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Abstract
Portability is critical to ensuring high productivity in devel-
oping and maintaining scientific software as the diversity
in on-node hardware architectures increases. While several
programming models provide portability for diverse GPU
systems, they don’t make any guarantees about performance
portability. In this work, we explore several programming
models – CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC,
and SYCL, to assess the consistency of their performance
across NVIDIA and AMD GPUs. We use five proxy applica-
tions from different scientific domains, create implementa-
tions where missing, and use them to present a comprehen-
sive comparative evaluation of the performance portability
of these programming models. We provide a Spack scripting-
based methodology to ensure reproducibility of experiments
conducted in this work. Finally, we analyze the reasons for
why some programming models underperform in certain sce-
narios and in some cases, present performance optimizations
to the proxy applications.
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1 Introduction
Heterogeneous CPU-GPU architectures have come to domi-
nate the design of high performance computing (HPC) sys-
tems. Nine of the top ten systems in the November 2024
TOP500 list, and ∼42% of the systems on the complete list,
employ co-processors or accelerators [46]. Further, a diverse
set of specific architectures are in use, supplied by a range
of vendors, as the current top ten includes GPUs from AMD,
NVIDIA, and Intel. A similarly diverse range of programming
models have emerged, which all aim to allow application
developers to write their code once and run it on any sys-
tem. Programming models such as OpenMP [32], RAJA [23],
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and Kokkos [48] act as portability layers, bridging the gap
between high-level implementation of an algorithm and low-
level execution on a given target architecture. Yet running
scientific applications efficiently on HPC systems requires
more than just functional portability, which refers to pro-
gram correctness. Codesmust also performwell on a range of
target systems, ideally without incurring the technical debt
of system-specific implementations. This is often referred to
as performance portability.
Application developers would benefit from a deeper un-

derstanding of the performance portability provided by dif-
ferent programming models on modern GPU systems before
porting their application to a particular model. Choosing
a programming model for porting a CPU-only application
to GPUs is a major commitment, requiring significant time
for developer training and programming. If a programming
model delivers unacceptable performance, then that invest-
ment is wasted.

Nevertheless, each programming model’s effectiveness at
enabling performance portability, as well as the definition
of performance portability itself, remain open questions. Al-
though developers’ experiences comparing the performance
portability of several models on a single application are valu-
able, we have observed that open-source applications or even
proxy applications implemented in a several different pro-
gramming models are uncommon and difficult to find. Fur-
ther, a single smaller application or benchmark implemented
in most programming models is unlikely to be representative
of the diverse and complex production applications typically
run on HPC systems. Finally, conducting exhaustive com-
binatorial studies of programming model, compiler, system,
and application combinations is a significant undertaking, as
each programming model usually requires unique combina-
tions of compilers flags and libraries for any given system.

In this paper, we provide a comprehensive empirical study
of the performance portability of several programming mod-
els on GPU-based leadership-class supercomputers. We use
a variety of proxy applications that are representative of
production codes, and using them, we enable realistic com-
parisons of the performance portability of GPU kernels writ-
ten in several programming models across different archi-
tectures. We study five proxy applications from different
scientific domains, create implementations where missing,
and comprehensively evaluate differences between these
programming models.

We present a Spack-based [18] environment and scripting
system to significantly lower the barrier for performance
portability studies. This system encapsulates our methodol-
ogy for systematically building, running and benchmarking
a suite of applications in several programming models, in a
manner which can be adapted for future studies. Our com-
parative evaluation of model performance includes specific

insights into why certain programming models perform well
or poorly for particular applications on different target sys-
tems. To our knowledge, this is one of the most comprehen-
sive performance portability studies to date, in terms of the
breadth of programming models and applications studied
and the detail provided in the analysis of results.

To summarize, our contributions include the following:

• We evaluate the performance portability enabled by
seven different programming models using a diverse
set of five proxy applications benchmarked across
NVIDIA and AMD GPUs on production HPC systems.

• We create several additional implementations of ex-
isting proxy applications in previously unsupported
programming models to ensure full coverage of pro-
gramming models across applications.

• We describe a methodology employing Spack script-
ing and environment tools [18] to easily manage the
process of building and running all 7× 5 = 35 versions
across five supercomputing systems, each with unique
software stacks. We open-source these recipes for the
community in order to substantially reduce the effort
required to reproduce or extend our study.

• We conduct a thorough analysis of the reasons for key
outliers in the performance portability cases studied,
and describe and test optimizations that improve per-
formance portability in some cases.

2 Background: Portable Programming
Models

In this section, we provide relevant background information
on the various programming models we evaluate. HIP and
CUDA act as our baselines in this study, as they are the
native models for AMD and NVIDIA devices, respectively.
Below, we describe the key attributes of each category of
programming model. All programming models used in this
study support both NVIDIA and AMD devices except CUDA.

Language extensions: SYCL, HIP, and CUDA are language
extensions, which add features to the base language (C++, C,
and/or Fortran) for programming GPUs. SYCL and HIP are
open standards, while CUDA is proprietary. The language
extensions we consider are more verbose than the other pro-
gramming models. Users call runtime functions to manage
memory and write functions that they then invoke as ker-
nels to offload execution. SYCL provides multiple methods
of memory management, including the explicit USM (unified
shared memory) API, which uses CUDA or HIP style runtime
calls to move and allocate data, or the buffer/accessor API,
which is more implicit, allowing the compiler and runtime
to schedule data movement but not allowing explicit access
to valid device pointers.
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C++ abstraction libraries: Kokkos and RAJA are C++ ab-
straction libraries. These are template-based C++ libraries
that provide high-level functions and data types. Users write
their code directly employing these data types and typically
structure GPU code as lambdas to pass into library function
calls. The library translates the user code to a device backend
such as CUDA, HIP, or OpenMP at compile-time or runtime.
Note that Kokkos provides both memory and compute ab-
stractions, while RAJA provides compute abstractions and
users must employ the related Umpire or CHAI libraries to
abstract memory management.

Directive-based models: OpenMP and OpenACC are
directive-based models. They provide compiler directives, or
pragmas, to parallelize or offload code. They are typically
standard specifications implemented by a compiler front-
end and a runtime library to implement parallel or offloaded
execution that abstracts the underlying hardware architec-
ture. Directive-based models are usually less verbose and less
intrusive, as users can often annotate existing code with min-
imal refactoring. This facilitates incremental development.
These models provide clauses and standalone directives to
schedule data movement, which is carried out by the com-
piler and device runtime.

3 Related Work
Several studies on programming language extensions, mod-
els, and libraries have been designed to assist developers
achieve performance portability [5, 23, 32, 42, 48]. Addition-
ally, several studies have assessed the portability of certain
frameworks.We categorize the relatedwork on empirical per-
formance portability studies into three groups: metric studies,
application or programming model studies, and broader stud-
ies that are not scoped to a particular model or app. Below,
we provide an overview of recent work in each category.

Studies of performance portability metrics: Pennycook
et al. propose the metric PP for performance portability, defin-
ing it as the harmonic mean of the performance efficiencies
of an application across different systems [33–36, 44]. Daniel
et al. propose an alternative metric, 𝑃𝐷 , which accounts for
problem size [9], and Marowka compares PP with PP, a similar
metric that uses the arithmetic mean instead of the harmonic
mean [28, 29].

Studies involving individual application categories or
programming models: A number of studies evaluate per-
formance portability in specific applications with multi-
ple programming models or a single programming model
model [3, 7, 8, 15, 17, 19, 24, 30, 37–40, 42, 43]. For instance,
Dufek et al. compare Kokkos and SYCL for the Milc-Dslash
benchmark [17], while Rangel et al. examine the portabil-
ity of CRK-HACC in SYCL [37]. Other studies investigate

performance portability across applications using specific
programming models. Brunst et al. benchmark the 2021
SPEChpc suite, which contains nine mini-applications in
OpenMP and OpenACC, on Intel CPUs and NVIDIA and
AMD GPUs [8]. Kuncham et al. evaluate the relative perfor-
mance of SYCL and CUDA on the NVIDIA V100 using Ba-
belStream, Mixbench, and Tiled Matrix-Multiplication [38].
While these studies provide useful information to devel-

opers working on similar applications or those interested in
specific programming models, making more general state-
ments about programming models themselves requires a
broader evaluation of a diverse set of case studies.

Broader performance portability studies: Deakin et
al. present performance portability studies of five program-
ming models across a wide range of hardware architec-
tures, using BabelStream, TeaLeaf, CloverLeaf, Neutral, and
MiniFMM [13, 14]. More recent papers by Deakin et al. focus
on more specific problems such as reductions and GPU to
CPU portability [11, 12]. Lin et al. evaluate implementations
of C++17 StdPar against five models on AMD devices [27].
While these studies provide performance portability com-
parisons across systems, applications, and models, they do
not include RAJA and sometimes omit HIP and OpenACC.
Furthermore, they do not provide extensive analysis of the
reasons for performance differences between programming
models or ways to address differences.
Several other studies are similar in scope but different in

focus. Kwack et al. evaluate portability development expe-
riences for three full applications and three proxy applica-
tions across GPUs from multiple vendors [26]. Harrell et
al. study performance portability alongside developer pro-
ductivity [20]. However, in these studies each application is
only ported to a single portable programming model. This
makes it difficult to draw conclusions about each program-
ming model’s relative suitability to particular applications.
Koskela et al. provide six principles for reproducible porta-
bility benchmarking, along with a demonstration of these
principles in a Spack+Reframe CI infrastructure for a study
of BabelStream on some CPU architectures and an NVIDIA
V100 [25]. Other studies uniformly fail to follow these prin-
ciples, making reproducing them an arduous task.

4 Methodology for Evaluating Performance
Portability on GPU Platforms

In this section, we describe our approach to comprehensively
compare programming models that provide portability on
GPU systems.We also justify for our choices of programming
models, proxy applications, systems, and metrics.
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Table 1: Summary of proxy applications and benchmarks used in this study along with which of their ports the
authors changed. Here, E = already exists, M = modified by us, C = created by us.

Proxy Application Scientific Domain Method(s) Suite CU
DA

HI
P

SY
CL

Ko
kk
os

RA
JA

Op
en
MP

Op
en
AC
C

Sp
ack

Pk
g.

BabelStream N/A Bandwidth benchmark N/A E E E E M E E M
XSBench Nuclear physics Monte Carlo ECP E E M C C E C M
CloverLeaf Hydrodynamics Structured grid Mantevo E E M E C E C M

su3_bench Particle physics Structured grid,
dense lin. alg. NERSC E E E E C E E C

miniBUDE Molecular dynamics N-body N/A E E M E M E E C

4.1 Choice of programming models
Our goal in this work is to empirically compare the perfor-
mance portability provided by popular programming models.
In Section 2, we describe three categories of programming
models with a few examples in each category. We identify
those representative models by surveying a broad range of
proxy applications in order to determine how common exist-
ing implementations in each model are. We survey a variety
of sources for proxy applications, including the ECP Proxy
Apps suite [1], the NERSC Proxy suite [2] and the Mantevo
Applications Suite [22]. Armed with that knowledge, we de-
cide to focus on CUDA, HIP, SYCL, Kokkos, RAJA, OpenACC,
and OpenMP, as they are the most popular models found in
the proxy applications we surveyed. Together, these models
cover the three categories of models mentioned earlier.

4.2 Choice of proxy applications
Based on the survey of proxy applications mentioned above,
we identify five applications that represent the range of typ-
ical scientific computing workloads on GPU clusters. These
include a pure memory bandwidth benchmark as well as four
other proxy applications. They range from highly compute-
intensive (miniBUDE) to highly memory-intensive (Babel-
Stream), and also include one representative from each of
the three large proxy application suites we surveyed. The
scientific domains covered by them include hydrodynam-
ics (CloverLeaf), molecular dynamics (miniBUDE), nuclear
physics (XSBench), and particle physics (su3_bench), and
computational methods include structured grid (CloverLeaf
and su3_bench), dense linear algebra (su3_bench), n-body
(miniBUDE) and Monte Carlo (XSBench) methods. The sci-
entific domains represented cover three of the four most
common disciplines found in INCITE awardees of the last
three years — physics, engineering, and biology.1
CloverLeaf, miniBUDE, and XSBench are missing imple-

mentations in some programming models compared in this

1https://doeleadershipcomputing.org/awardees/

work. So, we develop these missing implementations to ob-
tain full coverage of the space of application and model
combinations. Table 1 summarizes the key details of each
proxy application, and identifies the implementations that
are either created or modified by us for this study. Ourmodifi-
cations consist of small changes to the memory management
library or style to ensure portability and consistency of gath-
ering execution times across implementations. Below, we
describe the five proxy applications used in this study:

BabelStream is a memory bandwidth benchmark with five
kernels: copy, add, mul, triad, and dot [15]. The dot
kernel includes a reduction operation, known to be a chal-
lenging operation for some programming models [10].

XSBench [47] is a proxy for OpenMC, a Monte Carlo trans-
port code [41]. XSBench runs one kernel, OpenMC’s macro-
scopic cross-section lookup kernel, with a large number of
lookups. We use the event-based transport method with a
hash-based grid as it is preferred for GPUs.

CloverLeaf is a 2D structured compressible Euler equation
solver, with 14 kernels [21]. The advec_mom, advec_cell,
PdV, and calc_dt kernels are typically the most time-
intensive, and calc_dt contains a reduction.

su3_bench [16] is a proxy application for MILC, a lattice
quantum chromodynamics code [6]. It implements the SU(3)
matrix-matrix multiply routine in its lone kernel.

miniBUDE is a proxy for Bristol University Docking Engine
(BUDE), a molecular dynamics code which simulates molecu-
lar docking for drug discovery [31]. miniBUDE computes the
energy field for one configuration of a protein repeatedly.

4.3 Choice of systems
Evaluating performance portability requires selecting a
range of systems with diverse architectures. One of the main
goals of this study is to evaluate performance portability
on production GPU-based supercomputers, given the rising

https://doeleadershipcomputing.org/awardees/
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prominence of GPUs in new systems [45]. We select five
different supercomputers for our experiments (architectural
details in Table 2): Summit and Frontier at ORNL, Perlmutter
at NERSC, Corona at LLNL, and Zaratan at the University
of Maryland (UMD). These systems cover the majority of
the GPU architectures in the top ten systems. Frontier and
Summit are in the top ten, and Perlmutter is in the top fifteen.
We include Corona (AMDMI50) and Zaratan (NVIDIA H100)
for context with older AMD and newer NVIDIA hardware,
respectively. For Frontier’s MI250X GPUs, we run on one
Graphics Compute Die (GCD) which is an independent unit
of allocation.

Table 2: Architectural details of the GPUs in each sys-
tem used in this paper. Flop/s and bandwidth values are
theoretical peaks provided by device manufacturers.

System GPU Model Peak
Tflop/s*

DRAM
bandwidth

DRAM
size

Summit†
(ORNL) NVIDIA V100 14.0/7.0 900 GB/s 32 GB

Perlmutter
(LBL) NVIDIA A100 9.5/9.7 1555 GB/s 40 GB

Zaratan
(UMD) NVIDIA H100 7.0/34.0 3350 GB/s 80 GB

Corona
(LLNL) AMD MI50 3.3/6.6 1000 GB/s 32 GB

Frontier‡
(ORNL) AMD MI250X 23.9/23.9 1600 GB/s 64 GB

* Single-precision/double-precision.
† We use the high-memory GPUs on Summit.
‡ Details for a single GCD of one MI250X.

4.4 Measurement and evaluation strategy
In this study, we modify applications where needed to con-
sider both the efficiency of GPU kernel(s) and that of data
movement between host and device needed to run the appli-
cation. However, as discussed in Sec. 7, the impact of data
movement on overall performance is minimal for these ap-
plications and not presented in detail. We add a runtime
option to all the applications to specify a number of warmup
iterations at the start of the simulation which we exclude
from timing. XSBench normally runs only for only a single
iteration, so we add a loop that repeatedly runs the kernel a
user-specified number of times to ensure consistency across
applications. As mentioned in Sec. 6, variability across runs
is low, with runs of a given setup differing by at most 3.3%.
Having determined how to consistently define perfor-

mance for each application, we can also derive additional
higher-level metrics about performance portability for each

combination of application and programming model. In this
work, we use PP with application efficiency proposed by
Pennycook et al. [35]. PP is defined, for some application 𝑎,
problem 𝑝 , set of systems 𝐻 , and measure of application
efficiency 𝑒 , as:

PP( 𝑎 , 𝑝 , 𝐻 ) =


| 𝐻 |∑

𝑖∈ 𝐻

1
𝑒𝑖 ( 𝑎 , 𝑝 )

if 𝑖 is supported

∀𝑖 ∈ 𝐻

0 otherwise.

set of systems

problem

application

This is the harmonic mean of the efficiencies of an ap-
plication running the same input problem across a set of
systems. The application efficiency 𝑒𝑖 (𝑎, 𝑝) of an application
𝑎 solving problem 𝑝 is the ratio 𝑡𝑚𝑖𝑛

𝑡
, where 𝑡 is the runtime

of 𝑎 solving 𝑝 on the particular hardware 𝑖 , and 𝑡𝑚𝑖𝑛 is the
best observed runtime across all variants of 𝑎 solving 𝑝 on
𝑖 . PP ranges from 0 to 1, where 1.0 indicates the application
runs at the best observed performance on all systems.

4.5 Automation and reproducibility
strategy

In our experiments, we ensure that compilers, dependency
versions, and flags are used consistently across applications
and systems. We accomplish this with Spack [18], a popular
HPC package manager. We create a single Spack environ-
ment file for each system which specifies the exact compiler,
application, and library dependency versions along with any
needed flags. As listed in Table 1, we have created or updated
Spack package files for each proxy app, and these updates
will be provided to the community. Our Spack environments
for this project can be easily adapted to any new system,
allowing for easy reproduction of our experiments, and sig-
nificantly reducing the time-consuming effort of building
every combination of application and programming model.

We further employ Spack’s Python scripting tools2 to de-
velop robust automation for our experiments —we can create
jobs with a single-line invocation leveraging Spack’s spec
syntax to adjust which application, models, or compilers are
used, and save profile data to disk to be directly read by our
plotting scripts. These scripts and environments will be pub-
lished to allow the community to use our portability study
methodology. These infrastructural contributions dramati-
cally reduce the effort required to reproduce our results and
create new studies of portable programming models.

2https://spack-tutorial.readthedocs.io/en/latest/tutorial_spack_scripting.
html

https://spack-tutorial.readthedocs.io/en/latest/tutorial_spack_scripting.html
https://spack-tutorial.readthedocs.io/en/latest/tutorial_spack_scripting.html
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5 Porting to Unsupported Programming
Models

The proxy applications we choose have implementations
in most of the evaluated programming models. In these ex-
isting ports, we make minor modifications to consistently
align timing measurements across different programming
models. We also update the RAJA ports of BabelStream and
miniBUDE to use Umpire for portable memory allocations.

When creating new ports, we seek to apply the same level
of effort for all of them in order to avoid granting an unfair
advantage to any particular implementation arising from
excess optimization. We spend similar amounts of time im-
plementing each new port, and keep the structure of the code
between new and existing ports as similar as possible. Fur-
ther, we specifically do not tune kernel grid size, block size,
and shared memory per block. For programming models that
require the user to specify these values (CUDA, HIP, RAJA,
SYCL), we use the default values provided by the respective
proxy application developers. For programming models that
can select their own default parameter values (OpenMP, Ope-
nACC, Kokkos), we allow the model to do so if compatible
with the existing application code. Our results reflect “out
of the box” performance that a user would encounter with
minimal porting effort.
In the following subsections, we discuss our experiences

working with the programming models as applicable. Table 1
summarizes our development efforts. We plan to merge these
contributions to their respective upstream repositories.

5.1 Porting to Kokkos
Porting the XSBench code to Kokkos requires converting
the existing for loop to be a lambda function passed into a
Kokkos::parallel_for call and converting the data struc-
tures to be used in Kokkos calls to Kokkos:Views. For ex-
ample, XSBench’s SimulationData struct contains several
dynamic arrays, which need to be Views in order to work
on the GPU. In this situation, there are two options available
to a developer: 1) rewrite all of the application code to use
Views from the beginning, including any CPU-side setup
or initialization; or 2) avoid rewriting the any setup code
by constructing Views out of pointers to any ordinary C++
arrays after initialization but before copying them to the
device and launching kernels.
We opted for the second of these methods to minimize

changes to existing application code. Listing 1 provides an
example of this approach as we implemented it. In summary,
we construct an unmanaged View in the HostSpace called
u_cocns using the heap memory of the SD.concs array, con-
struct a new View in the device space called SD.d_concs,
and finally deep_copy the unmanaged host View to the new
device View. While Kokkos requires developers to use its

memory abstraction, the View, in order to make use of its
portable kernel abstraction, we demonstrate how an applica-
tion developer looking to work incrementally can minimize
changes to application code while gaining the portability
benefits of Kokkos.

1 View <double*, LayoutLeft , HostSpace ,

2 MemoryTraits <Unmanaged >>

3 u_concs(SD.concs , SD.length_concs);

4 SD.d_concs = new View <double*>("d_concs",

5 SD.length_concs);

6 deep_copy (*SD.d_concs , u_concs);

Listing 1: Example of converting a C++ dynamic array
to a device View for incremental development, where
SD is a struct containing XSBench simulation data.

5.2 Porting to RAJA
In contrast to Kokkos, the RAJA portability ecosystem uses
multiple libraries to provide portability. Briefly, the RAJA
library itself provides C++ lambda-capturing to allow devel-
opers to express portable computation. For memory manage-
ment, the developer can either write or use a custom portable
memorymanagement library, or use the related Umpire [4] li-
brary, which provides portable memory allocation primitives
and memory pools. This separation of concerns in the RAJA
ecosystem provides facilitates incremental porting of an ex-
isting codebase (i.e., portable compute first, then portable
data structures), avoiding more extensive refactoring.

In our case, we opt to take advantage of Umpire for Clover-
Leaf and XSBench, which both have extensive existing code
for managing and initializing data structures. However, we
encounter several challenges building the RAJA applications.
Relying on multiple independent libraries increases the ex-
pertise required and frequency of errors in setting up build
systems, a process that is already complicated for a single
library containing device kernels. Package managers such
as Spack [18] can mitigate these problems for end users, al-
though this solution pushes thework of ensuring the libraries
build and install correctly onto the package maintainers.

5.3 Porting to OpenACC
OpenMP ports already exist for all applications, so creat-
ing similar OpenACC ports where needed just requires a
one-to-one conversion of the relevant OpenMP pragmas to
OpenACC. For example, omp target teams distribute
parallel for becomes acc parallel loop. This rote
method makes our experience with porting XSBench and
CloverLeaf from OpenMP to OpenACC very productive. In
contrast to Kokkos and RAJA, working with existing data
structures is highly transparent in OpenACC, so long as the
structures are plain old data (POD) and do not contain point-
ers to CPU memory internally. In those more advanced cases,
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which we do not encounter in this work, users must write
more complex directives to handle such data structures, con-
vert them to simpler formats, or use automatically managed
memory if provided by the GPU device [49].

6 Experimental Setup
In this section, we describe the setup for the experiments
conducted in this work. We run all the applications on all
five systems selected (listed in Table 2).
Table 3 lists the compilers used with each programming

model alongside their versions. We use GCC 12.2.0 as the
host compiler on NVIDIA systems and ROCmCC 5.7.0 on
AMD. We use CUDA version 12.2 on NVIDIA systems, and
HIP 5.7.0 on AMD systems, as well as Kokkos version 4.2.00
and RAJA v2023.06.1. OpenACC, OpenMP, and SYCL all have
different implementations provided by multiple compilers
on the systems where we perform our experiments. We test
all the available compilers for these models3 and choose the
best-performing compiler for each application, model, and
system. We perform this compiler-choice tuning to reflect
the fact that applications using these programming models
will likely test their code with all working compilers, and
use in practice the best-performing option.

Table 3: Compilers and versions used for building each
programming model implementation, by system type.

Prog. Model NVIDIA AMD

CUDA GCC 12.2.0 N/A
HIP N/A ROCmCC 5.7.0
SYCL* DPC++ 2024.01.20 DPC++ 2024.01.20
Kokkos GCC 12.2.0 ROCmCC 5.7.0
RAJA GCC 12.2.0 ROCmCC 5.7.0
OpenMP† NVHPC 24.1 LLVM 17.0.6
OpenACC NVHPC 24.1 Clacc 2023-08-15

* We use AdaptiveCpp 23.10.0 for SYCL CloverLeaf.
† We use ROCmCC 5.7.0 for OpenMP su3_bench on AMD GPUs.

In all models except SYCL and OpenMP, the best-
performing compiler is consistent across applications on
each system. For the SYCL port of CloverLeaf, AdaptiveCpp
is consistently superior, so we present AdaptiveCpp results
for that application and DPC++ for all others. For OpenMP,
ROCmCC wins on AMD systems for su3_bench and Clang
wins for all other applications. Note also that we are unable
to build CloverLeaf with Clacc due to lack of support for the
host_data clause, and hence we cannot run CloverLeaf on
AMD systems with OpenACC.

3For OpenMP we test Clang, GCC, ROCmCC, NVHPC, CCE; for OpenACC
we test Clacc, GCC, NVHPC; for SYCL we test DPC++, AdaptiveCpp

We compile all proxy applications with ‘-O3’ as well as fast
math flags and hardware specific instructions for approxi-
mate sqrt and division operations. For AMD systems we also
add ‘-munsafe-fp-atomics’ as we found this to be broadly
beneficial to performance. Finally, for the Clacc compiler, we
provide the flag ‘-fopenacc-implicit-worker=vector-outer’ at
the recommendation of a developer, as this flag will soon be
enabled by default for Clacc.
We select input decks and command line inputs for each

proxy application based on recommended settings from their
respective developers. When given a choice of problem size,
we select the largest representative problem available that fits
on all tested GPUs. We also choose the number of iterations
for each application to ensure about a minute of execution
time, so as to reduce variability. Section 4.4 describes how we
modify the proxy applications to ensure consistent timings.
We present the final command line arguments in Table 4.

Table 4: Input parameters to the proxy applications.

Application Input parameters

BabelStream -n 1500 -w 150 -s $((1«29))
XSBench -s large -m event -G hash -n 150 -w 15
CloverLeaf –in clover_bm64_mid.in -w 52
su3_bench -l 32 -i 100000 -w 10000

miniBUDE –deck bm2 -p 2 –wgsize 128 -i 10
–warmups 1

Note that for all cases tested the time spent in data move-
ment is negligible (less than 2%) compared to time spent
in device kernels, so our result figures present only GPU
kernel time. For all performance results presented we run
the application three times and present the average result.
Variability is low; the largest range of times recorded as a per-
centage of mean runtime for a case is 3.3%, and the mean is
0.1%. We report total runtime for BabelStream kernels rather
than memory bandwidth in order to ensure that “lower is
better” across all performance results we present. The values
collected can be converted to bandwidth (GB/s) by dividing
the total data moved by the time.

7 Results and Discussion
We first present a roofline analysis of the native port im-
plementations of each application to understand their com-
pute and memory behavior. Next, we present the results of
our model comparisons for individual applications and then
across all systems and applications.
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Figure 1: Roofline plots for the most time-consuming kernel in the CUDA (left) and HIP (right) versions of each
application, from runs on Perlmutter (NVIDIA A100) and Frontier (AMDMI250X GCD) respectively. Orange points
are single precision, and blue points are double precision. We plot each application’s predominant precision.

Table 5: Key details of the major kernels in each proxy application used in the paper. CC is cyclomatic complexity
and LN indicates the level of nesting in the kernel’s main loop. Theoretical and achieved occupancy, sharedmemory
per block, static instruction count, total DRAM traffic, and registers per thread are from NCU profiles of the CUDA
implementations on Perlmutter.

Application Kernel Cyclomatic
complexity

Main loop
nesting

level

Grid, block
sizes

Theoretical,
achieved

occupancy

Shared
memory
per block

Total
DRAM
traffic

Static
instruction

count

Registers
per thread

BabelStream copy 1 1 (524288, 1024) 100%, 81.8% 0 B 8.6 GB 12 16
BabelStream dot 5 2 (432, 1024) 100%, 99.9% 8.2 KB 8.6 GB 48 16
XSBench xs_lookup 39 3 (66407, 256) 50%, 46.4% 0 B 156 GB 670 49
CloverLeaf advec_mom 4 2 (230491, 256) 62.5%, 56.9% 0 B 1.5 GB 405 43
CloverLeaf calc_dt 8 3 (256, 256) 62.5%, 29.3% 2.1 KB 4.6 GB 643 47
su3_bench k_mat_nn 3 4 (294912, 128) 100%, 89.7% 0 B 624 MB 59 26
miniBUDE fasten 29 4 (256, 128) 50%, 14.5% 0.7 KB 1.8 MB 357 62

7.1 Roofline analysis
Figure 1 provides the empirical rooflines for the NVIDIA
A100 GPU on Perlmutter and AMD MI250X GCD on Fron-
tier. It also plots the positions of the most time-consuming
kernels in the CUDA and HIP implementations of the five
proxy applications. For BabelStream, this is the dot kernel,
and for CloverLeaf, this is advec_mom. advec_cell and PdV
are also highly time-consuming, but have similar positions
on the roofline. We also plot calc_dt, as it has the longest
per-invocation execution time in CloverLeaf. miniBUDE, XS-
Bench, and su3_bench contain a single computational ker-
nel each. We plot each kernel for the predominant floating-
point precision used. We observe that all kernels evaluated
are memory-bound except for miniBUDE, which is highly
compute-bound, on both architectures. Among the memory-
bound apps, on both systems BabelStream dot is the most
memory-bound (i.e., furthest to the left). This is expected

given that BabelStream is a memory bandwidth benchmark.
CloverLeaf and su3_bench are much closer to the knee point
on both systems, while XSBench has substantially different
arithmetic intensity on both systems — 0.26 on Perlmutter,
1.00 on Frontier. It is possible that XSBench heavily utilizes
some instruction types that are accounted differently be-
tween NVIDIA and AMD’s counters used for roofline plot-
ting. Except for XSBench and miniBUDE, all of these kernels
are relatively close to the roofline, suggesting these CUDA
and HIP versions are relatively close to optimal for the algo-
rithms they implement.

Table 5 provides additional details about the kernels com-
pared. We provide cyclomatic complexity (CC) to reflect con-
trol flow complexity in the kernels and the number of loops
nested in the main loop to reflect dimensionality of potential
parallelism. The theoretical and achieved occupancy, shared



Taking GPU Programming Models to Task for Performance Portability ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

Z
ar

at
an

(H
10

0)
C

or
on

a
(M

I5
0)

Fr
on

tie
r

(M
I2

50
X

)

Native Port

SYCL

Kokkos

RAJA

OpenMP

OpenACC

14.9 7.4 4.1 17.1 9.8

16.5 8.0 4.7 18.0 10.2

17.3 9.5 6.5 19.0 9.8

14.7 7.1 4.1 26.0 15.2

14.8 16.4 13.1 39.9 13.4

15.0 7.4 4.2 45.5 27.3

BabelStream Dot

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

Z
ar

at
an

(H
10

0)
C

or
on

a
(M

I5
0)

Fr
on

tie
r

(M
I2

50
X

)

98 34 12 71 66

93 36 13 68 57

99 33 10 67 50

109 34 10 71 66

99 34 11 72 51

104 34 12 72 50

XSBench

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

Z
ar

at
an

(H
10

0)
C

or
on

a
(M

I5
0)

Fr
on

tie
r

(M
I2

50
X

)

117 69 33 129 81

128 68 33 141 84

153 95 59 194 115

141 72 39 144 90

122 66 39 195 142

121 64 33

CloverLeaf

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

Z
ar

at
an

(H
10

0)
C

or
on

a
(M

I5
0)

Fr
on

tie
r

(M
I2

50
X

)

81 39 23 118 59

83 39 23 108 63

83 39 23 119 60

90 51 25 129 66

107 41 24 125 65

150 86 64 613 315

su3_bench

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

Z
ar

at
an

(H
10

0)
C

or
on

a
(M

I5
0)

Fr
on

tie
r

(M
I2

50
X

)

25 23 17 65 48

36 34 22 52 40

40 35 21 78 51

40 35 17 66 51

36 36 42 236 63

36 36 23 138 82

miniBUDE

Runtimes (in seconds) by Application, Architecture, and Programming Model

Native Port

SYCL

Kokkos

RAJA

138 69 44 163 107

82 40 24 120 57

83 40 24 329 131

25 23 13 67 49

Kokkos

OpenMP

OpenACC

RAJA

-100% -75 -50 -25 -5 +0 +5 +15 +25%
Percent speedup relative to native port

Figure 2: Execution time (indicated as raw numbers in each cell) over three trials of all proxy applications across
all systems and programming models (lower is better). The color of each cell indicates performance improvement
or degradation relative to the native port for that system and application (blue is faster and red is slower than the
native port). Execution times for optimized implementations are provided below the horizontal line.

memory per block, static instruction count, total DRAM traf-
fic, and registers per thread are taken from Nsight Compute
profiles of each kernel on Perlmutter.

Observation 1

Most major kernels examined in this work are memory-
boundwith the exception of miniBUDE, which is strongly
compute-bound.

7.2 Analysis of individual applications
Next, we present performance results for BabelStream dot
and all four mini-apps in Figure 2. Each heatmap cell repre-
sents the total execution time across all kernel invocations
in each application. Note that each value is the mean of three
separate runs, with the maximum difference between any
run and this mean being 3.3% (as described in Section 4).
Also, while we do measure data movement time, we do not
report it here, as it is consistently negligible (<2% of run-
time) compared to the time spent in the GPU kernels. The

“Native Port” row in each plot represents CUDA performance
on Summit and Perlmutter (the NVIDIA systems) and HIP
performance on Corona and Frontier (the AMD systems).
We discuss observations derived from each mini-app in turn.

7.2.1 BabelStream. BabelStream contains five kernels: copy,
add, mul, triad, and dot. All of these kernels are simple one-
line memory-bound operations. dot is unique in that it uti-
lizes a reduction operation to compute a dot product, making
it a useful simple benchmark of reduction operations across
programming models. We observe that for all kernels ex-
cept dot, performance across programming models is highly
consistent with the native port. Figure 3 displays the perfor-
mance of the add and copy kernels across implementations
on Frontier and Perlmutter as a demonstration. OpenACC
on AMD systems is the only significant outlier, likely arising
from overhead of the Clacc compiler translation approach.
Performance in dot is in contrast much more variable,

which is why it is the only one reported in Figure 2. Usu-
ally, the portable programming models offer similar or worse
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Figure 3: Execution time by model for Copy and Add
kernels in BabelStream on Frontier (MI250X GCD) and
Perlmutter (A100).

performance than the native port. Kokkos performs mod-
erately worse than the CUDA on Perlmutter and Zaratan,
while RAJA performs moderately worse than HIP on Corona
and Frontier. Notably, OpenMP performs significantly worse
than the native port on Perlmutter, Zaratan, and Corona, and
moderately worse than HIP on Frontier. OpenACC performs
significantly worse than HIP on AMD systems.
In one notable exception, for RAJA BabelStream dot on

Perlmutter, we observe that RAJA takes advantage of warp-
level primitives and sharedmemory to perform the reduction,
maximizing utilization of hardware-specific features for such
operations. This allows RAJA to moderately out-perform
CUDA on all NVIDIA systems.

Observation 2

Simple BabelStream kernels (other than dot) are dom-
inated by memory-bound operations, and all program-
ming models can provide performance portability for
them, except OpenACC on AMD.

Observation 3

For dot, a reduction kernel, SYCL comes close to provid-
ing performance portability across all systems, and RAJA
and OpenACC provide good performance on NVIDIA
systems. OpenMP and OpenACC struggle to provide per-
formance portability for dot.

7.2.2 XSBench. XSBench runs a single, long kernel which
performs a large quantity of binary searches. In this case,
all programming models achieve near or moderately better
performance than the native port. In some cases, particularly
on Frontier for all models except RAJA, the portable
programming models outperform HIP. Using Omniperf to
profile XSBench, we observe that the HIP port achieves lower
Gflop/s and lower L1 cache bandwidth, while Kokkos uses a
larger workgroup size and arranges L1 cache read requests
in a larger number of smaller requests for a similar number

of bytes. This suggests Kokkos is selecting a more ideal work-
group size and arranges data access patterns more efficiently
for AMD GPUs in XSBench. Meanwhile, OpenMP appears
to take advantage of Local Data Share (LDS) implicitly,
reducing stalls for accesses to memory, while HIP does not.
XSBench is a performance test case used in the develop-

ment of LLVM OpenMP offloading, which Clacc also uses for
OpenACC on Frontier, helping explain why both directive-
based models perform so well with XSBench. However, given
that Kokkos is a C++ abstraction over HIP code, it is surpris-
ing that it can outperform HIP. We note that HIP XSBench
performance on Frontier is only slightly better than HIP
XSBench on Corona, suggesting that the XSBench HIP im-
plementation is not a fully optimized and mature baseline.
Documentation for XSBench indicates that developers

used the Hipify tool to create the XSBench HIP port, and
in comparing the HIP and CUDA versions it is clear that
they are identical aside from simple substitution of CUDA
syntax for HIP syntax. The XSBench kernel is also notably
more cyclomatically complex and longer than other kernels
we examine (Table 5). Together, these observations suggest
that HIP kernels with more complex control flow translated
directly fromCUDAwithout additional optimizationmay not
guarantee optimal performance on AMD GPUs, which have
significantly smaller cache capacity per thread workgroup
relative to NVIDIA GPUs. More broadly, the case of XSBench
demonstrates how portable programming models are able
to achieve matching or even superior performance for more
complex kernels with a similar level of development effort
as compared to vendor programming models.

Observation 4

All programming models can achieve competitive perfor-
mance portability for XSBench, a kernel with relatively
complex control flow where the implementation style
between portable and native ports is highly similar.

7.2.3 CloverLeaf. As a larger proxy application with many
kernels including structured stencil operations as well as a
reduction operation in calc_dt, CloverLeaf encompasses
multiple types of GPU kernels. Nevertheless, several pro-
gramming models achieve broadly consistent performance
compared to native ports on both NVIDIA and AMD GPUs.
SYCL in particular achieves slightly better performance than
CUDA on Zaratan. OpenACC slightly outperforms CUDA
on both Perlmutter and Zaratan, mostly due to improved
performance in smaller kernels like calc_dt, but unfortu-
nately we are unable to compile CloverLeaf with OpenACC
on AMD systems at this time due to lack of support for the
host_data clause. RAJA performance is slightly worse than
native ports across systems.
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Figure 4 breaks down CloverLeaf performance into major
constituent kernels to illustrate where performance differ-
ences arise for outlier cases. First, CloverLeaf performance
for OpenMP on Frontier is a notable outlier. We find that
compared to HIP the OpenMP port spends significantly more
time in the advec_* and PdV kernels. OpenMP achieves less
than half the L1 cache bandwidth in this kernel, as well as a
roughly 40% lower L2 cache hit rate and 30% higher rate of
stalls on L2 cache data, relative to HIP.
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Figure 4: Execution time by model broken down by
kernel for CloverLeaf runs on Perlmutter (left, A100)
and Frontier (right, MI250X GCD).

Kokkos performance in CloverLeaf is also a notable excep-
tion. We observe that the Kokkos port of CloverLeaf spends
longer in the calc_dt reduction kernel relative to other
ports, particularly on NVIDIA systems, like Perlmutter. In
Nsight Compute, we find that the Kokkos port achieves fewer
eligible warps on average, mostly due to barrier warp stalls,
which we do not observe in the other ports. Comparing the
implementations of the calc_dt between ports, we find that
Kokkos is the only one to use a 2D reduction instead of col-
lapsing the kernel into a 1D reduction. We adjust the Kokkos
port to use a 1D scheme, bringing Kokkos calc_dt perfor-
mance closer to the native port on all studied systems, and
no longer observe barrier warp stalls in the new profile. As
presented in Figure 2, Kokkos CloverLeaf performance im-
proves on all systems with this change. The benefit is greater
on NVIDIA, where Kokkos’s performance on the other three
significant kernels nears that of the native ports.

Observation 5

For CloverLeaf’s memory-bound kernels, which employ
stencil operations, SYCL and RAJA can consistently pro-
vide performance portability and OpenMP, Kokkos and
OpenACC struggle with providing portable performance.

7.2.4 su3_bench. su3_bench is a single-kernel proxy appli-
cation that computes a matrix multiplication on complex

numbers with a relatively deep nested loop hierarchy (Ta-
ble 5). Generally, performance across programming models
is fairly consistent, with the obvious exception of OpenACC
before our improvements.
The OpenACC port for su3_bench in particular suffers

from insufficient exposed parallelism, even on NVIDIA GPUs.
The su3_benchOpenACCport originally generates codewith
only 36 threads per block, despite iterations being assigned
to blocks of size 128. This leads to fewer active threads per
block. We address this issue by collapsing all four loops,
exposing more parallelism.

We also find that both OpenMP and OpenACC generated
twice as many global loads and stores as CUDA, due to a
misaligned complex number struct. OpenMP, OpenACC, and
SYCL do not provide a GPU-native complex type. We declare
this struct aligned to sizeof(T) * 2, resulting in a single
load and store for each complex number in the array. On
AMD this optimization has no effect. As presented in Fig-
ure 2, OpenACC benefits strongly from this combination of
optimizations, whereas OpenMP achieves modest speedups.

For RAJA, we observe substantially lower arithmetic inten-
sity in L1 and L2 cache compared to native ports, suggesting
the RAJA port loads unnecessary data frommemory more of-
ten, although the overall impact on performance portability
of this limitation is relatively low.

Observation 6

For su3_bench, a memory-bound kernel with a deep loop
nest, almost all programming models can achieve approx-
imate performance portability as long as sufficient paral-
lelism is exposed and struct declarations are aligned, with
the moderate exception of RAJA and stronger exception
of OpenACC.

7.2.5 miniBUDE. miniBUDE, a single-kernel app, is by the
the most challenging proxy application for the programming
models we test. miniBUDE is unusual compared to our other
proxy applications in that it is highly compute-bound, and
leverages thread coarsening to hide memory latencies us-
ing instruction-level parallelism within the kernel. It also
exerts the highest register pressure in the native CUDA im-
plementation relative to other kernels we examine (Table 5).
No programming model is able to achieve consistent per-
formance with the native port, except for RAJA after our
improvements. We note that SYCL does achieve superior
performance compared to HIP on AMD devices.
In comparing the Kokkos, RAJA, SYCL, and CUDA

versions of miniBUDE, we notice that the RAJA version is
not making use of shared memory, while the Kokkos, SYCL,
and CUDA ports are. RAJA recently added features for
dynamically allocating shared memory inside a kernel, a



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA J. H. Davis, P. Sivaraman, J. Kitson, K. Parasyris, H. Menon, I. Minn, G. Georgakoudis, and A. Bhatele

feature needed in miniBUDE since the forcefield data is
input-dependent in size, so we modify RAJA miniBUDE to
use shared memory for this data.
This optimization improves RAJA performance on

NVIDIA systems, with little impact on AMD, leading to an
overall increase in portability (see Figure 2). After the change
RAJA performance comes very close to the CUDA perfor-
mance on Perlmutter and 27% faster than CUDA on Zaratan,
an impressive gain since other models already using shared
memory do not get this close on NVIDIA systems. At the
time of writing we are unable to add dynamic sharedmemory
allocation inside the kernel for the OpenMP and OpenACC
ports due to lack of support.
The OpenMP port of miniBUDE appears to allocate an

order of magnitude more Local Data Share (LDS) bytes than
HIP does, limiting the number of active compute units and
thus reducing the degree to which memory access latency
can be hidden. Comparing the OpenMP port to CUDA, we
observe a significant increase in registers used per thread
(86 vs. 62) and dramatically more static instructions (1463 vs.
357). Other models encounter similar, but less pronounced,
issues: for example, Kokkos uses 69 registers per thread and
generates a 797-instruction kernel. For both Kokkos and
OpenMP these overheads correspond to a 500% increase in
cycles spent in L2 cache activity as well as 50% increases in
DRAM and L1 cache cycles.

Observation 7

For miniBUDE, a highly compute-bound kernel relying
on shared memory, RAJA (after adding shared memory
support) can provide very competitive performance porta-
bility where most other models, especially OpenMP and
OpenACC, struggle due to register pressure and increased
generated instruction counts. SYCL is also highly com-
petitive, but only on AMD systems.

7.3 Evaluating performance portability
across applications after optimizations

From analysis of the lower portion of Figure 2, containing
results after our optimizations, we can make several general
observations about the performance portability enabled by
each programming model.

7.3.1 Language extensions. CUDA is the best or within 3% of
the best performing model in eleven out of fifteen cases. For
these applications, this is a useful validation of the maturity
of the CUDA baseline for each application, and confirms our
expectation that the low-level vendor model would be the
most performant and portable across GPUs from that vendor.
Meanwhile, for most cases on AMD systems, including

CloverLeaf, BabelStream dot, and su3_bench on Frontier,

AMD’s HIP programming model achieves the best perfor-
mance, as expected. However, in multiple instances, HIP does
not achieve the best performance, particularly for XSBench,
as discussed under that application.
Finally, SYCL performs better than HIP in five out of ten

cases on AMD systems. As a lower-level language extension,
similar to CUDA or HIP, this is not necessarily surprising.
In some cases, SYCL is able to improve on CUDA or HIP
performance, and even where SYCL is more than 3% slower
than a native port, it is never the worst-performing port
except in XSBench on Perlmutter and Zaratan, where it is is
only 5.3% and 10% slower, respectively. SYCL is the fastest
non-native programmingmodel in more cases than any other
model, at eleven out of twenty-five total application and
system pairs, and six of these are on AMD systems.

Observation 8

On NVIDIA systems, CUDA almost always performs at
or near the best observed performance, whereas on AMD
systems there are some cases, in particular for XSBench,
where other models are significantly faster than HIP.

Observation 9

SYCL performance is often competitive with CUDA and
HIP, and relatively stable across system and application
pairs, with the exception of miniBUDE on NVIDIA GPUs.

7.3.2 C++ abstraction libraries. Kokkos and RAJA compare
favorably with CUDA andHIP onNVIDIA andAMD systems,
with one of the two ports either nearing or exceeding the
native port’s performance on every combination of system
and app, besides those involving CloverLeaf on any system
or miniBUDE on Summit and Perlmutter. While which model
is more performant is very application-dependent, we can
observe that RAJA tends to perform more competitively for
NVIDIA systems, and Kokkos tends to have an advantage
on AMD systems.

Observation 10

Kokkos and RAJA are competitive with CUDA and HIP
on many system and application pairs, with a slight pref-
erence for RAJA on NVIDIA GPUs and Kokkos on AMD
GPUs.

7.3.3 Directive-based models. OpenMP performance can be
slower than the native baseline, achieving significantly better
performance than the baseline only for XSBench on Frontier.
OpenMP is able to achieve rough parity with the native
baseline in twelve out of twenty-five cases.
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On NVIDIA systems, OpenACC generally achieves more
consistent performance with the baseline, but is often worse
than OpenMP and further worse than HIP on AMD sys-
tems, likely because it is employing the same LLVMOpenMP
offloading runtime through the Clacc compiler. Per Clacc
developers, there is some overhead due to suboptimal trans-
lation of OpenACC to OpenMP within Clacc which will be
addressed in a future release.

Observation 11

OpenMP is slower than other implementations in roughly
half our cases, and OpenACC struggles with AMD sys-
tems.

7.4 Performance portability metric
evaluation

Figure 5 displays the PP metric for each programming model
and proxy application combination after applying the opti-
mizations described above. The “Native Port” column pro-
vides context, indicating what the metric would report if a
team decided to maintain both a HIP and CUDA version of
the application. We are unable to run CloverLeaf with Ope-
nACC on AMD systems, so that cell is zero per the official
formulation of the metric4. According to PP, we observe a
moderate preference for SYCL, RAJA, and Kokkos among the
portable programming models, in roughly that order, and for
OpenMP over OpenACC within directive-based models.5

Observation 12

Summarizing our PP results, we find that SYCL most con-
sistently achieves performance portability for our tests,
followed closely by RAJA and Kokkos.

8 Conclusion
In this paper, we empirically evaluated seven GPU program-
ming models and directly compared their capabilities for
enabling performance portability. We performed this eval-
uation on some of the fastest supercomputers in the world
using proxy application codes that represent real scientific
workloads. We developed a Spack-based methodology to sub-
stantially lower the barrier for future experiments comparing
portable programming models. We invested significant ef-
fort in ensuring each proxy application’s implementations in
each model can be easily built and run on additional systems,
and we plan to open-source these efforts, sharing them with

4When only considering NVIDIA systems, the value is 0.98.
5We also compared PP to PP [29], which uses the arithmetic mean instead of
the harmonic mean (results not shown). This penalizes low outliers much
less, but the overall ordering of results remains the same with both metrics.

N
at

iv
e 

Po
rt

SY
C

L

K
ok

ko
s

R
A

JA

O
pe

nM
P

O
pe

nA
C

C

BabelStream Dot

XSBench

CloverLeaf

su3_bench

miniBUDE

0.99 0.91 0.8 0.82 0.49 0.58

0.9 0.91 0.99 0.9 0.95 0.93

0.98 0.95 0.81 0.87 0.77

0.98 0.97 0.96 0.85 0.96 0.59

0.87 0.76 0.67 0.91 0.41 0.54

Harmonic Mean of Application Efficiency

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: PP of GPU kernel performance for each pro-
gramming model and application combination, after
optimizations. Applications are listed in ascending or-
der of arithmetic intensity. Note for OpenACC we are
unable to compile CloverLeaf on AMD systems.

the broader HPC community. Overall, compared to prior
comparative studies [13, 14] we find improved performance
portability across models, particularly for SYCL.
After our optimizations, a few broad outliers remain in

the performance results we studied which may be of interest
to developers looking to choose a programming model. We
highlight the frequent gap between OpenACC and OpenMP
performance on AMD systems, generally poor reduction
performance in OpenACC and OpenMP, poor reductions
on AMD systems with RAJA, and consistent difficulty with
the compute-bound and register-intensive miniBUDE for all
programming models and systems. For application, compiler,
and programming model developers, we present several in-
sights from our experiences as well as suggestions for future
investment of effort towards performance portability:

• Successfully building all of these applications across
systems is not trivial, especially for a multi-library
portability suite like RAJA. Additional robustness in –
and documentation for – this build process may enable
app developers to more easily test competing program-
ming models.

• Our ability to identify bottlenecks depended heavily
on profiling tools. Improving the quality of these tools
for new programming models and hardware architec-
tures will be critical to enabling performance porta-
bility. Line-level stall attribution is a crucial capability
missing from Omniperf at the time of writing.
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• Reduction operations continue to be a major bottle-
neck, as observed in prior studies, and work on improv-
ing compiler handling of reductions would close some
of the major remaining performance gaps between
portable models and native baselines.

• The example of miniBUDE demonstrates that perfor-
mance in a compute-bound kernel with high register
pressure can be highly sensitive to the choice of a
portable programming model. Identifying techniques
to reduce spilling of registers to memory and instruc-
tion count bloat when adopting a programming ab-
straction may help users maximize arithmetic band-
width.

• The ability to separate correctness and performance
concerns in these models was critical in identifying
the optimizations we describe, as it allowed us to tune
ports without invalidating scientific results. Exposing
and documenting more semantic-preserving perfor-
mance “knobs” within each model may provide devel-
opers with a wider range of options to improve the
performance portability of their applications.
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