distributed SpMM in Sec-

tion 3.2 without link-aware optimization), RF+CF (i.e., RFwith
communication fusion introduced in Section 4.2), RF+CF+RC
(i.e., RF+CF with request-coalesced communication intro-

duced in Section 4.3), and RF+CF+RC+PP (i.e., RF+CF+RC with

pipeline optimization).

Table 8 shows that each proposed technique effectively

contributes to the performance improvement. RF largely

boosts the performance compared to basic, showing the

effectiveness of eliminating redundant communication for

remote embeddings. However, RF is still slowed down by

Table 8: The comparison of basic, RF, RF+CF, RF+CF+RC,
and RF+CF+RC+PP on 4-node with 32 A800 GPUs.

Methods basic RF RF+CF RF+CF+RC RF+CF+RC+PP

CLJ 940.76 484.45 19.67 5.48 3.68

COK 6317.69 721.51 16.32 11.07 7.87

CYT 231.85 40.24 5.66 1.20 0.86

CIT 636.57 154.09 14.15 2.88 2.09

PRD 766.68 280.43 12.28 3.91 2.74

SLJ 4252.88 476.86 23.84 6.32 5.01

SPK 452.21 236.66 8.19 3.79 2.46

SSO 768.29 361.71 12.87 4.82 3.13

Table 9: Performance of different methods on V100
platform with 2 QPI-connected NUMA domains, each
containing 4 PCIe-connected V100 GPUs.
Methods CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa_w/o_LA CoLa

CLJ 68.01(4.85×) 109.32(7.80×) 96.58(6.89×) 27.86 (1.99×) 14.02

COK 61.73(1.86×) 48.34(1.46×) 446.25(13.47×) 59.60 (1.80×) 33.14

CYT 24.31(10.97×) 20.58(9.29×) 21.20(9.57×) 3.44 (1.55×) 2.22

CIT 48.60(7.42×) 44.87(6.85×) 37.25(5.69×) 10.31 (1.57×) 6.55

PRD 44.43(4.42×) 38.06(3.79×) 87.63(8.73×) 10.31 (1.03×) 10.04

SLJ 82.07(4.58×) 73.00(4.08×) 138.12(7.71×) 30.07 (1.68×) 17.91

SPK 27.53(2.87×) 25.65(2.68×) 51.53(5.38×) 18.66 (1.95×) 9.58

SSO 47.61(3.16×) 39.31(2.61×) 109.32(7.25×) 23.72 (1.57×) 15.08

Geo. spd 4.48× 4.09× 7.77× 1.61× 1.00×

its application of fine-grained communication over proxy-

based IB. RF+CF reduces the communication volume over

slow IB by communication fusion. RF+CF+RC further im-

proves communication efficiency compared to RF+CF by ap-

plying request-coalesced communication over proxy-based

IB. Lastly, RF+CF+RC+PP further boosts the performance by

applying pipeline optimization.

6.3.2 The Effectiveness of Link-aware Optimization on Differ-
ent Platforms. The effectiveness of link-aware optimization

on multi-node multi-GPU settings (i.e., A800 platform) is val-

idated in Section 6.3.1, where link-aware optimization is used

to improve communication efficiency over inter-node IB. We

further evaluate the effectiveness of link-aware optimiza-

tion on V100 platforms, where 2 NUMA domains are con-

nected with QPI, with each domain having 4 PCIe-connected

V100 GPUs. In this setting, CoLa’s link-aware optimization

treats 4 GPUs within a single NUMA domain as a work-

group. We use CoLa_w/o_LA to represent CoLa without

link-aware optimization. Table 9 presents the performance

of CoLa, CoLa_w/o_LA, and baselines. CoLa demonstrates

1.61× geomean speedup over CoLa_w/o_LA by optimizing

communication over inter-workgroup QPI. CoLa also main-

tains remarkable advantages over other baselines, validating

its generality of optimization techniques across different

GPU platforms.

6.4 Scalibility
6.4.1 Scalability with Increasing the Number of GPUs. Figure
3 presents the execution time of all methods with increasing

the number of GPUs from {1,2,4,8} within a single node. The

execution time of CoLa efficiently scales down as the number

of GPUs is increased across all datasets. This impressive scal-

ability validates CoLa’s superior communication efficiency

by eliminating redundant communication. It’s worth men-

tioning that only CoLa can successfully scale down from 1

GPU to 2 GPUs across all datasets, while others all degraded

due to redundant communication. CAG-SpMM and MGGCN-

SpMM under coarse-grained collective communication show

unpleasant scalability, where many fetched embeddings are

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

1 2 4 8
nGPU

51

52

Ti
m

e
(m

s)

matrix = CLJ

1 2 4 8
nGPU

51

52

matrix = COK

1 2 4 8
nGPU

5 1

50

51

matrix = CYT

1 2 4 8
nGPU

50

51

matrix = CIT

1 2 4 8
nGPU

51

52
matrix = PRD

1 2 4 8
nGPU

51

52

matrix = SLJ

1 2 4 8
nGPU

50

51

matrix = SPK

1 2 4 8
nGPU

50

51

k = 32

matrix = SSO
CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa

Figure 3: Performance comparison of different methods with increasing GPUs on a single node. When there is one
GPU, we use Nvidia cuSPARSE [1] for all methods’ single-GPU SpMM.

8 16 24 32
nGPU

100

101

102

103

Ti
m

e
(m

s)

matrix = CLJ

8 16 24 32
nGPU

101

102

103

104
matrix = COK

8 16 24 32
nGPU

100

101

102

matrix = CYT

8 16 24 32
nGPU

100

101

102

103
matrix = CIT

8 16 24 32
nGPU

100

101

102

103

matrix = PRD

8 16 24 32
nGPU

101

103

matrix = SLJ

8 16 24 32
nGPU

100

101

102

103 matrix = SPK

8 16 24 32
nGPU

100

101

102

103

k = 32

matrix = SSO
CAG-SpMM MGGCN-SpMM MGG-SpMM CoLa

Figure 4: Performance comparison of different methods with increasing GPUs on multi-node multi-GPU settings.

unnecessary for computing. MGG-SpMM also shows poor

scalability, due to its excessive redundant communication by

loading remote embeddings repeatedly.

Figure 4 presents the execution time of all methods with

increasing the number of GPUs from {8,16,24,32} on multi-

node settings. As the inter-node IB (18 GB/s) is way slower

than intra-node NVLink (300 GB/s), all methods fail to scale

down the execution time. All baselines show poor scalability

onmulti-node settings, without link-aware optimization over

IB. CoLa still maintains the best performance among all

methods, being the best choice for scaling distributed SpMM

to more GPUs.

0

15

30

45

60

75

Ti
m

e
(m

s)

matrix = CLJ

0

25

50

75

100

125
matrix = COK

0.0

2.5

5.0

7.5

10.0

matrix = CYT

0

6

12

18

24

30
matrix = CIT

CAG-SpMM

MGGCN-SpMM

MGG-SpMM CoLa
0

15

30

45

60

Ti
m

e
(m

s)

matrix = PRD

CAG-SpMM

MGGCN-SpMM

MGG-SpMM CoLa
0

20

40

60

80

100
matrix = SLJ

CAG-SpMM

MGGCN-SpMM

MGG-SpMM CoLa
0

6

12

18

24

30 matrix = SPK

CAG-SpMM

MGGCN-SpMM

MGG-SpMM CoLa
0

8

16

24

32

40
matrix = SSO

k=128 k=64 k=32

Figure 5: The comparison of different methods with
decreasing 𝑘 from {128,64,32} on 8 GPUs.

6.4.2 Scalability with Decreasing the Embedding Dimension
𝑘 . Figure 5 presents the execution time of all methods with

decreasing 𝑘 from {128,64,32} on 8 GPUs. As 𝑘 decreases,

the execution time of all methods scales down as expected.

Notably, themore steep decline of execution time of amethod

along with 𝑘 , the more sensitive its performance is to 𝑘 .

Among all methods, CAG-SpMM is the most sensitive to 𝑘 ,

which is not good for its performance with even bigger 𝑘 .

6.5 The Effectiveness of Community-aware
Graph Reordering

To validate the impact of graph reordering, we use ’_r’ to de-

note methods with graph reordering, and ’_w/o_r’ to denote

methods without graph reordering. Table 10 demonstrates

the geomean speedups of CoLa_r and CoLa_w/o_r over base-

lines when SpMM is scaled with 8 A800 GPUs. This table

reveals that MGGCN and CAGNET do not benefit from graph

reordering. MGGCN-SpMM_r even shows much worse per-

formance since it relies on its node permutation preprocess-

ing to balance the workload across GPUs. The performance

of MGG is largely boosted by reordering, where CoLa_r

shows 12.03× speedups over MGG-SpMM_w/o_r and 8.50×
over MGG-SpMM_r. This is because sparsity-aware MGG-

SpMM_r enjoys fewer nonzeros in RSC after reordering,

thereby reducing communication according to Equation 6.

However, MGG-SpMM_r is still worse compared to CoLa

by repeatedly loading remote embeddings. Even without

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 10: The speedups of CoLa w/o and w/ reordering
over baselines on 8 A800 GPUs.

Geo. spd CAG-
SpMM_w/o_r

CAG-
SpMM_r

MGGCN-
SpMM_w/o_r

MGGCN-
SpMM_r

MGG-
SpMM_w/o_r

MGG-
SpMM_r

CoLa_w/o_r 4.76× 4.11× 1.92× 2.68× 5.23× 3.70×
CoLa_r 10.95× 9.46× 4.41× 6.16× 12.03× 8.50×

graph reordering, CoLa_w/o_r still outperforms all the base-

lines, which again validates the effectiveness of our proposed

techniques. Note that one-time reordering overhead is light-

weight and amortizable in iterative applications (e.g., GNNs).

More specifically, the reordering accounts for only an aver-

age of 2.66% of one epoch of GCN across datasets.

6.6 Application in GNNs
We name the GCN embedded with CoLa as CoLaGCN. We

evaluate CoLaGCN and baselines on a 5-layer GCN with an

input feature size of 16, an output feature size of 16, and

a hidden layer size of 32. Table 11 details the performance

comparison of CoLaGCN and baselines when scaled with

8 A800 GPUs. Geomean speedups are also listed in the ta-

ble, where CoLaGCN significantly outperforms baselines,

showing great applicability for GNN tasks.

Table 11: The GCN Performance on 8 A800 GPUs, re-
ported as the average time (s) of one GCN epoch.

Methods CAGNET MGGCN MGG CoLaGCN

CLJ 7.04(6.30×) 2.31(2.07×) 4.69(4.19×) 1.12

COK 9.87(6.40×) 3.18(2.06×) 10.74(6.97×) 1.54

CYT 7.69(39.44×) 1.52(7.79×) 4.43(22.71×) 0.20

CIT 3.26(6.45×) 1.75(3.46×) 1.68(3.32×) 0.51

PRD 5.51(8.30×) 2.07(3.12×) 3.79(5.72×) 0.66

SLJ 7.99(8.57×) 2.50(2.68×) 4.58(4.91×) 0.93

SPK 3.21(6.18×) 1.66(3.20×) 1.93(3.70×) 0.52

SSO 5.82(8.57×) 1.74(2.56×) 6.61(9.74×) 0.68

Geo. spd 8.88× 3.07× 6.22× 1.00×

7 Related Work
In this section, we first review existing distributed SpMM

optimization works. Then, we discuss local SpMM optimiza-

tions in non-distributed machines. Lastly, we discuss the

optimizations on distributed GNNs.

Distributed SpMM. Several existing works [9, 26, 31, 33]
devise a family of 1D, 1.5D, 2D, 3D distributed SpMM, and

their variants to reduce communication volume using coarse-

grained collective communication. MGGCN [7] and MGG

[38] accelerate GNNs’ embedding aggregation by optimiz-

ing distributed SpMM. MGGCN uses coarse-grained asyn-

chronous collective communication to achieve computation-

communication overlapping. In contrast, MGG proposes a

fine-grained communication pipeline on top of distributed

multi-GPU shared memory, causing massive redundant com-

munication from row-wise SpMM on RSC. CPU-based Two-

Face [10] employs a combination of coarse-grained collective

communication and fine-grained asynchronous communi-

cation. All these works neglect to discuss communication

redundancy and consider the bandwidth gaps among hetero-

geneous links, which cause inefficient communication.

Local SpMM Optimizations. Some [15, 17, 37, 41] accel-

erate SpMM by optimizing the workload imbalance among

different workers. Some [20, 43, 46] employ hybrid blocking

techniques to adaptively exploit the data locality of matrices.

Some [12, 29, 39] leverage the powerful tensor core units [14]

to accelerate SpMM in sparse DNNs [19] or GNNs. Others

[15, 45, 46] employ machine learning to navigate the SpMM

optimization strategies.

Distributed GNN. BothWholeGraph[42] and XGNN [32]

implement mini-batch GNN training over multi-GPU dis-

tributed shared memory by optimizing mini-batch sampling.

However, they do not accelerate the aggregation of embed-

dings with optimized distributed SpMM. DGL [36] relies on

Pytorch-Direct [30] to prepare embeddings from the CPU to

multiple GPUs, thus forming a data parallelism training. ROC

[22] employs Nvidia Legion [8] to manage data transfers.

DGCL [11] optimizes the communication planning problem

on multi-GPU platforms based on a cost model.

8 Conclusion
In this work, we introduced CoLa, a communication-efficient

distributed SpMM framework onmulti-GPU platforms. Based

on a comprehensive analysis of the different communication

volumes under varied communication strategies, we intro-

duced communication redundancy-free distributed SpMM.

It eliminates redundant communication by reusing remote

embeddings among nonzeros in the same sparse columns. To

improve communication efficiency over heterogeneous links,

we proposed link-aware optimization techniques, includ-

ing request-coalesced communication and communication

fusion. Request-coalesced communication is to improve com-

munication efficiency over proxy-based links, while com-

munication fusion is to reduce communication over slow

links. Pipeline optimizations and community-aware graph

reordering are also integrated into CoLa to further improve

the performance. Extensive experiments on various matrices

and GPU platforms have shown CoLa’s impressive perfor-

mance, scalability, and cross-platform generality over state-

of-the-art baselines.

Acknowledgments
This work is supported by the National Science and Tech-

nology Major Project (2022ZD0116315), National Natural

Science Foundation of China (Nos. 62272054, 62192784), Bei-

jing Nova Program (No. 20230484319), and Xiaomi Young

Talents Program.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lixing Zhang, Yingxia Shao, and Shigang Li

References
[1] 2024. cuSPARSE. https://docs.nvidia.com/cuda/cusparse/index.html.

Accessed: 2024-05-08.

[2] 2024. GPUDirect | NVIDIA Developer. https://developer.nvidia.com/

gpudirect. Accessed: 2024-05-13.

[3] 2024. NVSHMEM | NVIDIA Developer. https://developer.nvidia.com/

nvshmem. Accessed: 2024-05-08.

[4] 2024. Unified Memory for CUDA Beginners | NVIDIA Techni-

cal Blog. https://developer.nvidia.com/blog/unified-memory-cuda-

beginners/. Accessed: 2024-05-13.

[5] 2025. Device APIs on Proxy-Based Transport. https://docs.nvidia.com/

nvshmem/release-notes-install-guide/best-practice-guide/apis.html.

Accessed: 2025-01-13.

[6] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka,

and Sotetsu Iwamura. 2016. Rabbit Order: Just-in-Time Parallel Re-

ordering for Fast Graph Analysis. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 22–31. doi:10.1109/

IPDPS.2016.110

[7] Muhammed Fatih Balin, Kaan Sancak, and Umit V. Catalyurek. 2023.

MG-GCN: A Scalable multi-GPU GCN Training Framework. In Pro-
ceedings of the 51st International Conference on Parallel Processing (Bor-

deaux, France) (ICPP ’22). Association for Computing Machinery, New

York, NY, USA, Article 79, 11 pages. doi:10.1145/3545008.3545082

[8] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.

Legion: expressing locality and independence with logical regions.

In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (Salt Lake City, Utah)
(SC ’12). IEEE Computer Society Press, Washington, DC, USA, Article

66, 11 pages.

[9] Vivek Bharadwaj, Aydın Buluç, and James Demmel. 2022. Distributed-

Memory Sparse Kernels for Machine Learning. In 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 47–58.
doi:10.1109/IPDPS53621.2022.00014

[10] Charles Block, Gerasimos Gerogiannis, Charith Mendis, Ariful Azad,

and Josep Torrellas. 2024. Two-Face: Combining Collective and One-

Sided Communication for Efficient Distributed SpMM. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (<conf-loc>,
<city>La Jolla</city>, <state>CA</state>, <country>USA</country>,

</conf-loc>) (ASPLOS ’24). Association for Computing Machinery, New

York, NY, USA, 1200–1217. doi:10.1145/3620665.3640427

[11] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan

Yu. 2021. DGCL: an efficient communication library for distributed

GNN training. In Proceedings of the Sixteenth European Conference
on Computer Systems (Online Event, United Kingdom) (EuroSys ’21).
Association for Computing Machinery, New York, NY, USA, 130–144.

doi:10.1145/3447786.3456233

[12] Zhaodong Chen, Zheng Qu, Liu Liu, Yufei Ding, and Yuan Xie. 2021.

Efficient tensor core-based GPU kernels for structured sparsity under

reduced precision (SC ’21). Association for ComputingMachinery, New

York, NY, USA, Article 78, 14 pages. https://doi.org/10.1145/3458817.

3476182

[13] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, MichaelMitzenmacher,

Alessandro Panconesi, and Prabhakar Raghavan. 2009. On compressing

social networks. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Paris, France)

(KDD ’09). Association for Computing Machinery, New York, NY, USA,

219–228. doi:10.1145/1557019.1557049

[14] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and

RonnyKrashinsky. 2021. NVIDIAA100 Tensor Core GPU: Performance

and Innovation. IEEE Micro 41, 2 (2021), 29–35.

[15] Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui

Zhang, Yufei Ding, Yuan Xie, Huazhong Yang, and Yu Wang. 2022.

Heuristic adaptability to input dynamics for spmm on gpus. In Proceed-
ings of the 59th ACM/IEEE Design Automation Conference. 595–600.

[16] Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse

matrix collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011),
25 pages. doi:10.1145/2049662.2049663

[17] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2023. Fast Sparse GPU Ker-

nels for Accelerated Training of Graph Neural Networks. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
501–511. doi:10.1109/IPDPS54959.2023.00057

[18] Alberto García-Durán and Mathias Niepert. 2017. Learning graph

representations with embedding propagation. In Proceedings of the
31st International Conference on Neural Information Processing Systems
(Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red

Hook, NY, USA, 5125–5136.

[19] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and

Alexandra Peste. 2021. Sparsity in deep learning: pruning and growth

for efficient inference and training in neural networks. J. Mach. Learn.
Res. 22, 1, Article 241 (jan 2021), 124 pages.

[20] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,

and P. Sadayappan. 2019. Adaptive sparse tiling for sparse matrix

multiplication. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming (Washington, District of Columbia)

(PPoPP ’19). Association for Computing Machinery, New York, NY,

USA, 300–314. doi:10.1145/3293883.3295712

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,

Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph

benchmark: datasets for machine learning on graphs. In Proceedings
of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc.,

Red Hook, NY, USA, Article 1855, 16 pages.

[22] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020.

Improving the accuracy, scalability, and performance of graph neural

networks with roc. Proceedings of Machine Learning and Systems 2
(2020), 187–198.

[23] Konstantinos I. Karantasis, Andrew Lenharth, Donald Nguyen, María J.

Garzarán, and Keshav Pingali. 2014. Parallelization of reordering algo-

rithms for bandwidth and wavefront reduction. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (New Orleans, Louisana) (SC ’14). IEEE Press,

921–932. doi:10.1109/SC.2014.80

[24] George Karypis and Vipin Kumar. 1997. METIS: A software package for

partitioning unstructured graphs, partitioning meshes, and computing

fill-reducing orderings of sparse matrices. (1997).

[25] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification

with graph convolutional networks. arXiv preprint arXiv:1609.02907
(2016).

[26] Penporn Koanantakool, Ariful Azad, Aydin Buluç, Dmitriy Mo-

rozov, Sang-Yun Oh, Leonid Oliker, and Katherine Yelick. 2016.

Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multi-

plication. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 842–853. doi:10.1109/IPDPS.2016.117

[27] Amy N. Langville and Carl D. Meyer. 2006. A Reordering for the

PageRank Problem. SIAM J. Sci. Comput. 27, 6 (jan 2006), 2112–2120.

doi:10.1137/040607551

[28] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R.

Tallent, and Kevin J. Barker. 2020. Evaluating Modern GPU Intercon-

nect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect. IEEE Trans.
Parallel Distrib. Syst. 31, 1 (jan 2020), 94–110. doi:10.1109/TPDS.2019.

2928289

https://docs.nvidia.com/cuda/cusparse/index.html
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://docs.nvidia.com/nvshmem/release-notes-install-guide/best-practice-guide/apis.html
https://docs.nvidia.com/nvshmem/release-notes-install-guide/best-practice-guide/apis.html
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1145/3545008.3545082
https://doi.org/10.1109/IPDPS53621.2022.00014
https://doi.org/10.1145/3620665.3640427
https://doi.org/10.1145/3447786.3456233
https://doi.org/10.1145/3458817.3476182
https://doi.org/10.1145/3458817.3476182
https://doi.org/10.1145/1557019.1557049
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/IPDPS54959.2023.00057
https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1109/SC.2014.80
https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1137/040607551
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/TPDS.2019.2928289

CoLa: Towards Communication-efficient Distributed Sparse Matrix-Matrix Multiplication on GPUs ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[29] Shigang Li, Kazuki Osawa, and Torsten Hoefler. 2022. Efficient quan-

tized sparse matrix operations on tensor cores. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 37,

15 pages.

[30] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun

Xiong, Eiman Ebrahimi, Deming Chen, andWen-mei Hwu. 2021. Large

graph convolutional network training with GPU-oriented data commu-

nication architecture. Proc. VLDB Endow. 14, 11 (jul 2021), 2087–2100.
doi:10.14778/3476249.3476264

[31] Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine

Yelick, and Aydın Buluç. 2021. Distributed-memory parallel algorithms

for sparse times tall-skinny-dense matrix multiplication. In Proceedings
of the 35th ACM International Conference on Supercomputing (<conf-

loc>, <city>Virtual Event</city>, <country>USA</country>, </conf-

loc>) (ICS ’21). Association for Computing Machinery, New York, NY,

USA, 431–442. doi:10.1145/3447818.3461472

[32] Dahai Tang, Jiali Wang, Rong Chen, Lei Wang, Wenyuan Yu, Jingren

Zhou, and Kenli Li. 2024. XGNN: Boosting Multi-GPU GNN Training

via Global GNN Memory Store. Proc. VLDB Endow. 17, 5 (may 2024),

1105–1118. doi:10.14778/3641204.3641219

[33] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing

communication in graph neural network training. In SC20: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–14.

[34] Robert A. van de Geijn and Jerrell Watts. 1995. SUMMA: Scalable
Universal Matrix Multiplication Algorithm. Technical Report. USA.

[35] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Lio, Yoshua Bengio, et al. 2017. Graph attention net-

works. stat 1050, 20 (2017), 10–48550.
[36] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,

Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph

library: A graph-centric, highly-performant package for graph neural

networks. arXiv preprint arXiv:1909.01315 (2019).
[37] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan

Xie, and Yufei Ding. 2021. {GNNAdvisor}: An adaptive and efficient

runtime system for {GNN} acceleration on {GPUs}. In 15th USENIX
symposium on operating systems design and implementation (OSDI 21).
515–531.

[38] Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng, Kevin Barker,

Ang Li, and Yufei Ding. 2023. MGG: Accelerating Graph Neural Net-

works with Fine-Grained Intra-Kernel Communication-Computation

Pipelining on Multi-GPU Platforms. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). USENIX As-

sociation, Boston, MA, 779–795. https://www.usenix.org/conference/

osdi23/presentation/wang-yuke

[39] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei

Ding. 2023. TC-GNN: Bridging Sparse GNN Computation and Dense

Tensor Cores on GPUs. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 149–164. https:

//www.usenix.org/conference/atc23/presentation/wang-yuke

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How

powerful are graph neural networks? arXiv preprint arXiv:1810.00826
(2018).

[41] Carl Yang, Aydın Buluç, and John D. Owens. 2018. Design Principles

for Sparse Matrix Multiplication on the GPU. In Euro-Par 2018: Parallel
Processing: 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27 - 31, 2018, Proceedings (Turin, Italy).
Springer-Verlag, Berlin, Heidelberg, 672–687.

[42] Dongxu Yang, Junhong Liu, Jiaxing Qi, and Junjie Lai. 2022. Whole-

Graph: a fast graph neural network training framework with multi-

GPU distributed shared memory architecture. In Proceedings of the

International Conference on High Performance Computing, Networking,
Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 54,

14 pages.

[43] Xintian Yang, Srinivasan Parthasarathy, and P. Sadayappan. 2011. Fast

Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph

Mining. Proc. VLDB Endow. 4, 4 (jan 2011), 231–242.

[44] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik

Datta, Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger,

Parry Husbands, Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su,

Michael Welcome, and Tong Wen. 2007. Productivity and performance

using partitioned global address space languages. In Proceedings of the
2007 International Workshop on Parallel Symbolic Computation (London,
Ontario, Canada) (PASCO ’07). Association for Computing Machinery,

New York, NY, USA, 24–32.

[45] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas.

2023. WISE: Predicting the Performance of Sparse Matrix Vector Mul-

tiplication with Machine Learning. In Proceedings of the 28th ACM SIG-
PLAN Annual Symposium on Principles and Practice of Parallel Program-
ming (Montreal, QC, Canada) (PPoPP ’23). Association for Computing

Machinery, New York, NY, USA, 329–341. doi:10.1145/3572848.3577506

[46] Serif Yesil, José E. Moreira, and Josep Torrellas. 2022. Dense dynamic

blocks: optimizing SpMM for processors with vector and matrix units

using machine learning techniques. In Proceedings of the 36th ACM
International Conference on Supercomputing (Virtual Event) (ICS ’22).
Association for Computing Machinery, New York, NY, USA, Article

27, 14 pages. https://doi.org/10.1145/3524059.3532369

[47] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph

neural networks. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems (Montréal, Canada) (NIPS’18).
Curran Associates Inc., Red Hook, NY, USA, 5171–5181.

[48] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen.

2018. An end-to-end deep learning architecture for graph classifi-

cation. In Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational
Advances in Artificial Intelligence (New Orleans, Louisiana, USA)

(AAAI’18/IAAI’18/EAAI’18). AAAI Press, Article 544, 8 pages.

https://doi.org/10.14778/3476249.3476264
https://doi.org/10.1145/3447818.3461472
https://doi.org/10.14778/3641204.3641219
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://doi.org/10.1145/3572848.3577506
https://doi.org/10.1145/3524059.3532369

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 SpMM Computation
	2.2 Basic Distributed SpMM Procedure
	2.3 Communication on Multi-GPU Platforms

	3 Communication Redundancy-free Distributed SpMM
	3.1 Analysis of Communication Redundancy
	3.2 Algorithm of Communication Redundancy-free Distributed SpMM

	4 Link-aware Optimization Techniques
	4.1 Optimization Opportunities for Heterogeneous Links
	4.2 Communication Fusion over Slow Links
	4.3 Request-coalesced Communication over Proxy-based Links

	5 Implementation of CoLa
	5.1 Pipeline Optimization
	5.2 Incorporation with Community-aware Graph Reordering
	5.3 Implementation Details

	6 Experiment Evaluations
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 The Effectiveness of Proposed Techniques
	6.4 Scalibility
	6.5 The Effectiveness of Community-aware Graph Reordering
	6.6 Application in GNNs

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

