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Abstract

Log-Structured Merge Tree (LSM-tree) based key-value stores
excel in write-intensive environments but suffer from data
duplication, consuming up to 49% of storage space in LSM-
tree-based key-value store deployments. Traditional solu-
tions like compression and coarse-grained file system-level
deduplication introduce overhead or have limited effective-
ness. In this study, we propose DEDUPKYV, a fine-grained
deduplication framework tailored for LSM-tree, maximizing
data reduction efficiency while minimizing write stalls and
read overheads. DEDUPKYV features three key innovations:
(1) FLUSH-integrated inline deduplication, which removes du-
plicates during memory-to-storage writes; (2) WAL file-based
offline deduplication, repurposing write-ahead logs to avoid
double writes; and (3) elastic execution, dynamically balanc-
ing inline and offline deduplication based on memory pres-
sure and workload intensity. Additionally, dynamic granular-
ity management reduces deduplication metadata overhead.
We implemented these four ideas in RocksDB for the first
time and conducted experiments in a Linux environment.
Our evaluation shows that WAL file-based offline dedupli-
cation and DEDUPKYV outperform BlobDB by 33% and 23%,
respectively, in write-heavy workloads, while reducing write
amplification by 1.2x, 2X, and 1.6X for real KV datasets.
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1 Introduction

Log Structured Merge Tree (LSM-tree)-based Key-Value Stores
(LSM-KVS) - exemplified by BigTable [7], Cassandra [22],

LevelDB [24], and RocksDB [18] — have become the de facto

storage engine for high-throughput applications in cloud

environments and large-scale systems at companies like

Facebook [21] and ByteDance [34]. Their excellent write

performance has cemented their role as the backbone of
modern data storage. However, the very design that enables

high write throughput also introduces a critical challenge:

significant write and space amplification. This is mainly due

to the frequent compaction operations inherent in main-
taining the LSM-tree structure, which becomes even more

problematic when facing highly redundant user-generated

data [1, 9, 32, 37, 39-42, 47, 48] — our analysis of representa-
tive workloads (see Table 1 in Section 2.3) reveals duplication

ratios as high as 49%.

Techniques such as block-level compression and file system-
level deduplication have attempted to mitigate redundancy [5,
9, 10, 27, 32, 36, 40, 41]. However, these techniques demon-
strate limited benefits or are tailored for specific use-cases.
Compression, constrained by a block-level scope, is unable
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to achieve maximum space savings even for extreme redun-
dancy datasets [45]. Meanwhile, file system-level dedupli-
cation grapples with a granularity mismatch between the
deduplication chunk sizes (typically 4 KB to 128 KB) and the
variable sizes of the values of key-value pairs [5, 9, 32, 40, 41].
Our experiments with ZFS deduplication (see Figure 2 in Sec-
tion 3.2) confirm that — even after tuning the chunk sizes
— these approaches incur significant overhead due to pro-
cessing all incoming files (including Write-Ahead Log files),
metadata management, and Copy-on-Write penalties.

In this study, we address the mismatch between key value
sizes and the size of deduplication in the file system by
proposing a solution that operates in the Key Value Store
(KVS) layer. Incorporating key-value semantics directly into
file systems would be impractical, as file systems inherently
rely on fixed-sized blocks. However, deduplication with LSM-
KVS has never been attempted, which makes its design in-
herently complex. Therefore, we identify two key challenges.

¢ Balancing Inline vs. Offline Deduplication: While in-
line deduplication is known to effectively reduce write
amplification by only writing the unique data, it intensi-
fies the existing LSM-KVS write stall problem by adding
deduplication steps to the critical write path. In contrast,
traditional offline deduplication suffers from the “double-
write problem” [26, 50].

¢ Reducing Deduplication Metadata Overhead: Mini-
mizing the substantial deduplication metadata overhead
of fine-grained key-value-level deduplication is crucial
— while smaller granularity of deduplication can greatly
increase efficiency, it also increases memory usage and
metadata access costs.

To address these challenges, we systematically investi-
gate and propose a novel design enabling deduplication for
LSM-KVS, called DEpupKV. To our knowledge, DEDUPKV is
the first comprehensive approach to integrate deduplication
into LSM-KVS. By rethinking deduplication at the LSM-KVS
layer, DEDUPKYV significantly reduces write amplification
and enhances storage efficiency, laying the groundwork for
more scalable and cost-effective key value stores.

DepUPKYV specifically addresses the question of when and
how to detect duplicates — whether inline or offline — through
three interwoven components. First, FLUSH-Integrated In-
line Deduplication incorporates deduplication into the
FLUSH operation, harnessing underutilized background threads
to remove duplicates before they reach storage. Although
this reduces the level of write amplification, it can prolong
the FLUSH phase under high memory pressure. Second, WAL
File-based Offline Deduplication shifts duplicate detec-
tion into existing Write-Ahead Log (WAL) files, eliminating
the “double-write” issue often seen in traditional offline dedu-
plication approaches and alleviating FLUSH-induced write
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stalls. Finally, DEDUPKV uses Elastic Execution to dynami-
cally toggle or overlap these two approaches, based on mem-
ory utilization and write load. This adaptability leverages the
advantages of inline deduplication when memory is abun-
dant, while using offline deduplication to prevent extended
write stalls under heavier write demands.

In addition to deciding between inline and offline dedupli-
cation, DEDUPKYV also addresses the second challenge of mit-
igating the high metadata overhead inherent in fine-grained
deduplication. To balance space efficiency and duplicate de-
tection, DEDUPKV adopts a hybrid framework called Dy-
namic Granularity Deduplication (DGD), which selects
different techniques based on the size of the value. For a
value larger than a certain threshold, it uses a hash-based
exact deduplication scheme; for smaller values, it applies
lightweight LZ4 compression. This adaptive approach keeps
duplicate lookup and deduplication metadata overhead low
while achieving substantial reduction in write and space
amplification. Furthermore, a tiered metadata storage sys-
tem offloads cold data to LSM-tree, reducing the footprint
in memory without sacrificing performance. By holistically
integrating both inline/offline deduplication decisions and a
size-aware, hybrid deduplication scheme, DEDUPKV deliv-
ers a scalable, efficient deduplication solution tailored for
modern write-intensive workloads.

We implemented DEpUPKV on BlobDB [19] and conducted
extensive evaluation using real key-value datasets, real-world
key-value traces, and the YCSB benchmark [15]. Our results
show that, in isolation, FLUSH-integrated inline deduplication
can lead up to a 2Xx performance drop on certain datasets (e.g.,
Mails workload); however, when integrated with DEDUPKYV,
our design recovers this loss and achieves a 23% improvement
over the baseline BlobDB under write-only scenarios. More-
over, DEDUPKV consistently reduces write amplification in
proportion to the redundancy of the dataset and maintains
robust performance across diverse access patterns, including
range scans.

In summary, our key contributions are as follows:

o We experimentally demonstrate that conventional file
system-level deduplication is unsuitable for key-value
stores due to granularity mismatches, with duplication
ratios reaching nearly 49% in typical workloads.

o We propose DEDUPKYV, a novel deduplication-enabled de-
sign for LSM-tree-based key-value stores that integrates
flush-integrated inline deduplication, WAL file-based of-
fline deduplication, and an elastic execution to allow con-
current execution of inline and offline deduplication to
maintain performance characteristics and dramatically
reduce write amplification.

e We implemented DEDUPKV on BlobDB and evaluated
its impact on write performance and write amplification.
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WAL file-based offline deduplication and DEDUPKV im-
prove write performance by 33% and 23%, respectively, in
write-heavy workloads, while reducing write amplifica-
tion by 1.2X and 2X.

2 Background and Related Work
2.1 LSM-Tree

An LSM-tree consists of memory and storage components
optimized for write-heavy workloads. The memory layer
includes a MemTable (MT) and Immutable MemTable (IMT)
to buffer incoming writes, while the storage layer comprises
Sorted String Table (SSTables) and Write-Ahead Log (WAL)
files, as shown in Figure 1.
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Figure 1: A high-level overview of two LSM-tree designs
in state-of-the-art RocksDB.

The FLUSH operation moves data from IMT to SSTables,
ensuring persistence. LSM-trees follow two primary designs:
(i) traditional LSM-trees, where keys and values are stored
together in SSTables, and (ii) KV-separated LSM-trees, where
values are stored in a separate value-log (vLog) to reduce
write amplification. Figure 1(a) illustrates RocksDB’s tra-
ditional design while Figure 1(b) depicts the KV-separated
approach. The latter, adopted by WiscKey [35], BlobDB [19],
and LavaStore [43], minimizes LSM-tree compaction over-
head. This study focuses on KV-separated LSM-trees.

Lifespan of WAL files: LSM-tree rely on WAL files as
a primary mechanism to ensure crash consistency for in-
memory data. In an LSM-tree, every write operation is first
recorded in a WAL file before being applied to the MemTable.
This ensures that, in the event of a system failure, the data-
base can recover by replaying these log entries. The typical
lifecycle of a WAL file is as follows:

o A new WAL file is created each time a new MemTable is
created.

e The WAL file continuously logs incoming write requests
until the MemTable or the WAL file itself reaches a prede-
fined size threshold.

e Upon reaching this threshold, the MemTable is marked
as immutable (IMT), and the corresponding WAL file is
closed.

e During the FLUSH operation, the IMT is written to persis-
tent storage as SSTables.
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e Once the FLUSH completes and the data is safely stored,
both the IMT and its associated WAL files are removed
from the system.

Notably, unlike other components that require periodic garbage
collection, WAL files are simply deleted after their contents
have been flushed to disk.

2.2 Storage Space Optimization Techniques

As datasets grow and NVMe capacity remains limited, KVS
must adopt storage optimizations like compression and dedu-
plication to improve space efficiency.

Compression reduces data size using encoding techniques
before writing to storage, minimizing storage footprint and
write amplification. It is widely adopted in KVS, with BlobDB
and RocksDB supporting algorithms such as Snappy [23],
ZSTD [14], LZ4 [12], and LZ4HC [13]. These operate at the
block or file level during compaction, compressing individual
SSTable blocks. However, compression remains localized,
failing to eliminate cross-block and cross-file redundancies,
leading to suboptimal storage efficiency [45].

Deduplication, on the other hand, eliminates redundant
data by storing only unique chunks, making it essential in
archival and primary storage, including file systems [2, 6, 31,
32], databases [38, 45], and distributed storage [25, 29, 30].
Deduplication typically consists of (1) chunking, (2) finger-
printing, (3) duplicate detection, and (4) metadata population
for unique chunks. It can be classified as inline (performed
during I/O [42]) or offline (executed post-write [32]), with
offline deduplication avoiding performance degradation in
the critical I/O path.

Despite its success in file systems, deduplication remains
underexplored in LSM-based KVS. The primary challenge is
that KV pairs in LSM-KVS are much smaller than typical
deduplication chunk sizes (4 KB - 128 KB), making conven-
tional deduplication techniques difficult to apply efficiently.

2.3 Key-Value Dataset Characteristics

KV datasets exhibit a wide range of characteristics, including
variable key sizes, diverse value sizes, and differing access
patterns across applications [8, 20, 33]. As demonstrated by
Cao et al. [5], typical key sizes at Facebook range from 16
to 128 bytes, while value sizes span from tens of bytes to
several kilobytes.

Building on this analysis, we expand our scope to include
datasets from three distinct applications:

o Twitter: Here, KVS serve as the default store engine, man-
aging billions of KV pairs (tweets) with highly variable
content sizes.

o Streaming Platform: KV pairs are extracted from an in-
house platform that uses RocksDB as intermediate storage
for application state.
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e Enron Mails: This dataset exemplifies message-based
applications (akin to Facebook Messenger), where each
email is treated as a distinct KV pair.

Table 1 summarizes key metrics for these datasets, includ-
ing the total number of KV pairs, value size distribution,
and overall dataset size. Notably, the value sizes in the Twit-
ter and Enron Mails datasets — ranging from tens of bytes
to several kilobytes — are consistent with the observations
in [5].

To evaluate storage efficiency, we conducted a deduplica-
tion analysis using an in-house tool with fixed-sized chunk-
ing and SHA1-based hashing [17]. Our findings are summa-
rized as follows:

e Chunk-Size Alignment: When the deduplication chunk
size closely matches the typical value size, significant du-
plication is detected.

e File System-level Limitations: Increasing the chunk
size to the conventional file system level (4 KB) leads to a
marked drop in duplicate detection. This suggests that file
system-level deduplication — commonly used in LSM-KVS
alongside compression algorithms — may not be effective
for KV datasets, where mismatches between value sizes
and deduplication chunk sizes create performance bottle-
necks.

Section 3 further discusses these inefficiencies and their im-
pact on data reduction effectiveness.

3 Preliminary Study and Motivation

In this section, we conduct an experimental study to eval-
uate the effectiveness of KVS-level compression and file
system-level deduplication for reducing write amplification
in LSM-KVS (see Table 1). Our results demonstrate that file
system-level deduplication not only fails to reduce write am-
plification but also degrades performance, while KVS-level
compression provides only minimal write traffic reduction.

3.1 KV Store-level Compression

Compression is widely adopted data reduction technique in
KVSs. BlobDB, for instance, supports multiple compression
algorithms (e.g., Snappy) at the block level for SSTables and
blob files. We evaluated Snappy’s impact on write amplifica-
tion factor (WAF) and throughput using the Streaming and
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Twitter datasets. Figure 2(a) compares baseline BlobDB with
compressed BlobDB, o, with ZFS deduplication disabled
to isolate compression effects. Our results show that com-
pression has minimal impact on throughput and only reduces
WAF by less than 5%, despite both datasets containing 40—
50% duplicate data (Figure 2(b)). This limited effectiveness
stems from additional WAL writes, which remain uncom-
pressed, contributing significantly to write amplification.

3.2 File System-level Deduplication

In addition to compression, KVSs often rely on file system-
level deduplication. We evaluated ZFS’s inline deduplication
by configuring its deduplication chunk size to 4 KB (instead
of the default 128 KB) to better align with the block size used
in BlobDB’s SSTable and blob files. Figure 2(a) shows that
enabling deduplication (BlobDBye4y,) causes a significant
performance drop compared to the baseline. This degrada-
tion is primarily due to the overhead of inline deduplication,
which processes every incoming file — including WAL files.

Furthermore, Figure 2(b) indicates a marked increase in
WAF with deduplication enabled. This adverse effect results
from two main factors:

e ZFS’s Copy-on-Write design, which inherently increases
WAF.

e The frequent updates to ZFS’s deduplication metadata
table, leading to additional writes.

Additionally, ZFS fails to detect duplicates due to granu-
larity mismatch - treating 4 KB blocks as atomic units, even
when only parts contain unique data. This results in ineffi-
cient duplicate identification, especially when multiple KV
pairs are packed into a single block. Instead of reducing write
traffic, deduplication inflates WAF, as shown in Figure 2(b).
These findings highlight the need for a fine-grained dedupli-
cation approach tailored to KVS workloads, addressing both
write amplification and metadata overhead more effectively.

3.3 Exploring Deduplication in LSM-KVSs

Based on our experiments, we make the following key ob-
servations:

Observation 1. Both KVS-level compression and file
system-level deduplication fail to effectively reduce write
traffic, even though the dataset exhibits significant redun-
dancy.

Observation 2. File system-level deduplication intro-
duces substantial performance degradation, undermining
the KVS’s throughput requirements.

Observation 3. A granularity mismatch between the typ-
ical value sizes and the deduplication chunk size leads to
suboptimal storage efficiency, thereby limiting the effective-
ness of write traffic minimization.
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Table 1: Analysis of KV dataset from three applications.

Application | Total # of KV pairs oo roiton of value Sue (BYLes) | pagager sige |—potubiertion Porecutage by Chle Sioe
Twitter [16] 393141781 3 2271 91 36 GB 39.62 | 3454 | 32.27 0.19
Streaming 76373940 52 | 1212 132 9.8 GB 49.35 | 0.31 0 0
Enron Mails [11] 517401 639 | 5128 2746 1.6 GB 27.53 | 21.92 | 19.56 1.93
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Figure 3: The design overview of DEDUPKYV.

These observations highlight the need to integrate dedupli-
cation directly within LSM-KVS, enabling efficient duplicate
elimination while overcoming the limitations of compression
and file system-level deduplication. However, integrating
deduplication into LSM-KVS presents three key challenges:

e Performance Impact: Performing inline deduplication
during foreground operations (e.g., PUT operations and
WAL writes) is infeasible due to the latency sensitivity
of LSM-KVS, as shown in Figure 2(a). Therefore, dedupli-
cation must be designed to operate in the background to
avoid degrading system performance.

¢ Incomplete Write Traffic Reduction: Without inline
deduplication, write amplification may not be fully mini-
mized. This necessitates an approach that selectively ap-
plies deduplication while maintaining a balance between
write traffic reduction and system throughput.

e Deduplication Metadata Overhead: Fine-grained dedu-
plication introduces substantial metadata overhead, lead-
ing to high memory consumption and frequent random
disk lookups. Since each unique value requires a meta-
data entry, maintaining an efficient index structure is crit-
ical to avoid excessive memory usage and performance
bottlenecks. Additionally, ensuring fast lookups and up-
dates without compromising deduplication effectiveness
remains a key challenge.

while maintaining fast application writes.

e Reducing Write Traffic to Storage: By storing only
unique values, DEDUPKYV significantly minimizes write
amplification, improving storage efficiency and prolong-
ing device lifespan.

e Optimizing Metadata Overhead: To mitigate the high
memory and disk lookup costs of fine-grained deduplica-
tion, DEDUPKV employs tiered metadata management,
maintaining frequently accessed metadata in memory
while offloading cold metadata to storage.

4.2 Design Overview

DeDUPKYV integrates inline and offline deduplication within a
KV-separated LSM, optimizing storage efficiency while main-
taining performance, as illustrated in Figure 3. The design
consists of three synergistic components, each adaptable to
different workload demands: FLUSH-Integrated Inline Dedu-
plication: By identifying and eliminating redundant values
during the FLUSH operation, DEDUPKV reduces write ampli-
fication before data reaches persistent storage, leveraging
background processes for efficiency. WAL File-based Offline
Deduplication: To minimize the overhead of inline dedupli-
cation, DEDUPKV uses WAL files as a deduplication source,
ensuring that only unique values are written to storage with-
out affecting foreground I/O. Elastic Execution: DEDUPKV
dynamically adjusts resource allocation between inline and
offline deduplication, maintaining a balance between write
amplification reduction and system throughput under vary-
ing workloads. Dynamic Granularity Deduplication (DGD):
To balance deduplication efficiency and metadata overhead,
DepUPKV dynamically selects between exact deduplication
for larger values and LZ4 compression for smaller values,
reducing storage footprint while optimizing lookup perfor-
mance. This hybrid approach ensures efficient deduplication
while preserving high write performance and low metadata
overhead, making DEDUPKV adaptable to diverse KV store
workloads.
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4.3 FLUSH-integrated Inline Deduplication

In LSM-KVS, the FLUSH operation moves KV pairs from mem-
ory to storage using background threads. Inline deduplica-
tion integrates deduplication into this process, eliminating
redundant values before they reach storage, thereby reducing
write amplification while minimizing impact on foreground
PUT operations (Figure 4). Only unique values are stored in
the Unique Value Log (UVL) files, which optimizes storage
efficiency.

5 |[Chunking ][ Hashing
Fingerprint Lookups

Inline Deduplication
CIT

[ <key,lagart, adgr2)> ]

SST /

Unique Value Log
(UVL)

Figure 4: I/O service flow in DEpuPKYV (INLINE).

To detect duplicates, inline deduplication utilizes Dynamic
Granularity Deduplication (DGD), which dynamically selects
the deduplication strategy based on value size: Larger values
undergo SHA1-based exact deduplication to remove dupli-
cates. Smaller values are compressed using LZ4, minimizing
storage footprint while controlling metadata overhead. By
decoupling metadata management from data storage, inline
deduplication preserves the SSTable structure, where SSTa-
bles store only keys and UVL pointers.

While inline deduplication runs in the background, in-
flight operations, such as strategy selection, hashing, and
compression, may slightly extend FLUSH durations. The next
section explores conditions where inline deduplication main-
tains optimal performance while minimizing storage over-
head.

Limitations of FLUSH-Integrated Inline Deduplica-
tion: While FLUSH-integrated inline deduplication reduces
write traffic and optimizes space utilization based on data
redundancy, its integration within the FLUSH operation can
slow background writes. If FLUSH rates drop, LSM’s MemTable
and IMTs may fill up faster than they can be flushed, trigger-
ing write stalls that block incoming writes [4, 49].

Figure 5 compares BlobDB’s standard FLUSH behavior (Fig-
ure 5(a)) with inline deduplication (Figure 5(b)). In BlobDB,
each IMT is flushed to SSTables and vLog without additional
processing, thereby freeing memory immediately. In con-
trast, inline deduplication introduces extra processing time,
keeping IMTs in memory longer, and increasing the risk of
hitting the write-stall threshold (WST). Once WST is reached,
incoming writes are blocked, reducing application through-
put.
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Figure 5: A case of write stall occurrence as a result of
performing inline deduplication in Flush operation.

The impact of write stalls depends on workload intensity
and redundancy. In high-write workloads with low redun-
dancy, memory can saturate quickly, leading to frequent
stalls. In contrast, in workloads with high redundancy, dedu-
plication overhead is minimal compared to storage writes,
resulting in fewer stalls. The following sections explore how
DepuPKV mitigates these limitations through offline dedu-
plication and elastic execution, balancing storage efficiency
with system performance.

4.4 WAL file-based Offline Deduplication

When deduplication is integrated into the FLUSH operation
(Section 4.3), it can degrade performance under high write
I/O traffic. Offline deduplication addresses this by detecting
and removing duplicates post-write. However, conventional
approaches suffer from a double-write problem: data is first
written in its original form, then deduplication invalidates
redundant data, and finally, garbage collection rewrites valid
data into new storage components—effectively causing each
unique value to be written twice (Figure 6(a)) [26, 50].

Flush - ! Write SST/ [_|orAM
Thread _> ‘ RickiIMT} ‘_> vlog ‘_> m

[ oisk
Dedup | Update
Thread - ’ SST/Log

(a) Traditional offline deduplication approach.

Dedup Work
Flush i .
Thread —' Pick IMT |—*> I —
DWQ)
Dedup )
Thread |Begin

Queue
feus]— oo |— [ — (o
(b) WAL file-based offline deduplication approach.
Figure 6: An illustration of traditional vs offline dedu-
plication approach in LSM-tree.

Mitigating the Double-Write Problem with WAL Files:
DEepuPKV repurposes WAL files for offline deduplication,
eliminating the double-write overhead. Since WAL files al-
ready log incoming writes for failure recovery, leveraging
them for deduplication ensures that only unique KV pairs are
written to persistent storage, avoiding redundant rewrites
(Figure 6(b)). This approach also offloads deduplication to a
background thread, reducing memory pressure and minimiz-
ing interference with foreground I/Os.

Pick SST/
vLog

Offline
Dedup

|

—_—
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Each WAL file contains metadata such as CRC checksums,
KV sizes, operation types (PUT/DELETE), and payloads. Be-
cause the WAL is append-only, duplicate KV pairs may exist
within a single file. To efficiently process these records, of-
fline deduplication employs four modules:

e Reader: Extracts KV payloads from WAL records.

o Tracker: Identifies whether a KV pair has already been
processed.

e Key Array: Maintains references to processed entries within
the same WAL file.

o Deduplication: Runs the same deduplication logic as inline
deduplication to remove duplicates.

Offline deduplication traverses WAL files from tail to head,
prioritizing the most recent records and avoiding unnec-
essary reprocessing. Instead of immediately writing data
to storage, the FLUSH operation enqueues deduplication re-
quests in the Deduplication Work Queue (DWQ). A dedicated
background thread then processes the WAL file segments
through the offline deduplication modules.

This approach preserves the benefits of offline deduplica-
tion — minimal impact on foreground writes — while ensur-
ing that each unique value is written only once, effectively
eliminating the double-write problem of traditional methods.
Once a WAL file is processed, it is deleted, eliminating the
need for garbage collection.

Limitations of WAL File-based Offline Deduplica-
tion: Offline deduplication eliminates double-writes and
matches inline deduplication in reducing storage traffic. How-
ever, its reliance on WAL files impacts read performance. Get
and Scan operations require additional logic to check if data
remain in the WAL and handle re-directions. While point
lookups are optimized via an index, range queries (Scan)
remain unoptimized, requiring future improvements. Addi-
tionally, the append-only WAL structure necessitates linear
traversal for extracting valid KV pairs, adding overhead to
read paths. Despite these challenges, offline deduplication
minimizes write amplification without extending FLUSH du-
ration or blocking foreground writes, making it a key com-
plement to inline deduplication in DEDUPKV.

4.5 Elastic Execution

Although WAL file-based offline deduplication reduces write
stalls, it can increase read latency by redirecting Get op-
erations to WAL files (Figure 8(b)) and lead to WAL file
proliferation. To address this, DEDUPKV dynamically bal-
ances inline and offline deduplication. It defaults to inline
mode, but under memory pressure, both modes run in paral-
lel—inline deduplication processes data from the IMT, while
offline deduplication handles WAL files—ensuring efficient
deduplication with minimal impact on reads and writes.
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Threshold-Based Deduplication Control. The core challenge
is deciding which data should undergo inline deduplication
and which should be offloaded to offline deduplication. To
address this, DEDUPKV uses a configurable threshold-based
mechanism called Dedup. Control. At the start of the execu-
tion, a static threshold is chosen to reflect a percentage of
the total memory budget for the LSM-tree’s memory com-
ponents. During each FLUSH, the utilization is checked. If
memory usage is below the threshold, the FLUSH operation
proceeds with inline deduplication. Otherwise, the FLUSH
operation simply enqueues a job for offline deduplication
in the Deduplication Work Queue (DWQ) and immediately
frees the IMT. This alleviates memory pressure and avoids
blocking incoming writes.

Although concurrent flushes may each detect high mem-
ory usage and enqueue multiple WAL file entries to the DWQ,
this design deliberately prioritizes preventing foreground
write stalls, accepting the potential trade-off of having many
WAL files queued for offline processing.

While the Dedup. Control offers a simple and effective
way to manage memory pressure by switching between in-
line and offline deduplication, it assumes memory usage as
the primary signal for decision-making. However, in prac-
tice, the performance implications of deduplication may vary
depending on workload characteristics. For instance, work-
loads with high write intensity may benefit from prioritizing
to reduce write amplification, whereas read-heavy work-
loads might favor faster flushes to preserve read latency.
This observation opens the possibility of enhancing the con-
trol policy by incorporating workload-awareness — adjusting
deduplication strategies dynamically based on runtime ac-
cess patterns. Such an adaptive mechanism could further
improve both performance and space efficiency under vari-
ous operating conditions.

Deduplication Work Queue (DWQ). The DWQ is a light-
weight, in-memory FIFO queue where each entry describes
an offline deduplication task, consisting of:

e WAL File Number: Identifies the WAL file that offline
deduplication should process.

o Bloom Filter: Created during the FLUSH by iterating over
all keys in the IMT. This helps minimize read overhead
by quickly ruling out KV pairs not present in a particular
WAL file. We adopt the same Bloom Filter implementation
as BlobDB SSTables, ensuring similar false-positive rates.

o State Flag: Tracks the stage of the offline deduplication
job, with possible states Inactive, Active, or Complete.

Figure 7 illustrates the life cycle of a DWQ entry as it
transitions through these states. The offline deduplication
processes Inactive entries in the background, marking them
Active once deduplication begins, and finally setting them
Complete when the KV pairs have been written to storage.
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Figure 7: State diagram for the entries in DWQ.

At that point, the DWQ entry and the corresponding WAL
file are removed. Note that, there is no garbage collection
required for WAL files.

Lightweight monitor. DEDUPKYV relies on a simple mon-
itoring mechanism to track allocation and deallocation of
LSM-tree memory components. Because each memory oper-
ation updates a shared counter atomically, the overhead is
negligible. By reacting to memory pressure before it triggers
a write stall, this approach preserves high throughput for
foreground writes.

Concurrent Execution and Trade-offs. Enabling both inline
and offline deduplication simultaneously ensures efficient
write performance under variable workloads. Inline dedupli-
cation removes duplicates in real time as long as memory
usage remains within acceptable limits, while offline dedu-
plication asynchronously handles overflow jobs from the
DWQ. Although this can temporarily increase the volume
of unprocessed data in WAL files, it avoids prolonged FLUSH
operations that would otherwise stall foreground writes. De-
tails on how DEpUPKV handles read requests and potential
redirection overhead - particularly when multiple WAL files
are queued — are discussed in Section 4.7.

Overall, DEDUPKV provide an adaptive way to balance
inline and offline deduplication strategies, preventing write
stalls while minimizing the performance penalties associated
with managing a growing number of WAL files.

4.6 Dynamic Granularity Deduplication

Drawing inspiration from Xu et. al [45]’s design for on-
line deduplication for databases, DEDUPKV employs a tiered,
adaptive metadata management strategy to overcome the
high overhead typical associated with fine-grained dedupli-
cation. Our approach - tiered Dynamic Granularity Dedupli-
cation (DGD) - integrates multiple deduplication techniques
based on the size of the incoming value, thereby balancing
space efficiency with effective duplicate detection.

For values exceeding a configurable threshold, DEpurKV
uses a hash-based exact deduplication method that lever-
ages an in-memory “hot” metadata index. This index, main-
tained as a compact unordered map, is shown as a Chunk
Index Table (CIT) in Figure 3 keyed by a 20 byte SHA1-
based [17] fingerprint, and tracks reference counts and other
lightweight metadata, ensuring that duplicate lookup oper-
ations remain fast. To prevent the in-memory index from
growing unbounded, an LRU (least-recently used) eviction
policy is applied; once the number of hot metadata entries
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exceeds a predefined limit, less frequently accessed entries
are offloaded to the persistent store.

Conversely, for smaller values — where fine-grained dedu-
plication can lead to prohibitive metadata overhead - DEDUPKV
applies lightweight LZ4 compression [12] before indexing.
This size-aware hybrid strategy not only reduces the volume
of metadata that must be stored and managed in memory,
but also significantly reduces write amplification and overall
storage footprint.

Complementing the adaptive deduplication mechanism
is our tiered metadata storage system. Inspired by the dual-
tier caching techniques in Xu et al’s work [45], our system
partitions metadata into “hot” and “cold” tiers. The hot meta-
data index resides in memory for immediate access during
deduplication operations, while cold metadata is offloaded to
LSM-tree of key-value separation design. This division allows
DepupKV to maintain low in-memory overhead without
sacrificing the ability to quickly reference historical dedupli-
cation data, thereby ensuring high performance even under
write-intensive workloads.

4.7 1/0 Service Flow

In this section, we present the I/O flow in DEpupKYV, includ-
ing Put, FLUSH, Get, Scan, and Compaction.

Put: The Put operation in both FLUSH-based inline and
WAL-based offline adheres to the path of traditional LSM-
tree, where a KV pair is inserted into the MT and then com-
mitted to the WAL file. Once the MT becomes full, it is con-
verted to an IMT, which is later processed by background
FLUSH operation.

FLUSH: The FLUSH operation in DEDUPKV follows two
paths corresponding to both inline and offline deduplication.
In inline deduplication, the FLUSH operation performs inline
deduplication, as discussed earlier in Section 4.3. On the other
hand, in offline deduplication, the FLUSH operation generates
an entry for the DWQ, as stated in Section 4.4. Additionally,
with elastic execution, the FLUSH operation functions accord-
ing to the directives of Dedup Control, dynamically adjusting
based on system resources.

Get |_(1) Mem @) S8
(Key) Tables Tables

(a) Default Get Path

Get | (0 | Mem @ WAL @) ss
(Key) || Tables | = > | File @"" Tables

Picks WAL file
via bloom filter

(b) DEDUPKYV Get Path

Figure 8: The Get operation in BlobDB and DEpUPKV.
The value corresponding to the key is retrieved from
vLog in both cases.

Get: Similar to FLUSH operation, the Get operation in
DepuPKYV follows two different paths for FLUSH-based inline
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and WAL-based offline deduplication. In inline deduplication,
the Get operation adheres to the traditional flow LSM-tree, as
shown in Figure 8(a). However, in offline deduplication, due
to the re-purposing of WAL files and the prompt release of
the memory components, the Get operation requires modifi-
cations, as depicted in Figure 8(b). The Get operation begins
by searching for the key in memory components. If the key
is found, the corresponding KV pair is returned. If not, the
Get operation checks the Bloom Filter in the DWQ before
searching the SSTables. If any Bloom Filter returns true, the
Get operation sequentially traverses the corresponding WAL
file from the tail and returns the first encountered KV pair.
If none of the Bloom Filter return true, the search proceeds
to the SSTables, following the standard Get operation. How-
ever, Bloom Filters are susceptible to false-positive and every
false-positive contributes towards read latency. To ensure the
ratio of false-positive to be equivalent to baseline BlobDB’s
SSTables, DEpUPKV adopts the same Bloom Filter structure
in DWQ.

Scan: Although, the baseline BlobDB is not optimized for
range scan due to its KV separation approach. DEDUPKV also
follows the similar trade-off with range scan. However, if
there are no pending WAL files in DEDUPKYV, then the Scan
operation adheres to the path of baseline BlobDB.

Compaction and Garbage Collection: Compaction is
performed on the SSTables, which involves sorting and merg-
ing key-value pairs. In our approach, the SSTable design re-
mains unchanged, and, therefore, so does the compaction
operation. However, BlobDB integrates garbage collection
within compaction. Therefore, DEDUPKV requires accessing
the deduplication metadata in cases where the values are up-
dated or removed. For example, when a value is deleted, the
compaction operation accesses that value, gets the SHA1 fin-
gerprint, and queries the deduplication metadata table (CIT)
to get the latest reference count of the value. If the reference
count becomes zero, then the compaction operation marks
the value invalid. When the ratio of invalid values within a
single UVL file exceeds a certain threshold, the valid values
are written to a new UVL file, and their corresponding UVL
file number and offsets are updated in the CIT. Note that the
garbage collection is only performed on UVL. There is no
need for garbage collection for WAL files as they are simply
deleted once processed by the offline deduplication.

4.8 Consistency and Failure Analysis

Failure Domains: The key components of LSM-tree, in-
cluding MT and IMT, are stored in memory. Additionally,
DeDUPKV keeps its deduplication metadata table, such as
CIT, DWQ, and the key array of the offline deduplication, in
memory. Any unexpected shutdowns or failures may result
in data loss. However, LSM-tree relies on WAL files for the
fault tolerance of the MT and IMT. In the event of a failure,
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the WAL file is replayed to recover the data. Similarly, the
DWQ and key array can be reconstructed from the WAL files
after a failure.

Failure Consistency: In DEDUPKYV, the CIT is considered
a critical point for failure consistency, as its reconstruction
can significantly extend recovery time and prevent LSM-tree
from processing I/O operations. The most basic methods
for CIT reconstruction involve traversing each value in the
UVL file and rebuilding the CIT. However, this process re-
quires scanning the LSM-tree to identify how many keys
reference each value, making it a complex and time-intensive
operation.

To reduce recovery time, we implement periodic check-
pointing of the CIT onto persistent storage. Upon recovery,
the most recent checkpoint is loaded. However, updates made
after the last checkpoint and before the failure may be lost,
requiring partial CIT reconstruction. We address this with a
three-step reconciliation approach: (i) read the tail chunks
from the UVL, (ii) access the fingerprints stored along the
value, and (iii) cross-check the fingerprint with the CIT from
the latest checkpoint. If the fingerprint matches, the CIT is
current and the recovery process is complete. If a fingerprint
is missing, indicating potential data loss, the missing finger-
print is added to the CIT, and the LSM-tree is traversed to
update the reference count. This reconciliation continues
until all missing fingerprints are restored, ensuring complete
recovery.

5 Evaluation

5.1 Experiment Setup

Implementation: We implemented DEDUPKV on top of
Facebook’s BlobDB v8.6.0, retaining key components such
as the memory and WAL files. The background thread pool
is divided into FLUSH (responsible for inline deduplication
as well), offline (responsible for WAL-based offline dedupli-
cation), and compaction threads. The FLUSH thread adjusts
its operation based on the incoming request rate, monitored
through BlobDB’s telemetry data, which tracks the mem-
ory utilization of current memory components (MT/IMT).
When utilization exceeds DEDUPKV’s defined threshold, the
FLUSH thread enqueues tasks into the DWQ; otherwise, it per-
forms inline deduplication on each KV pair from the selected
IMT. The offline thread processes WAL-based deduplication
by polling 