
CIExplorer: Microarchitecture-Aware Exploration for
Tightly Integrated Custom Instruction

Xiaoyu Hao
University of Science and
Technology of China

Hefei, China
haoxiaoyu@mail.ustc.edu.cn

Sen Zhang
University of Science and
Technology of China

Hefei, China
sen@mail.ustc.edu.cn

Liang Qiao
University of Science and
Technology of China

Hefei, China
ql1an9@mail.ustc.edu.cn

Qingcai Jiang
University of Science and
Technology of China

Hefei, China
jqc@mail.ustc.edu.cn

Jun Shi
University of Science and
Technology of China

Hefei, China
shijun18@ustc.edu.cn

Junshi Chen∗
University of Science and
Technology of China

Hefei, China
Laoshan Laboratory
Qingdao, China

cjuns@ustc.edu.cn

Hong An∗
University of Science and
Technology of China

Hefei, China
Laoshan Laboratory
Qingdao, China
han@ustc.edu.cn

Xulong Tang
University of Pittsburgh

Pittsburgh, USA
tax6@pitt.edu

Hao Shu
NIO

Shanghai, China
ming.liu3@nio.com

Honghui Yuan
NIO

Shanghai, China
ethan.song@nio.com

Abstract
Extending existing architectures with customized instruc-
tion extensions is emerging to achieve high performance and
energy efficiency for specific applications. Automated discov-
ery of custom instructions (CIs) is well-studied nowadays,
which requires exploring combinations of different types
and quantities of operations, resulting in a vast search space.
However, previous works typically use microarchitecture-
agnostic cost models, leading to suboptimal CIs that may
degrade performance. They leverage graph isomorphism to
reduce area overhead, but few of them consider its potential
to benefit performance-oriented exploration. To this end, we
present CIExplorer, a framework for adaptive CI exploration.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3730421

We propose a Seed Growth Method (SGM) based on a ge-
netic algorithm to discover CIs with the consideration of
graph similarity. We also propose a compiler-assisted mod-
eling strategy that applies a microarchitecture-aware cost
model to estimate the potential benefits of CIs in exploration.
We evaluate our framework using various benchmarks in
SPEC2006 and Mediabench on in-order, 2-wide OOO, and 4-
wide OOO processors. Experimental results demonstrate that
CIExplorer achieves average performance improvements of
1.09× and 1.13× and energy improvements of 1.07× and 1.10×
compared with Novia [56] and MaxClique [57].

CCS Concepts
• Computer systems organization→ Architectures.

Keywords
Custom instruction, Microarchitecture, HW/SW codesign

ACM Reference Format:
Xiaoyu Hao, Sen Zhang, Liang Qiao, Qingcai Jiang, Jun Shi, Jun-
shi Chen, Hong An, Xulong Tang, Hao Shu, and Honghui Yuan.
2025. CIExplorer: Microarchitecture-Aware Exploration for Tightly
Integrated Custom Instruction. In 2025 International Conference
on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3721145.3730421

https://orcid.org/0000-0003-4115-9475
https://orcid.org/0009-0007-6494-8502
https://orcid.org/0000-0002-3366-9881
https://orcid.org/0000-0002-9729-8821
https://orcid.org/0000-0002-9888-6238
https://orcid.org/0000-0002-6487-3658
https://orcid.org/0000-0002-3900-3722
https://orcid.org/0000-0002-3385-2053
https://orcid.org/0009-0004-6161-2075
https://orcid.org/0009-0007-8429-2758
https://doi.org/10.1145/3721145.3730421
https://doi.org/10.1145/3721145.3730421
https://doi.org/10.1145/3721145.3730421

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

1 Introduction
There is a growing trend of extending a general-purpose
instruction set architecture (ISA) with a custom extension
(ISAX) to improve performance and energy efficiency for
specific applications. Two mainstream on-chip ISA special-
ization techniques that differ from the scope of target code re-
gions, including fine-grained custom functional unit (FU) [2,
12, 14, 16] and coarse-grained built-in accelerators [27, 28, 35,
42, 45], have been proposed in both industry and academia.
Compared with the latter, custom FU, which is tightly cou-
pled with general-purpose processors (GPP), leads to better
resource utilization [18]. Designing custom instructions (CIs)
requires identifying commonly and frequently executed op-
erations and their combinations with the consideration of
architectural constraints, demanding substantial domain ex-
pertise and manual effort.
Automated CI exploration has been well-studied. Exist-

ing approaches [31] typically first convert the source code
to dataflow graphs (DFGs) and then enumerate subgraphs
under specific architectural constraints, including register
ports and bit width of ISA instruction format, which limits
subgraphs’ live-ins and live-outs [7, 22, 23, 60]. After that, a
selection phase is required [9, 13, 32] to select a subset of sub-
graphs according to predefined strategies, such as speedup.
There is also a trend to relax the constraints of live-ins and
live-outs to find maximal convex subgraphs [6, 48, 57]. Con-
vexity means no path is outside the subgraph between any
two nodes1 [49]. This trend can be attributed to two primary
factors. First, MaxClique [57] has proven that the speedup
and size of a subgraph are monotonic for RISC single-issue
processors, which means increasing the number of nodes of
subgraphs never degrades performance. Second, custom ar-
chitectural registers can be introduced [26] to implement CIs,
which allows a subgraph to have more live-ins and live-outs
than register ports. In this case, data-moving instructions are
required to communicate between general-purpose registers
(GPRs) and special-purpose registers (SPRs) [56]. Multiple-
cycle register access is also a solution, which is formulated
as an I/O serialization problem [50, 57].

Selecting subgraphs of relaxed live-in/out constraints suf-
fers the following challenges. First, CIs can be extracted from
any part of an application, necessitating searching the entire
code to identify subgraphs with potential benefits, which
contributes to a vast search space. Second, CIs should max-
imize performance benefits while incurring minimal area
overhead. CIs benefit GPPs in many aspects, such as decreas-
ing dynamic instructions, reducing register accesses, and
exploiting instruction-level parallelism (ILP). Adding more
operations to a CI may enhance these benefits, but it re-
quires more area for hardware implementation of custom

1In this paper, we utilize instruction and node interchangeably.

FUs. Sharing datapaths can reduce area overhead and raise
resource utilization [4, 15, 44, 51], which involves checking
graph isomorphism that is an NP-complete problem [29].
Third, as the microarchitectures of modern superscalar GPPs
become increasingly complex, employing oversimplified or
microarchitecture-agnostic cost models can be inadequate.
Cost models should capture the behaviors of host architec-
tures before and after integration with CIs to evaluate bene-
fits and determine the quality of selected subgraphs.

Previous works fail to address these challenges from three
perspectives. First, subgraphs need to be enumerated at vari-
ous granularity to accommodate GPPs of diverse microarchi-
tectures. A predefined enumeration strategy or constraint
may not be suitable for different target architectures. The
theorem arguing the relationship between speedup and sub-
graph size leads to the trend of finding maximal convex
subgraphs, but this only works for single-issue GPPs [57].
For instance, parallel operations in a subgraph are inher-
ently exposed by out-of-order (OOO) execution of high ILP.
Second, selecting good ones from those enumerated sub-
graphs relies on the cost model. Current cost models typically
measure achieved speedup or reduced delay by CIs [31, 59],
and they fail to consider some essential microarchitectural
features, e.g., pipeline width. Furthermore, there is a gap
between selected subgraphs and ISA extension. Explicit data-
moving instructions affect slot usage, and a basic block may
have multiple CI instances, which can hardly be modeled
without a proper representation of CIs. As a result, they
produce incorrect estimation results and fail to select sub-
graphs for different microarchitectures adaptively. Third,
sharing hardware resources is an important problem to re-
solve. Works [4, 9, 13] directly enumerate isomorphic and
convex subgraphs through exact algorithms. A more flexible
and widely used technique is a two-step selection+fusion
paradigm [5, 30, 43, 44], which first selects subgraphs and
then fuses them. This technique can share areas between
non-isomorphism graphs. However, current works only con-
sider graph isomorphism to reduce area overhead, which can
also benefit performance-oriented exploration.
To this end, we propose a framework named Custom

Instruction Explorer (CIExplorer) for performance-oriented
CI exploration. We propose a Seed Growth Method (SGM)
based on the genetic algorithm (GA) to efficiently identify
graphs of same order (GSO) — graphs have identical num-
bers and types of vertices. Exploiting GSO reduces complex-
ity compared with checking graph isomorphism and enables
both modeling interactions between subgraphs and sharing
hardware resources. SGM grows seeds (two-node recurring
connected subgraphs) into larger subgraphs of varying gran-
ularity, suitable for microarchitectures of different ILP. We
also propose a Split-and-Combine Method (SCM) to find CIs
for IO GPPs and extract subgraphs for basic blocks without

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

seeds. Amicroarchitecture-aware cost model is established to
prioritize subgraphs for GPPs of different microarchitectures,
measuring static instruction sequences consisting of single or
duplicated basic blocks.We implement a compiler-assisted in-
termediate representation (IR) specialization strategy based
on LLVM toolchain [37] to automatically generate both cus-
tom and corresponding data-moving instructions, bridging
the gap between identified subgraphs and ISA extensions.
Specialized IR is used as the input to the cost model. In our
experiments, we evaluate CIExplorer on in-order (IO), two-
wide OOO (OOO2), and 4-wide OOO (OOO4) GPPs using
benchmarks from SPEC2006 [1] and MediaBench [39]. Our
method achieves an average of 1.09× and 1.13× performance
improvement compared with Novia [56] and MaxClique [57],
and provides 1.07× and 1.10× energy improvement. Contri-
butions of this paper are summarized as follows:
• We establish a framework named CIExplorer to quickly
and exhaustively identify commonly and frequently
executed subgraphs as CIs in an iterative way.
• We propose SGM based on GA to discover graphs
of same order instead of isomorphic graphs, which
relaxes the constraint and reduces computational com-
plexity, enabling performance-oriented and resource-
sharing exploration simultaneously. We also propose
SCM to find CIs from basic blocks without recurring
subgraphs and optimize it for finding maximal sub-
graphs suitable to IO GPPs.
• We propose a new evaluating strategy for selecting CIs
by using the compiler to customize and generate static
instructions as input to a novel microarchitecture-
aware cost model, which is lightweight enough to be
applied to a search process.

2 Background and Motivation
2.1 Fine-grained ISAX
Figure 1 shows the relationship between GPP and custom
FU for fine-grained ISAX. CIs are identified within a basic
block and they can access GPRs and SPRs. The former re-
quires operands to meet the host ISA’s constraints in terms
of operand number and instruction bit width, and microar-
chitecture limitations such as register port. The latter needs
additional data-moving instructions to communicate data
between GPRs and SPRs.

2.2 ISA Extension
Figure 2A shows three 32-bit RISC instructions: PACK, EXE,
and EXTRACT, which are derived from Novia [56]. They are
general enough to cover most scenarios for fine-grained
ISAX,which is the architecture our paper aims at. Prefixes sp_
and gp_ indicate SPR and GPR, respectively. Instruction PACK
moves data fromGPR to SPR, which reads the value of sp_rs,

F I E M C

Custom FUGPP Core SPR

RFDPD

Figure 1: Tightly integrated custom FU.

sp_rdsp_rsreserved imm PACK
gp_rdsp_rsreserved EXTRACT

sp_rs sp_rd EXE

imm

immreserved
offset opcode

funct opcode

06711121617212231
gp_rs

2627

(A) Instruction Format
I0: R2 = mul R0, R1
I1: R5 = sub R3, R4
I2: R6 = add R2, R5

(B) Original Code
insert R0 into the 0th position of SP0
I0: SP0 = PACK #0, SP0, R0
insert R1 into the 1st position of SP0
I1: SP0 = PACK #1, SP0, R1
I2: SP0 = PACK #2, SP0, R3
I3: SP0 = PACK #3, SP0, R4
invoke custom instruction of ID #8 that uses data in SP0
I4: SP1 = EXE #8, SP0
extract 0th element of SP1, and save it into R6
I5: R6 = EXTRACT SP1, #0

(C) Customized Code

Figure 2: (A) shows typical RISC 32-bit custom instruc-
tion formats. Prefixes sp_ and gp_ represent special-
purpose and general-purpose. (B) shows an instruction
sequence. (C) shows the customized code by fusing I0-
I2 in (B) as a CI.

replaces sp_rs[offset]with gp_rs, and loads it into sp_rd.
Instruction EXTRACT moves data from SPR to GPR (gp_rd =
sp_rs[offset]). Instruction EXE invokes the execution of a
CI specified by an ID (funct), which consumes data of sp_rs
and writes results into sp_rd. Figure 2B shows an instruction
sequence containing three instructions, which are fused as a
CI. Figure 2C shows the customized code. This CI has four
input operands and one output operand. Instructions I0-I3
in Figure 2C move data from GPR (R0, R1, R3, and R4) to
the first four positions of SP0. I4 invokes the computation
specified by an ID #8, which produces a result stored in the
first element of SP1. I5 moves data from SP1 to R6, which
can be consumed by following instructions.

2.3 Issues of Current Approaches
Motivating Example: Novia [56] has been proposed re-
cently, which directly fuses basic blocks and then splits fused

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

basic blocks into subgraphs according to memory and branch
instructions. We evaluate Novia on IO, OOO2, and OOO4
GPPs using SPEC2006 [1] and MediaBench [39] in our simu-
lator. Results are shown in Figure 3. Negative values mean
performance degradation because of CIs. Novia significantly
improves performance for all benchmarks on IO GPP. How-
ever, it negatively impacts performance for many bench-
marks on OOO2 and OOO4 GPPs because it can not adjust
discovered subgraphs for microarchitectures. Adaptive ex-
ploration for different microarchitectures requires a method
to enumerate subgraphs of varying granularity and a cost
model to capture microarchitectural behaviors.

40
1.

bz
ip

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d
45

6.
hm

m
er

45
8.

sj
en

g
47

0.
lb

m
48

2.
sp

hi
nx

3
46

4.
h2

64
re

f
47

3.
as

ta
r

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

en
co

de
g7

21
de

co
de

gs
m

en
co

de
gs

m
de

co
de

m
pe

g2
de

c
m

pe
g2

en
c

cj
pe

g
dj

pe
g−40

0

40

80

R
ed

uc
ed

 C
yc

le
s (

%
)

IO OOO2 OOO4

Figure 3: Percentage of reduced cycles by integrating
CIs found by Novia on IO, OOO2, and OOO4 GPPs eval-
uated using SPEC2006 [1] and MediaBench [39].

GraphEnumeration:Checking graph isomorphism poses
a challenge for enumerating subgraphs. Existingworksmainly
focus on exploiting graph isomorphism to reduce hardware
area and promote resource utilization. There is still a chance
to use it to achieve better performance. Interactions among
CIs corresponding to recurring subgraphs within a single ba-
sic block may impact overall performance gains, particularly
for unrolled code. Meta-heuristic algorithms [41, 49, 59, 61]
are used to explore CIs, which are scalable, effectively trade
off search time and quality, and can find subgraphs of vary-
ing granularity. Thus, we propose a new idea for finding GSO
to address both resource-sharing and performance-oriented
exploration based on GA.
Cost Model: We can conclude from a survey [31] that

many studies apply Equation (1) or its variants as cost models
that are microarchitecture-agnostic for subgraph selection.
𝑆𝑊 (·) represents the sum of node latencies of the entire sub-
graph, 𝐻𝑊 (·) denotes the accumulated cycles on the critical
path after specialization, and 𝐶𝑜𝑚𝑚(·) measures the com-
munication time of input and output operands. It poses some
issues. First, 𝑆𝑊 (𝑆) models superscalar GPPs incorrectly. In
Figure 2B, instruction I0 can hide latency of I1 in a super-
scalar GPP, but 𝑆𝑊 (𝑆) cannot capture this behavior by as-
suming instructions are executed sequentially. Instruction I1

can start execution when its operands are ready, but it needs
to wait for two more operands of I0 to be ready when fused
as a CI. This can be regarded as an implicit instruction-level
synchronization that current cost models can not capture.
Second, this cost model only evaluates standalone subgraphs
without considering other instructions of basic blocks. A
problem is that when introducing CIs, the order of other
instructions may be changed to maintain the proper data
dependency. Third, even though 𝐶𝑜𝑚𝑚(𝑆) is introduced, it
can not model the impact of CIs on slot usage. Figure 2C
shows four PACK instructions and one EXTRACT instruction,
which occupy bandwidth for various pipeline stages such as
fetch and commit. These factors show a gap between selected
subgraphs and the real ISA extension. Thus, we propose an
IR specialization method, automatically generating custom
and data-moving instructions for instruction formats in Fig-
ure 2A. We also establish a graph-based cost model taking
specialized IR as input and capable of modeling behaviors of
different microarchitectures to score subgraphs.

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑊 (𝑆)

𝐻𝑊 (𝑆) +𝐶𝑜𝑚𝑚(𝑆) (1)

2.4 Graph-Based Microarchitecture
Modeling

Dynamic event-dependence graph (DEG) is widely used for
various tasks, such as revealing bottlenecks in micro exe-
cutions [20], exploring the design space for microarchitec-
ture parameters [8, 25], and modeling hardware specializa-
tion [25, 46]. Figure 4 shows a DEG that models the instruc-
tion sequence listed in Figure 2B on an OOO2 GPP. Nodes
represent pipeline stages and edges model pipeline, struc-
ture, and data dependencies. Edge weights are delayed cycles.
Structural dependencies include horizontal edges to model
limitations of fetch/commit windows, such as the edge be-
tween 𝐹𝑚𝑢𝑙 and 𝐹𝑠𝑢𝑏 . Data dependency exists between 𝐸𝑠𝑢𝑏
and 𝐸𝑎𝑑𝑑 . Modeling focuses on latency measurement via crit-
ical path analysis that finds the longest path from the fetch
of the first instruction (𝐹𝑚𝑢𝑙) to the commit of the last in-
struction (𝐶𝑎𝑑𝑑). This figure shows two critical paths of 5
cycles highlighted in red.

F

E

C

F

E

C

F

E

C

mul sub add
0 1

111

3 1 1
1

0 1

Pi
pe

lin
e

St
ag

es Critical Path

Data Dependency

Structure/Pipeline
Dependency

3

Figure 4: A DEG built for instructions shown in Fig-
ure 2B on an OOO2 GPP. The critical path is 5 cycles,
assuming 3-cycle mul and 1-cycle add/sub.

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

In this paper, we specialize the DEG for estimating perfor-
mance gains of CIs by introducing two innovations. First, we
build the DEG from static code instead of traces of microar-
chitecture events from cycle-level simulators. Trace-based
methods only model behaviors of the host simulator, which
requires modifying the simulator to model new architec-
tural features such as execution ports. Second, we extend
DEG to model custom FUs using the output of our IR spe-
cialization method, which decouples ISAX representation
and graph building. By doing this, we can manipulate the
order of instructions to maintain correct data dependency
after introducing CIs and enable the measurement of entire
specialized basic blocks consisting of multiple CI instances.
Compared with TDG [46] and Calipers [25] proposed for
accurate timing evaluation for hardware specialization by
directly manipulating DEGs, our method aims to capture
different microarchitectural behaviors rapidly.

3 Framework Overview
In this section, we introduce several essential terms, show
themain concept of ourmethod, and then show theworkflow
of CIExplorer.

3.1 Main Concept
Graphs of same order (GSO): Graphs of same order have
identical numbers and types of nodes. Let 𝐺1 be a directed
acyclic graph with nodes 𝑥1, 𝑥2, 𝑥3 and edges 𝑥1𝑥2, 𝑥1𝑥3.
Let 𝐺2 be another graph with nodes 𝑥1, 𝑥2, 𝑥3 and edges
𝑥1𝑥3, 𝑥2𝑥3. 𝐺1 and 𝐺2 are graphs of order 3, but are not
isomorphic. GSO has a relaxed constraint compared with
the isomorphism graph, which can cover more code regions.
We can measure entire basic blocks containing multiple in-
stances of GSO to determine the benefit by considering their
interactions. Even though instances of GSO are not isomor-
phic, a previously proposed merging procedure is applied to
generate datapaths for GSO to reduce area overhead.

Seed and Seed Component:A seed is defined as a set 𝑆 =

{𝑠𝑐0, 𝑠𝑐1, ..., 𝑠𝑐𝑛}, where 𝑠𝑐𝑖 is a seed component, a recurring
subgraph containing only two connected nodes. Panel A of
Figure 5 presents a seed containing four seed components
(subgraphs 0-3).

Candidate and Candidate Component: A candidate is
also a set defined as 𝑅 = {𝑔0, 𝑔1, ..., 𝑔𝑚}, where 𝑔𝑖 donates a
candidate component. A candidate component is a subgraph
grown from a seed component. Panel B of Figure 5 shows a
candidate with four candidate components (subgraphs 4-7).
Notably, for a 𝑅 grown from 𝑆 , each candidate component
𝑔𝑖 ∈ 𝑅 is uniquely associated with one seed component
𝑠𝑐 𝑗 ∈ 𝑆 .

Seed Growth: One seed can grow into many candidates.
Panels A-C of Figure 5 represent three possible candidates,

mul

Basic Block 0
sub

add

mul sub

add

add

mul

add
gep

load
add

submul sub

add

gep

load

add

Basic Block 1 Basic Block 2

(B)

(A)

(C)

mul sub

add

mul sub

add

add

mul

add
gep

load
add

submul sub

add

gep

load

add

mul sub

add

mul sub

add

add

mul

add
gep

load
add

submul sub

add

gep

load

add

subgraph 0
subgraph 1

subgraph 2 subgraph 3

subgraph 4 subgraph 5

subgraph 6

subgraph 8 subgraph 9

subgraph 7

Figure 5: (A) A seed contains four seed components
(subgraphs 0-3). (B) Subgraphs 4-6 are isomorphic. Sub-
graph 7 is a GSO of them, but not connected. They are
grown from subgraphs in (A). (C) Subgraphs 8 and 9
are also GSOs. Subgraphs grown from subgraphs 0 and
1 are discarded because they are unable to grow into
GSOs of subgraphs 8 or 9.

including the seed itself. However, according to the cost
model, only one of them will be selected as a CI. Panel B
shows subgraphs 4-7 that grow from the subgraphs in panel
A by adding one additional sub instruction each. In this case,
subgraphs 4-6 are isomorphic, but not subgraph 7, which
has the same numbers and types of nodes. Panel C shows
two GSOs grown from Subgraphs 2 and 3. No subgraph can
be grown into GSO of subgraphs 8 or 9 in basic block 0,
so subgraphs 0 and 1 and their grown results are discarded.
Thus, for a 𝑅 grown from 𝑆 , |𝑅 | ≤ |𝑆 |. Candidate components
are generated simultaneously without any overlap between
any two of them. Moreover, the candidate component whose
score does not meet the predefined lowest threshold will
be discarded. Basic block 0 in panel C is not customized,
which can be handled by extracting seeds and growing them
again. Notably, even though our method can find subgraphs
containing memory instructions, only arithmetic instruc-
tions are considered to be CIs in this paper. Solving memory
disambiguation through LSU, which requires allocating and
releasing slots corresponding to sub-memory operations, can
be a problem, introducing additional complexity for datap-
aths. A solution is treating custom instruction exploration

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

LLVM

IR 1 DFG/

Original IR
Parser

Seeds2Extract

Seed 3 SGM

5 Selected

Candidates

WMIA
Candidates

Stop?
6 Custom

Instructions
Y

N
Next Iteration

4
SCM

Figure 6: The workflow of CIExplorer

as a macro-op fusion problem, which requires different ex-
ploration rules [11].
Connectivity: Graphs of same order are required to be

connected. When we add an instruction to a seed component,
there may be more than one node in the DFG corresponding
to that instruction, and we want the node being added to
be as close to the seed component in the graph as possible.
Hence, we achieve this by requiring connectivity. In this case,
subgraph 7 is invalid.

3.2 Workflow
Figure 6 illustrates the workflow of CIExplorer. CIExplorer
begins by taking LLVM [37] IR as input and parses static
code into DFGs at the granularity of basic blocks (1○). It also
instruments and runs the program to collect executed counts
of basic blocks. CIExplorer then extracts recurring subgraphs
of two connected nodes as seeds (2○) and conducts SGM (3○).
CIExplorer employs SCM to split basic blocks without seeds
(4○). The compiler-assisted modeling strategy for selecting
subgraphs is applied in SGM and SCM. Candidates may over-
lap since SGM is applied to seeds separately, so Weighted
Maximum Independent Set Analysis (WMIA) (5○) is used to
select a set of candidates without overlap. The entire search
is performed iteratively to avoid missing possible CIs. After
exploration finishes, a merging procedure is applied to gen-
erate datapaths for CIs. Note that we use an optimized SCM
to find maximal convex subgraphs for IO GPPs, eliminating
the need for iterative execution. Specifically, the optimized
implementation only executes steps 1○ and 4○.

4 Seed Growth Method
4.1 Workflow
Figure 7 shows the entire workflow to apply Seed Growth
Method (SGM) to grow seeds into candidates. 𝑆 and 𝑠𝑐𝑖 do-
nate a seed and a seed component. 𝑅 and 𝑔𝑖 donate a candi-
date and a candidate component. In panel A of Figure 7, we
apply SGM to each seed individually to get a candidate. Panel
B of Figure 7 shows the main steps of SGM implemented
based on GA, which executes iteratively until reaching a
specific iteration or a predefined condition and then returns
the best candidate.
Seed Extraction: We extract seeds by enumerating re-

curring instruction pairs with data dependency and count-
ing their occurrences. These instruction pairs may overlap,

which is addressed by removing those that are later in the
program order.
Initialize Population: An individual is a subgraph rep-

resenting a candidate component grown from a seed com-
ponent. Figure 7’s panel E illustrates a basic block of eight
nodes, which has a subgraph of four nodes marked with solid
borders. It is an individual encoded as 01011100. We initial-
ize GA using the encoding of 𝑠𝑐𝑥 , a pivot selected from seed
𝑆 , whose corresponding basic block has maximal size. In the
initial population, many individuals are randomly generated,
but they are ensured to contain 𝑠𝑐𝑥 .
Evaluate Fitness: As shown in panel C of Figure 7, this

step calls a fitness function to each individual 𝑔𝑥 , which out-
puts a candidate 𝑅 and its score. GA will track the 𝑅 with
the maximal score as the final best candidate. Individuals
of a population are derived from 𝑠𝑐𝑥 since we initialize the
GA with it. Panel D of Figure 7 illustrates the procedure
of the fitness function based on the idea of growing a seed
component 𝑠𝑐𝑥 into a larger subgraph 𝑔𝑥 and checking if
𝑠𝑐𝑖 can grow into 𝑔𝑖 that is a GSO of it. In this case, each 𝑔𝑖
corresponds to only one 𝑠𝑐𝑖 as shown. The final fitness is the
output of a cost model, which scores the entire 𝑅. Panel F of
Figure 7 shows the implementation of the fitness function.
Since a basic block may contain several seed components, we
assign each basic block a bit vector to indicate if an instruc-
tion has been visited to avoid creating overlapping candidate
components. We apply function grow to each 𝑠𝑐𝑖 to get a 𝑔𝑖
that is a GSO of 𝑔𝑥 . Function grow returns empty if growing
fails. Details of grow are shown in Section 4.2. Notably, 𝑅
will be empty if 𝑔𝑥 is not connected.

Select/crossover/mutate: These operations with differ-
ent strategies generate a new population for the next itera-
tion, which selects individuals of higher scores, exchanges
parts of encodings between them, and flips bits of encodings,
respectively. One detail is that each individual will have a
𝑅 and a score after evaluating fitness, and only the score is
used to guide these operations.

4.2 Grow Function
We present function grow in Algorithm 1, where 𝑔𝑖 is the
output subgraph that keeps growing. 𝑠𝑐𝑖 and 𝑔𝑥 donate a
candidate component and a target subgraph to grow, respec-
tively. 𝑔𝑖 grows according to 𝑛𝑜𝑑𝑒𝑠 donating newly added
nodes. We ensure the connectivity of 𝑔𝑖 in grow, which poses
an issue that the order of adding nodes to a subgraph im-
pacts connectivity checking. For example, if a basic block
has a subgraph containing a sequence of sub-mul-div and
we have an instruction sub at the beginning. To grow sub to
this sequence, we need to add mul first and then div to get
a connected subgraph. Thus, we implement grow based on
the idea of keeping adding nodes of various types to the 𝑔𝑖

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

For each gx in Population:

	 R, score = call (, S)

Initialize
Population

Evaluate

Fitness

Select/

crossover/

mutate

End?

Best
Candidate

Evaluate Fitness

sc0

scn

g0

S R

···

···

gi=grow(sci, gx)

gx

scm

···

X

gn

CostModel(R)
score

candidate
candidate

component

failure

A new
Poplulation

YN

SGM Workflow

FitnessFunction

scx

init with
 FitnessFunction

Encoding

Subgraph

0 1 0 1 1 1 0 0

1 3 5 7

0 2 4 6

An Individual

candidates = {}

For each S in seeds:

	 candidate = call (S)

	 candidates.append(candidate)

SeedGrowMethod

A

X

Success in growing candidate
component

Failure to grow candidate
component

Apply SGM to each seed

S, sci
Seed and corresponding
seed component

R, gi
Candidate and corresponding
candidate component

B

C

D

E

scx
A pivot whose basic block has
maximal size

label nodes of gx and S as visited

S← S\ scx, R ← {gx }

For each sci ∈ S do

	 gi← grow(sci, gx)

	 if gi not empty then

	 	 R ← R ∨ gi

	 	 label nodes of gi as visited

score = CostModel(R)

F

FitnessFunction Implementation

gx

Figure 7: Entire workflow of applying SGM to grow seeds into candidates.

until no node can be added or 𝑛𝑜𝑑𝑒𝑠 becomes empty as the
while loop in line 3. It allows adding nodes in different or-
ders. We enumerate 𝑛𝑜𝑑𝑒𝑖 and check if 𝑛𝑜𝑑𝑒𝑠𝐵𝐵 has the same
node, and this node is connected to 𝑔𝑖 . 𝑛𝑜𝑑𝑒𝑠𝐵𝐵 are nodes of
the basic block to which 𝑠𝑐𝑖 belongs, which have not been
added to any other subgraphs. The function checkSameInst
checks if 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒 𝑗 share the same opcode. Function
checkConnect checks if 𝑔𝑖 is still connected after adding
𝑛𝑜𝑑𝑒 𝑗 . Finally, if 𝑔𝑖 and 𝑔𝑥 have different numbers of nodes,
then 𝑔𝑖 and 𝑔𝑥 are not GSOs, and we set 𝑔𝑖 to empty.

5 Split-and-Combine Method
Not all basic blocks contain seeds, and additionally, some
basic blocks no longer have seeds after extracting subgraphs,
so we propose a Split-and-Combine Method (SCM) to handle
these cases. SCM is shown in Algorithm 2. SCM takes a basic
block’s DFG (𝑔𝑟𝑎𝑝ℎ) as input and outputs 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 . This
method extracts connected subgraphs by removing branch
and memory instructions in split function (line 1) and then
enumerates all combinations of them through a while loop.
Function combine builds a new subgraph with instructions
from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 [𝑗]. Function evaluate re-
turns true if 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is convex, and the score of 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

is higher than 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 [𝑗], and a predefined
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . SCM continues with the last successful combined
result (line 13). If too many connected subgraphs are ex-
tracted, it can be time-consuming to enumerate their com-
binations, so we directly use convex connected subgraphs
containing more than one node as candidates. Notably, we
have optimized SCM for IO GPP to find maximal convex
subgraphs. In this case, evaluate only checks if 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

is convex instead of pursuing a higher score, but thresh-
old checking in line 16 is preserved to remove low-scoring
subgraphs. SGM is omitted for this simple exploration target.

Algorithm 1: Grow Function
Input: 𝑠𝑐𝑖 — a seed component, 𝑔𝑥 — target subgraph
Output: 𝑔𝑖 — a candidate component that is a GSO of 𝑔𝑥

1 𝑔𝑖 ← 𝑠𝑐𝑖 , 𝑛𝑜𝑑𝑒𝑠 ← 𝑔𝑥 \ 𝑠𝑐𝑥 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← 0
2 𝑛𝑜𝑑𝑒𝑠𝐵𝐵 ← not visited nodes of the basic block to which 𝑠𝑐𝑖

belongs
3 while 𝑛𝑜𝑑𝑒𝑠.𝑠𝑖𝑧𝑒 () > 0 ∧ ¬𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 do
4 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← 1
5 for 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑛𝑜𝑑𝑒𝑠 do
6 for 𝑛𝑜𝑑𝑒 𝑗 ∈ 𝑛𝑜𝑑𝑒𝑠𝐵𝐵 do
7 𝑠𝑎𝑚𝑒 ← 𝑐ℎ𝑒𝑐𝑘𝑆𝑎𝑚𝑒𝐼𝑛𝑠𝑡 (𝑛𝑜𝑑𝑒𝑖 , 𝑛𝑜𝑑𝑒 𝑗)
8 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ← 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑛𝑒𝑐𝑡 (𝑛𝑜𝑑𝑒 𝑗 , 𝑔𝑖)
9 if 𝑠𝑎𝑚𝑒 ∧ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑛𝑜𝑑𝑒 𝑗 ∉ 𝑔𝑖 then
10 𝑛𝑜𝑑𝑒𝑠 ← 𝑛𝑜𝑑𝑒𝑠 \ 𝑛𝑜𝑑𝑒𝑖
11 𝑔𝑖 ← 𝑔𝑖 ∨ 𝑛𝑜𝑑𝑒 𝑗
12 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← 0
13 break
14 if 𝑔𝑖 .𝑠𝑖𝑧𝑒 () ≠ 𝑔𝑥 .𝑠𝑖𝑧𝑒 () then
15 𝑔𝑖 ← ∅

6 Cost Model
6.1 Compiler-Assisted IR Specialization
We propose a compiler-assisted method to specialize IR for
CIs in single or multiple basic blocks, which will be the input
of the cost model. We implement it based on instruction for-
mats shown in Figure 2A using LLVM toolchain. It supports
an arbitrary number of PACK operands. Since we use static
DFGs constructed by LLVM to perform SGM, the IR special-
ization method is easy to apply. Figure 8 shows the special-
ized IR of a CI having two sub-instructions fmul and fadd.
Function fmul_fadd represents the CI, and PACKmoves three
operands at once. Data-moving instructions are represented
by function PACK and IR extractvalue (EXTRACT), respec-
tively. Due to LLVM IR’s limitation, each extractvalue can
only extract a single value each time. The specialized IR is

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

Algorithm 2: Split-and-Combine Method
Input: graph — DFG of a basic block
Output: candidates

1 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← 𝑠𝑝𝑙𝑖𝑡 (𝑔𝑟𝑎𝑝ℎ)
2 𝑣𝑖𝑠𝑖𝑡 ← ∅, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅
3 for 𝑖 = 0 to 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠.𝑠𝑖𝑧𝑒 () do
4 if 𝑖 ∈ 𝑣𝑖𝑠𝑖𝑡 then
5 continue
6 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 [𝑖], 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← 0
7 while ¬𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 do
8 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← 1
9 for 𝑗 = 𝑖 + 1 to 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠.𝑠𝑖𝑧𝑒 () do
10 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ←

𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 [𝑗])
11 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)
12 if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ∧ 𝑗 ∉ 𝑣𝑖𝑠𝑖𝑡 then
13 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , 𝑣𝑖𝑠𝑖𝑡 ← 𝑣𝑖𝑠𝑖𝑡 ∨ 𝑗

14 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← 0
15 𝑣𝑖𝑠𝑖𝑡 ← 𝑣𝑖𝑠𝑖𝑡 ∨ 𝑖
16 if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑠𝑐𝑜𝑟𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
17 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∨ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

%19 = load double

%20 = fmul double %17, %19

%21 = getelementptr

%22 = load double, double* %21

%23 = fadd double %20, %22

%24 = getelementptr

store double %23, double* %24

%25 = fmul double %17, %20

for(int i = 0;i<N;i++) {

	 double temp = a[i] * b[i];

	 d[i] = temp + c[i];

	 e[i] = temp * a[i]; }

C/C++ Code Specialized IR

Original IR

 %19 = load double

 %20 = fmul double %17, %19

 %21 = getelementptr

 %22 = load double, double* %21

 %23 = call %SI_0* @PACK(double %17, double %19, double %22)

 %ret_value= call { double, double } @fmul_fadd(%SI_0* %23)

 %.extracted = extractvalue { double, double } %ret_value, 0

 %.extracted1 = extractvalue { double, double } %ret_value, 1

 %24 = fadd double %20, %22

 %25 = getelementptr

 store double %.extracted1, double* %25, align 8, !tbaa !5

 %26 = fmul double %17, %.extracted

step1: Define and insert PACK
and fmul_fadd

step2: Insert extractvalue
and update operands

step3: Delete IS and implement
PACK and fmul_fadd

IS

Figure 8: Example of specializing a CI by fusing an
instruction sequence containing fmul and fadd.

generated by iterating candidate components. Each iteration
applies the steps as shown in Figure 8 to one candidate com-
ponent, utilizing original IR or specialized IR output from
the previous iteration as its input. Let 𝐼𝑆 be an instruction
sequence to be fused as CI.
In the first step, we define and insert PACK and CI. CI

denotes a function representing a custom instruction, such
as fmul_fadd in Figure 8. PACK creates a structure based
on its input parameters, such as PACK in Figure 8 returns a
structure of three double types. Function CI takes structures
returned by PACK as inputs and also returns a structure based
on output operand types of 𝐼𝑆 such as fmul_fadd return a
structure of two double types. We insert PACK functions right
after the last instruction they depend on, and insert CI after

them. Notably, if the number of input operands is not larger
than a predefined value, no PACK will be created, and if the
number of output operands is one, ret_valuewill be a single
value.

In the second step, we use extractvalue to extract val-
ues from ret_value and update users of them, such as the
instruction store using %.extracted. Moreover, we manip-
ulate the order of instructions to make data dependency
right. For example, if an instruction I0 that uses values pro-
duced by CI precedes CI after specialization, then we use the
function moveInstAfter(I0, CI) to move I0 after CI. This
function also checks whether the user (I1) of I0 precedes
I0. If so, the function calls moveInstAfter(I1, I0) again.
In the third step, we remove 𝐼𝑆 and finish implementing

PACK and CI. In PACK, we allocate memory for structures
with malloc and use inservalue to initialize values. CI has
only one basic block containing three parts. The first part
contains extractvalue to unpack data from input parame-
ters of structure types. The second part is a copy of 𝐼𝑆 whose
operands are updated with those unpacked data to ensure
correct functionality. The third part uses insertvalue to
create ret_value and returns it.

6.2 DEG Construction
We build DEGs based on original or specialized IR with
two assumptions that all memory operations hit L1Cache
and branches never change control flow, like existing static
analysis methods [38, 55]. Table 1 shows edge types and
corresponding weights. Algorithm 3 shows how we build
a DEG for an instruction sequence. Unlike current meth-
ods based on simulation traces [8, 25, 46], the exact time
when architectural events occur is unavailable. In OOO exe-
cution, building DEG with instructions following program
order may cause wrong estimated cycles because an in-
struction may request a resource like an ALU before pre-
ceding instructions. We propose to dynamically prioritize
instructions by the time of entering the execution stage using
getEarliestExecutionInsn. It adds nodes of each instruc-
tion iteratively and separately to DEG to get the cycle when
they start executing in a pseudo way (not really changing
DEG) and selects the earliest one (line 5). To reduce compu-
tational complexity, instructions are separated into chunks
of the size of pipeline width (line 3). We build a node and
all corresponding edges before another (line 6). We build
resource edges from lines 8 to 12 by managing a scoreboard
that records all hardware resources and the latest access
instructions. In each stage, when an instruction requests a
resource, we find the earliest available resource of the type
in a round-robin way, get the instruction that already occu-
pies it, and then build an edge between the related stages of
the two instructions. After that, we update the scoreboard.

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 1: Basic edges of pipeline, structure, and data dependencies.

Edge Weight Description
𝐹 (𝑖) → 𝐷𝑃 (𝑖) 1 cycle Fetch instruction 𝑖 .
𝐷𝑃 (𝑖) → 𝐸 (𝑖) 1 cycle Dispatch and schedule instruction 𝑖 to execution.
𝐸 (𝑖) → 𝐶 (𝑖) Latency of instruction 𝑖 Execute instruction 𝑖 .
𝐸 (𝑖) → 𝐸 (𝑗) 1 cycle;

Latency of instruction 𝑖;
Latency of instruction 𝑖;

Instruction 𝑗 requests a fully pipelined FU that instruction 𝑖 releases;
Instruction 𝑗 requests a not fully pipelined FU that instruction 𝑖 releases;
True data dependency from instruction 𝑖 to 𝑗 .

𝐹 (𝑖) → 𝐹 (𝑖 + 1) 0 cycle;
1 cycle;

Instructions 𝑖 and 𝑖 + 1 are in a fetch window;
Instructions 𝑖 and 𝑖 + 1 are in two consecutive fetch windows.

𝐶 (𝑖) → 𝐶 (𝑖 + 1) 0 cycle;
1 cycle;

Instructions 𝑖 and 𝑖 + 1 are in a commit window;
Instructions 𝑖 and 𝑖 + 1 are in two consecutive commit windows.

Algorithm 3: DEG Construction Algorithm
Input: insns — A static instruction sequence of a single or

duplicated basic blocks
Output: DEG — Built DEG

1 𝑖 ← 0
2 while 𝑖 < 𝑖𝑛𝑠𝑛𝑠.𝑠𝑖𝑧𝑒 () do
3 𝑖𝑛𝑠𝑛𝑠𝑝𝑖𝑝𝑒 ← 𝑖𝑛𝑠𝑛𝑠 [𝑖 : 𝑖 + 𝑝𝑖𝑝𝑒𝑤𝑖𝑑𝑡ℎ]
4 while 𝑖𝑛𝑠𝑛𝑠𝑝𝑖𝑝𝑒 not empty do
5 𝑖𝑛𝑠𝑛 ← 𝑔𝑒𝑡𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐼𝑛𝑠𝑛 (𝑖𝑛𝑠𝑛𝑠𝑝𝑖𝑝𝑒)
6 for 𝑠𝑡𝑎𝑔𝑒 in [𝑓 𝑒𝑡𝑐ℎ,𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒, 𝑐𝑜𝑚𝑚𝑖𝑡] do
7 add the pipeline 𝑠𝑡𝑎𝑔𝑒 node to 𝐷𝐸𝐺 and build

pipeline/data edges
8 𝑟𝑒𝑠𝑜𝑢𝑐𝑒𝑠 ← 𝑔𝑒𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑖𝑛𝑠𝑛, 𝑠𝑡𝑎𝑔𝑒)
9 for 𝑟𝑒𝑠 in 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do
10 𝑖𝑛𝑠𝑛𝑝𝑟𝑒𝑣 ← 𝑠𝑐𝑜𝑟𝑒𝑏𝑜𝑎𝑟𝑑 [𝑟𝑒𝑠]
11 build edges between nodes that have resource

dependencies of 𝑖𝑛𝑠𝑛𝑝𝑟𝑒𝑣 and 𝑖𝑛𝑠𝑛
12 update 𝑠𝑐𝑜𝑟𝑒𝑏𝑜𝑎𝑟𝑑 with 𝑖𝑛𝑠𝑛
13 remove 𝑖𝑛𝑠𝑛 from 𝑖𝑛𝑠𝑛𝑠𝑝𝑖𝑝𝑒

14 update edges for stage commit nodes.
15 𝑖 ← 𝑖 + 𝑝𝑖𝑝𝑒𝑤𝑖𝑑𝑡ℎ

Finally, we need to correct edges to ensure instructions are
committed in order in line 14, since we add instructions
prioritized by the cycle when starting execution.
Our method supports duplicating a basic block multiple

times to model dependencies between loop iterations. Panel
A of Figure 9 shows a basic block, where add depends on
a value from the previous iteration, which can be captured
by duplicating this basic block. After duplication, one static
instruction may have several instances. Data dependencies
are built for instructions with the latest instance of the ones
they depend on.

6.3 Modeling Resource Dependency
The panel B of Figure 9 shows an edge between 𝐸𝐼0 and 𝐷𝑃𝐼𝑛
to model slot usage of Issue Queue (IQ), which means In

requests a slot that I0 releases. We model resource depen-
dency of slot usage of Reorder Buffer (ROB) by introducing a
new vertex Release (R), as shown in panel C of Figure 9. We
cannot directly model it with an edge 𝐶𝐼0 − 𝐷𝑃𝐼𝑛 , since it in-
troduces a cyclic (𝐶𝐼0−𝐷𝑃𝐼𝑛 ,𝐷𝑃𝐼𝑛−𝐶𝐼𝑛 , and𝐶𝐼𝑛−𝐶𝐼0) when
instruction In precedes I0 in program order. Load Queue
(LDQ) and Store Queue (STQ) are also modeled in this way
by assuming slots are released when instructions load/store
are committed.

Modern processors decode instructions into micro opera-
tions (uops), which execute on execution ports [3]. Each port
is connected to a set of FUs. The left panel of Figure 10 shows
FU mapping for a 2-wide OOO GPP. Port 0 is connected to
an integer multiplier and an ALU. Port 1 is connected to a
custom FU. Our DEG supports the model of this behavior by
simplifying that an instruction always has one uop that uses
a port for predefined cycles. The middle panel of Figure 10
shows the DEG built improved based on Figure 4, which
models port usage in red edges. Since mul and sub compete
for port 0, there is a red edge 𝐸𝑚𝑢𝑙 − 𝐸𝑠𝑢𝑏 . Another red edge
𝐸𝑠𝑢𝑏 − 𝐸𝑎𝑑𝑑 models that add request a port that sub releases.
We model execution ports and FUs separately, so a blue edge
𝐸𝑠𝑢𝑏 − 𝐸𝑎𝑑𝑑 is built to indicate add request an ALU that sub
releases. This DEG has a critical path of 5 cycles. The right
panel of Figure 10 also shows a DEG by introducing a CI fus-
ing mul and add, which uses the custom FU and eliminates
resource dependencies due to FU and port usage. It has a
critical path of 6 cycles, assuming 4-cycle mul_add.

6.4 Integration for Search
This section presents how we use DEG as a cost model for
searching CIs. The score for each candidate can be concluded
as Equation (2), where 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 denotes the i-th constraint
term. We use two boolean constraints, 𝑐𝑜𝑛𝑣𝑒𝑥 and 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 ,
which are checked after GSOs are generated. The growing
procedure ensures connectivity.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

BB:

%2 = phi [%4, %BB] [0, %Start]

%4 = add %2, 1

%5 = icmp sgt %4, 10

br i1 %5, label %Exit, label %BB

DP

E

C

DP

E

C

···

···

DP

E

C

DP

E

C

···

···

(B) (C)(A) R
0

0

0

Loop-carried
Dependency

I0 InI0 In

Figure 9: (A) Loop-carried dependency. (B) and (C) show
structure dependencies due to IQ andROB, respectively.
A new vertex R is introduced to avoid loops.

Original IRFU Mapping

F

E

C

F

E

C

Port 0

iMUL

ALU

1

F

E

C

1

mul sub add

Customized IR

F

E

C

F

E

C

sub mul_add
0 1 0

1 1111

3 1
1

0 1

1 41

0

1
Port 1

Custom
FU

2-wide OOO

3

Figure 10: DEGs on a two-wide OOO GPP. Resource
dependencies of Port and FU are modeled with red and
blue edges.

𝑠𝑐𝑜𝑟𝑒 =
∏

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 × 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 (2)

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =

𝑛∑︁
𝑖

𝑐𝑦𝑐𝑙𝑒𝑠𝑖𝑜𝑟𝑖𝑔

𝑐𝑦𝑐𝑙𝑒𝑠𝑖𝑐𝑠𝑡𝑚
×𝑤𝑖 (3)

Equation (3) measures the weighted average 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 . 𝑛
is the number of basic blocks, which is equal to or less than
the number of candidate components because a basic block
can have more than one candidate component. 𝑐𝑦𝑐𝑙𝑒𝑠𝑖𝑜𝑟𝑖𝑔 and
𝑐𝑦𝑐𝑙𝑒𝑠𝑖𝑐𝑠𝑡𝑚 are measured cycles for original and customized
basic blocks, which are duplicated by preset times. 𝑤𝑖 is a
weight for i-th basic block, calculated by Equation (4). 𝑐𝑜𝑢𝑛𝑡𝑖
is the executed count of the i-th basic block.

𝑤𝑖 =
𝑐𝑜𝑢𝑛𝑡𝑖∑𝑛
𝑖 𝑐𝑜𝑢𝑛𝑡𝑖

(4)

7 Other Techniques
Remove Overlap:When applying SGM independently to
each seed, it fails to consider the influence of other seeds
during growth, resulting in overlapping candidates.We apply
a method similar to [62] that uses the WMIA on the conflict
graph to remove overlaps. Two candidates sharing nodes are
considered in conflict.
Iterative Search: We apply an iterative way to exhaus-

tively explore possible subgraphs. Each iteration progresses

Table 2: Benchmark

MediaBench rawcaduio, rawdaduio, g721encode,
g721decode, gsmencode, gsmdecode,
mpeg2dec, mpeg2enc, cjpeg, djpeg

SPEC2006 401.bzip, 429.mcf, 433.milc, 444.namd,
456.hmmer, 458.sjeng, 464.h264ref,
470.lbm, 473.astar, 482.sphinx3

Table 3: Microarchitecture parameters for GPPs

GPP Specifications
IO single issue, out-of-order writeback
OOO2 2-wide pipeline, 64-entry ROB, 32-entry IQ,

1 ALU, 1 Mul/Div, 1 BRU, 1 FPU, 1 LD/ST
OOO4 4-wide pipeline, 168-entry ROB, 48-entry

IQ, 3 ALU, 1 Mul/Div, 1 BRU, 2 FPU, 2
LD/ST

Memory
L1DCache 32KB / 8-way / 5-cycle latency / deg-8 PC-

based Prefetcher
L1ICache 32KB / 8-way / 5-cycle latency / Fetch-

directed Prefetcher
L2Cache 256KB / 8-way / 8-cycle latency
L3Cache 8MB / 32-way / 35-cycle latency
DRAM 25GB/s BW / 118-cycle latency

from Parser (1○) to WMIA (5○) in Figure 6. In Parser, we re-
move nodes of candidates identified in the previous iteration
from DFGs before extracting seeds. Exploration stops if no
seed is extracted or no candidate is selected.
Merging Procedure: Upon completing the exploration

process, we employ the method introduced by [56] to con-
struct datapaths by trying to merge all components of a
candidate into a single datapath. We construct an additional
datapath for any candidate component that results in a loop
in the merged datapath.

8 Experimental Methodology
Benchmark:Various benchmarks are chosen from SPEC2006
[1] andMediaBench [39] to evaluate our method and conduct
comparisons with existing techniques (see Table 2).

Simulation Method: We use an in-house cycle-level and
trace-driven (memory addresses and branch decisions) sim-
ulator to evaluate the performance of GPPs and CIs. The
simulator uses LLVM IR as the ISA and supports simulating
customized IR as shown in Figure 8. We use McPAT [40] and
GEM5-SALAM [52] to evaluate energy/power of GPPs and
area of custom FUs’ datapaths, respectively. The latency of
a CI is measured as the accumulated cycles of the critical
path of a subgraph. Due to additional experiments, we have

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

−15

0

15

30

45

60

75

C
yc

le
 R

ed
uc

tio
n

(%
)

17
.3

%
17

.2
%

IO

12
.1

%
8.

5%

OOO2
CIExplorer CIExplorer w/o DEG

12
.9

%
7.

2%

OOO4
40

1.
bz

ip
42

9.
m

cf
43

3.
m

ilc
44

4.
na

m
d

45
6.

hm
m

er
45

8.
sj

en
g

47
0.

lb
m

48
2.

sp
hi

nx
3

46
4.

h2
64

re
f

47
3.

as
ta

r
ra

w
ca

ud
io

ra
w

da
ud

io
g7

21
en

co
de

g7
21

de
co

de
gs

m
en

co
de

gs
m

de
co

de
m

pe
g2

de
c

m
pe

g2
en

c
cj

pe
g

dj
pe

g
av

er
ag

e-10

0

10

20

30

40

50

En
er

gy
 R

ed
uc

tio
n

(%
)

8.
7%

8.
6%

40
1.

bz
ip

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d
45

6.
hm

m
er

45
8.

sj
en

g
47

0.
lb

m
48

2.
sp

hi
nx

3
46

4.
h2

64
re

f
47

3.
as

ta
r

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

en
co

de
g7

21
de

co
de

gs
m

en
co

de
gs

m
de

co
de

m
pe

g2
de

c
m

pe
g2

en
c

cj
pe

g
dj

pe
g

av
er

ag
e

10
.0

%
8.

3%

40
1.

bz
ip

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d
45

6.
hm

m
er

45
8.

sj
en

g
47

0.
lb

m
48

2.
sp

hi
nx

3
46

4.
h2

64
re

f
47

3.
as

ta
r

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

en
co

de
g7

21
de

co
de

gs
m

en
co

de
gs

m
de

co
de

m
pe

g2
de

c
m

pe
g2

en
c

cj
pe

g
dj

pe
g

av
er

ag
e

13
.6

%
8.

0%

Figure 11: Percentage of decreased runtime cycles and energy for IO, OOO2, and OOO4 GPP cores. We also report
results of CIExplorer without the DEG model.

found that the number of duplications for basic blocks has
little effect on scoring, so we chose a value of 1 for efficiency.
Experiments are conducted on three cores, microarchi-

tecture parameters of which are listed in Table 3. All cores
use TAGE/ITTAGE branch predictor with a 12-cycle penalty
and a common memory configuration. The in-order core has
a scoreboard to enable out-of-order write-back. In experi-
ments, we specify that each general or custom instruction
requires only one execution port. A GPP has two ports for
custom 1-cycle data-moving instructions. PACK instructions
can move three operands at once. We use Simpoint [54] to
choose the most representative chunk of code that contains
50 million instructions from a manually specified function
for each benchmark. Specified functions are selected accord-
ing to [36] and [45]. Notably, we apply only optimized SCM
to IO GPP to discover maximal convex subgraphs.

9 Results
9.1 Performance and Energy Efficiency
Figure 11 presents the cycle and energy reduction of CIEx-
plorer for IO, OOO2, and OOO4 GPP cores. We also report
the results of CIExplorer without the DEG model (non-DEG
for short) by replacing it with the cost model in Equation (1),
which onlymeasures subgraphs instead of entire basic blocks.
Optimized SCM is also used for the non-DEG version. Neg-
ative values of figures mean performance and energy effi-
ciency degradation because of the integration of CIs.
IO GPP: CIExplorer achieves a geometric mean of 17.3%

cycle reduction and 8.7% energy reduction. Notably, compa-
rable gains are observed for the non-DEG model (17.2% cycle

reduction and 8.6% energy reduction), which is consistent
with a previous observation [6] that a simple merit function
can be as good as a complex one for IO GPP. This phenome-
non stems from the inherent characteristics of IO GPPs that
expose limited ILP. Fusing larger instruction patterns into
CIs effectively hides more operations, delivering significant
performance benefits. Our framework schedules specialized
IR with a simple strategy that inserts CIs immediately after
the last dependent instruction, ensuring they start execution
as early as possible. This strategy may compromise the qual-
ity of selected CIs, particularly given that the DEG model
evaluates whole basic blocks.
OOO2 GPP: CIExplorer achieves 12.1% cycle and 8.5%

energy reduction, outperforming its non-DEG counterpart
(10% cycle and 8.3% energy reduction). However, both meth-
ods exhibit performance degradation and reduced energy
efficiency on the 456.hmmer whose CIs are extracted from
function P7Viterbi, which has many short branches com-
paring array elements [11]. Our static DEG model falls short
in evaluating dynamic branches and memory operations, so
it may estimate potential benefits inaccurately. The non-DEG
version increases energy consumption on 482.sphinx3 and
degrades performance on 482.sphinx3, mpeg2dec, and djpeg.
482.sphinx3 (vector_gautbl_eval_logs3) contains reduc-
tion operations [63], mpeg2dec (motion_compensation) has
various kernels of different characterization, such as element-
wise sum and intensive branches, and djpeg has indirect
memory access but high ILP [45] in ycc_rgb_convert. In
contrast, the DEG version performs better on these bench-
marks.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

0.9
1.0
1.1
1.2
1.3

Pe
rf

or
m

an
ce

Im
pr

ov
. (

x) 1.21x
1.16x1.18x1.17x

1.12x

IO

1.14x

1.03x 1.0x

1.11x

1.0x

OOO2

1.15x

1.027x
0.94x

1.04x
0.97x

OOO4
O

ur
s

N
ov

ia
N

ee
dl

e
D

F-
N

ov
ia

M
ax

C
lq

0.9
1.0
1.1
1.2

En
er

gy
Im

pr
ov

. (
x)

1.1x 1.08x1.07x1.09x
1.05x

O
ur

s
N

ov
ia

N
ee

dl
e

D
F-

N
ov

ia
M

ax
C

lq

1.11x

1.032x
0.99x

1.08x
1.0x

O
ur

s
N

ov
ia

N
ee

dl
e

D
F-

N
ov

ia
M

ax
C

lq

1.16x

1.034x
0.97x

1.06x
1.0x

Figure 12: Improved performance and energy efficiency
of different methods compared with baseline GPPs.

Table 4: Area (𝑚𝑚2) of custom FUs’ datapaths of differ-
ent methods.

Method IO OOO2 OOO4
Ours 0.165 0.089 0.054
Novia 0.196 - -

MaxClique 0.128 - -
Needle 0.124 0.116 0.110

OOO4 GPP: CIExplorer delivers 12.9% cycle and 11.4%
energy reduction, outperforming the non-DEG results (7.2%
cycle and 7.4% energy reduction). While the non-DEG imple-
mentation suffers more performance losses on benchmarks,
e.g. 456.hmmer (-20%), the DEG version demonstrates per-
formance gains on all benchmarks, validating its effective-
ness for out-of-order architectures. Compared with OOO2,
the DEG version finds smaller subgraphs for 456.hmmer
on OOO4, which may benefit short branches. An interest-
ing example is 429.mcf, which achieves a high speedup. Its
CIs are extracted from the function price_out_impl. Our
method finds vector-like patterns containing two or three
getelementptr instructions, which are modeled as stan-
dalone arithmetic operations in our simulator. These CIs
accelerate address generation for the strided memory ac-
cess pattern and then expose more memory-level parallelism
exploited by high pipeline width.
One observation is that the non-DEG version degrades

performance less severely than Novia [56] for both OOO2
and OOO4. GA enumerates and selects subgraphs simulta-
neously. Simply applying Equation (1) as a cost model is not
enough to discover maximal convex subgraphs because pur-
suing maximal is not consistent with the target of maximiz-
ing speedup for a subgraph. As a result, it is unable to be as
good as Novia towards IO GPPs. Similarly, our performance-
oriented method performs well for OOO GPPs. The goal of

exploring maximal subgraphs remains highly effective for
IO GPPs. This is why we use an optimized SCM for IO GPPs.

9.2 Comparison with Existing Techniques
We compare CIExplorer with Novia [56] and MaxClique [57]
on three GPPs, both identifying CIs without live-in/out con-
straint. We also compare CIExplorer with two other special-
ization techniques: (1) DF-Novia, which accelerates Novia
on a dataflow architecture similar to Dyser [27], and (2) Nee-
dle [36] proposed for speculative offloading. We simulate DF-
Novia and Needle similarly to CIs by including all operations
in their datapaths. Figure 12 shows comparison results. We
manually measure and select the path of the highest speedup
from the top 10 most executed paths extracted by Needle
for different cores. Novia and MaxClique can not adjust ex-
tracted regions for OOO microarchitectures, which achieves
minor improvements and even decreases performance. Our
method provides performance improvements of 1.09× and
1.13× on average across all cores compared with Novia and
MaxClique, respectively, and improves energy by 1.07× and
1.10×. DF-Novia generally produces better results than basic
Novia because it eliminates all explicit invoking (EXE) in-
structions. However, even with an advanced dataflow-based
technique, Novia still cannot achieve better performance for
OOO cores than ours. Needle accelerates hot paths contain-
ing several basic blocks, which are identified only according
to executed counts of basic blocks. It also suffers from spec-
ulation failure overhead. Our method achieves 1.12× and
1.11× performance and energy improvements over it.

Table 4 compares the required average area of all bench-
marks. Novia and MaxClique are unaware of microarchitec-
tures, so they have the same area for all cores, while Needle’s
area varies because of our manual selection. For IO GPP,
Novia and Needle require the most and the least area, respec-
tively. CIExplorer requires less area than Novia but more
than others due to our maximal graph extraction strategy.
MaxClique employs a pruning strategy that removes sub-
graphs of low potential benefits and requires less area than
ours. For OOO2 and OOO4, CIExplorer achieves the least
area requirement.

9.3 Characterization for CIs
Figure 13 presents the breakdown of dynamic instructions
and counts of static CIs for three GPP types. Percentages are
calculated by normalizing values to baseline GPPs. Three
bars are IO, OOO2, and OOO4 from left to right. Yellow nodes
are static CI counts. Customization reduces dynamic instruc-
tions for most benchmarks, which improves performance
by saving pipeline slots, e.g., ROB, issue, and commit width.
EXTRACT instructions occupy a large percentage on IO GPP,
while PACK instructions are fewer since one PACK instruction

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

40
1.

bz
ip

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

45
6.

hm
m

er

45
8.

sj
en

g

47
0.

lb
m

48
2.

sp
hi

nx
3

46
4.

h2
64

re
f

47
3.

as
ta

r

ra
w

ca
ud

io

ra
w

da
ud

io

g7
21

en
co

de

g7
21

de
co

de

gs
m

en
co

de

gs
m

de
co

de

m
pe

g2
de

c

m
pe

g2
en

c

cj
pe

g

dj
pe

g0

25

50

75

100

Pe
rc

en
ta

ge

Exe Inst. Pack Inst. Extract Inst. Other Inst. Inst. Count

0

50

100

C
us

to
m

 In
st

. C
ou

nt

Figure 13: Three bars from left to right breakdown
percentage of dynamic instructions for IO, OOO2, and
OOO4 GPPs normalized to baseline. Yellow nodes show
static CI counts.

0 5 10 15 20 25 30 35
Live-in value

0

5

10

15

20

Li
ve

-o
ut

 v
al

ue IO
OOO2
OOO4

Figure 14: Distribution of live-in and live-out values.

can move three operands. The count of EXTRACT instructions
decreases for OOO2 and OOO4 GPPs because CIs for OOO2
and OOO4 have fewer live-ins and live-outs. We show the
distribution of live-ins and live-outs in Figure 14. Most CIs
of OOO2 GPP are located within [0, 10] in the x-axis and [0,
5] in the y-axis, meaning the ranges of live-ins and live-outs,
while most CIs of OOO4 GPP have fewer than 5 live-ins and
live-outs. It shows how the microarchitecture-aware cost
model affects the selected CIs. Figure 13 shows a trend that
OOO4 has more static instructions than OOO2 (except for
456.hmmer and 470.lbm) but costs less area (see Table 4),
indicating that more and smaller subgraphs are extracted
from fewer code regions guided by our DEG model.

9.4 Design Space Exploration
Area Budget: Figure 15A shows geometric means of normal-
ized cycles across benchmarks under different area budgets.
Maximal areas (100%) are shown in Table 4. IO and OOO2
GPPs show gradually improved cycles with increasing area
budgets. OOO4 achieves a good performance at a budget
of 40%, showing a curve with small variations after it, and
achieves the best at 100% area budget. The results for OOO4
indicate that CIs corresponding to 60% of the area provide
only minor improvements to overall performance. Ideally, a
higher area budget would allow the utilization of more CIs to

accelerate computations, as the curves of IO and OOO2. Such
a trend is mainly because 74.4% CIs have been covered under
the 40% area budget on OOO4. Since we select subgraphs
for a specific area budget by solving a knapsack problem,
low-scoring subgraphs, which contribute slightly or nega-
tively to overall performance, are involved in evaluations of
more area budgets. On the one hand, even though such low-
scoring subgraphs are discovered, our method still manages
to prevent performance degradation and improve overall
performance. On the other hand, subgraphs of higher scores
contribute more significantly to performance, demonstrating
our cost model’s effectiveness.

Pack Operand: Since our simulator uses LLVM IR as the
ISA, and due to LLVM IR’s limitation that each instruction
can only have a single return value, we only consider the
operands of PACK. CIs are rediscovered separately under
different operand constraints. Figure 15B shows results in
normalized cycles. The IO GPP exhibits a clear trend: per-
formance improves consistently as the number of operands
increases, but only minor performance gains are observed
for OOO2 and OOO4. Increasing the operand count of PACK
allows subgraphs to have more live-in values, thereby ex-
panding the subgraph size and bringing out more live-out
values. As this paper discussed, larger graph sizes may not
be beneficial, and our cost model suppresses this trend and
identifies suitable subgraphs for OOO2 and OOO4 that are
more sensitive to subgraph size.
Execution Port: Due to ILP, CIs may compete for the

same execution port. We evaluated the impact of execution
port count for CIs on the OOO4 GPP, assigning FUs to ports
in an interleavingway. Figure 15C presents the results, where
𝑁 denotes that each custom FU is connected to a dedicated
port. The GPP achieves good performance when the number
of ports is 2, further increasing the port count yields only
minor performance gains.

10 Related Work
Fine-grained CI exploration is generally limited to the scope
within basic blocks [31]. MaxClique [57] leads to the flourish-
ing of methods of enumerating maximal convex subgraphs[6,
48]. [23] proposes to enumerate maximum convex subgraphs
for specific live-in/out constraints, optimizing speedup in-
stead of the number of nodes. To share hardware resources, [4,
9, 13] directly enumerate isomorphic graphs, while some
other works introduce a separate merging procedure [5, 30,
43, 44]. Works [56, 64, 65] have improved this paradigm
by introducing delay constraints in the merging process.
For solving the selection problem, except optimal [7, 13, 17]
and heuristic algorithms [41, 49, 59, 61], [58] applies a ma-
chine learning-based method to solve the selection problem.
Works [21, 24] are proposed for VLIW processors. Some

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

1009080706050403020100
Area Bugdet (%)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 C
yc

le

IO
OOO2
OOO4

(A)

1 2 3 4 6 8
0.7

0.8

0.9

N
or

m
al

iz
ed

 C
yc

le

IO

1 2 3 4 6 8
Number of PACK Operands

OOO2

1 2 3 4 6 8

OOO4

(B)

1 2 4 6 8 16 N
Number of Ports

0.80

0.85

0.90

0.95

N
or

m
al

iz
ed

 C
yc

le

(C)

Figure 15: Design space exploration. (A) Normalized cycles under different area budgets. (B) Impact of the number
of operands of PACK instruction. (C) Impact of the number of execution ports for CIs on OOO4 GPP.

works try to find and accelerate coarse-grained regions con-
taining several basic blocks. [53] splits hot paths into chains
to maximize parallelism and reduce data movement. More-
over, [62] and [10] attempt to extract one ormore functions to
offload as standalone accelerators. SIMD [33], GPU [47], and
standalone accelerators [34] can accelerate regular code. A
trend is to accelerate irregular codes in terms of control flow
and memory access by specializing GPPs, such as Beret [28]
and [19] supporting speculative execution and [27, 42, 45]
exploring the potential of dataflow architectures.

11 Conclusion
This paper presents a framework named CIExplorer for CI
exploration. Our framework addresses the problem of cur-
rent works that cannot discover CIs adaptively to differ-
ent microarchitectures by introducing a graph-based cost
model. We also propose a compiler-assisted IR specialization
method capable of automatically generating custom instruc-
tions, bridging the gap between subgraphs and complex ISA
extensions. We improve the quality of discovered subgraphs
by proposing the SGM based on GA to efficiently enumerate
graphs of same order at different granularity. This method
enables modeling interactions among CIs during the selec-
tion and helps reduce area overhead. Experimental results
demonstrate the feasibility and generality of CIExplorer in
terms of awareness of microarchitectures for finding CIs by
testing various benchmarks on three different GPPs. Results
also show that our method outperforms current approaches
in terms of both performance and energy efficiency. In con-
clusion, our work shows achievable benefits by exploiting a
microarchitecture-aware exploration for CIs.

Acknowledgments
We thank anonymous reviewers for their constructive com-
ments. This work was supported by the Strategic Priority
Research Program of Chinese Academy of Sciences (Grant
No.XDB0500102), Laoshan Laboratory (No.LSKJ202300305).

References
[1] 2018. SPEC CPU 2006. https://www.spec.org/cpu2006/. Accessed:

2024-12.
[2] 2020. Arm Custom Instructions: Enabling

Innovation and Greater Flexibility on Arm.
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-
paper/arm-custom-instructions-wp.pdf.

[3] Andreas Abel and Jan Reineke. 2019. uops. info: Characterizing latency,
throughput, and port usage of instructions on intel microarchitectures.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
673–686.

[4] Junwhan Ahn and Kiyoung Choi. 2012. Isomorphism-aware identifica-
tion of custom instructions with I/O serialization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32, 1 (2012),
34–46.

[5] Kubilay Atasu, Günhan Dündar, and Can Özturan. 2005. An integer
linear programming approach for identifying instruction-set exten-
sions. In Proceedings of the 3rd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. 172–177.

[6] Kubilay Atasu, Wayne Luk, Oskar Mencer, Can Ozturan, and Günhan
Dundar. 2010. FISH: Fast instruction synthesis for custom processors.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20, 1
(2010), 52–65.

[7] Kubilay Atasu, Laura Pozzi, and Paolo Ienne. 2003. Automatic
application-specific instruction-set extensions under microarchitec-
tural constraints. In Proceedings of the 40th annual Design Automation
Conference. 256–261.

[8] Chen Bai, Jiayi Huang, Xuechao Wei, Yuzhe Ma, Sicheng Li,
Hongzhong Zheng, Bei Yu, and Yuan Xie. 2023. ArchExplorer: Microar-
chitecture exploration via bottleneck analysis. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture.
268–282.

[9] Paolo Bonzini and Laura Pozzi. 2008. Recurrence-aware instruction
set selection for extensible embedded processors. IEEE transactions on
very large scale integration (VLSI) systems 16, 10 (2008), 1259–1267.

[10] Iulian Brumar, Georgios Zacharopoulos, Yuan Yao, Saketh Rama, David
Brooks, and Gu-Yeon Wei. 2023. Early dse and automatic generation of
coarse-grained merged accelerators. ACM Transactions on Embedded
Computing Systems 22, 2 (2023), 1–29.

[11] Christopher Celio, Palmer Dabbelt, David A Patterson, and Krste
Asanović. 2016. The renewed case for the reduced instruction set
computer: Avoiding isa bloat with macro-op fusion for risc-v. arXiv
preprint arXiv:1607.02318 (2016).

[12] Nathan Clark, Jason Blome, Michael Chu, Scott Mahlke, Stuart Biles,
and Krisztian Flautner. 2005. An architecture framework for trans-
parent instruction set customization in embedded processors. In 32nd
International Symposium on Computer Architecture (ISCA’05). IEEE,

CIExplorer: Microarchitecture-Aware Exploration for Tightly Integrated Custom Instruction ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

272–283.
[13] Nathan Clark, Amir Hormati, Scott Mahlke, and Sami Yehia. 2006.

Scalable subgraph mapping for acyclic computation accelerators. In
Proceedings of the 2006 international conference on Compilers, architec-
ture and synthesis for embedded systems. 147–157.

[14] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and
Krisztian Flautner. 2004. Application-specific processing on a general-
purpose core via transparent instruction set customization. In 37th
international symposium on microarchitecture (MICRO-37’04). IEEE,
30–40.

[15] Nathan Clark, Hongtao Zhong, and Scott Mahlke. 2003. Processor
acceleration through automated instruction set customization. In Pro-
ceedings. 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2003. MICRO-36. IEEE, 129–140.

[16] Nathan T Clark, Hongtao Zhong, and Scott A Mahlke. 2005. Auto-
mated custom instruction generation for domain-specific processor
acceleration. IEEE Trans. Comput. 54, 10 (2005), 1258–1270.

[17] Jason Cong, Yiping Fan, Guoling Han, and Zhiru Zhang. 2004.
Application-specific instruction generation for configurable processor
architectures. In Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays. 183–189.

[18] Mihaela Damian, Julian Oppermann, Christoph Spang, and Andreas
Koch. 2022. SCAIE-V: an open-source scalable interface for ISA ex-
tensions for RISC-V processors. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 169–174.

[19] Muhammad Umar Farooq, Lizy John, and Margarida F Jacome. 2009.
Compiler controlled speculation for power aware ilp extraction in
dataflow architectures. In High Performance Embedded Architectures
and Compilers: Fourth International Conference, HiPEAC 2009, Paphos,
Cyprus, January 25-28, 2009. Proceedings 4. Springer, 324–338.

[20] Brian Fields, Rastislav Bodik, and Mark D Hill. 2002. Slack: Maxi-
mizing performance under technological constraints. ACM SIGARCH
Computer Architecture News 30, 2 (2002), 47–58.

[21] Joseph A Fisher, Paolo Faraboschi, and Giuseppe Desoli. 1996. Custom-
fit processors: Letting applications define architectures. In Proceedings
of the 29th Annual IEEE/ACM International Symposium on Microarchi-
tecture. MICRO 29. IEEE, 324–335.

[22] Carlo Galuzzi, Koen Bertels, and Stamatis Vassiliadis. 2007. A linear
complexity algorithm for the generation of multiple input single output
instructions of variable size. In International Workshop on Embedded
Computer Systems. Springer, 283–293.

[23] Emanuele Giaquinta, Anadi Mishra, and Laura Pozzi. 2015. Maximum
convex subgraphs under I/O constraint for automatic identification of
custom instructions. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34, 3 (2015), 483–494.

[24] Vikkitharan Gnanasambandapillai, Jorgen Peddersen, Roshan Ragel,
and Sri Parameswaran. 2020. Finder: Find efficient parallel instructions
for asips to improve performance of large applications. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 39,
11 (2020), 3577–3588.

[25] Hossein Golestani, Rathijit Sen, Vinson Young, and Gagan Gupta.
2022. Calipers: a criticality-aware framework for modeling processor
performance. In Proceedings of the 36th ACM International Conference
on Supercomputing. 1–14.

[26] Ricardo E Gonzalez. 2000. Xtensa: A configurable and extensible
processor. IEEE micro 20, 2 (2000), 60–70.

[27] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin
Chhugani, Nadathur Satish, Karthikeyan Sankaralingam, and
Changkyu Kim. 2012. Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing. IEEE Micro 32, 5 (2012),
38–51.

[28] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and
David August. 2011. Bundled execution of recurring traces for energy-
efficient general purpose processing. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. 12–23.

[29] Juris Hartmanis. 1982. Computers and intractability: a guide to the
theory of np-completeness (michael r. garey and david s. johnson).
Siam Review 24, 1 (1982), 90.

[30] Hui Huang, Taemin Kim, and Yatin Hoskote. 2014. Edit distance
based instruction merging technique to improve flexibility of custom
instructions toward flexible accelerator design. In 2014 19th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 219–224.

[31] Eslam Hussein, Bernd Waschneck, and Christian Mayr. 2024. Automat-
ing application-driven customization of ASIPs: A survey. Journal of
Systems Architecture (2024), 103080.

[32] Paolo Ienne and Rainer Leupers. 2006. Customizable embedded proces-
sors: design technologies and applications. Elsevier.

[33] Intel Corporation. 2024. Intel®Intrinsics Guide. https://www.intel.
com/content/www/us/en/docs/intrinsics-guide/index.html. Accessed:
2024-06-13.

[34] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1–12.

[35] Hyungyo Kim, Gaohan Ye, Nachuan Wang, Amir Yazdanbakhsh, and
Nam Sung Kim. 2024. Exploiting Intel® Advanced Matrix Extensions
(AMX) for Large Language Model Inference. IEEE Computer Architec-
ture Letters (2024).

[36] Snehasish Kumar, Nick Sumner, Vijayalakshmi Srinivasan, Steve Marg-
erm, and Arrvindh Shriraman. 2017. Needle: Leveraging program
analysis to analyze and extract accelerators from whole programs. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 565–576.

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
symposium on code generation and optimization, 2004. CGO 2004. IEEE,
75–86.

[38] Jan Laukemann, Julian Hammer, Georg Hager, and Gerhard Wellein.
2019. Automatic throughput and critical path analysis of x86 and
arm assembly kernels. In 2019 IEEE/ACM Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS).
IEEE, 1–6.

[39] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith.
1997. Mediabench: A tool for evaluating and synthesizing multimedia
and communications systems. In Proceedings of 30th Annual Interna-
tional Symposium on Microarchitecture. IEEE, 330–335.

[40] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. 2009. McPAT: An integrated power,
area, and timing modeling framework for multicore and manycore
architectures. In Proceedings of the 42nd annual ieee/acm international
symposium on microarchitecture. 469–480.

[41] Tao Li, Wu Jigang, Siew-Kei Lam, Thambipillai Srikanthan, and Xi-
cheng Lu. 2010. Selecting profitable custom instructions for recon-
figurable processors. Journal of Systems Architecture 56, 8 (2010),
340–351.

[42] MahimMishra, Timothy J Callahan, Tiberiu Chelcea, Girish Venkatara-
mani, Seth C Goldstein, and Mihai Budiu. 2006. Tartan: evaluating
spatial computation for whole program execution. ACM SIGARCH
Computer Architecture News 34, 5 (2006), 163–174.

[43] Nahri Moreano, Guido Araujo, Zhining Huang, and Sharad Malik. 2002.
Datapath merging and interconnection sharing for reconfigurable
architectures. In Proceedings of the 15th international symposium on

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Xiaoyu Hao et al.

System Synthesis. 38–43.
[44] Nahri Moreano, Edson Borin, Cid De Souza, and Guido Araujo. 2005.

Efficient datapath merging for partially reconfigurable architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24, 7 (2005), 969–980.

[45] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.
2015. Exploring the potential of heterogeneous von neumann/dataflow
execution models. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 298–310.

[46] Tony Nowatzki, Venkatraman Govindaraju, and Karthikeyan Sankar-
alingam. 2015. A graph-based program representation for analyzing
hardware specialization approaches. IEEE Computer Architecture Let-
ters 14, 2 (2015), 94–98.

[47] NVIDIA Corporation. 2017. NVIDIA Tesla V100 GPU Architec-
ture. https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

[48] Nagaraju Pothineni, Anshul Kumar, and Kolin Paul. 2007. Application
specific datapath extension with distributed i/o functional units. In
20th International Conference on VLSI Design held jointly with 6th Inter-
national Conference on Embedded Systems (VLSID’07). IEEE, 551–558.

[49] Laura Pozzi, Kubilay Atasu, and Paolo Ienne. 2006. Exact and approxi-
mate algorithms for the extension of embedded processor instruction
sets. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 25, 7 (2006), 1209–1229.

[50] Laura Pozzi and Paolo Ienne. 2005. Exploiting pipelining to relax
register-file port constraints of instruction-set extensions. In Proceed-
ings of the 2005 international conference on Compilers, architectures and
synthesis for embedded systems. 2–10.

[51] Rodrigo CO Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function merging by sequence alignment.
In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 149–163.

[52] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
2014. Aladdin: A pre-rtl, power-performance accelerator simulator
enabling large design space exploration of customized architectures.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 97–108.

[53] Amirali Sharifian, Snehasish Kumar, Apala Guha, and Arrvindh Shri-
raman. 2016. Chainsaw: Von-neumann accelerators to leverage fused
instruction chains. In 2016 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 1–14.

[54] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
2002. Automatically characterizing large scale program behavior. ACM
SIGPLAN Notices 37, 10 (2002), 45–57.

[55] Shaojie Tan, Qingcai Jiang, Zhenwei Cao, Xiaoyu Hao, Junshi Chen,
and Hong An. 2024. Uncovering the performance bottleneck of modern
HPC processor with static code analyzer: a case study on Kunpeng 920.
CCF Transactions on High Performance Computing 6, 3 (2024), 343–364.

[56] David Trilla, John-David Wellman, Alper Buyuktosunoglu, and Pradip
Bose. 2021. Novia: A framework for discovering non-conventional
inline accelerators. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. 507–521.

[57] Ajay K Verma, Philip Brisk, and Paolo Ienne. 2007. Rethinking custom
ISE identification: A new processor-agnostic method. In Proceedings
of the 2007 international conference on Compilers, architecture, and
synthesis for embedded systems. 125–134.

[58] Shanshan Wang and Chenglong Xiao. 2023. Reinforcement Learn-
ing for Selecting Custom Instructions under Area Constraint. IEEE
Transactions on Artificial Intelligence (2023).

[59] ShanshanWang, ChenglongXiao,Wanjun Liu, and Emmanuel Casseau.
2016. A comparison of heuristic algorithms for custom instruction
selection. Microprocessors and Microsystems 45 (2016), 176–186.

[60] Chenglong Xiao and Emmanuel Casseau. 2012. Exact custom instruc-
tion enumeration for extensible processors. Integration 45, 3 (2012),
263–270.

[61] Chenglong Xiao, Emmanuel Casseau, Shanshan Wang, and Wanjun
Liu. 2014. Automatic custom instruction identification for application-
specific instruction set processors. Microprocessors and Microsystems
38, 8 (2014), 1012–1024.

[62] Georgios Zacharopoulos, Lorenzo Ferretti, Giovanni Ansaloni,
Giuseppe Di Guglielmo, Luca Carloni, and Laura Pozzi. 2019. Compiler-
assisted selection of hardware acceleration candidates from application
source code. In 2019 IEEE 37th International Conference on Computer
Design (ICCD). IEEE, 129–137.

[63] Bo Zhao, Wei Gao, Rongcai Zhao, Lin Han, Huihui Sun, and Yingying
Li. 2015. Performance evaluation of NPB and SPEC CPU2006 on
various SIMD extensions. In Big Data Computing and Communications:
First International Conference, BigCom 2015, Taiyuan, China, August
1-3, 2015, Proceedings 1. Springer, 257–272.

[64] Marcela Zuluaga and Nigel Topham. 2008. Resource sharing in custom
instruction set extensions. In 2008 Symposium on Application Specific
Processors. IEEE, 7–13.

[65] Marcela Zuluaga and Nigel Topham. 2009. Design-space exploration
of resource-sharing solutions for custom instruction set extensions.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28, 12 (2009), 1788–1801.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fine-grained ISAX
	2.2 ISA Extension
	2.3 Issues of Current Approaches
	2.4 Graph-Based Microarchitecture Modeling

	3 Framework Overview
	3.1 Main Concept
	3.2 Workflow

	4 Seed Growth Method
	4.1 Workflow
	4.2 Grow Function

	5 Split-and-Combine Method
	6 Cost Model
	6.1 Compiler-Assisted IR Specialization
	6.2 DEG Construction
	6.3 Modeling Resource Dependency
	6.4 Integration for Search

	7 Other Techniques
	8 Experimental Methodology
	9 Results
	9.1 Performance and Energy Efficiency
	9.2 Comparison with Existing Techniques
	9.3 Characterization for CIs
	9.4 Design Space Exploration

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

