
Proteus: Achieving High-Performance Processing-Using-DRAM with
Dynamic Bit-Precision, Adaptive Data Representation, and Flexible Arithmetic

Geraldo F. Oliveira† Mayank Kabra† Yuxin Guo‡ Kangqi Chen†
A. Giray Yağlıkçı† Melina Soysal† Mohammad Sadrosadati†

Joaquin O. Bueno★ Saugata Ghose∇ Juan Gómez-Luna§ Onur Mutlu†

† ETH Zürich ‡ Cambridge University ★ Universidad de Córdoba
∇ Univ. of Illinois Urbana-Champaign § NVIDIA Research

Abstract
Processing-using-DRAM (PUD) is a paradigm where the ana-
log operational properties of DRAM are used to perform
bulk logic operations. While PUD promises high throughput
at low energy and area cost, we uncover three limitations
of existing PUD approaches that lead to significant ineffi-
ciencies: (i) static data representation, i.e., two’s complement
with fixed bit-precision, leading to unnecessary computation
over useless (i.e., inconsequential) data; (ii) support for only
throughput-oriented execution, where the high latency of
individual PUD operations can only be hidden in the pres-
ence of bulk data-level parallelism; and (iii) high latency for
high-precision (e.g., 32-bit) operations.

To address these issues, we propose Proteus, the first hard-
ware framework that addresses the high execution latency of
bulk bitwise PUD operations by implementing a data-aware
runtime engine for PUD. Proteus reduces the latency of PUD
operations in three different ways: (i) Proteus dynamically
reduces the bit-precision (and thus the latency and energy
consumption) of PUD operations by exploiting narrow val-
ues (i.e., values with many leading zeros or ones); (ii) Pro-
teus concurrently executes independent in-DRAM primitives
belonging to a single PUD operation across multiple DRAM
arrays; (iii) Proteus chooses and uses themost appropriate data
representation and arithmetic algorithm implementation for
a given PUD instruction transparently to the programmer.
We compare Proteus to different state-of-the-art comput-

ing platforms (CPU, GPU, and the SIMDRAM PUD archi-
tecture) for twelve real-world applications. Even when us-
ing only a single DRAM bank, Proteus provides (i) 17×,
7.3×, and 10.2× higher performance per mm2; and (ii) 90.3×,
21×, and 8.1× lower energy consumption than CPU, GPU,
and SIMDRAM, respectively. We open-source Proteus at
https://github.com/CMU-SAFARI/Proteus.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/2025/06
https://doi.org/10.1145/3721145.3730420

CCS Concepts
• Computer systems organization → Other architec-
tures; • Hardware→Memory and dense storage.

Keywords
processing-in-memory, memory systems, DRAM, energy
efficiency, parallelism
ACM Reference Format:
Geraldo F. Oliveira, Mayank Kabra, Yuxin Guo, Kangqi Chen, A.
Giray Yağlıkçı, Melina Soysal, Mohammad Sadrosadati, Joaquin Oli-
vares Bueno, Saugata Ghose, Juan Gómez-Luna, Onur Mutlu . 2025.
Proteus: Achieving High-Performance Processing-Using-DRAM
with Dynamic Bit-Precision, Adaptive Data Representation, and
Flexible Arithmetic . In 2025 International Conference on Supercom-
puting (ICS ’25), June 8–11, 2025, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 20 pages. https://doi.org/10.1145/3721145.3730420

1 Introduction
Processing-in-memory (PIM) [1–12] aims to alleviate the
ever-growing cost of moving data between computing units
(e.g., CPU, GPU) and memory units (e.g., DRAM). In PIM
architectures, computation is done by adding logic near mem-
ory arrays, i.e., processing-near-memory (PNM) [13–98],
or by using the analog operational properties of the mem-
ory arrays, i.e., processing-using-memory (PUM) [66, 99–
139]). Prior works [66, 101–107, 110, 114–117, 119, 120, 126,
129, 130, 132, 133, 140, 141] show the potential and feasibil-
ity of processing-using-DRAM (PUD), by using DRAM cir-
cuitry to implement in-DRAM row copy [104, 110, 130, 142],
Boolean [101, 103, 107, 117], and arithmetic [103, 106, 119,
120, 131–133, 141, 143–149] operations. PUD systems often
employ a bulk bit-serial execution model [102], where each
Boolean primitive operates across entire DRAM rows, with
each row containing one bit from many input operands. The
predefined sequence of DRAM commands that implements
an operation are stored in a µProgram [143].

We uncover three shortcomings that significantly limit the
performance and efficiency of PUD architectures. First, they
employ a rigid and static data representation, which is
inefficient for bit-serial execution. Existing PUD engines typ-
ically employ a fixed bit-precision, statically-defined (com-
monly two’s complement) data representation for all PUD

https://github.com/CMU-SAFARI/Proteus
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721145.3730420
https://doi.org/10.1145/3721145.3730420

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

operations. This rigid and static data format introduces inef-
ficiencies in a bit-serial execution model, where bits of a data
word are individually and sequentially processed. Since many
applications store data in data representation formats that
exceed the necessary precision [150–159] (e.g., 8-bit values
stored in a 32-bit integer), a significant fraction of PUD com-
putation is wasted on processing inconsequential bits, such
as leading zeros or ones (e.g., sign-extension bits), causing
significant latency and energy overhead. Second, PUD archi-
tectures provide only a throughput-oriented execution
model with limited latency tolerance. PUD operations
are composed of bitwise (bit-serial) in-DRAM primitives (e.g.,
in-DRAM majority and NOT [101, 117]), making individual
PUD operations inherently slow due to the need to oper-
ate on each bit serially to perform an operation with a data
width larger than one. To compensate for this latency, PUD
architectures adopt a throughput-oriented execution model
that distributes large amounts of data across multiple DRAM
subarrays and DRAM banks. However, this approach is effec-
tive only when sufficient data-level parallelism is available
to amortize the high latency of bit-serial execution of an
individual PUD primitive. In scenarios where data-level par-
allelism is limited, this throughput-oriented execution model
fails to hide the latency of individual in-DRAM primitives,
potentially leading to performance degradation [141]. Third,
bit-serial PUD architectures face scalability challenges for
high-precision operations. PUD systems suffer from in-
creased latency as the bit-precision grows [143]. Due to their
bit-serial nature, the latencies of arithmetic PUD operations
scale linearly or quadratically with the bit-precision [143].

Our goal in this work is to overcome the three limitations
of PUD architectures that stem from the naive use of a bit-
serial execution model. To this end, we propose Proteus,1
an efficient data-aware runtime framework that dynami-
cally adjusts the bit-precision and, based on that, chooses and
uses the most appropriate data representation and arithmetic
algorithm implementation for a given PUD operation. Pro-
teus builds on three key ideas. To solve the first limitation
(i.e., rigid and static data representation), Proteus reduces
the bit-precision for PUD operations by leveraging narrow
values (i.e., values with many leading zeros or ones). As
several works observe [150–159], programmers often over-
provision the bit-precision used to store operands, using
large data types (e.g., a 32-bit or 64-bit integer) to store small
(i.e., narrow, e.g., 4-bit, 8-bit) values. Based on this observa-
tion, Proteus exploits dynamic narrow values to reduce the
bit-precision of a PUD operation to that of the best-fitting
number of bits, thereby avoiding costly in-DRAM operations

1Proteus is a shape-shifting, prophetic sea god from Greek mythology [160],
known for his ability to elude capture by changing forms. Our Proteus
changes the bit-precision of PUD operations to improve performance.

on inconsequential bits, which improves overall performance
and energy efficiency.

To solve the second limitation (i.e., throughput-oriented
execution with limited latency tolerance), Proteus parallelizes
the execution of independent in-DRAM primitives in a PUD
operation by leveraging DRAM’s internal organization com-
bined with bit-level parallelism. We make the key observation
that many in-DRAM primitives that compose a PUD opera-
tion (e.g., an in-DRAM addition) can be executed concurrently
across different bits of a data word. For example, executing an
𝑛-bit in-DRAM addition (i.e., {𝐴𝑛−1, . . . , 𝐴0}+{𝐵𝑛−1, . . . , 𝐵0})
in a bit-serial manner requires serially performing three
majority-of-three (MAJ3) operations per bit 𝑖 to compute
the 𝑠𝑢𝑚 and propagate the carry to bit 𝑖+1. However, only
one of these operations (i.e., the carry propagation from bit
𝑖 to bit 𝑖 + 1) truly requires serialization, while the other
two MAJ3 operations can be concurrently executed across
the 𝑛 bit positions of a data word. To exploit this obser-
vation, Proteus scatters the 𝑛 bits of a data word across
multiple DRAM subarrays (i.e., 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦0 ← {𝐴0, 𝐵0}, . . . ,
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑛−1 ← {𝐴𝑛−1, 𝐵𝑛−1}) and employs subarray-level
parallelism (SALP) [161] to enable each subarray 𝑖 to concur-
rently execute the in-DRAM primitive associated with bit
𝑖 , thereby hiding the high latency of individual in-DRAM
primitives in a PUD operation over the many bits of the
target data word. To propagate intermediate data (e.g., carry
bits) across DRAM subarrays, Proteus leverages LISA [162], a
low-cost DRAM design that enables fast inter-subarray data
movement at DRAM row granularity.

To solve the third limitation (i.e., scalability challenges
for high-precision operations), Proteus exploits an alterna-
tive data representation for high-precision computation.
Concretely, we use the redundant binary representation
(RBR) [163–167] (where multiple-digit combinations repre-
sent the same value), for high-precision (e.g., 32-bit or 64-bit)
PUD computations. PUD execution can take advantage of
two properties of RBR-based arithmetic: (i) operations no
longer need to propagate carry bits through the full width
of the data (e.g., RBR-based addition limits carry propaga-
tion to at most two digits [168]), and (ii) operation latency is
independent of the bit-precision.
Based on these three key ideas, we design Proteus as a

three-component hardware runtime framework for high-
performance PUD computation that transparently (from the
user/programmer) selects, for a given PUD operation, the
(i) bit-precision, (ii) fastest arithmetic algorithm for latency-
or throughput-oriented PUD execution, and (iii) most effi-
cient data format (e.g., two’s complement or redundant bi-
nary [163–167]). First, we build a Parallelism-Aware µProgram
Library, consisting of hand-tuned algorithmic implementa-
tions of key arithmetic operations that take into account

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

SALP [161] to implement PUD operations using (i) both bit-
serial and bit-parallel algorithms and (ii) both two’s comple-
ment and RBR data representation formats. The Parallelism-
Aware µProgram Library contains a collection of possible
implementations of PUD operations, each of which with dif-
ferent predetermined latency and energy requirements that
depend on a given bit-precision. The latency and energy each
µProgram consumes is stored within an easily-accessible
Pre-Loaded Cost Model Lookup Tables (LUTs) alongside the
µProgram in the Parallelism-Aware µProgram Library.
Second, we devise a new Dynamic Bit-Precision Engine

to identify the appropriate initial bit-precision for a given
PUD operation. We implement the Dynamic Bit-Precision
Engine by augmenting prior works’ Data Transposition
Unit [141, 143]. Before PUD execution, the Data Transpo-
sition Unit captures and transposes (from the standard hor-
izontal data layout to the PUD vertical data layout) cache
lines that are about to be evicted from the last-level cache
(LLC) to DRAM and belong to a PUD memory object, which
is previously-identified based on its memory address range.
During this process, our Dynamic Bit-Precision Engine scans
the content of the evicted cache line to identify the largest
value belonging to a PUD memory object. Third, when a
PUD operation is issued, the µProgram Select Unit probes
the Dynamic Bit-Precision Engine to identify the most suit-
able bit-precision for the PUD operation and, based on the
Pre-Loaded Cost Model LUTs within the µProgram Select Unit,
selects the best performing µProgram from the Parallelism-
Aware µProgram Library.
Key Results.We compare Proteus to different state-of-the-
art computing platforms (state-of-the-art CPU, GPU, and
SIMDRAM [143]). We comprehensively evaluate Proteus’
performance for twelve real-world applications [169–172].
Even when using only a single DRAM bank, Proteus provides
(i) 17×, 7.3×, and 10.2× higher performance per mm2; and
(ii) 90.3×, 21×, and 8.1× lower energy consumption than
CPU, GPU, and SIMDRAM, respectively, on average across
all twelve real-world applications. Proteus incurs low area
cost on top of a DRAM chip (1.6%) and CPU die (0.03%).

We make the following major contributions:
• We identify three major shortcomings of existing bit-serial
PUD architectures: (i) rigid and static data representation,
(ii) throughput-oriented execution model with limited la-
tency tolerance, and (iii) scalability challenges for high-
precision operations.
• We propose Proteus, a three-component data-aware hard-
ware runtime framework for high-performance PUD
computation that transparently (from the programmer),
for a given PUD operation, dynamically adjusts the bit-
precision, and based on that, chooses and uses the most
appropriate data representation (e.g., two’s complement

or RBR) and the most appropriate arithmetic algorithm
implementation for latency- or throughput-oriented PUD
execution.
• We extensively evaluate Proteus for twelve real-world ap-
plications, showing that Proteus outperforms a state-of-
the-art PUD framework (SIMDRAM), CPU, and GPUwhile
incurring low area cost to the system.
• We open-source Proteus at https://github.com/CMU-
SAFARI/Proteus. An extended version of this paper is avail-
able at [173].

2 Background
2.1 DRAM Organization & Operation
DRAM Organization. Fig. 1 shows the hierarchy of a
DRAM system. A DRAMmodule (Fig. 1a) has several (e.g., 8–
16) DRAM chips. A DRAM chip (Fig. 1b) has multiple banks
(e.g., 8–16). A DRAM bank (Fig. 1c) has (i) multiple (e.g.,
64–128) 2D arrays of DRAM cells known as DRAM subar-
rays [101, 102, 104, 161, 162, 174–198]; (ii) a global row de-
coder and a global address latch that select a row of cells
in a subarray through global wordlines; (iii) column select
logic (CSL) that selects portions (e.g., 64-bit) of the row; and
(iv) a set of global sense amplifiers (GSAs) [102, 105, 162,
182, 187, 193, 199, 200], also sometimes called the global row
buffer [120, 141, 161, 201–204], that transfers the selected
fraction of the data from the row through global bitlines.
Each subarray (Fig. 1d) contains (i) multiple rows (e.g., 512–
1024) and columns (e.g., 2–8 kB [199, 204, 205]) of DRAM
cells, (ii) a local row decoder that activates a local wordline,
and (iii) a local row buffer containing a row of sense am-
plifiers (SAs; 1 in Fig. 1d) to latch data from an activated
row. A DRAM cell (2) consists of an access capacitor, which
connects a transistor that stores the data value with a local
bitline shared by all cells in the same column. Modern DRAM
employs an open bitline architecture [206, 207], fitting only
enough SAs in one local row buffer to latch half a row (3).

(a) DRAM Module

chip chip chip...

(b) DRAM Chip (c) DRAM Bank

ba
nk

ba
nk

ba
nk

ba
nk

I/O logic

ba
nk

ba
nk

ba
nk

ba
nk

cmd/addr data

gl
ob

al
 w

or
dl

in
e

gl
ob

al
 b

itl
in

e

GSAs

su
ba

rra
y 1

su

ba
rra

y N
 ...

global row decoder

...SA SA SA

...SA SA SA

cell tra
ns

is
to

r
ac

ce
ss

capacitor

(d) DRAM Subarray

bitlinecell...

...

lo
ca

l r
ow

 d
ec

od
er

local row buffer

lo
ca

l

local

...

... open
bitline
arch.

w
or

dl
in

e 2

3

bi
tli

ne

bi
tli

ne1

CSL

su
ba

rra
y 0

addr.
latch

Figure 1: DRAM organization.

DRAM Operation. The memory controller issues three
commands to service a DRAM request. The first command,

https://github.com/CMU-SAFARI/Proteus
https://github.com/CMU-SAFARI/Proteus

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

ACTIVATE (ACT), connects each DRAM cell in a row to its
local bitline, and the cell’s transistor shares its charge with
the bitline to shift the bitline voltage higher (or lower) if the
cell stores a ‘1’ (‘0’). The local row buffer amplifies the shifts
to CMOS-readable values (simultaneously restoring charge
to the DRAM cell). The latency from the start of activation
until charge restoration is called 𝑡𝑅𝐴𝑆 . The second command,
READ (RD), returns a cache line of data from the local row
buffer. The third command, PRECHARGE (PRE), disconnects
DRAM cells from the bitlines, and returns the bitlines to their
reference voltage. The precharge latency is called 𝑡𝑅𝑃 .

2.2 Processing-Using-DRAM
In-DRAM Row Copy. RowClone [104] enables copying
a row 𝐴 to a row 𝐵 in the same subarray by issuing two
consecutive ACTs to these two rows, followed by a PRE. This
command sequence is called AAP. LISA [162] enables the
execution of in-DRAM row copy operations across DRAM
rows in different subarrays by connecting local row buffers
of neighboring subarrays using isolation transistors.
In-DRAM Bitwise Operations. Ambit [101, 117] shows
that a simultaneous triple row activation (TRA) can perform
in-DRAM bitwise MAJ3/AND/OR operations. Ambit imple-
ments TRA using a custom row decoder, and introduces a
new command called AP that issues a TRA followed by a PRE.
Ambit also provides a mechanism to perform bitwise NOT
operations [101]. SIMDRAM [143] builds on top of Ambit
to implement and expose high-level in-DRAM operations
(µPrograms). A µProgram consists of a sequence of AAPs (row
copies) and APs that are generated offline, and exposed to the
programmer as new bbop (bulk-bitwise operation) instruc-
tions. To implement carry propagation, SIMDRAM employs
a vertical data layout, where all bits of a data word are stored
in a single DRAM column, and executes each bbop instruc-
tion bit-serially. Such an execution model allows SIMDRAM
to perform implicit bit-shift operations via in-DRAM row
copies. Across this paper, we use the following terminol-
ogy: (i) a PUD operation refers to the target computation
that DRAM executes (e.g., addition, row copy); (ii) an in-
DRAM/PUD primitive refers to the sequence of AAPs/APs in a
µProgram; and (iii) a PUD instruction refers to a bbop instruc-
tion that the user/compiler uses to trigger a PUD operation.

3 Motivation
Limitation 1: Static Data Representation. PUD architec-
tures naively utilize conventional data formats (e.g., two’s
complement) and fixed operand bit-precision (e.g., 32-bit inte-
gers) to implement bit-serial computation. However, because
bit-serial latency directly increases with bit-precision, these

architectures experience subpar performance since an appli-
cation’s data with small dynamic range (i.e., narrow values)
are often stored in large data formats [150–157] that waste
most of the bit-precision. Note that data values often become
narrow dynamically at runtime. Narrow values have been
exploited in many scenarios, e.g., cache compression [150–
152, 157, 158, 208–213], register files [153, 155, 214–219],
logic synthesis & circuit optimizations [220–224], neural net-
work quantization [225, 226], error tolerance [153, 227, 228].
Opportunity 1: Narrow Values for PUD Computation.
Narrow values can be exploited to reduce the bit-precision
of a PUD operation to that of the best-fitting number of bits,
thereby, improving overall performance. We quantify the re-
quired bit-precision in PUD-friendly real-world applications
in Fig. 2. We define as required bit-precision the minimum
number of bits required to represent the input operands of
the PUD operation. We collect the required bit-precision
dynamically in three main steps: we (i) instrument loops in
applications that can be auto-vectorized using LLVM’s loop
auto-vectorization pass [229–232] (since prior work [141]
shows that such loops are well-suited for PUD execution) to
output the data values such loops use (i.e., we collect the data
values of each array that is used as input/output of an auto-
vectorized arithmetic instruction across the auto-vectorized
loops), (ii) execute the application to completion, (iii) post-
process the output file containing the loop information data
to calculate the required bit-precision.

na
rr

ow
 v

al
ue

s

0

8

16

24

32

pca 2mm 3mm cov dg fdtd gmm gs bp hw km x264

R
eq

ui
re

d
 B

it−
P

re
ci

si
on

Figure 2: Required bit-precision distribution for in-
put/output arrays of auto-vectorized instructions in
loops across 12 applications. The box represents the
25th to 75th percentiles, with whiskers extending to
the smallest/largest precision (with a diamond at the
largest precision and a bubble at the mean precision).

We make two observations. First, all our real-world ap-
plications display a significant amount of narrow values. In
such applications, the input bit-precision can be reduced
from the native 32-bit to 20-bit (min. of 8-bit, max. of 30-bit)
on average across all applications. By doing so, the perfor-
mance of the underlying PUD architecture can improve by
1.6×, in case the application utilizes linearly-scaling PUD
operations (such as addition [143]), or 2.6×, in case the appli-
cation utilizes quadratically-scaling PUD operations (such as
multiplication [143]). Second, the bit-precision significantly

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

varies across data arrays within a given application. This
indicates the need for a mechanism that can dynamically
identify the target bit-precision for a given PUD operation
(similar to prior works that leverage narrow values for tasks
other than PUD [150–157, 214, 215, 233, 234]). As prior work
points out [154], static compiler analyses cannot identify the
bit-precision of dynamically allocated and initialized data ar-
rays.We investigated several prior compiler works [220, 235–
238] that perform bit-width identification. However, such
works are limited to identifying the bit-precision of stati-
cally-allocated variables.
Limitation 2: Throughput-Oriented Execution. Exist-
ing PUD architectures favor throughput-oriented execu-
tion as DRAM parallelism can partially hide the activa-
tion latency in a µProgram. To further improve throughput,
prior works [141, 143, 144] use bank-level parallelism (BLP)
to (i) distribute µPrograms across DRAM banks [143], or
(ii) parallelize data writing and PUD computation of different
µPrograms targeting different banks [144]. However, such
approaches cannot reduce the latency of a single µProgram.
Opportunity 2: DRAM Parallelism for Latency-
Oriented Execution. We make the key observation that
several primitives in a µProgram (i.e., AAP/AP primitives
that execute in-DRAM row copy or in-DRAM MAJ3/NOT
operations) can be executed concurrently, as they are
independent of one another. Fig. 3 shows this opportunity
for a two-bit addition. In conventional bit-serial execution
(Fig. 3a), all bits of the input arrays 𝐴 and 𝐵 are placed in
a single DRAM subarray. Because of that, all in-DRAM
primitives in a µProgram are serialized, enabling the execu-
tion of only a single bit-position at a time. In our example,
(i) DRAM cycles 1 – 3 execute MAJ3/NOT operations over
the least-significant bits (LSBs) of the input arrays 𝐴 and
𝐵, i.e., 𝐴0 and 𝐵0; and afterwards (ii) DRAM cycles 4 – 6
execute MAJ3/NOT operations over the most-significant bits
(MSBs) of the input arrays 𝐴 and 𝐵, i.e., 𝐴1 and 𝐵1. However,
the only inter-bit dependency in the µProgram is the carry
propagation (i in Fig. 3a). In contrast, we can leverage
bit-level parallelism to concurrently execute bit-independent
in-DRAM primitives across multiple DRAM subarrays. In our
example, we can reduce the overall latency of the bit-serial
PUD addition operation by (i) distributing the individual bits
of data-elements from arrays𝐴 and 𝐵 across two DRAM sub-
arrays (i.e., 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦0 ← {𝐴0, 𝐵0}; 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦1 ← {𝐴1, 𝐵1}),
(ii) executing the required in-DRAM row copies (not shown)
and MAJ3/NOT operations for the LSBs (DRAM cycles
1 – 3 in Fig. 3b) and MSBs (DRAM cycles 2 – 4 in Fig. 3b)
concurrently, and (iii) serializing only the carry generated
from the LSBs to the MSBs of the input arrays (ii in Fig. 3b).

Besides reducing the latency of bit-serial PUD operations,
carefully distributing individual bit positions across different

A1
A0
B1
B0
C1
C0
tmp
C1
C0
S2
S1
S0

A0
B0
C0
tmp
C0
S0

A1
B1
C1
tmp
C1
S2
S1

S0C0out

out

out

in
in

C1out S1

one
zero
undefined

majority
src1
src2
src3
dst

negate & majority
src1
src2
src3
dst

initial 1 2 3 4 5 6

in

out

in

out

initial 1 2 3 4

S0C0out

C1out S1

su
ba

rr
ay

 0
su

ba
rr

ay
 1

(a) All bits in a single subarray (b) Distributed bits across two subarrays

inter-bit dependencyi

ii

Figure 3: Simplified bit-serial PUD addition of two in-
put arrays 𝐴 and 𝐵, each of which with two-bit data
elements using (a) one and (b) two DRAM subarrays.

DRAM subarrays enables the efficient realization of latency-
friendly bit-parallel PUD arithmetic operations. By mapping
each bit position of a data element to a distinct subarray, our
PUD substrate can concurrently perform bitwise operations
across all bits of the operand, thereby fully exploiting the
parallelism inherent to bit-parallel arithmetic algorithms.
Limitation 3: High-Precision Computation. PUD suf-
fers from high latency for high bit-precision operations. For
example, even when employing multiple (i.e., 16) parallel
DRAM banks, SIMDRAM’s throughput for 32-bit and 64-bit
division is 0.8× and 0.5× that of a 16-core CPU system [143].
This is because the latency of bit-serial multiplication and
division scales quadratically with the bit-precision.
Opportunity 3: Alternative Data Representation for
High-Precision Computation. The high latency associ-
ated with high-precision computation is an inherent prop-
erty of coupling the binary numeral system with bit-serial
computation. We investigate an alternative data representa-
tion, i.e. the redundant binary representation (RBR) [163–167],
for high-precision computation. RBR is a positional number
system where each bit-position 𝑖 , which encodes 2𝑖 , is repre-
sented by two bits that can take on a value 𝑣 ∈ {−1, 0, 1}, such
that the magnitude of bit-position 𝑖 is 𝑣 × 2𝑖 . PUD execution
can take advantage of two key properties of RBR-based arith-
metic: (i) the operations no longer need to propagate carry
bits through the full width of the data (e.g., RBR-based addi-
tion limits carry propagation to at most two places [168]), and
(ii) the operation latency is independent of the bit-precision.
Goal. Our goal in this work is to mitigate the three limita-
tions of PUD architectures that arise due to the naive use
of a bit-serial execution model. To do so, we aim to fully
exploit the opportunities that DRAM’s internal parallelism
and dynamic bit-precision can provide to reduce the latency
and energy of PUD operations. Concretely, we aim to enable
(i) adaptive data-representation formats (two’s complement
and RBR) for PUD operands and (ii) flexible execution of
different arithmetic algorithm implementations (bit-serial
and bit-parallel) for PUD instructions.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

4 Proteus Overview
Fig. 4 provides a high-level overview of Proteus’ frame-
work, its main components, and execution flow. Proteus is
composed of three main components: (i) Parallelism-Aware
µProgram Library, (ii) Dynamic Bit-Precision Engine, and
(iii) µProgram Select Unit. These components are imple-
mented in hardware inside the DRAM memory controller.
The Parallelism-Aware µProgram Library and µProgram Select
Unit are part of Proteus Control Unit.

4.1 Main Components of Proteus
Parallelism-Aware µProgram Library (§5.2). Proteus in-
corporates a Parallelism-Aware µProgram Library (a in Fig. 4)
that consists of (i) hand-optimized implementations of differ-
ent µPrograms for key PUD operations (each with different
performance and bit-precision trade-offs), and (ii) Cost Model
Logic. For each operation, we implement multiple µPrograms
(§5.2.2) that use different (i) bit-serial or bit-parallel algo-
rithms and (ii) data representation formats (i.e., two’s com-
plement or RBR). Each µProgram uses a novel data mapping
that enables the concurrent execution of multiple indepen-
dent primitives across bits (§5.2.1). The performance of each
µProgram depends on the bit-precision, and the Cost Model
Logic selects the best-performing µProgram for a given opera-
tion and target bit-precision. The Cost Model Logic comprises
of Pre-Loaded Cost Model LUTs, which list the most-suitable
µProgram for each bit-precision, and Select Logic to identify
the target LUT for a bbop instruction. We empirically mea-
sure the throughput and energy efficiency of µPrograms in
Parallelism-Aware µProgram Library while scaling the target
bit-precision to populate the Pre-Loaded Cost Model LUTs.
Dynamic Bit-Precision Engine (§5.3). Proteus’ Dynamic
Bit-Precision Engine (b in Fig. 4) aims to identify the dynamic
range of memory objects associated with a PUD operation.
To do so, we dynamically identify (in hardware) the largest
input operand a PUD’s memory object stores. In state-of-the-
art PUD architectures [110, 131, 132, 143, 144], cache lines
belonging to a PUD’s memory object need to be transposed
from the traditional horizontal data layout to a vertical data
layout prior to the execution of a PUD operation. To effi-
ciently perform such data transformation, SIMDRAM [143]
implements a Data Transposition Unit, which hides the data
transposition latency by overlapping cache line evictions and
data layout transformation. The Data Transposition Unit con-
sists of an Object Tracker table (a small cache that keeps track
of memory objects that are used by PUD operations) and
Data Transposition Engines. The user/compiler informs the
Object Tracker of PUD’s memory objects using a specialized
instruction called bbop_trsp_init. Proteus leverages such a
Data Transposition Unit to dynamically identify in hardware

the largest value in a PUD’s memory object by adding: (i) a
new field in the Data Transposition Unit called maximum
value, which stores the largest value in a given memory ob-
ject; and (ii) a Dynamic Bit-Precision Engine, which scans the
data elements of evicted cache lines, identifies the largest
data value across all data elements and updates the stored
maximum value entry in the Data Transposition Unit.
µProgram Select Unit (§5.4). Proteus’ µProgram Select Unit
(c in Fig. 4) identifies the appropriate bit-precision for a PUD
operation based on the operation’s input data. The µProgram
Select Unit has of a (i) Bit-Precision Calculator Unit, which
evaluates the target bit-precision based on the input operands
of the PUD operation and their associated maximum values,
and (ii) buffers to store the selected µProgram.

4.2 Execution Flow
Proteus works in five main steps. In the first step (1 in Fig. 4),
the programmer/compiler utilizes specialized instructions
(i.e., bbop_trsp_init) to (i) register in theObject Tracker the
address, size, and initial bit-precision for each memory object
used as an input, output, or temporary operand in a PUD
operation; and (ii) execute a PUD operation over previously-
registered memory objects. When issuing an arithmetic bbop
instruction, the programmer/compiler indicates whether or
not dynamic bit-precision is enabled or disabled for that bbop
instruction. When dynamic bit-precision is disabled, Proteus’
Dynamic Bit-Precision Engine is turned off, and the µProgram
Select Unit utilizes the user-provided bit-precision for the
upcoming PUD operation related to the issued bbop instruc-
tion. In the second step, if the Dynamic Bit-Precision Engine
is enabled, it intercepts evicted cache lines belonging to pre-
viously registered memory objects (2) and identifies the
largest value stored in the cache line. If the identified value is
larger than the current maximum value stored in the Object
Tracker, the Dynamic Bit-Precision Engine updates the Object
Tracker with the up-to-date value (3). The second step is
repeated for all cache lines belonging to the memory objects
registered in the Object Tracker . As in SIMDRAM [143], our
system employs lazy allocation and maintains data coher-
ence for PUD memory objects through cache line flushing,
using the clflush instruction [239]. Thus, all memory ob-
jects initially reside within the CPU caches, and prior to
PUD execution, all cache lines belonging to a PUD opera-
tion are evicted to DRAM, which allows Proteus’ Dynamic
Bit-Precision Engine to access all data elements of a PUD op-
eration prior to computation. In the third step, the host CPU
dispatches the arithmetic bbop instruction (4) to Proteus’
Control Unit. In the fourth step, Proteus’ Control Unit re-
ceives the bbop instruction from the CPU and the maximum
values from the Dynamic Bit-Precision Engine (5), which
are used as inputs to the µProgram Select Unit. Based on

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

la
te
nc
y

#bits

la
te
nc
y

#bits

impl. #1 impl. #2 impl. #n

…

𝜇P
ro

gs
.

co
st

 m
od

.

source code
bbop_trsp_init(A, 8k, 8)

foo(){

}

bbop_add(C, A, B, 8k, 8, 1)

bbop_trsp_init(B, 8k, 8)

inputs bit-width
(bw)

dynamic bit-
sizeoutput

tra
ns

p.

A 0 7 0 1

dynamic
bit-precision

engine
AAP
AP
AAP
done

AP
AAP
AP
done

AP/AAP Disp.

data transposition unit

parallelism-aware 𝜇Programs

𝜇Program
select unit

Proteus control unit

object tracker

12

3

a

b

d f

g

precision en.

evicted cache line

bi
t-p
re
ci
si
on

ca
lc
ul
at
or

last-level

max. value update

cache

addr

{op, bw, dynamic bit-precision en.}
max. value

{o
p,

 b
w

}
𝜇P

ro
g.

c

operation
(op)

mem.
ctrl.

addr size bw max. value
A 8k 8 7
B 8k 8 9

e

AP/AAP

la
te
nc
y

#bits

AP
AP
done

CPU die

Figure 4: Overview of the Proteus framework.

...SA SA SA

...
SA SA SA

...

......

...

......

............ ...

D-grp.

C-grp.

B-grp.

addr.
latch

D

D

gl
ob

al
 b

itl
in

e

subarray sel.

SA_SEL

AP/AAP

B-
gr

p.

ro
w

 d
ec

.
lo

ca
l

ro
w

 d
ec

od
er

RBM

row addr.

isolation trans.

Ambit LISA-RISC SALP-MASA

1

3

2

sense
amplifier

Figure 5: Subarray layout.

this information, the Bit-Precision Calculator Unit computes
the target bit-precision and probes the Parallelism-Aware
µProgram Library (6), which returns the best-performing
µProgram and data format representation for the target PUD
operation and its associated bit-precision. In the fifth step,
the µProgram Select Unit dispatches the sequence of AAPs/APs
in the selected µProgram to DRAM (7). When the host CPU
reads back PUD memory objects (not shown in the figure),
Proteus (i) performs the necessary data format conversions
either from the reduced bit-precision to the user’s specified
bit-precision or from RBR to two’s complement (thus main-
taining system compatibility), and (ii) prepares the Dynamic
Bit-Precision Engine for future accesses by resetting the cur-
rent maximum data value stored in the Object Tracker .

5 Proteus Implementation
5.1 Subarray Organization
Performing Logic Primitives with Ambit. Proteus
reuses the subarray organization of Ambit [101] and SIM-
DRAM [143] (shown in Fig. 5) to enable logic primitive execu-
tion with only small subarray modifications. DRAM rows are
divided into three groups: (i) the Data group (D-group), con-
taining regular rows that store program data; (ii) the Control
group (C-group), containing two rows pre-initialized with
all-‘0’ and all-‘1’ values; and (ii) the Bitwise group (B-group),
containing six rows (called compute rows) to perform bitwise
operations. The B-group rows are all connected to a special
row decoder that can simultaneously activate three rows
when performing an AP and two when performing an AAP
(1 in Fig. 5).
Inter-Subarray Data Copy with LISA. Proteus leverages
LISA-RISC [162], which dynamically connects adjacent sub-
arrays using isolation transistors, to propagate intermedi-
ate data across subarrays. LISA-RISC works in four steps:
(i) activate the source row in the source subarray (latency:
𝑡𝑅𝐴𝑆); (ii) use the LISA row buffer movement command (RBM,
2 in Fig. 5) to turn on isolation transistors, which copies
data from the source subarray’s local row buffer (LRB) to
the destination subarray’s LRB (latency: 𝑡𝑅𝐵𝑀 , 5 ns [162]);

(iii) activate the destination row, to save the contents of the
destination LRB into the destination row (latency: 𝑡𝑅𝐴𝑆); and
(iv) precharge the bank (latency: 𝑡𝑅𝑃). Due to DRAM’s open
bitline architecture [206, 207], each LRB stores half of the
row, so we must perform steps (ii)–(iv) twice to copy both
halves of the row.
Enabling Subarray-Level Parallelism with SALP. To en-
able the concurrent execution of bit-independent primitives
in a µProgram, Proteus leverages SALP [161]. SALP-MASA
(Multitude of Activated Subarrays) allows multiple subarrays
in a bank to be activated concurrently by (i) pushing the
global row-address latch to individual subarrays, (ii) adding
a designated-bit latch (D in Fig. 5) to each subarray to ensure
that only a single subarray’s row buffer is connected to the
global bitline, and (iii) routing a new global wire (called sub-
array select), controlled by a new DRAM command (SA_SEL,
3 in Fig. 5), allowing the memory controller to set/clear each
designated-bit latch.

5.2 Parallelism-Aware µProgram Library
5.2.1 One-Bit Per-Subarray (OBPS) Data Mapping. To re-
duce the latency of PUD operations (§3), Proteus employs a
specialized data mapping called one-bit per-subarray (OBPS).
Bit-serial PUD architectures can employ three data map-
pings, as Fig. 6 illustrates: (i) all-bits in one-subarray (ABOS),
(ii) all-bits per-subarray (ABPS), and (iii) OBPS. Assume an
example DRAM bank with four subarrays, a DRAM row size
of three and an input array 𝐴 with six two-bit data elements.
First, the ABOS data mapping stores all six two-bit data

elements in one DRAM subarray (Fig. 6a). This data mapping
limits the parallelism available for PUD execution to that of a
single DRAM subarray. In our example, the latency of execut-
ing a single PUD primitive over all data elements of the input
array 𝐴 is four PUD cycles (as shown in Fig. 6a).2 Second,
the ABPS data mapping distributes all bits of multiple sets
of the input array across multiple DRAM subarrays (Fig. 6b),

2We refer to a PUD cycle as the end-to-end latency required to execute a
single AAP/AP in-DRAM primitive.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

subarray0
A1

A0

A1

A0

subarray0
A1

A0

subarray1
A1

A0

subarray3

(a) All-Bits in One-Subarray

subarray0 subarray0 subarray0 subarray0

(b) All-Bits Per-Subarray

cycle 1 cycle 2 cycle 3 cycle 4

subarray0subarray1 subarray0subarray1

cycle 1 cycle 2

subarray0subarray1subarray2subarray3

(c) One-Bit Per-Subarray
cycle 1

A1

subarray1
A1

A0A0

subarray2 subarray0

A[5] A[4] A[3] A[2] A[1] A[0]
A1A0 A1A0 A1A0 A1A0 A1A0 A1A0

input array A with six data elements A[0] … A[5]
each data element has two bits A0 and A1

Figure 6: Three datamappings for bit-serial computing.

allowing a PUD primitive to execute concurrently on dif-
ferent portions of the input data stored in each subarray by
exploiting data-level parallelism. In our example, the latency
of executing a single PUD primitive over all data elements of
the input array 𝐴 while employing the ABPS data mapping
is two PUD cycles (as shown in Fig. 6b). This is because, al-
though execution across data elements can be parallelized by
distributing them across multiple DRAM subarrays, the PUD
system must still serialize the execution of PUD primitives
across different bit positions of each data element, since all
bits of a given data element are co-located within a single
DRAM subarray under ABPS. Third, the OBPS data mapping
distributes each of the𝑚 individual bits of a given data ele-
ment of the input array to𝑚 DRAM subarrays (Fig. 6c), i.e.,
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦0 ← {𝐴0}, . . . , 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑚−1 ← {𝐴𝑚−1}, allowing
a PUD primitive to execute concurrently on different bits
of the input array stored in each subarray by exploiting bit-
level parallelism.3 In our example, the latency of executing
a single PUD primitive over all data elements of the input
array 𝐴 while employing the OBPS data mapping is only a
single PUD cycle (as shown in Fig. 6c).

5.2.2 µProgram Library Implementation. Proteus leverages
the subarray organization in Fig. 5 and our OBPS data map-
ping (Fig. 6) to implement parallelism-aware µPrograms for
key arithmetic operations (e.g., addition, multiplication). We
implement three classes of algorithms for arithmetic PUD
computations: bit-serial, bit-parallel, and RBR-based algo-
rithms. In Proteus, each µProgram implementation (i) has an
3If the number of subarrays is smaller than the target bit-precision, OBPS
evenly distributes the bits of input operands across the available subarrays.

associated µProgram_addr , and (ii) is stored in a reserved
memory space in DRAM (i.e., µProgram Memory).
Bit-Serial Algorithms. We optimize µPrograms for bit-
serial arithmetic operations (i.e., addition, subtraction, di-
vision, and multiplication) by concurrently executing inde-
pendent AAPs/APs across different DRAM subarrays. Fig. 3b
illustrates such a process for addition using the OBPS data
mapping (the process is analogous for other arithmetic oper-
ations). Proteus implements a ripple-carry adder using ma-
jority gates in two main steps. First, Proteus utilizes SALP-
MASA to concurrently execute the appropriate row copies
and majority operations across 𝑁 different subarrays. Sec-
ond, Proteus utilizes LISA-RISC to pipeline the carry prop-
agation process (ii in Fig. 3b) from 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑖 (e.g., 𝐶0

𝑜𝑢𝑡) to
𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑖+1 (e.g., 𝐶1

𝑖𝑛). This process repeats for all 𝑁 bits in
the input operand. Proteus reduces the latency of executing
an 𝑁 -bit bit-serial addition from 8𝑁 + 1 AAP/AP cycles [143]
to 2𝑁 + 7 AAP/AP cycles + 2(𝑁 − 1) RBM cycles.
Bit-Parallel Algorithms.We implement bit-parallel vari-
ants of our µPrograms that leverage carry-lookahead logic to
decouple the calculation of the carry bits and arithmetic logic
(e.g., addition). Carry-lookahead logic can identify if any
arithmetic on a bit will generate a carry (e.g., both operands
bits are ‘1’ for an addition), or if it will propagate the carry
value (e.g., only one operand bit for an addition is a ‘1’). For
𝑁 -bit operands, this reduces time complexity compared to
ripple-carry logic from O(𝑁) to O(log𝑁), where 𝑁 is the
number of bits in the input operands. We implement several
carry-lookahead algorithms in Proteus, including the carry-
select [240], Kogge–Stone [241], Ladner–Fischer [242], and
Brent–Kung [243] adders, as building blocks to implement
subtraction, multiplication, and division. Fig. 7a shows an
example Proteus implementation of a Kogge–Stone adder.

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

B2 A2 B1 A1 B0 A0
subarray3 subarray2 subarray1 subarray0

S3

C3out C2out C1out C0out

XOR XOR XOR XOR
B2
A2

B3
A3

B1
A1

B0
A0 Cin

B3 A3
A3

S2 S1 S0

RBM RBM RBM

XOR

P

AND

G

CPY

P

CPY

G

AND

P

AND

OR

G

AP/AAP

AP/AAP

AP/AAP

(a) 4-bit Kogge–Stone adder

1 0

subarray0

A0− A0+B0+B0−

h in

ANDAND AND AND

XOR

XORXOR

ANDAND

h0

f inf0

S0+S0−

1 0

subarray1

A1− A1+B1+B1−

ANDAND AND AND

XOR

XORXOR

ANDAND

h1

f1

S1+S1−

RBM

RBM

(b) 2-bit RBR adder

Figure 7: Proteus’ implementation of different adders.
Bits 𝐴𝑖 and 𝐵𝑖 are stored vertically in the same DRAM
bitline of subarray 𝑖 using the OBPS data mapping.

In the first step, Proteus performs 2𝑁+4 inter-subarray data
copies (using LISA-RISC) to copy the generate and propagate

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

bits from 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑖 to 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑖+1. In the second step, Pro-
teus performs a series of Boolean operations (using AAPs/APs)
to compute the next generate and propagate bits in parallel
(using SALP-MASA) across all DRAM subarrays. These two
steps repeat for 𝑙𝑜𝑔(𝑁) iterations. The latency of executing
an 𝑁 -bit bit-parallel addition using Proteus is 3𝑙𝑜𝑔2𝑁 + 13
AAP/AP cycles + 2𝑁 + 4 RBM cycles. Even though the bit-
parallel algorithms have a lower time complexity than the bit-
serial algorithms, the former can require more inter-subarray
copies, i.e., 2𝑁+4 RBM cycles for bit-parallel algorithms versus
2(𝑁 − 1) RBM cycles for bit-serial algorithms.
RBR-Based Algorithms. Fig. 7b illustrates Proteus’ imple-
mentation of a two-bit RBR-based adder [244]. The adder
operates in three steps. First, each digit 𝑖 generates an in-
termediate value ℎ𝑖 , computed only from the corresponding
input digit 𝑖 . Second, the output value 𝑓𝑖 at digit 𝑖 is computed
as a function of both the current digit and the preceding in-
termediate value ℎ𝑖−1. Third, the 𝑠𝑢𝑚 at digit 𝑖 depends on
the current digit, ℎ𝑖−1, and 𝑓𝑖−1. To propagate intermediate
results between digits, Proteus uses RBM commands to trans-
fer the values of ℎ𝑖 and 𝑓𝑖 from 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑖 to 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦𝑖+1.
The RBR-based addition executes with a constant latency
of 34 AAPs/APs cycles and 8 RBM cycles. Beyond addition,
Proteus reuses the same RBR-based adder design to support
additional arithmetic operations, including subtraction and
multiplication in the RBR format.

5.2.3 Cost Model Logic Implementation. Fig. 8 depicts the
hardware design of the Cost Model Logic. The Cost Model
Logic has two main components: (i) one LUT per PUD opera-
tion, and (ii) Select Logic. Each LUT row represents a different
bit-precision, and stores the index of the best-performing
µProgram in the library for that operation–precision combi-
nation. We empirically sized each LUT to contain 64 eight-bit
rows (i.e., supporting up to 64-bit computation, and indexing
up to 64 different µProgram implementations per PUD oper-
ation). The Cost Model Logic works in four main CPU cycles.
It receives as input the bit-precision (6 bits) and the bbop_op
opcode (4 bits) of the target PUD operation. In the first cycle,
the bit-precision indexes all the LUTs in parallel (1 in Fig. 8),
selecting the best-performing µProgram_id for the given bit-
precision for all implemented PUD operations (2). The Cost
Model Logic can quickly query the LUTs since they consist of
a few (i.e., 16) small (i.e., 64 B in size) SRAM arrays indexed
in parallel. In the second cycle, based on the 4-bit bbop_op
opcode, the Select Logic chooses the appropriate µProgram_id
(3). In the third cycle, the µProgram_id is concatenated with
the bbop_op opcode to form the µProgram_addr (4). In the
fourth cycle, the µProgram_addr indexes and fetches the
best-performing µProgram from the µProgram Scratchpad
(5). If the target µProgram is not loaded in the µProgram
Scratchpad, the Cost Model Logic fetches it from the µProgram

Memory (not shown). We estimate, using CACTI [245], that
the access latency and energy per access of the 64 B SRAM
array (used in our Cost Model Logic) is of 0.07 ns (i.e., less
than 1 CPU cycle) and 0.000 04 nJ.

0 AAP AP AAP done
1 AP AP done
… …
N AP AAP AP done

𝜇𝜇Prog.

𝜇𝜇Program Scratchpad

Select Logic

sub
0 0x01
1 0x01

… …
63 0x00

mul
0 0x11
1 0x11

… …
63 0x00

add
0 0x00
1 0x01

… …
63 0x11

Pre-Loaded Cost-Model LUTs

𝜇𝜇𝑃𝑃rog_id

bi
t-p

re
ci

si
on

bb
op

_o
p

𝜇𝜇Prog_addr

Cost Model Logic

1

2
3

4
5

Figure 8: Proteus’ Cost Model Logic.

5.2.4 Pareto Analysis. We conduct a performance and en-
ergy Pareto analysis to populate the Pre-Loaded Cost Model
LUTs. We model each µProgram using an analytical cost
model that takes as input the target bit-precision, the num-
ber of elements used during computation, and the number
of DRAM subarrays available. The analytical cost model
outputs the throughput (in GOPs/s) and energy efficiency
(in throughput/Watt) for each µProgram in the Parallelism-
Aware µProgram Library. We highlight our analyses for two
main operations (i.e., addition and multiplication) since they
represent linearly and quadratically-scaling PUD operations,
respectively. The analyses for subtraction and division fol-
low similar observations. In our analyses, we evaluate a
SIMDRAM-like PUD architecture using the three data map-
ping schemes described in Fig. 6. We assume a DRAM bank
with 64 PUD-capable DRAM subarrays and a subarray with
65,536 columns. We vary the number of input elements
as multiples of the number of DRAM columns per subar-
ray (from 1 DRAM subarray with 64K input elements to 64
DRAM subarrays with 4M input elements).
Linearly-Scaling PUD Operations. Fig. 9 shows the
throughput (𝑦-axis; top) and energy efficiency (𝑦-axis; bot-
tom) of six µProgram implementations for a linearly-scaling
PUD operation (i.e., integer addition) for different bit-
precision values (𝑥-axis). Each subplot depicts the different
input data sizes we use in our analysis. For this analysis,
we implement the following addition algorithms: ripple-
carry adder (RCA), carry-select adder (CSA) [240], Brent-
Kung adder [243], Kogge–Stone adder [241], Ladner-Fischer
adder [242], using (i) both two’s complement and RBR data
format representations; and (ii) ABOS, ABPS, and OBPS data
mappings. Note that the bit-parallel adder can only be imple-
mented using the OBPS data mappings. We make two obser-
vations. First, in terms of throughput, the best-performing

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

adder implementation varies depending on the target bit-
precision and number of input elements. The achievable
throughput ultimately depends on a combination of the num-
ber of AAPs/APs that can be concurrently executed across
DRAM subarrays and the number of inter-DRAM subar-
ray operations required to implement the adder. In general,
we empirically observe that as the input data size increases
(see subplots’ titles), the number of inter-DRAM subarray
operations also increases and eventually dominates the over-
all execution time. For small bit-precision and small input
size (i.e., bit-precision smaller than 8, and fewer than 256K
input elements), the bit-serial RCA using the OBPS data
mapping provides the highest throughput, while for large
bit-precision and small input size (i.e., bit-precision larger
than 8, and fewer than 256K input elements), the RBR adder
using the OBPS data mapping provides the highest through-
put. For large-enough input sizes (i.e., more than 1M input
elements), employing the ABPS data mapping leads to the
highest throughput, independent of the bit-precision. This
is because when more DRAM subarrays are involved in the
execution of the target PUD operation, the inter-subarray
data transfers dominate overall execution time in the OBPS
implementations. Second, in terms of energy efficiency, the
bit-serial implementation of RCA provides the best through-
put/Watt for ABOS, ABPS, and OBPS, independent of the
bit-precision and input size. This is because (i) the number of
AAPs/APs performed to execute RCA is the same independent
of the data mapping, and (ii) the energy the bit-parallel algo-
rithms consume is dominated by inter-subarray operations,
which is not present in bit-serial implementations.

 ABOS ABPS OBPS RCA

 CSA

 Brent−Kung

 Kogge−Stone

 Ladner−Fischer

 RBR

64K Elem. (1 Sub.) 256K Elem. (4 Sub.) 1M Elem. (16 Sub.) 4M Elem. (64 Sub.)

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

10

100

1000

10

100

1000

10

30

100

5

10

30

50

Bit Precision

T
hr

ou
gh

pu
t (

G
O

P
s/

s)

64K Elem. (1 Sub.) 256K Elem. (4 Sub.) 1M Elem. (16 Sub.) 4M Elem. (64 Sub.)

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

100

300

1000

100

300

1000

100

300

1000

100

300

1000

Bit Precision

E
. E

ffi
ci

en
cy

 (
G

O
P

s/
s/

W
at

t)

Figure 9: Pareto analysis for throughput (top) and en-
ergy efficiency (bottom) for PUD addition operations.
Dotted lines represent ABOS; dashed lines represent
ABPS; straight lines represent OBPS data mapping.

Quadratically-Scaling PUD Operations. Fig. 10 shows
the throughput (top) and energy efficiency (bottom) of
six µProgram implementations for a quadratically-scaling
PUD operation (i.e., integer multiplication). We implement

PUD multiplication operations as a triplet composed of
(i) the multiplication method (i.e., Booth’s multiplication
algorithm [246] or the divide-and-conquer Karatsuba [247]
multiplication); (ii) different methods for addition (i.e., bit-
serial RCA, bit-parallel Ladner-Fischer [242], and RBR-based
adder); and (iii) data mappings (i.e., ABOS, ABPS, and OBPS).
Note that PUD multiplication operations that use bit-parallel
and RBR-based adders can only be implemented using the
OBPS data mapping. We make two observations. First, in
terms of throughput, the best-performing multiplier imple-
mentation varies depending on the bit-precision and number
of input elements. For small bit-precision and small input
size (i.e., bit-precision smaller than 8, and fewer than 64K
input elements), Booth’s bit-serial multiplication with ABOS
data mapping provides the highest throughput, while for
medium bit-precision and small input size (i.e., bit-precision
from 8 to 16 and fewer than 64K input elements), Booth’s bit-
parallel multiplication with the OBPS data mapping provides
the highest throughput. For high bit-precision and small-to-
medium input size (i.e., bit-precision larger than 32 and fewer
than 256K input elements), RBR-based multiplication using
OBPS data mapping provides the highest throughput. For
large-enough input sizes (i.e., larger than 1M input elements),
employing Booth’s bit-serial RCA-based multiplication us-
ing ABPS data mapping leads to the highest throughput,
independent of the bit-precision. Second, in terms of energy
efficiency, Booth’s bit-serial RCA-based multiplication im-
plementation provides the best throughput/Watt for ABOS,
ABPS, and OBPS, independent of the bit-precision and input
size, since (i) the number of AAPs/APs required to execute
the addition step is the same regardless of the data mapping
and (ii) the energy of the bit-parallel-based algorithms is
dominated by the large number of inter-subarray operations.

 Booth Karatsuba ABOS ABPS OBPS RCA Ladner−Fischer RBR

64K Elem. (1 Sub.) 256K Elem. (4 Sub.) 1M Elem. (16 Sub.) 4M Elem. (64 Sub.)

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

1

10

100

0

1

10

100

0

1

10

0

1

10

Bit Precision

T
hr

ou
gh

pu
t (

G
O

P
s/

s)

64K Elem. (1 Sub.) 256K Elem. (4 Sub.) 1M Elem. (16 Sub.) 4M Elem. (64 Sub.)

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

3

10

30

100

300

3

10

30

100

300

3

10

30

100

300

3

10

30

100

300

Bit Precision

E
. E

ffi
ci

en
cy

 (
G

O
P

s/
s/

W
at

t)

Figure 10: Pareto analysis for throughput (top)
and energy efficiency (bottom) for multiplication.
Straight lines represent the Booth’s multiplication
method [246]; dashed lines represent the Karat-
suba [247] multiplication method.

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

5.2.5 Non-Arithmetic PUD Operations. We also equip Pro-
teus’ Parallelism-Aware µProgram Library with SIMDRAM’s
implementations of non-arithmetic PUD operations [143],
including (i) 𝑁 -bit logic operations (i.e., AND/OR/XOR of more
than two input bits), (ii) relational operations (i.e., equal-
ity/inequality check, greater than, maximum, minimum),
(iii) predication, and (iv) bitcount and ReLU [248].

5.3 Dynamic Bit-Precision Engine
The Dynamic Bit-Precision Engine comprises a simple recon-
figurable 𝑛-bit comparator and a finite state machine (FSM).
For each evicted cache line, the FSM probes theObject Tracker
and identifies if the incoming evicted cache line belongs to
a PUD’s memory object. If it does, the FSM executes four
operations. First, it reads the bit-precision value (specified by
the bbop_trsp_init instruction) and the current maximum
value stored in the Object Tracker for the given memory ob-
ject. Second, it uses the bit-precision value to configure the
𝑛-bit comparator. Third, it inputs to the 𝑛-bit comparator all
𝑛-bit values in the incoming cache line (one at a time) and the
current maximum value. Fourth, after all the 𝑛-bit values are
processed, if any value in the incoming cache line is larger
than the current maximum value, the FSM sends an update
signal to the Object Tracker alongside the new maximum
value. The energy cost of identifying the largest element in a
64 B cache line is 0.0016 nJ [249]. That represents an increase
in 0.084% in the energy of an LLC eviction [81, 250, 251],
which needs to happen prior to PUD execution regardless.

5.4 µProgram Select Unit
Calculating Bit-Precision. The µProgram Select Unit needs
to address two scenarios when calculating the bit-precision
for PUD operations: vector-to-vector PUD operations, and
vector-to-scalar reduction PUD operations. In vector-to-
vector , the target PUD operation implements a parallel map
operation, in which inputs and outputs are data vectors. For
such operations, the bit-precision can be computed a priori,
using the maximum values the Dynamic Bit-Precision Engine
provides, even in the presence of chains of PUD operations.
In such a case, the Bit-Precision Calculation Engine updates
the Object Tracker with the maximum possible output value
for each PUD in the chain. For example, assume a kernel that
executes D[i]=(A[i]+B[i])×C[i] as follows:
bbop_add(tmp, A, B, 8k, 8, 1); // tmp← A + B
bbop_mul(D, tmp, C, 8k, 8, 1); // D← tmp × C

Assume that the maximum value of A, B, and C are 3, 6,
and 2, respectively. In this case, the µProgram Select Unit
(i) computes the bit-precision for the addition operation as⌈
log2 (3 + 6)

⌉
= 4 𝑏𝑖𝑡𝑠; (ii) updates the Object Tracker entry

of tmp with the maximum value of the addition operation
(i.e., 9); (iii) computes the bit-precision for the multiplication

operation as
⌈
log2 (9 × 2)

⌉
= 5 𝑏𝑖𝑡𝑠 using an 𝑛-bit scalar ALU;

(iv) updates the Object Tracker entry of D with the maximum
value of the multiplication (i.e., 18).

In vector-to-scalar reduction, the PUD operation imple-
ments a parallel reduction operation, where the inputs are
vectors and the output is a scalar value. In this case, the
bit-precision cannot be computed with only the maximum
input operands without causing overprovisioning, since in a
reduction, each element contributes to the bit-precision of
the scalar output. Therefore, for vector-to-scalar reduction
PUD operations, the µProgram Select Unit needs to (i) fetch
from DRAM the row containing the carry-out bits produced
during partial steps4 of the PUD reduction; (ii) evaluate if a
partial step generated an overflow (i.e., check if any carry-
out bit is ‘1’); and (iii) increment the bit-precision for the
next partial step if overflow is detected.
Hardware Design. The µProgram Select Unit comprises of
simple hardware units: (i) an𝑛-bit ALU to compute the target
bit-precision, (ii) a Fetch Unit to generate load instructions
for carry re-evaluation, and (iii) a µProgram Buffer to store
the currently running µProgram.

6 Methodology
We implement Proteus using an in-house cycle-level sim-
ulator (which we open-source at [252]) and compare it
to a real multicore CPU (Intel Comet Lake [253]), a real
high-end GPU (NVIDIA A100 using CUDA and tensor
cores [254]), and a simulated state-of-the-art PUD frame-
work (SIMDRAM [143]). In our evaluations, the CPU code
uses AVX-512 instructions [255]. Our simulator is rigorously
validated against SIMDRAM [143] and MIMDRAM [141]’s
gem5 [256] implementation [257]. The simulator (i) is cycle-
level accurate with regard to DRAM commands and (ii) ac-
counts for the data movement cost of cache line eviction on
a per-cycle basis. Our simulation accounts for the additional
latency imposed by SALP [161] on ACT commands, i.e., the
extra circuitry required to support SALP incurs an extra la-
tency of 0.028 ns to an ACT [258], which is less than 0.11%
extra latency of an AAP. To verify the functional correctness
of our applications, our simulation infrastructure performs
functional verification over application’s data when perform-
ing PUD operations. We did not observe any difference from
the golden outputs. We open-source our simulation infras-
tructure at https://github.com/CMU-SAFARI/Proteus.
Table 1 shows the system parameters we use in our eval-

uations. To measure CPU energy consumption, we use
Intel RAPL [259]. We capture GPU kernel execution time
that excludes data initialization/transfer time. We use the
nvml API [260] to measure GPU energy consumption. We
4Proteus implements PUD reduction operations using reduction trees [141].
Thus, a partial step refers to a level of the reduction tree.

https://github.com/CMU-SAFARI/Proteus

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

use CACTI 7.0 [245] to evaluate Proteus and SIMDRAM en-
ergy consumption, where we take into account that each
additional simultaneous row activation increases energy
consumption by 22% [101, 143]. We evaluate two SIM-
DRAM configurations: (i) SIMDRAM with SALP [161] and
static bit-precision (SIMDRAM-SP), and (ii) SIMDRAM with
SALP and Proteus’ Dynamic Bit-Precision Engine (SIMDRAM-
DP). In both configurations, the system implements only
the 16 µPrograms proposed in SIMDRAM (i.e., there is no
Parallelism-Aware µProgram Library enabled). We evaluate
four Proteus configurations: (i) Proteus LT-SP and (ii) Pro-
teus EN-SP, where Proteus selects the lowest latency (LT) and
lowest energy (EN) consuming µProgram, respectively, using
the statically profiled bit-precision from Fig. 2; (iii) Proteus
LT-DP and (iv) Proteus EN-DP, where Proteus executes the
lowest latency and lowest energy consuming µProgram with
dynamically chosen bit-precision. We use 64 subarrays in
only one DRAM bank for our PUD evaluations.

Table 1: Evaluated system configurations.

Intel
Comet Lake CPU [261]

(Real System)

x86 [239], 16 cores, 8-wide, out-of-order, 3.8 GHz;
L1 Data + Inst. Private Cache: 256 kB, 8-way, 64 B line;
L2 Private Cache: 2 MB, 4-way, 64 B line;
L3 Shared Cache: 16 MB, 16-way, 64 B line;
Main Memory: 64 GB DDR4-2133, 4 channels, 4 ranks

NVIDIA
A100 GPU [254]
(Real System)

7 nm technology node; 826 mm2 die area [254]; 6912 CUDA cores;
432 tensor cores, 108 streaming multiprocessors, 1.4 GHz base clock;
L2 Cache: 40 MB L2 Cache; Main Memory: 40 GB HBM2 [193, 262]

SIMDRAM [143]
& Proteus
(Simulated)

gem5-based in-house simulator [252, 257]; x86 [239];
1 out-of-order core @ 4 GHz (only for instruction offloading);
L1 Data + Inst. Cache: 32 kB, 8-way, 64 B line;
L2 Cache: 256 kB, 4-way, 64 B line;
Memory Controller: 8 kB row size, FR-FCFS [263, 264]
Main Memory: DDR5-5200 [265], 1 channel, 1 rank, 16 banks

Real-World Applications. We select twelve workloads
from four popular benchmark suites in our real-workload
analysis (as Table 2 describes). We manually modified each
workload to (i) identify loops that can benefit from PUD
computation, i.e., loops that are memory-bound and that
can leverage single-instruction multiple-data (SIMD) par-
allelism and (ii) use the appropriate bbop instructions. To
identify loops that can leverage SIMD parallelism, we use
the MIMDRAM compiler [257] for identification and gen-
eration of PUD instructions, which uses LLVM’s loop auto-
vectorization engine [229–232] as a profiling tool that out-
puts SIMD-safe loops in an application. We use the clang
compiler [229] to compile each application while enabling
the loop auto-vectorization engine and its loop vectoriza-
tion report (i.e., -O3 -Rpass-analysis=loop-vectorize
-Rpass=loop-vectorize). We observe that applications
with regular and wide data parallelism (e.g., applications
operating over large dense vectors) are better suited for
SIMD-based PUD systems. We select applications from vari-
ous domains, including linear algebra and stencil computing
(i.e., 2mm, 3mm, doitgen, fdtd-apml, gemm, gramschmidt

from Polybench [169]), machine learning (i.e., pca from
Phoenix [171], covariance from Polybench [169], kmeans
and backprop from Rodinia [172]), and image/video process-
ing (i.e., heartwall from Rodinia [172] and 525.x264_r from
SPEC 2017 [170]). Since our baseline PUD substrate (SIM-
DRAM) does not support floating-point, we manually modify
the selected floating-point-heavy PUD-friendly loops to op-
erate on fixed-point data arrays. We use the largest input
dataset available for each benchmark.

Table 2: Evaluated applications.

Benchmark
Suite

Application
(Short Name)

Peak GPU
Util. (%)

Total Mem.
Footprint (GB)

Bit-Precision
{min, max}

PUD
Instrs.†

Phoenix [171] pca (pca) – 1.91 {8, 8} D, S, M, R

Polybench
[169]

2mm (2mm) 98 4.77 {13, 25} M, R
3mm (3mm) 100 26.7 {12, 12} M, R

covariance (cov) 100 7.63 {23, 23} D, S, R
doitgen (dg) 92 33.08 {10, 11} M, C, R

fdtd-apml (fdtd) – 36.01 {11, 13} D, M, S, A
gemm (gmm) 98 22.89 {12, 24} M, R

gramschmidt (gs) 66 22.89 {12, 13} M, D, R
Rodinia
[172]

backprop (bp) – 22.50 {13, 13} M, R
heartwall (hw) 48 0.03 {17, 17} M, R
kmeans (km) 36 1.23 {17, 17} S, M, R

SPEC 2017
[170] 525.x264_r (x264) – 0.15 {1, 8} A, R

† D = division, S = subtraction, M = multiplication, A = addition, R = reduction, C = copy

7 Evaluation
7.1 Real-World Application Analysis
Performance. Fig. 11 shows the CPU, GPU, SIMDRAM,
and Proteus performance for twelve real-world applications.
As in prior works [103, 119, 120, 266, 267], we report area-
normalized results (i.e., performance per mm2) for a fair
comparison. We make four observations. First, Proteus signif-
icantly outperforms all three baseline systems. On average
across all twelve applications, Proteus LT-DP (Proteus EN-
DP) achieves 17× (11.2×), 7.3× (4.8×), and 10.2× (6.8×) the
performance per mm2 of the CPU, GPU, and SIMDRAM, re-
spectively. Second, we observe that equipping SIMDRAM
with Proteus’ Dynamic Bit-Precision Engine to leverage nar-
row values for PUD execution significantly improves over-
all performance. On average, SIMDRAM-DP provides 6.3×
the performance per mm2 of SIMDRAM-SP. Third, Proteus’
ability to adapt the µProgram depending on the target bit-
precision further improves overall performance by 1.6× that
of SIMDRAM-DP. Fourth, Proteus’ Dynamic Bit-Precision En-
gine further increases performance by 46%, over Proteus with
static bit-precision. This happens because for statically pro-
filed bit-precision, we must round the bit-precision up to
the nearest power-of-two, as high-level programming lan-
guages (e.g., C/C++) are inherently constrained by the two’s
complement data representation.
Energy. Fig. 12 shows the end-to-end energy reduction the
GPU, SIMDRAM, and Proteus provide compared to the base-
line CPU for twelve applications. We make four observations.

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

10−2

100

102

104

pca 2mm 3mm cov dg fdtd gmm gs bp hw km x264 GMeanN
or

m
al

iz
ed

 P
er

f/m
m

2

GPU
SIMDRAM−SP

SIMDRAM−DP
Proteus LT−SP

Proteus LT−DP
Proteus EN−SP

Proteus EN−DP

Figure 11: CPU-normalized performance per mm2

for twelve real-world applications. Phoenix [171] and
SPEC2017 [170] do not provide GPU implementations
of pca and x264.

First, Proteus significantly reduces energy consumption com-
pared to all three baseline systems. On average across all
twelve applications, Proteus EN-DP (Proteus LT-DP) provides
90.3× (27×), 21× (6.3×), and 8.1× (2.5×) lower energy con-
sumption than CPU, GPU, and SIMDRAM-SP, respectively.
Second, enabling Proteus’ Dynamic Bit-Precision Engine and
Parallelism-Aware µProgram Library allows Proteus to reduce
energy consumption by an average of 8× and 1.02× com-
pared to PUD substrates with statically-defined bit-precision
(SIMDRAM-SP) and bit-serial only arithmetic (SIMDRAM-
DP), respectively. Third, compared to SIMDRAM-DP, Proteus
LT-DP increases energy consumption by 3.3×, on average.
This is because the highest performance implementation of
a PUD operation often leads to an increase in the number of
AAPs/APs required for PUD computing. In many cases, the
energy associated with inter-subarray data copies (employed
in RBR and bit-parallel algorithms) leads to an increase in
energy consumption. Fourth, the Dynamic Bit-Precision En-
gine further reduces Proteus’ energy consumption by 58%,
compared to Proteus with static bit-precision.

10−2

100

102

104

pca 2mm 3mm cov dg fdtd gmm gs bp hw km x264GMeanE
ne

rg
y

R
ed

uc
tio

n

GPU

SIMDRAM−SP

SIMDRAM−DP

Proteus LT−SP

Proteus LT−DP

Proteus EN−SP

Proteus EN−DP

Figure 12: End-to-end energy reduction compared to
the baseline CPU for twelve applications.

7.2 Proteus vs. Tensor Cores in GPUs
We compare the performance and energy efficiency of our
real-world applications that perform general matrix-matrix
multiplication (GEMM) operations while running on the ten-
sor cores in the NVIDIA A100 GPU and Proteus for narrow
data precision input operands (i.e. 4-bit and 8-bit integers).

To do so, we (i) identify the subset of our real-world applica-
tions that mainly perform GEMM operations and therefore
are suitable for the A100’s tensor core engines; and (ii) re-
implement such workloads using optimized instructions
(from NVIDIA’s CUTLASS [268]) to perform tensor GEMM
operations on the A100 GPU tensor cores. Re-implementing
the GPU workloads is necessary since GPU tensor core in-
structions are not automatically produced via the standard
CUDA code our workloads use and there is no reference im-
plementation available from the original benchmark suites
targeting tensor core GPUs. We employ A100’s all 432 tensor
cores during GPU execution.

Fig. 13 shows the tensor cores, SIMDRAM, and Proteus per-
formance per mm2 (Fig. 13, top) and energy efficiency (i.e.,
performance per Watt in Fig. 13, bottom) for three GEMM-
heavy real-world applications using 8-bit (int8) and 4-bit
(int4) data types. Values are normalized to those obtained
on real GPU tensor cores. We make two observations. First,
Proteus significantly improves performance per mm2 and en-
ergy efficiency compared to both tensor cores and SIMDRAM
across all applications and data types. On average across the
three applications, Proteus provides (i) 20×/43× and 8×/21×
the performance per mm2 and (ii) 484×/767× and 9.8×/25×
the performance per Watt of the tensor cores and SIMDRAM,
respectively, using int8/int4 data types. Proteus and SIM-
DRAM are capable of outperforming the tensor cores of the
A100 GPU for narrow data precisions since both the through-
put and the energy efficiency of bit-serial PUD architectures
increase quadratically for multiplication operations as the
bit-precision decreases [143]. Second, we observe that by
employing dynamic bit-precision and adaptive arithmetic
computation, Proteus further improves the performance and
energy gains that SIMDRAM provides compared to the A100
GPU’s tensor cores, even improving performance compared
to the tensor cores in cases where SIMDRAM fails to do so
(i.e., for gmm).

int8 int4

N
or

m
al

iz
ed

 P
er

f/m
m

²
N

or
m

al
iz

ed
 P

er
f/W

at
t

2mm 3mm gmm GMean 2mm 3mm gmm GMean

10−0.5
100

100.5
101

101.5
102

100

101

102

103

 SIMDRAM Proteus

Figure 13: Performance permm2 (top) and performance
per Watt (bottom) of GEMM-intensive real-world ap-
plications using int8 and int4, normalized to the same
metric measured on 432 NVIDIA A100 tensor cores.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

7.3 Area Analysis
DRAM Chip Area and Storage Overhead.We use CACTI
7.0 [245] to evaluate the area overhead of the primary com-
ponents in the Proteus design using a 22 nm technology
node. Proteus does not introduce any modifications to the
DRAM array circuitry other than those proposed by (i) Am-
bit, which has an area overhead of <1% in a commodity
DRAM chip [101]; (ii) LISA, which has an area overhead
of 0.6% in a commodity DRAM chip [162]; and (iii) SALP,
which has an area overhead of 0.15% in a commodity DRAM
chip [161]. We reserve less than 1 DRAM row (i.e., 6.25 kB
in an 8GB) to store our implemented µPrograms. In total,
we implement 50 µPrograms, each of which takes 128 B of
DRAM space.
CPU Area Overhead. We size the Parallelism-Aware
µProgram Library to contain: (i) 16 64 B LUTs, each LUT
holding a 8-bit µProgram_id); (ii) one 2 kB µProgram Scratch-
pad Memory. The size of the Parallelism-Aware µProgram
Library is enough to hold one LUT per SIMDRAM PUD
operations and address 28 different µProgram implementa-
tions. The size of the µProgram Scratchpad is large enough
to store the µPrograms for all 16 SIMDRAM operations. We
use a 128 B scratchpad for the Dynamic Bit-Precision En-
gine. Using CACTI, we estimate that the Proteus Control Unit
area is 0.03 mm2. Proteus’ Data Transposition Unit (one per
DRAM channel) uses an 8 kB fully-associative cache with a
128-bit cache line size for the Object Tracker, and two 4 kB
transposition buffers. Using CACTI, we estimate the Data
Transposition Unit area is 0.06 mm2. Considering the area
of the control and transposition units, Proteus has an area
overhead of only 0.03% compared to the die area of an Intel
Xeon E5-2697 v3 CPU [113].

8 Related Work
To our knowledge, Proteus is the first system that can trans-
parently execute PUD operations with the best bit-precision,
data representation, and algorithm arithmetic implementa-
tion. We highlight Proteus’ key contributions by contrasting
them with state-of-the-art PIM designs.
Processing-Using-DRAM. Prior works propose different
ways of implementing PUD operations [101, 103, 104, 106,
107, 110, 120, 127, 132, 133, 141, 143, 147, 269]. Such works
could benefit from Proteus’ dynamic bit-precision selection
and alternative data representation and algorithms, since
they all assume a static bit-precision and algorithmic imple-
mentation. AritPIM [270] provides a collection of bit-parallel
and bit-serial algorithms for PUM arithmetic. Compared to
AritPIM, Proteus (i) extends AritPIM’s set of bit-parallel al-
gorithms for PUD; (ii) evaluates different data mapping and
format representations that lead to further performance and

energy improvements; (iii) proposes a framework that can
dynamically adapt to the bit-precision of the operation.
Using Bit-Slicing Compilers & Early Termination for
PIM. Prior works [144, 271] propose bit-slicing compilers for
bit-serial PIM computation. In particular, CHOPPER [144]
improves SIMDRAM’s programming model by leveraging
bit-slicing compilers and employing optimizations to reduce
the latency of a µProgram. Compared to CHOPPER, Proteus
has two main advantages. First, Proteus improves µProgram
performance by leveraging the DRAM parallelism within a
single DRAM bank via SALP. Second, although bit-slicing
compilers can naturally adapt to different bit-precision val-
ues, they require the programmer to specify the target bit-
precision manually. In contrast, Proteus dynamically identi-
fies the most suitable bit-precision transparently from the
programmer. Some other prior works (e.g., [272, 273]) pro-
pose techniques to realize dynamic bit-precision-based PUM
operations for different memory technologies. Compared
to these, Proteus’ main novelty lies in realizing dynamic bit-
precision of bit-serial and bit-parallel operation in the context
of DRAM/majority-based PUD systems.

9 Conclusion
We introduce Proteus, a data-aware hardware runtime frame-
work that addresses the high execution latency of bulk bit-
wise PUD operations. To do so, Proteus dynamically adjusts
the bit-precision of PUD operations by exploiting narrow val-
ues, and, based on that, chooses and uses the most appropriate
data representation (i.e., two’s complement or redundant-
binary representation) and arithmetic algorithm implemen-
tation (i.e., bit-serial or bit-parallel) for PUD systems. We
demonstrate that Proteus provides large performance and
energy benefits over state-of-the-art CPU, GPU, and PUD
systems. The source code of Proteus is freely available at
https://github.com/CMU-SAFARI/Proteus.

Acknowledgments
We thank the anonymous reviewers of ASPLOS 2024, ISCA
2024, MICRO 2024, ASPLOS 2025, and ICS 2025 for their
feedback. We thank the SAFARI Research Group members
for providing a stimulating intellectual environment. We
acknowledge the generous gifts from our industrial partners,
including Google, Huawei, Intel, and Microsoft. This work is
supported in part by the ETH Future Computing Laboratory
(EFCL), Huawei ZRC Storage Team, Semiconductor Research
Corporation, AI Chip Center for Emerging Smart Systems
(ACCESS), sponsored by InnoHK funding, Hong Kong SAR,
and European Union’s Horizon programme for research and
innovation [101047160 - BioPIM]. An extended version of
this paper is available at [173].

https://github.com/CMU-SAFARI/Proteus

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

References
[1] S. Ghose, A. Boroumand et al., “Processing-in-Memory: A Workload-

Driven Perspective,” IBM JRD, 2019.
[2] O.Mutlu, S. Ghose et al., “AModern Primer on Processing inMemory,”

in Emerging Computing: From Devices to Systems — Looking Beyond
Moore and Von Neumann. Springer, 2021.

[3] G. F. Oliveira, J. Gómez-Luna et al., “DAMOV: A New Methodology
and Benchmark Suite for Evaluating Data Movement Bottlenecks,”
IEEE Access, 2021.

[4] S. Ghose, K. Hsieh et al., “The Processing-in-Memory Paradigm:Mech-
anisms to Enable Adoption,” in Beyond-CMOS Technologies for Next
Generation Computer Design, 2019.

[5] O. Mutlu, S. Ghose et al., “Processing Data Where It Makes Sense:
Enabling In-Memory Computation,” MicPro, 2019.

[6] O. Mutlu, S. Ghose et al., “Enabling Practical Processing in and Near
Memory for Data-Intensive Computing,” in DAC, 2019.

[7] O. Mutlu and L. Subramanian, “Research Problems and Opportunities
in Memory Systems,” SUPERFRI, 2014.

[8] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[9] G. H. Loh, N. Jayasena et al., “A Processing in Memory Taxonomy
and a Case for Studying Fixed-Function PIM,” in WoNDP, 2013.

[10] R. Balasubramonian, J. Chang et al., “Near-Data Processing: Insights
from a MICRO-46 Workshop,” IEEE Micro, 2014.

[11] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[12] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the Memory Wall:

The Case for Processor/Memory Integration,” in ISCA, 1996.
[13] A. Farmahini-Farahani, J. H. Ahn et al., “NDA: Near-DRAM Accel-

eration Architecture Leveraging Commodity DRAM Devices and
Standard Memory Modules,” in HPCA, 2015.

[14] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for
Databases,” in SIGMOD, 2015.

[15] F. Devaux, “The True Processing in Memory Accelerator,” in Hot
Chips, 2019.

[16] N. M. Ghiasi, J. Park et al., “GenStore: A High-Performance and
Energy-Efficient In-Storage Computing System for Genome Sequence
Analysis,” in ASPLOS, 2022.

[17] J. Gómez-Luna, I. El Hajj et al., “Benchmarking Memory-Centric Com-
puting Systems: Analysis of Real Processing-in-Memory Hardware,”
in CUT, 2021.

[18] J. Gómez-Luna, I. E. Hajj et al., “Benchmarking a New Paradigm: An
Experimental Analysis of a Real Processing-in-Memory Architecture,”
arXiv:2105.03814 [cs.AR], 2021.

[19] J. Gómez-Luna, I. El Hajj et al., “Benchmarking a New Paradigm:
Experimental Analysis and Characterization of a Real Processing-in-
Memory System,” IEEE Access, 2022.

[20] C. Giannoula, N. Vijaykumar et al., “SynCron: Efficient Synchroniza-
tion Support for Near-Data-Processing Architectures,” in HPCA, 2021.

[21] G. Singh, D. Diamantopoulos et al., “NERO: A Near High-Bandwidth
Memory Stencil Accelerator for Weather Prediction Modeling,” in
FPL, 2020.

[22] S. Lee, K. Kim et al., “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based
Accelerator-in-Memory Supporting 1TFLOPS MAC Operation and
Various Activation Functions for Deep-Learning Applications,” in
ISSCC, 2022.

[23] L. Ke, X. Zhang et al., “Near-Memory Processing in Action: Accel-
erating Personalized Recommendation with AxDIMM,” IEEE Micro,
2021.

[24] C. Giannoula, I. Fernandez et al., “SparseP: Towards Efficient Sparse
Matrix Vector Multiplication on Real Processing-in-Memory Archi-
tectures,” in SIGMETRICS, 2022.

[25] H. Shin, D. Kim et al., “McDRAM: Low Latency and Energy-Efficient
Matrix Computations in DRAM,” IEEE TCADICS, 2018.

[26] S. Cho, H. Choi et al., “McDRAM v2: In-Dynamic Random Access
Memory Systolic Array Accelerator to Address the Large Model
Problem in Deep Neural Networks on the Edge,” IEEE Access, 2020.

[27] A. Denzler, R. Bera et al., “Casper: Accelerating Stencil Computation
using Near-Cache Processing,” arXiv:2112.14216 [cs.AR], 2021.

[28] H. Asghari-Moghaddam, Y. H. Son et al., “Chameleon: Versatile and
Practical Near-DRAM Acceleration Architecture for Large Memory
Systems,” in MICRO, 2016.

[29] D. Patterson, T. Anderson et al., “A Case for Intelligent RAM,” IEEE
Micro, 1997.

[30] D. G. Elliott, M. Stumm et al., “Computational RAM: Implementing
Processors in Memory,” Design and Test of Computers, 1999.

[31] M. A. Z. Alves, P. C. Santos et al., “Saving Memory Movements
Through Vector Processing in the DRAM,” in CASES, 2015.

[32] S. L. Xi, O. Babarinsa et al., “Beyond the Wall: Near-Data Processing
for Databases,” in DaMoN, 2015.

[33] W. Sun, Z. Li et al., “ABC-DIMM: Alleviating the Bottleneck of Com-
munication in DIMM-Based Near-Memory Processing with Inter-
DIMM Broadcast,” in ISCA, 2021.

[34] K. K. Matam, G. Koo et al., “GraphSSD: Graph Semantics Aware SSD,”
in ISCA, 2019.

[35] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The
Terasys Massively Parallel PIM Array,” Computer, 1995.

[36] M. Hall, P. Kogge et al., “Mapping Irregular Applications to DIVA, a
PIM-Based Data-Intensive Architecture,” in SC, 1999.

[37] M. A. Z. Alves, P. C. Santos et al., “Opportunities and Challenges of
Performing Vector Operations Inside the DRAM,” in MEMSYS, 2015.

[38] E. Lockerman, A. Feldmann et al., “Livia: Data-Centric Computing
Throughout the Memory Hierarchy,” in ASPLOS, 2020.

[39] J. Ahn, S. Hong et al., “A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing,” in ISCA, 2015.

[40] L. Nai, R. Hadidi et al., “GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks,” in HPCA, 2017.

[41] A. Boroumand, S. Ghose et al., “Google Workloads for Consumer
Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[42] A. Boroumand, S. Ghose et al., “LazyPIM: An Efficient Cache Coher-
ence Mechanism for Processing-in-Memory,” CAL, 2017.

[43] D. Zhang, N. Jayasena et al., “TOP-PIM: Throughput-Oriented Pro-
grammable Processing in Memory,” in HPDC, 2014.

[44] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable
Logic for Near-Data Processing,” in HPCA, 2016.

[45] J. S. Kim, D. S. Cali et al., “GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping Using Processing-in-Memory Technologies,”
BMC Genomics, 2018.

[46] M. Drumond, A. Daglis et al., “The Mondrian Data Engine,” in ISCA,
2017.

[47] P. C. Santos, G. F. Oliveira et al., “Operand Size Reconfiguration for
Big Data Processing in Memory,” in DATE, 2017.

[48] G. F. Oliveira, P. C. Santos et al., “NIM: An HMC-Based Machine for
Neuron Computation,” in ARC, 2017.

[49] J. Ahn, S. Yoo et al., “PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[50] M. Gao, J. Pu et al., “TETRIS: Scalable and Efficient Neural Network
Acceleration with 3D Memory,” in ASPLOS, 2017.

[51] D. Kim, J. Kung et al., “Neurocube: A Programmable Digital Neu-
romorphic Architecture with High-Density 3D Memory,” in ISCA,
2016.

[52] P. Gu, S. Li et al., “Leveraging 3D Technologies for Hardware Security:
Opportunities and Challenges,” in GLSVLSI, 2016.

[53] A. Boroumand, S. Ghose et al., “CoNDA: Efficient Cache Coherence
Support for Near-Data Accelerators,” in ISCA, 2019.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

[54] K. Hsieh, E. Ebrahimi et al., “Transparent Offloading and Mapping
(TOM) Enabling Programmer-Transparent Near-Data Processing in
GPU Systems,” in ISCA, 2016.

[55] D. S. Cali, G. S. Kalsi et al., “GenASM: A High-Performance, Low-
Power Approximate String Matching Acceleration Framework for
Genome Sequence Analysis,” in MICRO, 2020.

[56] S. H. Pugsley, J. Jestes et al., “NDC: Analyzing the Impact of 3D-
Stacked Memory+Logic Devices on MapReduce Workloads,” in IS-
PASS, 2014.

[57] A. Pattnaik, X. Tang et al., “Scheduling Techniques for GPU Architec-
tures with Processing-in-Memory Capabilities,” in PACT, 2016.

[58] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory
Using 3D-Stacked DRAM,” in ISCA, 2015.

[59] K. Hsieh, S. Khan et al., “Accelerating Pointer Chasing in 3D-Stacked
Memory: Challenges, Mechanisms, Evaluation,” in ICCD, 2016.

[60] J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing Near Memory for
Machine Learning Workloads with Bounded Staleness Consistency
Models,” in PACT, 2015.

[61] A. Boroumand, S. Ghose et al., “Mitigating Edge Machine Learning
Inference Bottlenecks: An Empirical Study on Accelerating Google
Edge Models,” arXiv:2103.00768 [cs.AR], 2021.

[62] A. Boroumand, S. Ghose et al., “Google Neural Network Models for
Edge Devices: Analyzing and Mitigating Machine Learning Inference
Bottlenecks,” in PACT, 2021.

[63] A. Boroumand, S. Ghose et al., “Polynesia: Enabling High-
Performance and Energy-Efficient Hybrid Transactional/Analytical
Databases with Hardware/Software Co-Design,” in ICDE, 2022.

[64] A. Boroumand, S. Ghose et al., “Polynesia: Enabling Effective Hy-
brid Transactional/Analytical Databases with Specialized Hard-
ware/Software Co-Design,” arXiv:2103.00798 [cs.AR], 2021.

[65] A. Boroumand, “Practical Mechanisms for Reducing Processor-
Memory Data Movement in Modern Workloads,” Ph.D. dissertation,
Carnegie Mellon University, 2020.

[66] M. Besta, R. Kanakagiri et al., “SISA: Set-Centric Instruction Set Ar-
chitecture for Graph Mining on Processing-in-Memory Systems,” in
MICRO, 2021.

[67] I. Fernandez, R. Quislant et al., “NATSA: A Near-Data Processing
Accelerator for Time Series Analysis,” in ICCD, 2020.

[68] G. Singh, G. et al., “NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning,” in DAC, 2019.

[69] Y.-C. Kwon, S. H. Lee et al., “A 20nm 6GB Function-in-Memory DRAM,
Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit
using Bank-Level Parallelism, for Machine Learning Applications,” in
ISSCC, 2021.

[70] S. Lee, S.-h. Kang et al., “Hardware Architecture and Software Stack
for PIM Based on Commercial DRAMTechnology: Industrial Product,”
in ISCA, 2021.

[71] D. Niu, S. Li et al., “184QPS/W 64Mb/𝑚𝑚2 3D Logic-to-DRAMHybrid
Bonding with Process-Near-Memory Engine for Recommendation
System,” in ISSCC, 2022.

[72] Q. Zhu, T. Graf et al., “Accelerating Sparse Matrix-Matrix Multiplica-
tion with 3D-Stacked Logic-in-Memory Hardware,” in HPEC, 2013.

[73] E. Azarkhish, C. Pfister et al., “Logic-Base Interconnect Design for
Near Memory Computing in the Smart Memory Cube,” IEEE VLSI,
2016.

[74] E. Azarkhish, D. Rossi et al., “Neurostream: Scalable and Energy
Efficient Deep Learning with Smart Memory Cubes,” TPDS, 2018.

[75] Q. Guo, N. Alachiotis et al., “3D-Stacked Memory-Side Acceleration:
Accelerator and System Design,” in WoNDP, 2014.

[76] J. P. C. de Lima, P. C. Santos et al., “Design Space Exploration for PIM
Architectures in 3D-Stacked Memories,” in CF, 2018.

[77] B. Akın, J. C. Hoe, and F. Franchetti, “HAMLeT: Hardware Accelerated
Memory Layout Transformwithin 3D-Stacked DRAM,” inHPEC, 2014.

[78] Y. Huang, L. Zheng et al., “A Heterogeneous PIM Hardware-Software
Co-Design for Energy-Efficient Graph Processing,” in IPDPS, 2020.

[79] G. Dai, T. Huang et al., “GraphH: A Processing-in-Memory Architec-
ture for Large-Scale Graph Processing,” TCAD, 2018.

[80] J. Liu, H. Zhao et al., “Processing-in-Memory for Energy-Efficient
Neural Network Training: A Heterogeneous Approach,” in MICRO,
2018.

[81] P.-A. Tsai, C. Chen, and D. Sanchez, “Adaptive Scheduling for Systems
with Asymmetric Memory Hierarchies,” in MICRO, 2018.

[82] P. Gu, X. Xie et al., “iPIM: Programmable In-Memory Image Process-
ing Accelerator using Near-Bank Architecture,” in ISCA, 2020.

[83] A. Farmahini-Farahani, J. H. Ahn et al., “DRAMA: An Architecture for
Accelerated Processing Near Memory,” Computer Architecture Letters,
2014.

[84] H. Asghari-Moghaddam, A. Farmahini-Farahani et al., “Near-DRAM
Acceleration with Single-ISA Heterogeneous Processing in Standard
Memory Modules,” IEEE Micro, 2016.

[85] J. Huang, R. R. Puli et al., “Active-Routing: Compute on the Way for
Near-Data Processing,” in HPCA, 2019.

[86] C. D. Kersey, H. Kim, and S. Yalamanchili, “Lightweight SIMT Core
Designs for Intelligent 3D Stacked DRAM,” in MEMSYS, 2017.

[87] J. Li, X. Wang et al., “PIMS: A Lightweight Processing-in-Memory
Accelerator for Stencil Computations,” in MEMSYS, 2019.

[88] J. S. Kim, D. Senol et al., “GRIM-Filter: Fast Seed Filtering in Read
Mapping using Emerging Memory Technologies,” arXiv:1708.04329
[q-bio.GN], 2017.

[89] A. Boroumand, S. Ghose et al., “LazyPIM: Efficient Support
for Cache Coherence in Processing-in-Memory Architectures,”
arXiv:1706.03162 [cs.AR], 2017.

[90] Y. Zhuo, C. Wang et al., “GraphQ: Scalable PIM-Based Graph Process-
ing,” in MICRO, 2019.

[91] M. Zhang, Y. Zhuo et al., “GraphP: Reducing Communication for
PIM-Based Graph Processing with Efficient Data Partition,” in HPCA,
2018.

[92] H. Lim and G. Park, “Triple Engine Processor (TEP): A Heterogeneous
Near-Memory Processor for Diverse Kernel Operations,” TACO, 2017.

[93] E. Azarkhish, D. Rossi et al., “A Case for Near Memory Computation
Inside the Smart Memory Cube,” in EMS, 2016.

[94] M. A. Z. Alves, M. Diener et al., “Large Vector Extensions Inside the
HMC,” in DATE, 2016.

[95] J. Jang, J. Heo et al., “Charon: Specialized Near-Memory Processing
Architecture for Clearing Dead Objects in Memory,” in MICRO, 2019.

[96] R. Nair, S. F. Antao et al., “Active Memory Cube: A Processing-in-
Memory Architecture for Exascale Systems,” IBM JRD, 2015.

[97] R. Hadidi, L. Nai et al., “CAIRO: A Compiler-Assisted Technique
for Enabling Instruction-Level Offloading of Processing-in-Memory,”
TACO, 2017.

[98] P. C. Santos, G. F. Oliveira et al., “Processing in 3D Memories to Speed
Up Operations on Complex Data Structures,” in DATE, 2018.

[99] P. Chi, S. Li et al., “PRIME: A Novel Processing-in-Memory Archi-
tecture for Neural Network Computation in ReRAM-Based Main
Memory,” in ISCA, 2016.

[100] A. Shafiee, A. Nag et al., “ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars,” in ISCA,
2016.

[101] V. Seshadri, D. Lee et al., “Ambit: In-Memory Accelerator for Bulk
Bitwise Operations Using Commodity DRAM Technology,” inMICRO,
2017.

[102] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822 [cs.AR], 2019.

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

[103] S. Li, D. Niu et al., “DRISA: A DRAM-Based Reconfigurable In-Situ
Accelerator,” in MICRO, 2017.

[104] V. Seshadri, Y. Kim et al., “RowClone: Fast and Energy-Efficient In-
DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[105] V. Seshadri and O. Mutlu, “The Processing Using Memory Para-
digm: In-DRAM Bulk Copy, Initialization, Bitwise AND and OR,”
arXiv:1610.09603 [cs.AR], 2016.

[106] Q. Deng, L. Jiang et al., “DrAcc: A DRAM Based Accelerator for
Accurate CNN Inference,” in DAC, 2018.

[107] X. Xin, Y. Zhang, and J. Yang, “ELP2IM: Efficient and Low Power
Bitwise Operation Processing in DRAM,” in HPCA, 2020.

[108] L. Song, Y. Zhuo et al., “GraphR: Accelerating Graph Processing Using
ReRAM,” in HPCA, 2018.

[109] L. Song, X. Qian et al., “PipeLayer: A Pipelined ReRAM-Based Accel-
erator for Deep Learning,” in HPCA, 2017.

[110] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-
Memory Compute Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[111] C. Eckert, X. Wang et al., “Neural Cache: Bit-Serial In-Cache Acceler-
ation of Deep Neural Networks,” in ISCA, 2018.

[112] S. Aga, S. Jeloka et al., “Compute Caches,” in HPCA, 2017.
[113] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel

Acceleration,” in ISCA, 2019.
[114] V. Seshadri, D. Lee et al., “Buddy-RAM: Improving the Perfor-

mance and Efficiency of Bulk Bitwise Operations Using DRAM,”
arXiv:1611.09988 [cs.AR], 2016.

[115] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce
Data Movement,” in Advances in Computers, Volume 106, 2017.

[116] V. Seshadri, Y. Kim et al., “RowClone: Accelerating Data Movement
and Initialization Using DRAM,” arXiv:1805.03502 [cs.AR], 2018.

[117] V. Seshadri, K. Hsieh et al., “Fast Bulk Bitwise AND and OR in DRAM,”
CAL, 2015.

[118] S. Li, C. Xu et al., “Pinatubo: A Processing-in-Memory Architecture
for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” in
DAC, 2016.

[119] J. D. Ferreira, G. Falcao et al., “pLUTo: In-DRAM Lookup Ta-
bles to Enable Massively Parallel General-Purpose Computation,”
arXiv:2104.07699 [cs.AR], 2021.

[120] J. D. Ferreira, G. Falcao et al., “pLUTo: Enabling Massively Parallel
Computation in DRAM via Lookup Tables,” in MICRO, 2022.

[121] M. Imani, S. Gupta et al., “FloatPIM: In-Memory Acceleration of Deep
Neural Network Training with High Precision,” in ISCA, 2019.

[122] Z. He, L. Yang et al., “Sparse BD-Net: A Multiplication-Less DNNwith
Sparse Binarized Depth-Wise Separable Convolution,” JETC, 2020.

[123] J. Park, R. Azizi et al., “Flash-Cosmos: In-Flash Bulk Bitwise Op-
erations Using Inherent Computation Capability of NAND Flash
Memory,” in MICRO, 2022.

[124] M. S. Truong, L. Shen et al., “Adapting the RACER Architecture to
Integrate Improved In-ReRAM Logic Primitives,” JETCAS, 2022.

[125] M. S. Truong, E. Chen et al., “RACER: Bit-Pipelined Processing Using
Resistive Memory,” in MICRO, 2021.

[126] A. Olgun, M. Patel et al., “QUAC-TRNG: High-Throughput True Ran-
dom Number Generation Using Quadruple Row Activation in Com-
modity DRAMs,” in ISCA, 2021.

[127] J. S. Kim, M. Patel et al., “D-RaNGe: Using Commodity DRAMDevices
to Generate True Random Numbers With Low Latency and High
Throughput,” in HPCA, 2019.

[128] J. S. Kim, M. Patel et al., “The DRAM Latency PUF: Quickly Evaluating
Physical Unclonable Functions by Exploiting the Latency-Reliability
Tradeoff in Modern Commodity DRAM Devices,” in HPCA, 2018.

[129] F. N. Bostancı, A. Olgun et al., “DR-STRaNGe: End-to-End System
Design for DRAM-Based True RandomNumber Generators,” inHPCA,
2022.

[130] A. Olgun, J. G. Luna et al., “PiDRAM: A Holistic End-to-End FPGA-
Based Framework for Processing-in-DRAM,” TACO, 2022.

[131] M. F. Ali, A. Jaiswal, and K. Roy, “In-Memory Low-Cost Bit-Serial
Addition Using Commodity DRAM Technology,” in TCAS-I, 2019.

[132] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator
Leveraging In-DRAM-Computing,” in GLSVLSI, 2019.

[133] S. Li, A. O. Glova et al., “SCOPE: A Stochastic Computing Engine for
DRAM-Based In-Situ Accelerator,” in MICRO, 2018.

[134] A. Subramaniyan and R. Das, “Parallel Automata Processor,” in ISCA,
2017.

[135] Y. Zha and J. Li, “Hyper-AP: Enhancing Associative Processing
Through A Full-Stack Optimization,” in ISCA, 2020.

[136] D. Fujiki, S. Mahlke, and R. Das, “In-Memory Data Parallel Processor,”
in ASPLOS, 2018.

[137] L. Orosa, Y. Wang et al., “CODIC: A Low-Cost Substrate for Enabling
Custom In-DRAM Functionalities and Optimizations,” in ISCA, 2021.

[138] M. Sharad, D. Fan, and K. Roy, “Ultra Low Power Associative Com-
puting with Spin Neurons and Resistive Crossbar Memory,” in DAC,
2013.

[139] S. H. S. Rezaei, M. Modarressi et al., “NoM: Network-on-Memory for
Inter-Bank Data Transfer in Highly-Banked Memories,” CAL, 2020.

[140] I. E. Yuksel, Y. C. Tuğrul et al., “Functionally-Complete Boolean Logic
in Real DRAM Chips: Experimental Characterization and Analysis,”
in HPCA, 2024.

[141] G. F. Oliveira, A. Olgun et al., “MIMDRAM:An End-to-End Processing-
Using-DRAM System for High-Throughput, Energy-Efficient and
Programmer-Transparent Multiple-Instruction Multiple-Data Com-
puting,” in HPCA, 2024.

[142] I. E. Yuksel, Y. C. Tugrul et al., “Simultaneous Many-Row Activation
in Off-the-Shelf DRAM Chips: Experimental Characterization and
Analysis,” in DSN, 2024.

[143] N. Hajinazar, G. F. Oliveira et al., “SIMDRAM: A Framework for Bit-
Serial SIMD Processing Using DRAM,” in ASPLOS, 2021.

[144] X. Peng, Y. Wang, and M.-C. Yang, “CHOPPER: A Compiler Infrastruc-
ture for Programmable Bit-Serial SIMD Processing Using Memory In
DRAM,” in HPCA, 2023.

[145] M. Zhou, W. Xu et al., “TransPIM: A Memory-Based Acceleration via
Software-Hardware Co-Design for Transformer,” in HPCA, 2022.

[146] J. Park, J. Choi et al., “AttAcc! Unleashing the Power of PIM for
Batched Transformer-Based Generative Model Inference,” in ASPLOS,
2024.

[147] Q. Deng, Y. Zhang et al., “LAcc: Exploiting Lookup Table-Based Fast
and Accurate Vector Multiplication in DRAM-Based CNN Accelera-
tor,” in DAC, 2019.

[148] S. Angizi and D. Fan, “ReDRAM: A Reconfigurable Processing-in-
DRAM Platform for Accelerating Bulk Bit-Wise Operations,” in IC-
CAD, 2019.

[149] H. Shin, R. Park, and J. W. Lee, “A Processing-using-Memory Archi-
tecture for Commodity DRAM Devices with Enhanced Compatibility
and Reliability,” in ICCAD, 2024.

[150] G. Pekhimenko, V. Seshadri et al., “Base-Delta-Immediate Compres-
sion: Practical Data Compression for On-Chip Caches,” in PACT, 2012.

[151] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for
High-Performance Processors,” in ISCA, 2004.

[152] M. M. Islam and P. Stenstrom, “Characterization and Exploitation
of Narrow-Width Loads: The Narrow-Width Cache Approach,” in
CASES, 2010.

[153] O. Ergin, O. Unsal et al., “Exploiting Narrow Values for Soft Error
Tolerance,” CAL, 2006.

[154] D. Brooks and M. Martonosi, “Dynamically Exploiting NarrowWidth
Operands to Improve Processor Power and Performance,” in HPCA,
1999.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

[155] O. Ergin, D. Balkan et al., “Register Packing: Exploiting Narrow-Width
Operands for Reducing Register File Pressure,” in MICRO, 2004.

[156] M. Budiu, M. Sakr et al., “BitValue Inference: Detecting and Exploiting
Narrow Bitwidth Computations,” in Euro-Par, 2000.

[157] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for Com-
pressed Caching in Virtual Memory Systems,” in USENIX ATC, 1999.

[158] G. Pekhimenko, “Practical Data Compression for Modern Memory
Hierarchies,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[159] G. Pekhimenko, V. Seshadri et al., “Linearly Compressed Pages: A Low-
Complexity, Low-Latency Main Memory Compression Framework,”
in MICRO, 2013.

[160] Homer, The Odyssey, B. Knox, Ed. Penguin Classics, 2006.
[161] Y. Kim, V. Seshadri et al., “A Case for Exploiting Subarray-Level

Parallelism (SALP) in DRAM,” in ISCA, 2012.
[162] K. K. Chang, P. J. Nair et al., “Low-Cost Inter-Linked Subarrays (LISA):

Enabling Fast Inter-Subarray Data Movement in DRAM,” in HPCA,
2016.

[163] C. Guest and T. K. Gaylord, “Truth-Table Look-Up Optical Processing
Utilizing Binary and Residue Arithmetic,” Applied Optics, 1980.

[164] D. S. Phatak and I. Koren, “Hybrid Signed-Digit Number Systems:
A Unified Framework for Redundant Number Representations with
Bounded Carry Propagation Chains,” TC, 1994.

[165] M. Lapointe, H. T. Huynh, and P. Fortier, “Systematic Design of
Pipelined Recursive Filters,” TC, 1993.

[166] J. Olivares, J. Hormigo et al., “SAD Computation based on Online
Arithmetic for Motion Estimation,” Microprocessors and Microsystems,
2006.

[167] J. Olivares, J. Hormigo et al., “Minimum Sum of Absolute Differences
Implementation in a Single FPGA Device,” in FPL, 2004.

[168] M. D. Brown and Y. N. Patt, “Using Internal Redundant Representa-
tions and Limited Bypass to Support Pipelined Adders and Register
Files,” in HPCA, 2002.

[169] L.-N. Pouchet, “PolyBench: The Polyhedral Benchmark Suite,” https:
//www.cs.colostate.edu/~pouchet/software/polybench/.

[170] Standard Performance Evaluation Corp., “SPEC CPU2017 Bench-
marks,” http://www.spec.org/cpu2017/.

[171] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System,” in IISWC, 2009.

[172] S. Che, M. Boyer et al., “Rodinia: A Benchmark Suite for Heteroge-
neous Computing,” in IISWC, 2009.

[173] G. F. Oliveira, M. Kabra et al., “Proteus: Enabling High-Performance
Processing-Using-DRAM with Dynamic Bit-Precision, Adaptive Data
Representation, and Flexible Arithmetic,” arXiv:2501.17466 [cs.AR],
2025.

[174] H. Hassan, M. Patel et al., “CROW: A Low-Cost Substrate for Improv-
ing DRAM Performance, Energy Efficiency, and Reliability,” in ISCA,
2019.

[175] S. Ghose, T. Li et al., “Demystifying Complex Workload–DRAM In-
teractions: An Experimental Study,” in SIGMETRICS, 2020.

[176] S. Ghose, A. G. Yaglikçi et al., “What Your DRAM Power Models Are
Not Telling You: Lessons from a Detailed Experimental Study,” in
SIGMETRICS, 2018.

[177] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” CAL, 2016.

[178] T. Zhang, K. Chen et al., “Half-DRAM: A High-Bandwidth and Low-
Power DRAM Architecture from the Rethinking of Fine-Grained
Activation,” in ISCA, 2014.

[179] H. Hassan, G. Pekhimenko et al., “ChargeCache: Reducing DRAM
Latency by Exploiting Row Access Locality,” in HPCA, 2016.

[180] D. Lee, Y. Kim et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” in HPCA, 2013.

[181] K. K. Chang, A. G. Yağlıkçı et al., “Understanding Reduced-Voltage
Operation in Modern DRAMDevices: Experimental Characterization,

Analysis, and Mechanisms,” in SIGMETRICS, 2017.
[182] K. K. Chang, “Understanding and Improving the Latency of DRAM-

Based Memory Systems,” Ph.D. dissertation, Carnegie Mellon Univer-
sity, 2017.

[183] K. K. Chang, A. Kashyap et al., “Understanding Latency Variation in
Modern DRAM Chips: Experimental Characterization, Analysis, and
Optimization,” in SIGMETRICS, 2016.

[184] K. K.-W. Chang, D. Lee et al., “Improving DRAM Performance by
Parallelizing Refreshes with Accesses,” in HPCA, 2014.

[185] D. Lee, Y. Kim et al., “Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case,” in HPCA, 2015.

[186] D. Lee, S. Khan et al., “Reducing DRAM Latency by Exploiting Design-
Induced Latency Variation in Modern DRAM Chips,” in SIGMETRICS,
2017.

[187] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Hetero-
geneity,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[188] D. Lee, L. Subramanian et al., “Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,”
in PACT, 2015.

[189] J. Liu, B. Jaiyen et al., “An Experimental Study of Data Retention
Behavior in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” in ISCA, 2013.

[190] J. Liu, B. Jaiyen et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” in ISCA, 2012.

[191] V. Seshadri, T. Mullins et al., “Gather-Scatter DRAM: In-DRAM Ad-
dress Translation to Improve the Spatial Locality of Non-Unit Strided
Accesses,” in MICRO, 2015.

[192] E. Ipek, O. Mutlu et al., “Self-Optimizing Memory Controllers: A
Reinforcement Learning Approach,” in ISCA, 2008.

[193] D. Lee, S. Ghose et al., “Simultaneous Multi-Layer Access: Improving
3D-Stacked Memory Bandwidth at Low Cost,” TACO, 2016.

[194] R. H. Dennard, “Field-Effect Transistor Memory,” 1968, US Patent
3,387,286.

[195] B. Keeth, R. J. Baker et al., DRAM Circuit Design: Fundamental and
High-Speed Topics. John Wiley & Sons, 2007.

[196] M. Patel, “Enabling Effective Error Mitigation In Memory Chips That
Use On-Die Error-Correcting Codes,” Ph.D. dissertation, ETH Zürich,
2022.

[197] H. Hassan, “Improving DRAM Performance, Reliability, and Secu-
rity by Rigorously Understanding Intrinsic DRAM Operation,” Ph.D.
dissertation, ETH Zürich, 2022.

[198] J. M. O’Connor, “Energy Efficient High Bandwidth DRAM for
Throughput Processors,” Ph.D. dissertation, The University of Texas
at Austin, 2021.

[199] D. Lee, S. Khan et al., “Design-Induced Latency Variation in Modern
DRAM Chips: Characterization, Analysis, and Latency Reduction
Mechanisms,” in SIGMETRICS, 2017.

[200] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to
Enable Highly Efficient Memory Subsystems,” Ph.D. dissertation,
Carnegie Mellon University, 2016.

[201] Y. Wang, L. Orosa et al., “FIGARO: Improving System Performance
via Fine-Grained In-DRAM Data Relocation and Caching,” in MICRO,
2020.

[202] A. Olgun, F. Bostanci et al., “Sectored DRAM: A Practical Energy-
Efficient and High-Performance Fine-Grained DRAM Architecture,”
TACO, 2024.

[203] J. S. Kim, “Improving DRAM Performance, Security, and Reliability
by Understanding and Exploiting DRAM Timing Parameter Margins,”
Ph.D. dissertation, Carnegie Mellon University, 2020.

[204] J. Kim, M. Patel et al., “Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines,” in ICCD, 2018.

https://www.cs.colostate.edu/~pouchet/software/polybench/
https://www.cs.colostate.edu/~pouchet/software/polybench/
http://www.spec.org/cpu2017/

Proteus: Achieving High-Performance PUD with Dynamic Bit-Precision ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

[205] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in
ASPLOS, 2002.

[206] K.-N. Lim, W.-J. Jang et al., “A 1.2 V 23nm 6F2 4Gb DDR3 SDRAM
with Local-Bitline Sense Amplifier, Hybrid LIO Sense Amplifier and
Dummy-Less Array Architecture,” in ISSCC, 2012.

[207] T. Takahashi, T. Sekiguchi et al., “A Multigigabit DRAM Technology
with 6F2 Open-Bitline Cell, Distributed Overdriven Sensing, and
Stacked-Flash Fuse,” JSSC, 2001.

[208] G. Duan and S. Wang, “Exploiting Narrow-Width Values for Improv-
ing Non-Volatile Cache Lifetime,” in DATE, 2014.

[209] C. Molina, C. Aliagas et al., “Non Redundant Data Cache,” in ISLPEL,
2003.

[210] J. Kong and S. W. Chung, “Exploiting Narrow-Width Values for Pro-
cess Variation-Tolerant 3-D Microprocessors,” in DAC, 2012.

[211] G. Pekhimenko, E. Bolotin et al., “Toggle-Aware Compression for
GPUs,” CAL, 2015.

[212] G. Pekhimenko, E. Bolotin et al., “A Case for Toggle-Aware Compres-
sion for GPU Systems,” in HPCA, 2016.

[213] G. Pekhimenko, T. Huberty et al., “Exploiting Compressed Block Size
as an Indicator of Future Reuse,” in HPCA, 2015.

[214] X. Wang andW. Zhang, “GPU Register Packing: Dynamically Exploit-
ing Narrow-Width Operands to Improve Performance,” in TrustCom,
2017.

[215] J. Hu, S. Wang, and S. G. Ziavras, “In-Register Duplication: Exploiting
Narrow-Width Value for Improving Register File Reliability,” in DSN,
2006.

[216] S. Wang, J. Hu et al., “Exploiting Narrow-Width Values for Thermal-
Aware Register File Designs,” in DATE, 2009.

[217] M. Özsoy, Y. O. Koçberber et al., “Dynamic Register File Partitioning
in Superscalar Microprocessors for Energy Efficiency,” in ICCD, 2010.

[218] S. Mittal, H. Wang et al., “Design and Analysis of Soft-Error Resilience
Mechanisms for GPU Register File,” in VLSID, 2017.

[219] O. Ergin, “Exploiting Narrow Values for Energy Efficiency in the
Register Files of Superscalar Microprocessors,” in PATMOS, 2006.

[220] M. Canesche, R. Ferreira et al., “A Polynomial Time Exact Solution to
the Bit-Aware Register Binding Problem,” in CC, 2022.

[221] A. Canis, J. Choi et al., “From Software to Accelerators with LegUp
High-Level Synthesis,” in CASES, 2013.

[222] C. Pilato and F. Ferrandi, “Bambu: AModular Framework for the High
Level Synthesis of Memory-Intensive Applications,” in FPL, 2013.

[223] Y. Onur Koçberber, Y. Osmanlıoğlu, and O. Ergin, “Exploiting Narrow
Values for Faster Parity Generation,” Microelectronics International,
2009.

[224] Y. Osmanlioglu, Y. O. Koçberber, and O. Ergin, “Reducing Parity
Generation Latency Through Input Value Aware Circuits,” inGLSVLSI,
2009.

[225] M. Jang, J. Kim et al., “ENCORE Compression: Exploiting Narrow-
width Values for Quantized Deep Neural Networks,” in DATE, 2022.

[226] J. Albericio, A. Delmás et al., “Bit-Pragmatic Deep Neural Network
Computing,” in MICRO, 2017.

[227] I. B. Karsli, P. Reviriego et al., “Enhanced Duplication: A Technique
to Correct Soft Errors in Narrow Values,” CAL, 2012.

[228] O. Ergin, O. Unsal et al., “Reducing Soft Errors Through Operand
Width Aware Policies,” TDSC, 2008.

[229] C. Lattner, “LLVM and Clang: Next Generation Compiler Technology,”
in BSDCan, 2008.

[230] S. Sarda and M. Pandey, LLVM Essentials. Packt Publishing Ltd,
2015.

[231] B. C. Lopes and R. Auler, Getting Started with LLVM Core Libraries.
Packt Publishing Ltd, 2014.

[232] A. Sampson, “LLVM for Grad Students,” https://tinyurl.com/y3tyb7z2.
[233] M. H. Lipasti, B. R. Mestan, and E. Gunadi, “Physical Register Inlining,”

in ISCA, 2004.
[234] G. H. Loh, “Exploiting Data-Width Locality to Increase Superscalar

Execution Bandwidth,” in MICRO, 2002.
[235] M. Stephenson, J. Babb, and S. Amarasinghe, “Bidwidth Analysis with

Application to Silicon Compilation,” in PLDI, 2000.
[236] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira, “A Fast and Low-

Overhead Technique to Secure Programs Against Integer Overflows,”
in CGO, 2013.

[237] V. H. S. Campos, R. E. Rodrigues et al., “Speed and Precision in Range
Analysis,” in SBLP, 2012.

[238] J. Cong, Y. Fan et al., “Bitwidth-Aware Scheduling and Binding in
High-level Synthesis,” in ASP-DAC, 2005.

[239] Intel Corp., Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Vol. 3, 2016.

[240] O. J. Bedrij, “Carry-Select Adder,” IEEE TC, 1962.
[241] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations,” IEEE TC, 1973.
[242] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” JACM,

1980.
[243] Brent and Kung, “A Regular Layout for Parallel Adders,” IEEE TC,

1982.
[244] H. Makino, Y. Nakase et al., “An 8.8-ns 54/SPL Times/54-bit Multiplier

with High Speed Redundant Binary Architecture,” JSSC, 1996.
[245] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache

Timing, Power, and Area Model,” Compaq Computer Corporation,
Tech. Rep. 2001/2, 2001.

[246] A. D. Booth, “A Signed Binary mMultiplication Technique,” The Quar-
terly Journal of Mechanics and Applied Mathematics, 1951.

[247] A. A. Karatsuba and Y. P. Ofman, “Multiplication of Many-Digital
Numbers by Automatic Computers,” in USSR Academy of Sciences,
1962.

[248] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[249] S. Han, X. Liu et al., “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in ISCA, 2016.

[250] SAFARI Research Group, “DAMOV Benchmark Suite and Simulation
Framework,” https://github.com/CMU-SAFARI/DAMOV.

[251] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” in MICRO, 2007.

[252] SAFARI Research Group, “Proteus Simulation Framework,” https:
//github.com/CMU-SAFARI/Proteus.

[253] Intel Corp., “6th Generation Intel Core Processor Family Datasheet,”
http://www.intel.com/content/www/us/en/processors/core/.

[254] NVIDIA, “NVIDIAA100 Tensor Core GPUArchitecture.White Paper,”
https://tinyurl.com/53a8easc, 2020.

[255] N. Firasta, M. Buxton et al., “Intel AVX: New Frontiers in Performance
Improvements and Energy Efficiency,” Intel Corp., 2008, white paper.

[256] N. Binkert, B. Beckmann et al., “The gem5 Simulator,” Comput. Archit.
News, 2011.

[257] SAFARI Research Group, “MIMDRAM Simulation Framework,” https:
//github.com/CMU-SAFARI/MIMDRAM.

[258] H. Hassan, A. Olgun et al., “A Case for Self-Managing DRAM Chips:
Improving Performance, Efficiency, Reliability, and Security via Au-
tonomous in-DRAM Maintenance Operations,” arXiv:2207.13358
[cs.AR], 2022.

[259] M. Hähnel, B. Döbel et al., “Measuring Energy Consumption for Short
Code Paths Using RAPL,” SIGMETRICS, 2012.

[260] NVIDIA Corp., “NVIDIA Management Library (NVML),” https://
developer.nvidia.com/nvidia-management-library-nvml.

https://tinyurl.com/y3tyb7z2
https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/Proteus
https://github.com/CMU-SAFARI/Proteus
http://www.intel.com/content/www/us/en/processors/core/
https://tinyurl.com/53a8easc
https://github.com/CMU-SAFARI/MIMDRAM
https://github.com/CMU-SAFARI/MIMDRAM
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Oliveira et al.

[261] Intel Corp., “10th Generation Intel Core Processor Family Datasheet,”
https://tinyurl.com/4fh5ze38.

[262] D. U. Lee, K. W. Kim et al., “A 1.2V 8Gb 8-Channel 128GB/s High-
BandwidthMemory (HBM) Stacked DRAMwith EffectiveMicrobump
I/O Test Methods Using 29nm Process and TSV,” in ISSCC, 2014.

[263] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Sched-
uling for Chip Multiprocessors,” in MICRO, 2007.

[264] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous
DRAM That Maximizes Throughput by Allowing Memory Requests
and Commands to Be Issued Out of Order,” U.S. Patent 5 630 096, 1997.

[265] JEDEC, JESD79-5: DDR5 SDRAM Standard, 2020.
[266] H. Lee, M. Kim et al., “3D-FPIM: An Extreme Energy-Efficient DNN

Acceleration System Using 3D NAND Flash-Based In-Situ PIM Unit,”
in MICRO, 2022.

[267] R. Zhou, S. Tabrizchi et al., “P-PIM: A Parallel Processing-in-DRAM
Framework Enabling Row Hammer Protection,” in DATE, 2023.

[268] NVIDIA Corp., “NVIDIA/cutlass: CUDATemplates for Linear Algebra
Subroutines,” https://github.com/NVIDIA/cutlass.

[269] R. Zhou, A. Roohi et al., “FlexiDRAM: A Flexible In-DRAMFramework
to Enable Parallel General-Purpose Computation,” in ISLPED, 2022.

[270] O. Leitersdorf, D. Leitersdorf et al., “AritPIM: High-Throughput In-
Memory Arithmetic,” IEEE Trans. Emerg. Topics Comput., 2023.

[271] A. Arora, A. Bhamburkar et al., “CoMeFa: Deploying Compute-in-
Memory on FPGAs for Deep Learning Acceleration,” Trans. Reconfig-
urable Technol. Syst., 2023.

[272] H. Caminal, Y. Chronis et al., “Accelerating Database Analytic Query
Workloads Using an Associative Processor,” in ISCA, 2022.

[273] S. S. Wong, C. C. Tamarit, and J. F. Martínez, “PUMICE: Processing-
using-Memory Integration with a Scalar Pipeline for Symbiotic Exe-
cution,” in DAC, 2023.

https://tinyurl.com/4fh5ze38
https://github.com/NVIDIA/cutlass

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Organization & Operation
	2.2 Processing-Using-DRAM

	3 Motivation
	4 Proteus Overview
	4.1 Main Components of Proteus
	4.2 Execution Flow

	5 Proteus Implementation
	5.1 Subarray Organization
	5.2 Parallelism-Aware µProgram Library
	5.3 Dynamic Bit-Precision Engine
	5.4 µProgram Select Unit

	6 Methodology
	7 Evaluation
	7.1 Real-World Application Analysis
	7.2 Proteus vs. Tensor Cores in GPUs
	7.3 Area Analysis

	8 Related Work
	9 Conclusion
	References

