
Scaling Large-scale GNN Training to Thousands of
Processors on CPU-based Supercomputers
Chen Zhuang

Institute of Science Tokyo
Tokyo, Japan

Riken Center for Computational
Science

Kobe, Japan
chen.zhuang@riken.jp

Lingqi Zhang
RIKEN Center for Computational

Science
Kobe, Japan

lingqi.zhang@riken.jp

Du Wu
Institute of Science Tokyo

Tokyo, Japan
RIKEN Center for Computational

Science
Kobe, Japan

du.wu@riken.jp

Peng Chen
RIKEN Center for Computational

Science
Kobe, Japan

peng.chen@riken.jp

Jiajun Huang
University of South Florida

Tampa, Florida, USA
jiajun.huang.cs@gmail.com

Xin Liu
National Institute of Advanced
Industrial Science & Technology

Tokyo, Japan
xin.liu@aist.go.jp

Rio Yokota
Institute of Science Tokyo

Tokyo, Japan
rioyokota@rio.scrc.iir.isct.ac.jp

Nikoli Dryden
Lawrence Livermore National

Laboratory
Livermore, USA
dryden1@llnl.gov

Toshio Endo
Institute of Science Tokyo

Tokyo, Japan
endo@scrc.iir.isct.ac.jp

Satoshi Matsuoka
RIKEN Center for Computational

Science
Kobe, Japan

Institute of Science Tokyo
Tokyo, Japan

matsu@acm.org

Mohamed Wahib
RIKEN Center for Computational

Science
Kobe, Japan

mohamed.attia@riken.jp

Abstract
GraphConvolutional Networks (GCNs), particularly for large-
scale graphs, are crucial across numerous domains. However,
training distributed full-batch GCNs on large-scale graphs
suffers from inefficient memory access patterns and high
communication overhead. To address these challenges, we in-
troduce SuperGCN, an efficient and scalable distributed GCN

Corresponding author: Peng Chen, Mohamed Wahib.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3730422

training framework tailored for CPU-powered supercomput-
ers. Our contributions are threefold: (1) we develop general
and efficient aggregation operators designed for irregular
memory access, (2) we propose a hierarchical aggregation
scheme that reduces communication costs without altering
the graph structure, and (3) we present a communication-
aware quantization scheme to enhance performance. Ex-
perimental results demonstrate that SuperGCN achieves a
speedup of up to 6× compared with the SoTA implementa-
tions, and scales to 1000s of HPC-grade CPUs on the largest
publicly available datasets, without sacrificing model con-
vergence and accuracy. Moreover, due to the effective strong
scaling of SuperGCN, we outperform SoTA GPU-based and
CPU-based distributed full-batch GCN training frameworks,
in absolute performance, for large-scale graphs.

https://orcid.org/0009-0006-4156-9879
https://orcid.org/0000-0002-2452-1551
https://orcid.org/0000-0002-4002-0837
https://orcid.org/0000-0003-1244-3151
https://orcid.org/0000-0001-5092-3987
https://orcid.org/0000-0002-2336-7409
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0002-9965-3647
https://orcid.org/0000-0001-7297-6211
https://orcid.org/0000-0003-1910-8532
https://orcid.org/0000-0002-7165-2095
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3730422

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

CCS Concepts
• Computing methodologies→Machine learning; Par-
allel computing methodologies.

Keywords
GraphNeural Network, Supercomputer, Distributed Training

ACM Reference Format:
Chen Zhuang, Lingqi Zhang, Du Wu, Peng Chen, Jiajun Huang,
Xin Liu, Rio Yokota, Nikoli Dryden, Toshio Endo, Satoshi Matsuoka,
and Mohamed Wahib. 2025. Scaling Large-scale GNN Training to
Thousands of Processors on CPU-based Supercomputers. In 2025
International Conference on Supercomputing (ICS ’25), June 08–11,
2025, Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3721145.3730422

1 Introduction
Graph Convolutional Networks (GCNs) have been widely
applied across various domains such as social networks anal-
ysis [23], biology [34, 45, 65], and chemistry [49, 52], due
to their ability to process graph-structured data. Notably,
GCNs play a crucial role in the recent surge of AI for Science.
For instance, some recent studies [3, 8, 42, 48] have focused
on transforming unstructured and adaptive mesh-based do-
mains in physics simulations into graphs, enabling the re-
placement of traditional iterative solvers with GCNs. These
approaches achieve comparable accuracy to conventional it-
erative methods while significantly reducing computational
costs. The widespread presence of such large-scale graphs in
real-world applications has driven the need for distributed
GCN frameworks capable of efficiently handling large-scale
graphs on large-scale computing systems.
Handling large-scale graphs in distributed GCN frame-

works typically follows one of two types of training strate-
gies: mini-batch and full-batch. The mini-batch method is
widely supported in various studies, such as [9, 14, 25, 64]. In
mini-batch training, the original graph is sampled into small
subgraphs, which might destroy the original graph structure
information during the training process, leading to potential
accuracy degradation [12, 33]. Hence, the distributed full-
batch training strategy, if designed to be scalable, is preferred
for large-scale graphs, due to its ability to retain the original
graph structure information.
Distributed full-batch GCN training is similar to model

parallelism in conventional Deep Neural Networks (DNNs),
it treats the full graph as the entire training dataset, and
partitions the graph into multiple subgraphs to assign them
to different workers for computation. iAfter partitioning the
graph, the distributed full-batch parallelism scheme applied
on the graph is broken down to two distinctive components:
local computation at the worker level, and remote commu-
nication to communicate data between the subgraphs. This

scheme presents two challenges for building an efficient and
scalable GCNs training system: (1) Irregular memory access
pattern and load imbalance caused by the sparsity and ran-
domness of graphs. (2) Graph partitioning across workers
creates numerous edge cuts between subgraphs, leading to
significant imbalanced communication between different
workers to preserve the original edge connections [57].

To address these two challenges of irregular memory ac-
cess and imbalanced communication, clusters and supercom-
puters equippedwithHPC-grade CPUs and high-performance
interconnection networks represent a viable option over the
more expensive and power-consuming GPU-accelerated sys-
tems. Therefore, it is extremely important to develop perfor-
mant and scalable full-batch GCNs training solutions that
are generic for different CPU platforms.

Currently, there are many existing distributed GCN train-
ing systems. For example, regarding the challenge of com-
munication overhead, [57] reduces communication volume
by sampling communication data, [44, 47, 53, 58, 66] use
asynchronous communication to overlap with computation,
and [56, 66] employ adaptive quantization to minimize com-
munication costs. However, these approaches face several
limitations: (1) they are not optimized for different CPU plat-
forms, (2) sampling significantly modifies the graph struc-
ture, and leads to accuracy degradation similar to mini-batch
training, (3) asynchronous communication breaks the depen-
dency between epochs, introducing known issues such as
data staleness and slower model convergence [15], (4) most
importantly, none of the above approaches have been vali-
dated for extremely large graphs using distributed systems
with a large number of machines.

In this paper, we design an efficient, scalable, and general
distributed GCN training system for large-scale graphs on
CPU-based supercomputers. The contributions of this paper
are as follows:

• General and Efficient Aggregation Operators.We pro-
pose efficient CPU-level aggregation operators designed
to support different CPU platforms (Arm and x86).
• Hierarchical Aggregation Scheme:We propose a novel
hybrid pre-post aggregation method based on the min-
imum vertex cover algorithm, reducing communication
volume while preserving the original graph structure.
• Communication-Aware Quantization Scheme: We
leverage aggressive quantization communication to fur-
ther reduce communication overhead. We additionally
integrate masked label propagation and normalization to
maintain model accuracy.
• Experimental results demonstrate that SuperGCN achieves
up to 6× speedup compared to state-of-the-arts on CPU-
based supercomputers, successfully trains on the largest

https://doi.org/10.1145/3721145.3730422

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

5

2

1

6
7

3 4

𝐺! 𝑆! 𝑆"

0
5

2

1
6

7

3 4

Min-cut
partition

Figure 1: Illustration of graph partitioning. Dotted
lines indicate cut edges separating distinct subgraphs.
Features of boundary nodes (red circles) need to be
transferred across these cut edges via remote commu-
nication.

publicly available GNN datasets using thousands of proces-
sors, and outperforms SoTA GPU-based and CPU-based
distributed full-batch GCN training systems when operat-
ing at their respective maximum achievable performance.

2 Background
2.1 Graph Convolutional Networks
GCNs consist of multiple graph convolutional layers. GCNs
take as input a graph and a feature matrix that stores the
features of each node on the graph. The forward pass of GCN
layers involves two stages: Aggregation of neighbors’ features
and NN operations. The stage of Aggregation of neighbors’
features, represented as 𝑧 (𝑙−1)

𝑖
= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸

({
ℎ
(𝑙−1)
𝑗

| 𝑗 ∈ 𝑁 (𝑖)
})
,

involves each node 𝑖 on the graph aggregates the features
of neighboring nodes 𝑁 (𝑖) using an 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 function
(sum, mean, etc.). Following this is a neural network opera-
tion𝑈𝑃𝐷𝐴𝑇𝐸, such as a linear transform, performed on node
𝑖’s 𝑙 − 1𝑡ℎ layer features ℎ (𝑙−1)

𝑖
, and aggregation result 𝑧 (𝑙−1)

𝑖

to obtain the 𝑙𝑡ℎ layer features ℎ (𝑙)
𝑖

. This stage is referred to
as NN operations, ℎ (𝑙)

𝑖
= 𝑈𝑃𝐷𝐴𝑇𝐸

(
𝑧
(𝑙−1)
𝑖

, ℎ
(𝑙−1)
𝑖

)
. There are several

GCN-related models, such as GCN [40] and GraphSAGE [25].

2.2 Distributed Full-batch GCNs Training
Distributed full-batch GCN training is crucial for addressing
memory limitations and reducing training time. The input
graph is divided into smaller subgraphs, each managed by
a worker, similar to parallelism in traditional distributed
neural networks [35]. Graph partitioning creates "cut edges"
(dotted lines in Fig. 1), where the source and destination
nodes belong to different subgraphs. These source nodes,
known as boundary nodes (highlighted as red circles 2,3,5 in
Fig. 1), require remote communication along cut edges to be
transferred to the destination worker in aggregation of GCN
layers. Several works have optimized distributed full-batch
GCN training (Table 1). However, few studies target large-
scale general CPU supercomputers (x86, Arm) and scale to
thousands of processors.

2.3 Full-batch vs. Mini-batch GCNs
Mini-batch GCNs training samples nodes from the original
graph to form smaller batches, on which training is per-
formed [14, 25]. In contrast, full-batch GCNs training uses
the entire graph as the training data. While Mini-batch train-
ing reduces memory usage and computation, it can result
in loss of graph information. Studies [9, 14, 25] suggest that
sampling-based methods do not compromise accuracy on
certain benchmarks, but there is no theoretical proof of their
effectiveness across different graphs. The influence of graph
properties on sampling in mini-batch training is still not
well understood. For instance, Chen et al. [11] highlight that
the popular neighbor sampling method, GraphSAGE, lacks
convergence guarantees due to biased predictions. Other
studies [33, 53] show that mini-batch GCNs perform worse
on the Reddit dataset [25]. Moreover, traditional sampling
methods [60] often fail to retain key graph structures, caus-
ing information loss in large-scale graphs.

2.4 Stochastic Integer Quantization
Stochastic integer quantization [10] is a fundamental tech-
nique in the field of machine learning. It is pivotal in op-
timizing various aspects of neural network training and
communication efficiency [17, 56, 68]. This technique in-
volves representing real-valued numbers as integers or real-
valued numbers with reduced bit widths, thereby reducing
memory footprint and accelerating computation. Quantiza-
tion and dequantization methods can be written as ℎ𝑞𝑢𝑎𝑛𝑡 =

𝑟𝑜𝑢𝑛𝑑 { (ℎ−𝑍)/𝑆 } and ℎ𝑑𝑒𝑞𝑢𝑎𝑛𝑡 = ℎ𝑞𝑢𝑎𝑛𝑡 ∗𝑆 +𝑍 , where 𝑍 =𝑚𝑖𝑛 (ℎ),
𝑆 = (𝑚𝑎𝑥 (ℎ) −𝑚𝑖𝑛 (ℎ))/(2𝑏 − 1), and 𝑏 is the bit width. The
𝑟𝑜𝑢𝑛𝑑 function is the stochastic rounding operation [32].

2.5 GNNs with Masked Label Propagation
Label Propagation (LP) in Graph Neural Networks (GNNs)
is a mechanism for distributing label information through-
out a graph to assist in learning and prediction tasks. It
improves the influence of nodes with the same label in the
graph and improves model accuracy [59]. A specific type of
label propagation in GNNs is Masked Label Propagation [51].
In GNN training with Masked Label Propagation, a portion
of the labeled nodes’ labels is randomly masked during each
training step. The remaining unmasked labels are embedded
into a vector that has the same dimension as the original
feature vectors of nodes and added (sum) to the original
feature vectors of nodes. With this step, in the message-
passing operation (aggregation) of GNNs where the feature
vectors are propagated in the graph, the unmasked label is
also propagated in the graph. The masked labels not used in
propagation are applied to compute loss and update model
parameters. Masked Label Propagation works as label prop-
agation but avoids label leakage and enhances the model’s

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

Table 1: Comparison of different distributed full-batch GNNs training solutions.
Methods Target

Platform
Optimized
operators

Preserve
graph structure

Fresh
boundary nodes

Reduce comm
volume

Reported max
workers number

ROC [33] GPU ✗ ✔ ✔ (Synchronous) ✗ 16
CAGNET [54] GPU ✗ ✔ ✔ (Synchronous) ✔ 100
BNS-GCN [57] GPU ✗ ✗ ✔ (Synchronous) ✔ 192
PipeGCN [58] GPU ✗ ✔ ✗ (Asynchronous) ✗ 32
Sancus [47] GPU ✗ ✔ ✗ (Asynchronous) ✗ 8
Dorylus [53] Serverless ✗ ✔ ✗ (Asynchronous) ✗ 32
DGCL [7] GPU ✗ ✔ ✔ (Synchronous) ✗ 8
AdapQ [56] GPU ✗ ✔ ✔ (Synchronous) ✔ 8
SAR [46] x86 only ✗ ✔ ✔ (Synchronous) ✗ 128
DistGNN [44] x86 only ✔ ✔ ✗ (Asynchronous) ✗ 256
SuperGCN (ours) x86 & Arm ✔ ✔ ✔ (Synchronous) ✔ 8,192

Input graph

1
0

5

3

2 4

Worker 0

Worker 1

1
0

1 3
2

5
2 4

Post graph

Pre graph

Local graph

Pre graph

5
2 4

1 3
253

4

Local graph

Post graph

Exchange
Pre graph

1
0

1 3
2

Post graph

Pre graph

5
2 4

1 3
2

53
4

Local graph

Post graph

5
2 4

Local graph

1
0

1 3
2

5
2 4

1 3
2

53
4 5

2 4

int2

1
0

1 3
2

Pre graph

5
2 4

1 3
2

53
4

Local graph

5
2 4
Pre graph

Local graph1
0

5

3

2 4

1

5

3

2 4

Pre graph

1
0

1 3
2

5
2 4

1 3
2

53
4 5

2 4

Post graph

Post graph

Split graph
.1 Divide into local, Pre-aggr

and Post-aggr graph
.2 Only exchange
pre-aggr graph

Perform aggr on pre-
graph and local graph

Quantize, comm
and dequantize each node

Perform
aggr on post-graph

Time

Repeat at every GCN layer

§5 Pre-Post Aggregation
Initialization

§6 Quantized
CommunicationComm-aware Quant Scheme

Hierarchal Aggregation Scheme

2 3
Boundary node

int2

Node embedding

NN ops
Boost feature

(Label propagation)

0.2 0.3 0.1
0.3 0.2 0.1

𝑣!
𝑣"

0.6 0.5 0.4
0.7 0.9 0.8

𝑣"
𝑣!

2 3 0
3 2 0

𝑣!
𝑣"

3 2 0
0 3 2

𝑣"
𝑣!

0.6 0.5 0.4
0.7 0.9 0.8

𝑣"
𝑣!

0.2 0.3 0.1
0.3 0.2 0.1

𝑣!
𝑣"

0.2 0.3 1.0 Post graph

Post graph

.1 .2

§6 Masked Label
Propagation

Class: 2

0.0 0.0 1.0

Embedding

0.2 0.3 1.0

𝑣!

0.2 0.3 2.0

Label embedding

Feature vector

Boosted Feature vector

Repeat at every epoch

§4 Aggregation
operators

§4 Aggregation
operatorsGeneral Aggregation Operators

§5 Pre-
Aggregation

§5 Post-
Aggregation

Figure 2: The flow of our proposed full-batch GCNs training system. Nodes with a red circle are boundary nodes
obtained from other workers.

ability to generalize [51]. Masked Label Propagation is im-
plemented in popular GNN frameworks like PyG [18] and
DGL [67], and it was demonstrated to boost model accuracy
on some datasets (e.g. OGB dataset [4]).

3 SuperGCN
3.1 Design Methodology
SuperGCN aims to minimize training time while maintaining
high accuracy. SuperGCN consists of three components:
• General and Efficient Aggregation Operators (Sec-
tion 4): Optimizes node-level performance.
• Hierarchical Aggregation Scheme (Section 5): Opti-
mizes scalability, by reducing the communication volume,
without affecting the algorithm or accuracy.
• Communication-Aware Quantization Scheme (Sec-
tion 6): Employs aggressive quantization of communica-
tion to further improve scalability while preserving ac-
curacy with algorithm design, as validated theoretically
(Sec. 6.3) and empirically (Sec. 8.4).

3.2 System Overview
Fig. 2 shows SuperGCN’s components and their interactions:

1 Partition input graph into subgraphs using METIS [38].
2 Split each subgraph into local, remote (pre-/post-aggregation)
graphs based on communication reduction strategy (Sec. 5.2).
Exchange pre-aggregation graph between workers. 3 Em-
bed randomly selected nodes’ labels to their features (Sec. 6).
4 Aggregate boundary nodes’ featureswith pre-aggregation
graph and local inner nodes’ features with the local graph
using optimized operators (Sec. 4). 5 Quantize and transmit
boundary nodes features (overlapped with local aggregation).
Dequantize received features (Sec. 6). 6 Aggregate bound-
ary nodes’ features with post-aggregation graph (Sec. 4). 7
Apply NN operations (e.g. linear transform). Repeat from
step 4 for the next layer or 3 for the next epoch.

For message-passing-based GNNmodels such as GAT [55],
GIN [61], and GraphSAGE [25], their main difference lies in
how they calculate the weights of neighbors (for example,

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

GAT computes the weights through a self-attention mecha-
nism). However, the core operation of these models remains
neighbor aggregation (consisting of local aggregation and
remote aggregation (communication)). SuperGCN primarily
optimizes neighbor aggregation. Consequently, our system
can be seamlessly applied to the distributed training of these
message-passing-based GNN models.

4 General and Efficient Aggregation
Operators

At the node-level, full-batch GCN training uses two aggre-
gation operators: Index_add and SpMM, which are similar to
each other, to aggregate the neighbors’ feature vectors. The
following section uses Index_add as an example.
In Index_add, rows in 𝑠𝑟𝑐 are added to 𝑑𝑠𝑡 at positions

specified by 𝑖𝑑𝑥 (Fig. 3(a)). Unordered 𝑖𝑑𝑥 , incurred by the
random connectivity of the graph, leads to a poor memory
access pattern. We improve Index_add’s memory access pat-
tern and locality:
(1) Clustering and sorting: Sort 𝑖𝑑𝑥 and cluster 𝑠𝑟𝑐 rows that

aggregate to the same 𝑑𝑠𝑡 row (Fig. 3(b)). Though this
might disrupt the access order of 𝑠𝑟𝑐 rows, since each
𝑠𝑟𝑐 row is still accessed sequentially and only once, the
performance impact is minimal compared to improving
𝑑𝑠𝑡 reuse.

(2) Loop reordering: Adjust memory access order on 𝑠𝑟𝑐 to
enable register-optimized kernel for data reuse on 𝑑𝑠𝑡 .

(3) Vector register-optimized kernel: A shape-adaptive (aligned
with cache line size) inner kernel with template-based code
generation (Fig. 3(c)) to enhance memory access through-
put and improve data reuse.

We also employ other optimizations including 2D dynamic
parallelism and FLOPS-based load balancing (Fig. 3(d)) to
boost performance further.

5 Hierarchical Aggregation Scheme
In distributed full-batch GCN training, communication per-
formance is mainly affected by graph partitioning and the
aggregation method. In this section, we first describe our
selected graph partitioning algorithm (Sec. 5.1), followed by
our novel pre- and post-aggregationmethod that reduces com-
munication overhead based on partitioning results (Sec. 5.2).
We then analyze the relationship between pre- and post-
aggregation and minimum vertex cover problem (Sec. 5.3),
and provide a performance model characterizing communi-
cation costs (Sec. 5.4).

5.1 Graph partitioning algorithm selection
Regarding graph partitioning, we employ METIS [38] min-
cut algorithm, which is widely adopted in popular GNN
frameworks such as DGL [67], PyG [18], and so on [7, 43,

𝑎! 𝑎" 𝑎# 𝑎$
𝑐! + 𝑒! 𝑐" + 𝑒" 𝑐# + 𝑒# 𝑐$ + 𝑒$
𝑏! + 𝑑! 𝑏" + 𝑑" 𝑏# + 𝑑# 𝑏$ + 𝑑$

𝑎! 𝑎" 𝑎# 𝑎$
𝑏! 𝑏" 𝑏# 𝑏$
𝑐! 𝑐" 𝑐# 𝑐$
𝑑! 𝑑" 𝑑# 𝑑$
𝑒! 𝑒" 𝑒# 𝑒$

0
2
1
2
1

srcidx
dst

(a) Baseline vanilla implementation of index_add.

𝑎! 𝑎" 𝑎# 𝑎$
𝑐! + 𝑒! 𝑐" + 𝑒" 𝑐# + 𝑒# 𝑐$ + 𝑒$
𝑏! + 𝑑! 𝑏" + 𝑑" 𝑏# + 𝑑# 𝑏$ + 𝑑$

𝑎! 𝑎" 𝑎# 𝑎$
𝑐! 𝑐" 𝑐# 𝑐$
𝑒! 𝑒" 𝑒# 𝑒$
𝑏! 𝑏" 𝑏# 𝑏$
𝑑! 𝑑" 𝑑# 𝑑$

0
1
1
2
2

srcidx
dst

1

2

2

flops

(b) Cluster 𝑠𝑟𝑐 based on sorted 𝑖𝑑𝑥 to improve memory access of 𝑑𝑠𝑡 .

𝑉𝑒𝑐(𝑎!, 𝑎") 𝑉𝑒𝑐(𝑎#, 𝑎$)
𝑉𝑒𝑐(𝑐! + 𝑒!, 𝑐" + 𝑒") 𝑉𝑒𝑐(𝑐# + 𝑒#, 𝑐$ + 𝑒$)
𝑉𝑒𝑐(𝑏! + 𝑑!, 𝑏" + 𝑑") 𝑉𝑒𝑐(𝑏# + 𝑑#, 𝑏$ + 𝑑$)

𝑉𝑒𝑐(𝑎!, 𝑎") 𝑉𝑒𝑐(𝑎#, 𝑎$)
𝑉𝑒𝑐(𝑐!, 𝑐") 𝑉𝑒𝑐(𝑐#, 𝑐$)
𝑉𝑒𝑐(𝑒!, 𝑒") 𝑉𝑒𝑐(𝑒#, 𝑒$)
𝑉𝑒𝑐(𝑏!, 𝑏") 𝑉𝑒𝑐(𝑏#, 𝑏$)
𝑉𝑒𝑐(𝑑!, 𝑑") 𝑉𝑒𝑐(𝑑#, 𝑑$)

0
1
1
2
2

srcidx
dst

(c) Invoking a kernel optimized for vector register reuse on 𝑑𝑠𝑡 .

𝑇ℎ𝑟𝑒𝑎𝑑(",") 𝑇ℎ𝑟𝑒𝑎𝑑(",%)
𝑇ℎ𝑟𝑒𝑎𝑑(%,") 𝑇ℎ𝑟𝑒𝑎𝑑(%,%)
𝑇ℎ𝑟𝑒𝑎𝑑(&,") 𝑇ℎ𝑟𝑒𝑎𝑑(&,%)

𝑇ℎ𝑟𝑒𝑎𝑑(",") 𝑇ℎ𝑟𝑒𝑎𝑑(",$)

𝑇ℎ𝑟𝑒𝑎𝑑(%,") 𝑇ℎ𝑟𝑒𝑎𝑑($,$)

𝑇ℎ𝑟𝑒𝑎𝑑(&,") 𝑇ℎ𝑟𝑒𝑎𝑑(&,$)

0
1
1
2
2

srcidx
dst

flops

1

2

2

(d) A 2D dynamic parallelism strategy to determine the thread number on
each dimension and improve load balance.

Figure 3: Steps of the proposed algorithm for optimiz-
ing the neighbor aggregation operator index_add on a
single CPU.

47, 56–58, 66]. METIS minimizes the total communication
volume by minimizing the total number of cut edges. Addi-
tionally, it maximizes communication locality (neighboring
subgraphs have higher communication volume). This local-
ity property is beneficial for computing clusters and super-
computers where intra-node communication is significantly
faster than inter-node communication.

5.2 Pre- and Post-aggregation
5.2.1 Constructing Pre- and Post-aggregation Subgraph. Af-
ter graph partitioning, each worker is allocated a subgraph.
Each subgraph consists of two components: a local graph
for message passing on inner nodes, and a remote graph for
message passing on boundary nodes received from other
subgraphs through the cut edges. To reduce communication
overhead, the remote graph can be transformed into either a
post-aggregation or pre-aggregation graph. Pre denotes per-
forming the aggregation operation before communication,
while post refers to performing the aggregation operation
after communication. For instance, consider 𝑆0’s perspective
of the remote graph shown in Fig. 4. In this scenario, the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

𝑆!

1

3 6

4

2 5

𝑆"

(a) 𝑆0’s remote graph. The com-
munication volume (dotted line)
is 5.

𝑆!

1

3

2

𝑆"

1

3

2

6

4

5

Pre graph

(b) Convert to Pre-aggr graph.
The communication volume (dot-
ted line) is 3. [44]

𝑆!

1

3 6

4

2 5

𝑆"

6

4

5

Post graph

(c) Convert to Post-aggr graph.
The communication volume (dot-
ted line) is 3. [46, 56–58]

𝑆!

1

3 6

4
2 5

𝑆"

4

22
Pre graph

Post graph

(d) Ours : hybrid of post-aggr and
pre-aggr graph. The communica-
tion volume (dotted line) is 2.

Figure 4: Strategies to construct a remote graph.

communication volume along the cut edges (dotted line) is 5
nodes’ features. By converting the remote graph to either the
pre-aggr graph (Fig. 4(b)) or the post-aggr graph (Fig. 4(c),
the communication volume is reduced from 5 node features
to 3 node features. To our knowledge, most existing solu-
tions choose either the pre-aggregation method [44] or the
post-aggregation method [46, 56–58].
However, the two above solutions are suboptimal. To

achieve a more aggressive reduction in communication vol-
ume, we propose a simple yet effective method that catego-
rizes each edge in the remote graph into either the pre-aggr
graph or the post-aggr graph in Alg. 1. Initially, we treat the
remote graph as a bipartite graph and identify all connected
components in this graph. Subsequently, we introduce the
minimum vertex cover algorithm to find the nodes that cover
all cut edges (line 1-3 in Alg. 1). In Fig. 4(a), nodes 2 and 4
form the minimum vertex cover set. Then we traverse all
edges in the remote graph (cut edges) (line 4-8 in Alg. 1). If
the source node of the cut edges belongs to the minimum
vertex cover (node 4 and its cut edges), it’s better to delay
aggregation on these edges until the source node reaches the
destination worker, as performing aggregation first would
involve the transfer of multiple destination nodes and cause
redundant communication. Conversely, when the destina-
tion node of cut edges is part of the minimum vertex cover
(node 2 and its cut edges), aggregation on these edges oc-
curs prior to the transfer of results to the destination worker
can reduce redundant communication (pre-aggr). Based on
this strategy, a remote graph is transformed into a hybrid of
pre-aggr graph and post-aggr graph, as shown in Fig. 4(d).

Algorithm 1: A method for transforming a remote
graph into a hybrid of pre- post-aggregation graph.
Input: list of edges in remote graph 𝑟_𝑒𝑑𝑔𝑒𝑠
Output: list of edges in pre-aggr graph 𝑝𝑟𝑒_𝑒𝑑𝑔𝑒𝑠 , list of

edges in post-aggr graph 𝑝𝑜𝑠𝑡_𝑒𝑑𝑔𝑒𝑠
1 𝑟_𝑒𝑑𝑔𝑒𝑠 ← to_bipartite(𝑟_𝑒𝑑𝑔𝑒𝑠) 𝑣_𝑐𝑜𝑣𝑒𝑟 ← set()
2 for 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ in find_connected_components(𝑟_𝑒𝑑𝑔𝑒𝑠) do
3 𝑣_𝑐𝑜𝑣𝑒𝑟 .add(minimum_vertex_cover(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ))

4 for 𝑒𝑑𝑔𝑒 in 𝑟_𝑒𝑑𝑔𝑒𝑠 do
5 if 𝑒𝑑𝑔𝑒.𝑠𝑟𝑐 in 𝑣_𝑐𝑜𝑣𝑒𝑟 then
6 𝑝𝑜𝑠𝑡_𝑒𝑑𝑔𝑒𝑠 .add(𝑒𝑑𝑔𝑒)

7 else
8 𝑝𝑟𝑒_𝑒𝑑𝑔𝑒𝑠 .add(𝑒𝑑𝑔𝑒)

5.2.2 Performing Pre- and Post-aggregation. Our proposed
approach involves the aggregation and communication stages
of boundary nodes, including:
(1) Perform pre-aggregation on node 5, 6 at 𝑆1 to obtain the

partial result of node 2.
(2) Send node 4 and the partial result of node 2 to 𝑆0.
(3) Conduct post-aggregation on received node 4 and the

partial result of node 2 at 𝑆0 to get the aggregation result
of node 1, 2, 3.

With our proposed strategy, the communication volume can
be shrunk from 3 nodes to 2 nodes.

5.3 Constructing Pre- and Post-aggregation
Subgraph is Finding Minimum Vertex
Cover

To minimize communication overhead, we formulate the
problem as a Minimum Vertex Cover (MVC) in a bipartite
graph. This section explains how MVC ensures an optimal
communication volume.

5.3.1 Minimum Vertex Cover (MVC) in bipartite graphs. In
a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), a vertex cover is a subset of
vertices𝐶 ⊆ 𝑈 ∪𝑉 such that every edge in 𝐸 has at least one
endpoint in 𝐶 . The minimum vertex cover is the smallest
such set. König’s theorem [41] establishes that in bipartite
graphs, the size of a minimum vertex cover equals the size of
a maximum matching, allowing polynomial-time solutions.

5.3.2 Achieving Optimal Communication Volume via Mini-
mum Vertex Cover. Let the remote graph (Fig. 4(a)) induce a
bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸), where each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸
represents a data transfer between vertices 𝑢 and 𝑣 . If data
were transferred along every edge, a vertex connected to
multiple edges might be transmitted repeatedly, leading to
redundancy. To eliminate this redundancy, we seek a set of
vertices 𝐶 ⊆ 𝑈 ∪𝑉 such that every edge is “covered” by at

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

𝑆!

1

3 6

4

2 5

𝑆" 𝑆!

1

3 6

4

2 5

𝑆" 𝑆!

1

3 6

4

2 5

𝑆"

(a) Original (b) Find vertex 4 and
its incident edges

(c) Find vertex 2 and
its incident edges

Figure 5: Achieving optimal communication volume
via finding minimum vertex cover.

least one vertex in 𝐶; mathematically, we require that
∀(𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶.

This set 𝐶 effectively “absorbs” the data transfers for all
its incident cut edges, meaning that transferring the data
corresponding to the vertices in𝐶 is sufficient to account for
all communications. Our goal is to minimize the communi-
cation volume, which is directly proportional to the number
of vertices transmitted. Thus, we formulate the problem as

min
𝐶⊆𝑈∪𝑉

|𝐶 | subject to ∀(𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶. (1)

Take Fig. 5(a) as an example, the goal is to find a vertex set
(vertex 2 and 4) that covers all edges while minimizing the
number of vertices. Eqn 1 is exactly the definition of theMVC
problem [16] on a bipartite graph. So we conclude that find-
ing the optimal communication volume is equivalent
to solving the MVC problem on 𝐺 . The optimal communi-
cation volume corresponds to |MVC|: the minimal number
of vertices needed to cover all edges. Also, the MVC prob-
lem on bipartite graphs has an optimal solution (by König’s
theorem [41] and Hopcroft–Karp algorithm [27]).
After identifying the minimum vertex cover set 𝐶 (e.g.

vertex 2 and 4 in Fig. 5(c)), we construct pre- and post-
aggregation graph based on 𝐶 , transforming the original
edges communication into vertices communication on 𝐶 ,
thereby achieving the optimal communication volume.

5.4 Communication Performance Model
After partitioning the graph and aggregating the nodes, the
communication cost required in distributed full-batch GCN
training can be estimated. We use 𝐶𝑜𝑚𝑚𝑖, 𝑗 to represent the
communication volume from process 𝑖 to process 𝑗 . For dis-
tributed training with 𝑃 processes, the communication time
𝑇𝑐𝑜𝑚𝑚 is expressed as follows:

𝑇
𝑖,𝑗
𝑐𝑜𝑚𝑚 =

𝐶𝑜𝑚𝑚𝑖,𝑗 × 𝐵𝐼𝑇𝑓 𝑝32
𝐵𝑊𝑐𝑜𝑚𝑚

+ 𝐿𝑐𝑜𝑚𝑚

𝑇𝑐𝑜𝑚𝑚 =
𝑃max
𝑖=0
(
𝑃∑︁
𝑗=0
𝑇
𝑖,𝑗
𝑐𝑜𝑚𝑚)

(2)

The upper equation computes the communication time
as the sum of the data transfer time, given by 𝑉

𝑖,𝑗
𝑐𝑜𝑚𝑚

𝐵𝑊𝑐𝑜𝑚𝑚
, and

the fixed communication latency 𝐿𝑐𝑜𝑚𝑚 . Since the commu-
nication pattern in distributed full-batch GCN training is

𝑇!"##

Layer 1

	𝑇!"#$%_'())

Original

Quant
Comm

……

……

Time

Prepare

……

……

Layer 2, 3
	𝑇*#+,*

……

		𝑇$(-)		𝑇!"#$% 		𝑇.,!"#$%

Reduced Time……

Figure 6: Traditional communication (top) and our
communication quantization scheme (bottom) in GCN
training.

highly unbalanced, to account for this imbalance, the lower
equation selects the communication time of the process with
the longest communication time (serves as the bottleneck)
as the global communication time 𝑇𝑐𝑜𝑚𝑚 .

6 Communication-Aware Quantization
Scheme

To further reduce the communication volume, in this section
we introduce a communication-aware quantization scheme
that leverages quantization in the communication of dis-
tributed full-batch GCN training, while maintaining model
accuracy.We illustrate the workflow of our scheme in Sec. 6.1.
We then provide a thorough performance analysis in Sec. 6.2
and accuracy analysis in Sec. 6.3.

6.1 Workflow of quantization
communication

The workflow of our scheme (as shown in Fig. 6) is
(1) Masked label propagation. At the beginning of each

epoch, we convert the labels of randomly selected nodes
into embedding and add them to the initial feature vec-
tors, which allows the labels to propagate during neigh-
bor aggregation (3 in Fig. 2). Unselected labels are used
to update model parameters.

(2) Normalization. Large-magnitude outliers introduce large
quantization errors. Therefore, we apply LayerNormal-
ization on the embedding table before each GCN layer
to remove outliers and smoothen the data distribution.

(3) Quantize, comm and dequantize. Quantize the em-
bedding table with quantization parameters (zero-point
and scale). Transfer the quantized embedding table and
quantization parameters to other workers. After commu-
nication, dequantize received embedding tables with the
received quantization parameters. (5 in Fig. 2)

6.2 Performance analysis
In this section, we present the performance improvements
achieved by our communication-aware quantization scheme
through theoretical analysis. The key takeaway is that our

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

approach effectively reduces communication volume and
enhances communication efficiency.

6.2.1 Performance model of our scheme. Quantization re-
duces the communication volume yet requires additional
overhead to preserve model accuracy. Accounting for these
overheads, we restructure our performance model (Eqn 2)
into three components:
1) 𝑻𝒑𝒓𝒆_𝒒𝒖𝒂𝒏𝒕 : Time for Masked label propagation at the

start of each epoch and LayerNormalization before each GCN
layer. These operations are performed on the local subgraph
and do not increase the communication volume:

𝑇 𝑖
𝑝𝑟𝑒_𝑞𝑢𝑎𝑛𝑡 =

𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑖 × 𝐵𝐼𝑇𝑓 𝑝32
𝑇𝐻𝑐𝑎𝑙

(3)

2) 𝑻𝒒𝒖𝒂𝒏𝒕 and 𝑻𝒅𝒆𝒒𝒖𝒂𝒏𝒕 : Time for quantizing and dequan-
tizing the communication data. We support quantizing the
FP32 data into intX (where X can be 2, 4, or 8 bits). The com-
munication volume can be reduced by a factor of 𝐵𝐼𝑇𝑓 𝑝32

𝐵𝐼𝑇𝑖𝑛𝑡𝑋
, but

this reduction introduces additional computational cost:

𝑇
𝑖,𝑗
𝑞𝑢𝑎𝑛𝑡 = 𝑇

𝑗,𝑖

𝑑𝑒𝑞𝑢𝑎𝑛𝑡
=
𝐶𝑜𝑚𝑚𝑖,𝑗 × (𝐵𝐼𝑇𝑓 𝑝32 + 𝐵𝐼𝑇𝑖𝑛𝑡𝑋)

𝑇𝐻𝑐𝑎𝑙

(4)

3) 𝑻𝒒𝒖𝒂𝒏𝒕_𝒄𝒐𝒎𝒎 with Params: Quantization introduces
quantization-related parameters (zero-point and scale), which
are stored as FP32 values. These parameters need to be trans-
ferred to other workers for dequantization. Therefore, the
time for quantized communication (transferring data and
parameters) from process 𝑖 to process 𝑗 is updated as:

𝑇
𝑖,𝑗
𝑞𝑢𝑎𝑛𝑡_𝑐𝑜𝑚𝑚 =

(𝐶𝑜𝑚𝑚𝑖,𝑗 × 𝐵𝐼𝑇𝑖𝑛𝑡𝑋) + (𝑷𝒂𝒓𝒂𝒎𝒔𝑖,𝑗 × 𝐵𝐼𝑇𝑓 𝑝32)
𝐵𝑊𝑐𝑜𝑚𝑚

+ 𝐿𝑐𝑜𝑚𝑚

(5)
Taking all these components into account, the total quan-

tized communication time is estimated to be:

𝑇𝑞𝑢𝑎𝑛𝑡_𝑐𝑜𝑚𝑚 =
𝑃max
𝑖=0
(𝑇 𝑖

𝑝𝑟𝑒_𝑞𝑢𝑎𝑛𝑡 +
𝑃∑︁
𝑗=0
(𝑇 𝑖,𝑗

𝑞𝑢𝑎𝑛𝑡 +𝑇
𝑖,𝑗
𝑞𝑢𝑎𝑛𝑡_𝑐𝑜𝑚𝑚 +𝑇

𝑖,𝑗

𝑑𝑒𝑞𝑢𝑎𝑛𝑡
))

(6)

6.2.2 Performance gain of our scheme. In this section, we
analyze the performance gain of our scheme under different
scales (bottlenecks in throughput or latency). To facilitate
analysis, we define four ratios 𝛼 , 𝛽 , 𝛾 and 𝛿 where

𝛼 =
𝐶𝑜𝑚𝑚𝑖,𝑗

𝑃𝑎𝑟𝑎𝑚𝑠𝑖,𝑗
∼ 𝑂 (102)

𝛽 =
𝑇𝐻𝑐𝑎𝑙

𝐵𝑊𝑐𝑜𝑚𝑚
∼ 𝑂 (102)

𝛾 =
𝐵𝐼𝑇𝑓 𝑝32

𝐵𝐼𝑇𝑖𝑛𝑡𝑋
=

32
𝑋

𝛿 = 𝐿𝑐𝑜𝑚𝑚 :
𝐶𝑜𝑚𝑚𝑖,𝑗 × 𝐵𝐼𝑇𝑖𝑛𝑡𝑋

𝐵𝑊𝑐𝑜𝑚𝑚

(7)

where 𝛼 represents the ratio of communication data volume
to quantization-related parameters volume, 𝛽 is the ratio
of computing throughput to communication bandwidth of
the hardware, 𝛾 is the ratio of bit-width before and after
quantization, and 𝛿 is the ratio of communication latency to

num of processes

A
bs

ol
ut

e
C

om
m

 T
im

e

P’ P

(P−P’) ⋅ 𝐿!"##

𝑇!"##
𝑇$%&'(_!"##

𝛾 speedup

Throughput bound Latency bound

Figure 7: Performance analysis of quantized commu-
nication.

data transfer time. The performance gain of our scheme can
be expressed as follows:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑐𝑜𝑚𝑚

𝑇𝑞𝑢𝑎𝑛𝑡_𝑐𝑜𝑚𝑚
=

𝛼𝛽 (𝛾 + 𝛿)
(1 + 𝛿)𝛼𝛽 + 2𝛼 (1 + 𝛾) + 𝛽𝛾 ≈

𝛾 + 𝛿
1 + 𝛿

(8)
Note that𝑇pre_quant is omitted in Eqn 8, as it is negligible com-
pared to the communication time with processes 𝑃 . In the
case of medium scales, communication is throughput-
bound. This implies that 𝛿 → 0. Our scheme reduces com-
munication volume𝛾 times and can achieve nearly𝛾 speedup
(left side in Fig. 7). For example, with Int2 quantized commu-
nication, the speedup approaches 16×. As the number of
processes (𝑃) increases, the communication bottleneck
gradually changes to latency. This is reflected in the in-
crease of 𝛿 until 𝛿 approaches infinity (𝛿 →∞). According to
Eqn 8, the performance improvement brought about by our
scheme diminishes as the system increases the scale, yet it
does not have any negative impact. Furthermore, our scheme
can make the communication shift to latency bound with
fewer processes (𝑃 ′), resulting in an absolute time reduction
of (𝑃 −𝑃 ′) ·𝐿𝑐𝑜𝑚𝑚 compared to the case without our scheme
(as shown in Fig. 7).

6.3 Accuracy analysis
In this subsection, we analyze the methods we use from the
perspective of model accuracy.

Lemma 1.With the GNNsmodel, given a global minimum
of loss L(𝑊 ∗), we make the following assumptions:
(1) the gradient ∇L̃(𝑊𝑡) is 𝜌-Lipschitz continuous, (2)

the approximate gradient is unbiased, E[∇L̃(𝑊𝑡)] = ∇L(𝑊𝑡),
(3) the variance of the approximate gradient is bounded,
𝑉𝑎𝑟 [∥∇L̃(𝑊𝑡) − ∇L(𝑊𝑡)∥2] = E[∥𝛿𝑡 ∥2] ≤ 𝐾 , 𝐾 is a constant
and 𝐾 > 0.
Then select any t in epoch{1,...,T}, we have

E[∥∇L̃ (𝑊𝑡) ∥22] ≤
2(L(𝑊1) − L(𝑊 ∗))

𝑇 (2𝜂 − 𝜌𝜂2) + 𝜂𝜌

2 − 𝜂𝜌 · 𝐾
2 (9)

The proof of Lemma 1 follows the analysis in [56], adapted
to our setting. The first term of the right side will go to 0
while 𝑇 →∞. This means under the quantization scheme we

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

maintain 𝑂 (1
𝑇
) convergence rate, and model will converge

to the neighborhood of a stationary point, the radius of the
neighborhood is determined by the gradient variance 𝐾 .

Lemma 2.With the GCNs model, by embedding label into
the vector space of feature, label propagation and feature
propagation are approximately unified into message passing
operations in GCNs. That is to say, we have:

𝐻 (𝑙+1) = 𝐴𝐻 (𝑙)𝑊 (𝑙) = 𝐴𝑙 (𝑋 +𝑌𝑒𝑚𝑏𝑒𝑑) (𝑊 (0)𝑊 (1) · · ·𝑊 (𝑙))

= 𝐴𝑙𝑋 (𝑊 (0)𝑊 (1) · · ·𝑊 (𝑙)) +𝐴𝑙𝑌𝑒𝑚𝑏𝑒𝑑 (𝑊 (0)𝑊 (1) · · ·𝑊 (𝑙))
(10)

where 𝐻 (𝑙) is the embedding after GCN layer 𝑙 , 𝐴 is the
adjacent matrix,𝑊 𝑙 is the weight matrix in GCN layer 𝑙 , 𝑋
is the initial feature vectors, 𝑌𝑒𝑚𝑏𝑒𝑑 is the embedding from
label, while 𝑌𝑒𝑚𝑏𝑒𝑑 = 𝑌𝑊𝑒𝑚𝑏𝑒𝑑 .

Proposition 1. Lemma 1 shows that with quantized com-
munication, the model still maintains the same convergence
rate. According to Lemma 2, adding embedded labels to fea-
tures can be treated as a type of label propagation. Based on
[51], integrating label propagation into feature propagation
can enhance the connectivity between nodes with the same
label. This enhanced connectivity brings the embeddings of
nodes with the same label closer in the high-dimensional la-
tent space, partially mitigating the issue where quantization
shortens the distances between the embedding of nodes with
different labels. This enables the model to more precisely
separate nodes with different labels. Therefore, this enhances
the model’s tolerance to precision loss.

7 Implementation
Our framework is built on top of PyTorch and PyTorch
Geometric (PyG) [18]. Currently, PyG lacks support for dis-
tributed full-batch GNNs training. Consequently, we imple-
ment the entire training process including preprocessing,
graph partitioning, subgraph construction, and so on. For
communication primitives, we employ MPI_Alltoallv.

7.1 Single node level
Unlike typical CPUs that are optimized for latency, A64FX
is a CPU optimized for throughput. It features a larger cache
line size, higher memory bandwidth, more compute cores,
wider SIMD instruction (Arm SVE 512), and longer opera-
tion latency. Therefore, our optimization goal is to provide
more parallelism (e.g. aggressive software prefetch) to hide
long latency. For x86 CPUs, we implement and optimize the
aggregation operators with Intel AVX-512.

7.2 Distributed level
For graph partitioning, to ensure a balanced distribution of
training samples and prevent load imbalances among differ-
ent workers, we assign node weights based on in-degree of
nodes and training masks when configuring METIS [38].

For theminimumvertex cover in pre- and post-aggregation,
we optimize the implementation of theNetworkX library [24].
This significantly reduces the preprocessing time.

7.3 Quantization of Communication
In our implementation, we fix the bit-width of quantization
to Int2. We implemented the quantization process based
on [56] and made further optimizations:

(1) Decentralized int2 quantization communication scheme.
In our proposed scheme, each worker quantizes and dequan-
tizes the message without any synchronization or communi-
cation with a centralized master.
(2) Fusion of quantization parameters calculation and

quantization kernels. To reduce redundant memory access,
our fused kernel first retrieves 4 rows of the embedding table
(necessary for packing four int2 values into one int8 for com-
patibility) and calculates quantization parameters for these
rows. Then, it reuses data from cache and quantizes them
using the newly calculated parameters.

(3) Latency reduction in quantization kernel. We improve
performance by replacing the long latency division operation
(98 cycles on Fujitsu A64FX [20]) with reciprocal estimate
and multiplication operations and eliminating random num-
ber generation to shorten instruction dependency chains and
improve throughput.

(4) Vectorization for quantization and dequantization ker-
nel on different CPUs.

8 Evaluation
8.1 Experimental Setup
Hardware. We conducted experiments on two supercom-
puters: ABCI [1] and Fugaku [50]. ABCI’s compute nodes are
connected with InfiniBand and contain two Intel Xeon Gold
6148 CPUs, each with 20 cores. Fugaku’s compute nodes are
connected via the Tofu interconnection network and feature
Fujitsu Arm A64FX processors. These processors have 48
cores, organized into 4 CMGs with each CMG containing
12 cores. Datasets. Table 2 shows the graph datasets in the
experiments. The datasets are a) part of the "Open Graph
Benchmark" suite [28, 29]; b) the widely used real dataset
"Reddit" [25]; c) two large-scale graphs "Proteins" [2] and
"UK-2007-05" [5, 6]; d) the latest and largest publicly avail-
able dataset "IGB260M" [39]. Models. We use a three layers
GraphSAGE [25] model for the experiments. GraphSAGE is
the most commonly used GCN model to assess the perfor-
mance of GNN frameworks. The model settings for different
datasets are shown in Table 2. Baselines. We choose the
state-of-the-art system DistGNN as the baseline on ABCI.
DistGNN is optimized for Intel clusters. It proposes delayed

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

Table 2: The graph datasets and model hyperparameters used in experiments.
Datasets #Vertex #Edges #Feat #Class #Hidden #Epochs Dropout Learning Rate Norm Type
Ogbn-arxiv 169,343 1,166,243 128 40 256 250 0.5 0.01 LayerNorm
Reddit 232,965 114,615,892 602 41 256 250 0.5 0.01 LayerNorm
Ogbn-products 2,449,029 61,859,140 100 47 256 250 0.5 0.01 LayerNorm
Proteins 8,745,542 1,309,240,502 128 256 256 200 0.5 0.01 LayerNorm
Ogbn-papers100M1 111,059,956 1,615,685,872 128 172 256 200 0.5 0.005 LayerNorm
Ogb-lsc-mag240M2 121,751,666 2,593,241,212 768 153 256 300 0.5 0.005 LayerNorm
UK-2007-05 105,896,555 3,738,733,648 128 172 128 200 0.5 0.01 LayerNorm
IGB260M 269,346,174 3,995,777,033 1024 19 256 200 0.5 0.01 LayerNorm

1We convert this directed graph into an undirected graph on Fugaku. 2We extract the undirected homogeneous papers citation graph

0
1
2
3
4
5

0
10
20
30
40
50

layer 0 layer 1 layer 2

R
un

tim
e

(m
s) Ogbn-arxiv (Xeon)

0

1

2

3

0
10
20
30
40
50
60

layer0 layer1 layer2

Ogbn-arxiv (A64FX)

0
2
4
6
8
10

0k
2k
4k
6k
8k

10k

layer1 layer2 layer3

Obgn-products (Xeon)
DistGNN PyG SuperGCN Speedup of DistGNN over PyG Speedup of SuperGCN over PyG

Sp
ee

du
p

ov
er

Py
G

Figure 8: Performance comparisons of aggregation operators for different datasets on a single Intel Xeon Gold
6148 processor and one CMG of an Arm Fujitsu A64FX processor. A64FX processor is divided into four CMGs, each
appearing as a single NUMA node.

communication to reduce communication overhead. Follow-
ing their paper’s suggestion, we set the delayed communi-
cation epoch number to 5 (cd-5). Since currently there is no
proper baseline optimized for Arm processors, we report the
performance of our framework on Fugaku as: (1) SuperGCN
(w/o comm optimizations), which is our implementation be-
fore applying the proposed communication optimization, and
(2) SuperGCN (w/ comm optimizations), which includes all the
proposed communication optimization (pre-post aggrega-
tion and quantization communication). We also compare our
methods with baselines optimized for full-batch distributed
GCN training on GPU clusters. The results of these baselines
are collected from their original papers.

8.2 Performance of Aggregation on a Single
CPU

This section reports the performance of the proposed ag-
gregation operators as these operators are the most time-
consuming of full-batch GCN training on a single CPU. Fig. 8
shows the performance comparison of aggregation opera-
tors on a single Intel Xeon Gold 6148 processor. Due to the
limitations of memory capacity, we only show results on
a subset of the dataset. On the Xeon, SuperGCN achieves a
speedup of 1.8× to 8.4× on different model layers over PyG,
and ∼1.22× over Intel’s library DistGNN. When processing
larger datasets, such as ogbn-products, SuperGCN eliminates
more redundant memory accesses. As a result, SuperGCN
achieves higher speedup on larger datasets. We also compare
SuperGCN with PyG on one CMG of an Arm Fujitsu A64FX

processor (14 of the processor). We achieve a speedup ranging
from 1.5× to 1.8× on the Ogbn-arxiv dataset.

8.3 Performance and Scaling on Multiple
CPUs

ABCI supercomputer. We conduct a performance and scal-
ing comparison between SuperGCN and DistGNN on multi-
ple CPUs using ABCI (Xeon CPUs) across various datasets.
Fig. 9 illustrates the performance and speedup achieved over
DistGNN on four different datasets. Due to the memory
capacity limitation, we begin with 8 MPI processes for ogbn-
papers100M. SuperGCN achieves speedups ranging from 0.9×
to 6.0× compared to DistGNN. The results show that speedup
becomes more significant as the number of processes in-
creases, due to communication becoming the main bottle-
neck. These experimental results confirm the efficacy of our
approach in reducing communication overhead. It is worth
noting that those speedups are on the Xeon-based supercom-
puter, for which DistGNN is particularly designed.

The scaling of SuperGCN (w/o andw/ commoptimizations)
and DistGNN on ABCI are shown in Fig. 9. DistGNN suffers
from out-of-memory issues on Obgn-papers100M. Across all
datasets, SuperGCN (w/ comm optimizations) demonstrates
superior strong scalability when compared with DistGNN.
Notably, onOgbn-papers100M, SuperGCN achieves a speedup
that is close to linear scaling. On proteins, SuperGCN even
obtains a superlinear speedup.

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

2

4

6

8

0
10
20
30
40
50

8 16 32 64 128 256
Number of MPI Processes

Ogbn-papers100M

O
O
M

O
O
M

O
O
M

0
1
2
3
4
5

0
2
4
6
8

10

2 4 8 16 32 64 128 256

Se
co

nd
s /

 E
po

ch

Number of MPI Processes

Obgn-products

0
1
2
3
4
5

0
1
2
3
4
5

2 4 8 16 32 64 128 256
Number of MPI Processes

Reddit

0
1
2
3
4
5

0

20

40

60

80

2 4 8 16 32 64 128 256
Number of MPI Processes

Proteins

DistGNN (cd-5) SuperGCN (w/o comm optimizations) SuperGCN (w/ comm optimizations)
Speedup of SuperGCN (w/o comm optimizations) over DistGNN Speedup of SuperGCN (w/ comm optimizations) over DistGNN

Sp
ee

du
p

ov
er

D
is

tG
N

N

Figure 9: Performance comparison with DistGNN and scaling for different datasets on ABCI (Intel). OOM refers to
the out-of-memory runs. The results in the bar chart correspond to the left y-axis (performance), while the results
in the line chart correspond to the right y-axis (speedup).

0

1

2

3

4

0

2

4

6

10
24

20
48

40
96

81
92

mag240M

0

1

2

3

4

0.0

2.0

4.0

6.0

8.0

10
24

20
48

40
96

81
92

Papers100M

0
10
20
30
40
50

0

2

4

6

8

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Proteins

0

10

20

30

40

0

1

2

3

4

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Num of MPI Procs

Ogbn-products

0

20

40

60

0

2

4

6

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Num of MPI Procs

Reddit

Num of MPI Procs

Se
co

nd
s /

 E
po

ch

SuperGCN (w/o comm optimizations) SuperGCN (w/ comm optimizations)
Speedup of SuperGCN (w/o comm optimizations) Speedup of SuperGCN (w/ comm optimizations)

Num of MPI Procs

O
O
M

0

1

2

3

4

0

1

2

3

4

25
6

51
2

10
24

20
48

40
96

81
92

UK-2007-02

Sp
ee

du
p

Num of MPI Procs Num of MPI Procs

0

1

2

3

4

0

5

10

15

40
96

81
92

IGB260M

Num of MPI Procs

Figure 10: Performance and scaling for different datasets on Fugaku (Arm). The results in the bar chart correspond
to the left y-axis (performance), while the results in the curves correspond to the right y-axis (speedup). The
speedup is over the smallest number of MPI processes the dataset can be executed on. Each A64FX in Fugaku runs
four MPI ranks: the number of processors used in each run becomes the number of MPI ranks / 4.

Fugaku supercomputer. Fig. 10 shows the performance
and scaling of SuperGCN on Fugaku. These results demon-
strate the scalability of SuperGCN on Arm-based supercom-
puters. In summary, SuperGCN scales to a maximum of 8,192
MPI ranks, especially on the largest publicly available dataset
IGB260M. To the best of our knowledge, this stands as the high-
est scalability achieved by a full-batch GNNs training system.

Furthermore, as shown in Fig. 10, compared to the perfor-
mance at small-scale and large-scale, SuperGCN (w/ comm
opt.) achieves a higher speedup over SuperGCN (w/o comm
opt.) at medium-scale cases as communication is throughput-
bound. In large-scale cases where communication becomes
latency-bound, the speedup decreases. Nevertheless, the best
performance of SuperGCN (w/ comm) still surpasses that
of SuperGCN (w/o comm). These experimental results are
consistent with the conclusion of our theoretical analysis
presented in Sec. 6.2.2 and Fig. 7.

8.4 Accuracy Evaluations on Multiple CPUs
To assess the impact of our proposed communication-aware
quantization scheme on model convergence and accuracy,
we report the model convergence and accuracy on real large-
scale datasets. We measure model convergence by monitor-
ing changes in accuracy over training epochs, in all datasets.
Additionally, we use the final test accuracy to report the

model accuracy. For Ogb-lsc-mag240M, we use the valida-
tion accuracy, since this dataset has no test label. The re-
sults can be divided into two parts: results of DistGNN,
SuperGCN for Reddits and Ogbn-products on ABCI, and re-
sults of SuperGCN for Ogbn-papers100M, Ogb-lsc-mag240M,
and IGB260M on Fugaku. For SuperGCN, We employ four
settings to check the impact of Int2 quantization commu-
nication and masked label propagation on model accuracy:
FP32 without masked label propagation (w/o LP), FP32 with
masked label propagation (w/ LP), Int2 w/o LP, and Int2 w/
LP. We compared our final model accuracy after convergence
with other baselines (shown in Table 4) and the OGB leader-
board [4] across various datasets, demonstrating that our
model accuracy is within a reasonable range.
Accuracy for different datasets is shown in Fig. 11. In

comparison to DistGNN, on Ogbn-products, even if our
method converges at the same rate as DistGNN, our ap-
proach achieves higher accuracy on the test dataset after
model convergence. On Reddit, there are some issues with
the implementation of DistGNN, which result in abnormal
training curves. OnOgbn-products, Reddit, and IGB260M, we
found that Int2 closely matches FP32 regardless of whether
label propagation is used. However, enabling masked label
propagation allows the model to converge faster. On large-
scale datasets Ogbn-papers100M and Ogb-mag240M, Int2
converges to lower accuracy than FP32 without masked la-
bel propagation, yet matches FP32 when label propagation

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

SuperGCN (FP32, w/o LP) SuperGCN (Int2, w/o LP)

0.0
0.2
0.4
0.6
0.8

0 50 100 150
Epoch

0 50 100 150
Epoch

ogbn-papers100M
(Fugaku, 1024 proc)

ogbn-papers100M
(Fugaku, 2048 proc)

0 100 200
Epoch

0 100 200
Epoch

ogb-lsc-mag240M
(Fugaku, 4096 proc)

ogb-lsc-mag240M
(Fugaku, 8192 proc)

SuperGCN (FP32, w/ LP) SuperGCN (Int2, w/ LP)

0 50 100 150
Epoch

IGB260M
(Fugaku, 4096 proc)

0 50 100 150
Epoch

IGB260M
(Fugaku, 8192 proc)

DistGNN (cd-5)

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200
Epoch

0 50 100 150 200
Epoch

0 50 100 150 200
Epoch

0 50 100 150 200
Epoch

obgn-products
(ABCI, 128 proc)

Reddit
(ABCI, 128 proc)

ogbn-products
(ABCI, 256 proc)

Reddit
(ABCI, 256 proc)

Figure 11: Accuracy of test datasets (products, Reddit, papers100M and IGB260M) and validation dataset (Ogb-lsc-
mag240M). W/o LP refers to training without masked label propagation, while w/ LP is to train with masked label
propagation.

Table 3: Accuracy of different datasets. The N/A refers to the abnormal accuracy. SoTA accuracy of mini-batch
(neighbor sampling) with the samemodel as SuperGCN is collected fromOgb-leaderboard [4] and [57] [37] [36] [39].

Method Obgn-products (ABCI) Reddit (ABCI) Ogbn-papers100M (Fugaku) Ogb-lsc-mag240M (Fugaku) IGB260M (Fugaku)
64 procs 128 procs 256 procs 64 procs 128 procs 256 procs 1024 procs 2048 procs 4096 procs 8192 procs 4096 procs 8192 procs

DistGNN (cd-5) 78.16 77.76 77.27 N/A N/A N/A - - - - - -
SuperGCN (FP32, w/o LP) 79.14 79.15 79.17 96.14 96.12 96.16 63.58 63.62 63.33 63.33 54.90 54.89
SuperGCN (Int2, w/o LP) 79.42 79.24 79.33 96.10 96.17 96.16 60.19 60.42 62.73 60.91 54.96 54.96
SuperGCN (FP32, w/ LP) 79.64 79.62 79.61 96.28 96.27 96.23 65.62 65.82 64.99 65.29 54.39 54.37
SuperGCN (Int2, w/ LP) 79.68 79.62 79.26 96.26 96.27 96.27 65.71 65.70 64.87 65.23 54.51 54.93
Mini-batch (GraphSAGE) 78.70 [4] 95.40 [57] 64.91 [37] 65.10 [36] 54.95 [39]

is enabled. This empirically validates that the masked la-
bel propagation we introduce mitigates the accuracy drop
caused by Int2 communication on large-scale datasets.
Furthermore, Table 3 presents a comparison of test accu-

racy betweenDistGNN and the different settings of SuperGCN
after model convergence. Similar to the result shown in
Fig. 11, masked label propagation does not impact model
accuracy for Ogbn-products, Reddit, and IGB260M. How-
ever, on Ogbn-papers100M and Ogb-mag240M, masked label
propagation reduces the accuracy loss by Int2. Empirical re-
sults demonstrate that our communication-aware algorithm
design maintains consistent training convergence and model
accuracy.

SuperGCN (full-batch) versus SoTAMini-batchTrain-
ing In Table 3 we also report the highest reported mini-batch
accuracy in literature using exactly the same model (Graph-
SAGE). SuperGCN consistently achieves higher (or similar)
accuracy to SoTA mini-batch solutions.

8.5 Performance and Accuracy comparison
with GPU baselines

In this section, we compare our framework on supercom-
puter Fugaku with the current state-of-the-art GPU baseline
in terms of performance and model accuracy across different
datasets. We collect the performance (seconds per epoch) and
model accuracy for the highest achieved performance on the
largest machine scale runs reported by the original papers.
The GPU baselines are optimized for distributed full-batch
GCN training, including AdaptQ [56] and SYLVIE [66] that
employ adaptive quantization communication for improving
framework’s performance and scalability. We increase our
epoch number to align with their setting for this comparison.

The results are listed in Table 4. We can summarize the re-
sults: (1) Scaling to the highest performance allowed before
performance regresses: our method (SuperGCN) achieves the
best performance on the ogbn-products and Reddit datasets
while maintaining model accuracy within a normal range. (2)
On the Ogbn-papers100M dataset, converting the directed
graph to undirected improves accuracy but increases the com-
putation and communication costs. Our approach achieves
high accuracy using an undirected graph while maintain-
ing near-best performance. Unlike with other datasets, our
experiments (Table 3) show lossy communication reduces ac-
curacy on this dataset. However, ourmethod preservesmodel
accuracy even when using lossy communication techniques.
(3) Our approach also demonstrates performance and model
accuracy on the mag240M and IGB260M datasets. To the
best of our knowledge, they are the largest publicly available
GNN training datasets. All these results further demonstrate
that, compared to state-of-the-art baselines, our framework
achieves faster training while maintaining similar model
accuracy and remains effective on large-scale datasets.

8.6 Runtime Breakdown on Multiple CPUs
To understand performance bottleneckswhen using SuperGCN
for full-batch GCNs training, we collect the breakdown of
training time before and after using our proposed optimiza-
tion method on both small-scale and large-scale runs (shown
in Fig. 12). We divide the training process into 5 components:
(a) Aggr time, time of aggregation operation in GCN layers,
(b) Comm time, time of communication in GCN layers, (c)
Quant time, time of quantization and dequantization in GCN
layers, (d) Sync time, time of synchronization in GCN layers
(check load imbalance), (e) Other time, time spent on other

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 4: Performance and accuracy comparison of different GPU baselines on large-scale datasets. The results are
for the highest achieved performance on the largest machine scale runs reported by the original papers. The size
of datasets increases from left (Ogbn-products) to right (IGB260M).

Methods Platform Ogbn-products Reddit Ogbn-papers100M Ogb-lsc-mag240M IGB260M
Time (s) Acc. (%) Time (s) Acc (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%)

DGL [67] GPU 0.99 79.19 7.28 97.1 17.0 – – – – –
PipeCCN [58] GPU 0.43 78.77 0.43 97.10 6.70 – – – – –
BNSGCN [57] GPU 0.28 79.30 0.19 97.15 0.59 – – – – –
AdapQ [56] GPU 0.47 78.90 0.38 96.53 – – – – – –
SYLVIE [66] GPU 0.23 78.85 0.50 96.87 1.30 – – – – –
SuperGCN (ours) CPU 0.07 80.24 0.13 96.55 0.65 65.63 0.80 65.29 1.62 54.93
Time (s): Epoch time in seconds Acc.: Test accuracy (Val accuracy for mag240M) The results of DGL are collected from [66].

0

20

40

60

80

Base Opt
0

2

4

6

Base Opt
0
5

10
15
20
25

Base Opt
0

0.2

0.4

0.6

0.8

Base Opt
0
2
4
6
8

10

Base Opt
0

0.2

0.4

0.6

0.8

Base Opt
0

50

100

150

Base Opt
0

0.4

0.8

1.2

Base Opt

Products (2 procs) Products (256 procs) Reddit (2 procs) Reddit (256 procs) Proteins (2 procs) Proteins (256 procs) Papers (8 procs) Papers (256 procs)

Se
co

nd
s /

 E
po

ch

Computation time (Aggregation) Communication time Quantization time Synchronization time Other time

Figure 12: Time breakdown of different datasets on ABCI (Intel x86). Base represents vanilla PyG implementation,
while Opt refers to SuperGCN with all our proposed optimizations.

Table 5: Communication volume and time in 1 GCN
layer under different communication methods. This
test is conducted for Ogb-lsc-mag240M dataset on Fu-
gaku (2048 procs).
Methods Comm volume (GB) Comm time (ms)
SuperGCN (pre_aggr) 1934.8559 1094.35
SuperGCN (post_aggr) 1934.8559 1131.62
SuperGCN (pre_post_aggr) 1269.5784 730.792
SuperGCN
(pre_post_aggr+Int2)

data 80.4770 47.0393
params 1.6530 4.82566

components of training. To collect precise results, we switch
off the overlapping of computation and communication.

For small graphs, the performance bottleneck is the aggre-
gation operation within the GCN layer for Ogbn-products,
Reddit, and Proteins. Therefore, when using our proposed
method designed for a single CPU, the time spent on the ag-
gregation operation is significantly reduced, and the propor-
tion of aggregation operation time in the total training time
also decreases significantly. For large-scale runs, the perfor-
mance bottleneck shifts to communication. After employing
our proposed optimizations for reducing communication
volume, the communication time drops significantly.

8.7 Efficacy of Communication
Optimizations

In this section, we examine the effectiveness of our proposed
optimizations on communication. Various configurations are
evaluated, including (1) Pre: solely applying pre-aggregation,

(2) Post: solely applying post-aggregation, (3) Pre-post: ap-
plying the hybrid method of pre-aggr and post-aggr, (4) Pre-
post+Int2: combining Pre-post with Int2 quantization. Here,
data refers to the communication of quantized feature vec-
tors, while param refers to the communication of parameters
(zero point and scale) utilized for dequantization. Table 5
shows that our proposed hybrid of pre-aggr and post-aggr
(pre-post-aggregation) method reduces communication vol-
ume and time by approximately 1.5× in comparison to Pre or
Post. Despite the extra communication overhead introduced
for dequantization, it still decreases the communication vol-
ume and time by about 15×. These results demonstrate the
efficacy of our proposed optimizations on communication.

9 Related Work
There are several GCN training frameworks optimized for
mini-batch training, such as Aligraph [62], P3 [22], Dist-
DGL [67], etc. However, a detailed study [33] indicates sampling-
based methods suffer from model accuracy loss.
On GPU platforms, several optimization methods have

been presented for aggregation operators [19, 21, 31]. On
CPU platforms, DistGNN [44] optimizes aggregation opera-
tors (SpMM) for Intel CPUs using Intel LibXSMM [26]. How-
ever, it primarily targets Intel x86 CPUs. In addition, there
are approaches proposed for both CPUs and GPUs [30, 63]
based on DL compilers (e.g. TVM [13]).
We categorize the communication optimization methods

into three main approaches: (1) some methods [44, 47, 53, 58]

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

aim to mitigate the communication overhead by overlap-
ping asynchronous communication with computation in the
subsequent epoch. However, asynchronous communication
introduces staleness for nodes’ features, resulting in slower
training convergence [15]. (2) optimizing communication
paths based on network topology. DGCL [7] constructs a
weighted graph to characterize the network topology and
employs a tree-based algorithm to identify the optimal com-
munication path. (3) reducing communication volume to
mitigate the communication cost. CAGNET [54] employs a
communication-avoiding algorithm to reduce communica-
tion volume. BNS-GCN [57] lowers communication volume
by randomly sampling the boundary nodes to transfer. How-
ever, this approach modifies the graph structure. AdapQ [56],
SYLVIE [66] and [69] introduce stochastic integer quantiza-
tion [10] to compress boundary nodes’ features. However, to
obtain a trade-off between accuracy and performance, they
have extra overhead to select an appropriate combination
of 2, 4, and 8 bits for quantization, whereas our method ap-
plies a uniform 2-bit quantization communication, hereby
reducing the communication volume to minimum, while also
avoiding the high cost of adaptive quantization.

10 Conclusion
We present SuperGCN, a distributed training framework for
graph convolutional networks designed specifically for CPU-
based supercomputing systems. Our framework addresses
the critical challenge of irregular memory access and com-
munication overhead in distributed full-batch GCN training
through three major contributions: general and efficient ag-
gregation operators, a hierarchical aggregation scheme that
reduces communication costs while preserving graph struc-
ture, and a communication-aware quantization scheme that
effectively utilizes quantized communication while main-
taining model accuracy. SuperGCN achieves a speedup of up
to 6× in comparison to SoTA CPU-based implementations,
scales to thousands of processors on the largest publicly avail-
able datasets, and outperforms SoTA GPU-based distributed
full-batch GCN training frameworks at peak performance.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
2005627). Nikoli Dryden was supported LLNL LDRD #24-SI-
008. The authors wish to express their sincere gratitude to
Tal Ben-Nun from LLNL for his helpful advice in this work.

References
[1] Ryousei Takano, Shinichiro Takizawa, Yusuke Tanimura, Hidemoto

Nakada, Hirotaka Ogawa. 2024. ABCI 3.0: Evolution of the Leading AI
Infrastructure in Japan. arXiv preprint arXiv:2411.09134.

[2] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C
Kyrpides, and Aydin Buluç. 2018. HipMCL: a high-performance parallel
implementation of the Markov clustering algorithm for large-scale
networks. Nucleic acids research 46, 6 (2018), e33–e33.

[3] Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter.
2020. Combining differentiable PDE solvers and graph neural networks
for fluid flowprediction. In international conference onmachine learning.
PMLR, 2402–2411.

[4] Open Graph Benchmark. 2024. OGB-Leaderboards for Node Property
Prediction. https://ogb.stanford.edu/docs/leader_nodeprop/

[5] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.
Layered Label Propagation: A MultiResolution Coordinate-Free Or-
dering for Compressing Social Networks. In Proceedings of the 20th
international conference on World Wide Web, Sadagopan Srinivasan,
Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar (Eds.). ACM Press, 587–596.

[6] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework
I: Compression Techniques. In Proc. of the Thirteenth International
World Wide Web Conference (WWW 2004). ACM Press, Manhattan,
USA, 595–601.

[7] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan
Yu. 2021. DGCL: an efficient communication library for distributed
GNN training. In Proceedings of the Sixteenth European Conference on
Computer Systems. 130–144.

[8] Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. 2023. Effi-
cient learning of mesh-based physical simulation with bi-stride multi-
scale graph neural network. In International Conference on Machine
Learning. PMLR, 3541–3558.

[9] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with
graph convolutional networks via importance sampling. arXiv preprint
arXiv:1801.10247 (2018).

[10] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Sto-
ica, Michael Mahoney, and Joseph Gonzalez. 2021. Actnn: Reducing
training memory footprint via 2-bit activation compressed training.
In International Conference on Machine Learning. PMLR, 1803–1813.

[11] Jianfei Chen, Jun Zhu, and Le Song. 2017. Stochastic training of
graph convolutional networks with variance reduction. arXiv preprint
arXiv:1710.10568 (2017).

[12] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph
Convolutional Networks with Variance Reduction. In International
Conference on Machine Learning. PMLR, 942–950.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. TVM: An automated End-to-End optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578–594.

[14] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. 2019. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data
mining. 257–266.

[15] Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric P Xing. 2018.
Toward understanding the impact of staleness in distributed machine
learning. arXiv preprint arXiv:1810.03264 (2018).

[16] Reinhard Diestel. 2017. Graph Theory (5th ed.). Graduate Texts in
Mathematics, Vol. 173. Springer.

[17] Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei
Ding. 2020. Sgquant: Squeezing the last bit on graph neural networks
with specialized quantization. In 2020 IEEE 32nd International Confer-
ence on Tools with Artificial Intelligence (ICTAI). IEEE, 1044–1052.

[18] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation
learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428

https://arxiv.org/abs/2411.09134
https://ogb.stanford.edu/docs/leader_nodeprop/

Scaling Large-scale GNN Training to Thousands of Processors on CPU-based Supercomputers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(2019).
[19] Qiang Fu, Yuede Ji, and HHowie Huang. 2022. TLPGNN: A lightweight

two-level parallelism paradigm for graph neural network computation
on GPU. In Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing. 122–134.

[20] Fujitsu. 2023. A64FX Microarchitecture Manual. https://github.com/
fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_
en_1.8.1.pdf Accessed: 2025-02-21.

[21] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse
gpu kernels for deep learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,
1–14.

[22] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed
Deep Graph Learning at Scale.. In OSDI. 551–568.

[23] Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention guided
graph convolutional networks for relation extraction. arXiv preprint
arXiv:1906.07510 (2019).

[24] Aric Hagberg, Pieter J Swart, and Daniel A Schult. 2008. Exploring
network structure, dynamics, and function using NetworkX. Technical
Report. Los Alamos National Laboratory (LANL), Los Alamos, NM
(United States).

[25] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive rep-
resentation learning on large graphs. Advances in neural information
processing systems 30 (2017).

[26] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. 2016. LIBXSMM: accelerating small matrix multiplications by
runtime code generation. In SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 981–991.

[27] John E Hopcroft and Richard M Karp. 1973. An n̂5/2 algorithm for
maximum matchings in bipartite graphs. SIAM Journal on computing
2, 4 (1973), 225–231.

[28] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong,
and Jure Leskovec. 2021. Ogb-lsc: A large-scale challenge for machine
learning on graphs. arXiv preprint arXiv:2103.09430 (2021).

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph
benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems 33 (2020), 22118–22133.

[30] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng
Zhang, Zhiru Zhang, and Yida Wang. 2020. Featgraph: A flexible
and efficient backend for graph neural network systems. In SC20:
International Conference for High Performance Computing, Networking,
Storage and fAnalysis. IEEE, 1–13.

[31] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-
spmm: General-purpose sparse matrix-matrix multiplication on gpus
for graph neural networks. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
2018. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2704–2713.

[33] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020.
Improving the accuracy, scalability, and performance of graph neural
networks with roc. Proceedings of Machine Learning and Systems 2
(2020), 187–198.

[34] Hao Jiang, Peng Cao, MingYi Xu, Jinzhu Yang, and Osmar Zaiane.
2020. Hi-GCN: A hierarchical graph convolution network for graph
embedding learning of brain network and brain disorders prediction.
Computers in Biology and Medicine 127 (2020), 104096.

[35] Albert Njoroge Kahira, Truong Thao Nguyen, Leonardo Bautista-
Gomez, Ryousei Takano, Rosa M. Badia, and Mohamed Wahib. 2021.
An Oracle for Guiding Large-Scale Model/Hybrid Parallel Training of
Convolutional Neural Networks. In HPDC. ACM, 161–173.

[36] Tim Kaler, Alexandros Iliopoulos, Philip Murzynowski, Tao Schardl,
Charles E Leiserson, and Jie Chen. 2023. Communication-efficient
graph neural networks with probabilistic neighborhood expansion
analysis and caching. Proceedings of Machine Learning and Systems 5
(2023).

[37] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Il-
iopoulos, Tao Schardl, Charles E Leiserson, and Jie Chen. 2022. Ac-
celerating training and inference of graph neural networks with fast
sampling and pipelining. Proceedings of Machine Learning and Systems
4 (2022), 172–189.

[38] George Karypis, Kirk Schloegel, and Vipin Kumar. 1997. Parmetis:
Parallel graph partitioning and sparse matrix ordering library. (1997).

[39] Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka,
Tengfei Ma, Xiang Song, and Wen-mei Hwu. 2023. Igb: Addressing
the gaps in labeling, features, heterogeneity, and size of public graph
datasets for deep learning research. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4284–
4295.

[40] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification
with graph convolutional networks. arXiv preprint arXiv:1609.02907
(2016).

[41] Dénes Kőnig. 1931. Gráfok és mátrixok. Matematikai és Fizikai Lapok
38 (1931), 116–119.

[42] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirns-
berger, Meire Fortunato, Ferran Alet, Suman Ravuri, Timo Ewalds,
Zach Eaton-Rosen, Weihua Hu, et al. 2023. Learning skillful medium-
range global weather forecasting. Science 382, 6677 (2023), 1416–1421.

[43] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. 2019. {NeuGraph}: Parallel deep neural net-
work computation on large graphs. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 443–458.

[44] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty,
Evangelos Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nes-
reen K Ahmed, and Sasikanth Avancha. 2021. Distgnn: Scalable dis-
tributed training for large-scale graph neural networks. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1–14.

[45] Jintao Meng, Peng Chen, Mohamed Wahib, Mingjun Yang, Liangzhen
Zheng, Yanjie Wei, Shengzhong Feng, and Wei Liu. 2022. Boosting
the predictive performance with aqueous solubility dataset curation.
Scientific Data 9, 1 (2022), 71.

[46] Hesham Mostafa. 2022. Sequential aggregation and rematerialization:
Distributed full-batch training of graph neural networks on large
graphs. Proceedings of Machine Learning and Systems 4 (2022), 265–
275.

[47] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and
Jiannong Cao. 2022. Sancus: sta le n ess-aware c omm u nication-
avoiding full-graph decentralized training in large-scale graph neural
networks. Proceedings of the VLDB Endowment 15, 9 (2022), 1937–1950.

[48] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W
Battaglia. 2020. Learning mesh-based simulation with graph networks.
arXiv preprint arXiv:2010.03409 (2020).

[49] Seongok Ryu, Yongchan Kwon, and Woo Youn Kim. 2019. A Bayesian
graph convolutional network for reliable prediction of molecular prop-
erties with uncertainty quantification. Chemical science 10, 36 (2019),
8438–8446.

[50] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama,
Tetsuya Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki,

https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.1.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.1.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.1.pdf

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhuang et al.

Naoyuki Shida, Ikuo Miyoshi, et al. 2020. Co-design for a64fx many-
core processor and” fugaku”. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–15.

[51] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin
Wang, and Yu Sun. 2020. Masked label prediction: Unified mes-
sage passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509 (2020).

[52] Mengying Sun, Sendong Zhao, Coryandar Gilvary, Olivier Elemento,
Jiayu Zhou, and Fei Wang. 2020. Graph convolutional networks for
computational drug development and discovery. Briefings in bioinfor-
matics 21, 3 (2020), 919–935.

[53] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou
Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim,
et al. 2021. Dorylus: Affordable, scalable, and accurate {GNN} training
with distributed {CPU} servers and serverless threads. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21). 495–514.

[54] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing
communication in graph neural network training. In SC20: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–14.

[55] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, Yoshua Bengio, et al. 2017. Graph attention net-
works. stat 1050, 20 (2017), 10–48550.

[56] Borui Wan, Juntao Zhao, and Chuan Wu. 2023. Adaptive Message
Quantization and Parallelization for Distributed Full-graph GNN Train-
ing. Proceedings of Machine Learning and Systems 5 (2023).

[57] Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. 2022.
BNS-GCN: Efficient full-graph training of graph convolutional net-
works with partition-parallelism and random boundary node sampling.
Proceedings of Machine Learning and Systems 4 (2022), 673–693.

[58] Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis,
Nam Sung Kim, and Yingyan Lin. 2022. PipeGCN: Efficient Full-Graph
Training of Graph Convolutional Networks with Pipelined Feature
Communication. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=kSwqMH0zn1F

[59] HongweiWang and Jure Leskovec. 2020. Unifying graph convolutional
neural networks and label propagation. arXiv preprint arXiv:2002.06755
(2020).

[60] Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan
Hui, Beixing Deng, and Xing Li. 2011. Understanding graph sam-
pling algorithms for social network analysis. In 2011 31st international
conference on distributed computing systems workshops. IEEE, 123–128.

[61] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826
(2018).

[62] Hongxia Yang. 2019. Aligraph: A comprehensive graph neural net-
work platform. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 3165–3166.

[63] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023.
SparseTIR: Composable abstractions for sparse compilation in deep
learning. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Volume 3. 660–678.

[64] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. 2018. Graph convolutional neural net-
works for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data
mining. 974–983.

[65] Ye Yuan and Ziv Bar-Joseph. 2020. GCNG: graph convolutional net-
works for inferring gene interaction from spatial transcriptomics data.
Genome biology 21, 1 (2020), 1–16.

[66] Meng Zhang, Qinghao Hu, Cheng Wan, Haozhao Wang, Peng Sun,
Yonggang Wen, and Tianwei Zhang. 2024. Sylvie: 3d-adaptive and
universal system for large-scale graph neural network training. In 2024
IEEE 40th International Conference on Data Engineering (ICDE). IEEE,
3823–3836.

[67] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. 2020. Distdgl:
distributed graph neural network training for billion-scale graphs. In
2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures
and Algorithms (IA3). IEEE, 36–44.

[68] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhe-
long Li, Xiuqi Yang, and Junjie Yan. 2020. Towards unified int8 training
for convolutional neural network. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 1969–1979.

[69] Chen Zhuang, Peng Chen, Xin Liu, Toshio Endo, SatoshiMatsuoka, and
Mohamed Wahib. 2024. Communication Optimization for Distributed
GCN Training on ABCI Supercomputer. In 2024 IEEE International
Conference on Cluster Computing Workshops (CLUSTER Workshops).
IEEE, 160–161.

https://openreview.net/forum?id=kSwqMH0zn1F

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Convolutional Networks
	2.2 Distributed Full-batch GCNs Training
	2.3 Full-batch vs. Mini-batch GCNs
	2.4 Stochastic Integer Quantization
	2.5 GNNs with Masked Label Propagation

	3 SuperGCN
	3.1 Design Methodology
	3.2 System Overview

	4 General and Efficient Aggregation Operators
	5 Hierarchical Aggregation Scheme
	5.1 Graph partitioning algorithm selection
	5.2 Pre- and Post-aggregation
	5.3 Constructing Pre- and Post-aggregation Subgraph is Finding Minimum Vertex Cover
	5.4 Communication Performance Model

	6 Communication-Aware Quantization Scheme
	6.1 Workflow of quantization communication
	6.2 Performance analysis
	6.3 Accuracy analysis

	7 Implementation
	7.1 Single node level
	7.2 Distributed level
	7.3 Quantization of Communication

	8 Evaluation
	8.1 Experimental Setup
	8.2 Performance of Aggregation on a Single CPU
	8.3 Performance and Scaling on Multiple CPUs
	8.4 Accuracy Evaluations on Multiple CPUs
	8.5 Performance and Accuracy comparison with GPU baselines
	8.6 Runtime Breakdown on Multiple CPUs
	8.7 Efficacy of Communication Optimizations

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

