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Abstract
The Incomplete LU (ILU) computation is a crucial compo-
nent for solving large-scale sparse linear systems arising
from partial differential equations (PDEs), many of which
are discretized on structured grids. However, due to inherent
loop-carried data dependencies in ILU computation, imple-
menting it on GPUs with massive computing units poses
significant challenges. Existing methods either experience
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a lower convergence rate or suffer from insufficient paral-
lelism, and few efforts have been made to exploit the geo-
metric information of the PDE grid. In this work, we intro-
duce StructILU for dependency-preserving structured grid
ILU computations on GPUs. StructILU constructs hierarchi-
cal parallelism with three tiers: grid, intra-row, and intra-
element. An acyclic dependency task mapping maximizes
grid parallelism, while latency-aware pipeline methods opti-
mize intra-row parallelism, and Tensor Core-optimized ma-
trix operations enhance intra-element parallelism. Aligned
with hierarchical parallelism, memory transformations are
designed to utilize high memory bandwidth. Experiment re-
sults show that StructILU demonstrates up to 6.5x and 17.7x
(average 2.11x and 3.88x) speedups compared to existing
general methods for triangular solve and factorization, re-
spectively, and can achieve an average speedup of 2.02x in
end-to-end ILU-preconditioned iterative solvers.

CCS Concepts
•Mathematics of computing→ Solvers; • Computing
methodologies → Massively parallel algorithms.
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1 Introduction
Sparse iterative solvers play a vital role in a wide range of
scientific and engineering applications [15, 52, 55, 74], par-
ticularly for solving large-scale systems arising from the dis-
cretization of partial differential equations (PDEs). In a sparse
iterative solver, the incomplete LU (ILU) computation [45, 52]
is frequently employed as the preconditioner [8, 26, 30, 65]
or the subdomain solver [5, 24, 36, 68, 69] to accelerate the
convergence speed; however, its complexity often throttles
the performance of overall solving process.
The ILU computation consists of a factorization phase,

which is usually performed once, and a sparse triangular
solve (SpTRSV) phase, which is often repeatedly applied.
Both phases introduce complex loop-carried data dependen-
cies, posing significant challenges in identifying inherent
parallelism and fully utilizing hardware resources. And the
challenges are even more severe on modern GPUs with mas-
sive parallelization capabilities. In addition to that, a large
variety of problems rely on solving PDEs defined on struc-
tured grids [23, 49, 71], where the grid points are arranged
in a regular geometric pattern, and their topology is pre-
determined. This feature makes it possible for more efficient
parallel execution [10, 73]; however, it remains unexplored
how the geometric information of the structured grids can
be effectively leveraged to accelerate ILU on GPUs.
There have been extensive efforts on ILU parallelization,

which are summarized in Table 1. These approaches can be
categorized into two classes based on whether they preserve
the data dependency ordering. The first class exploits high
parallelism through matrix reordering [33, 51] and inexact
factorization [4, 12, 13], which trade off accuracy for compu-
tational efficiency. As a result, they may experience lower
convergence efficiency due to the disruption of data depen-
dencies [13, 16]. The second class completely maintains the
original data dependencies and produces the same result as a
serial implementation. The level-set method [17, 27, 50, 60],
which is used by cuSPARSE [46, 47], constructs a depen-
dency graph and divides it into levels, where tasks in the

Table 1: Comparison with existing parallel ILU work.

Factorization Triangular
Solve

Dependency-
Preserving

Structured Grid
Optimized

Target
Platform

ParILU [12, 13] ✔ ✘ ✘ ✘ GPU
ParILUT [4] ✔ ✘ ✘ ✘ GPU
MC-ILU [33, 48] ✔ ✔ ✘ ✘ GPU
Sync-Free [37] ✘ ✔ ✔ ✘ GPU
cuSPARSE [46] ✔ ✔ ✔ ✘ GPU
DBSR [72] ✔ ✔ ✘ ✔ X86/ARM
Fast Sparse [63] ✘ ✔ ✔ ✔ Sunway

This work ✔ ✔ ✔ ✔ GPU

same level can be parallelized. This method may incur sub-
stantial synchronization overhead between levels. In con-
trast, synchronization-free methods [18, 37, 42] avoid global
synchronization through point-to-point spin waits, but may
suffer from insufficient parallelism.
For structured grid problems, the data dependency pat-

terns become more explicit, and could help overcome the
limitations of existing methods, thus achieving both high
convergence and computational efficiency. Specifically, the
geometric information enables static optimizations on task
mapping and scheduling strategies to maintain dependencies.
These strategies continue to leverage parallelism through
the level-set method while allowing fine-grained synchro-
nization via a stencil-based spin-wait scheme. Additionally,
simplifying matrix indexing facilitates further optimizations
in memory access. Several works are focused on structured
grid ILU parallelization on SIMD CPUs [58, 72] and the Sun-
way processor [63]. However, it is hard for them to extend
to GPU platforms. The massive, hierarchically organized
threads of GPU present a challenge in aligning computations
with the SIMT model. The data dependency may incur warp
divergence and uncoalesced memory access, and even re-
sult in deadlocks due to cyclic dependencies between thread
blocks. Furthermore, leveraging powerful Tensor Cores re-
quires elaborate adaptations in both computations and mem-
ory layouts [10, 38, 40].

In this paper, we propose StructILU, an efficient structured
grid ILU framework to leverage GPUs. StructILU can har-
ness the fine-grained parallelism within ILU computations.
Previous works on CPUs [58, 63, 72] focus on parallelizing
grid point computations within each level of the level-set
method, a scheme referred to as grid parallelism. A coarse-
grained stencil computation task is assigned to each grid
point, failing to occupy threads on GPUs that are tailored
for fine-grained operations. To address this issue, we further
investigate the intra-row parallelism of single grid point
computations, which is achieved by parallelizing across mul-
tiple nonzero elements within a matrix row. For multiphysics
problems, the intra-element parallelism can be extracted
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from the dense block elements in the matrix, which is formed
by the correlation of multiple variables.
The StructILU framework incorporates all three tiers of

parallelism, collectively forming hierarchical parallelism.
For grid parallelism, we introduce an acyclic dependency task
mapping technique from a level-set perspective. This ap-
proach decomposes dependencies between levels while mini-
mizing synchronization overhead. For intra-row parallelism,
we develop latency-aware pipeline method to reduce com-
putation latency within a single row. In factorization phase,
we analyze the data dependency between nonzero elements,
and develop a two-substage pipelining technique to improve
load balancing. For intra-element parallelism, we leverage
the Tensor Cores in modern GPUs to significantly enhance
the efficiency of computationally intensive matrix opera-
tions. Furthermore, aligned with hierarchical parallelism, we
design memory transformations, including a vector-oriented
matrix layout and level-based transformations, to ensure co-
alesced memory access. These optimizations fully leverage
the massive parallel computing power and high memory
bandwidth of GPUs.

Overall, our paper makes the following contributions:
• We propose StructILU, an efficient GPU framework to
parallelize dependency-preserving ILU for structured
grid PDEs.

• We exploit the available parallelism in ILU by decou-
pling it into hierarchical tiers: grid, intra-row, and intra-
element.

• We develop optimizations for hierarchical parallelism
to enhance both computation and memory access effi-
ciency.

The experiment results on NVIDIA A100 and RTX 3090
GPUs demonstrate that StructILU can achieve up to 6.5x and
17.7x (on average 2.11x and 3.88x) speedups in the triangular
solve and factorization phases, respectively, compared to
existing GPU implementations. Furthermore, evaluations of
end-to-end ILU preconditioned iterative solvers on multiple
real-world applications reveal that StructILU outperforms the
best baselines, achieving an average overall speedup of 2.02x.
Finally, a convergence test with different ILU preconditioner
variations shows that StructILU achieves both the highest
convergence rate and the shortest runtime.

2 Background
2.1 Incomplete LU on Structured Grids
The ILU decomposition, derived from LU decomposition,
uses a sparse approximation of the original matrix𝐴. It drops
some elements in predetermined non-diagonal positions to
obtain lower (𝐿) and upper (𝑈 ) triangular matrices such that
𝐴 ≈ 𝐿𝑈 [52]. For symmetric positive definite (SPD) matrices,
it simplifies to 𝐴 ≈ 𝐿𝐿𝑇 , known as incomplete Cholesky

(a) Star-7P (b) Diamond-13P (c) Box-27P

Figure 1: Three different stencil patterns and their
corresponding sparse matrices. A central orange grid
point, along with purple lower and gray upper neigh-
boring grid points on its sides, represents a row of
nonzero elements in matrix.

(IC). The ILU method is valuable as a preconditioner or sub-
domain solver for solving PDEs on a structured grid. The
particular sparse structure of matrix 𝐴 is dictated by the
PDEs’ discretization pattern, known as the stencil. Examples
of various stencil patterns and their corresponding sparse
matrices are illustrated in Figure 1.

In detail, for a 3D structured grid with size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 ,
the stencil is defined as S = {𝑆𝑖 }, 𝑆𝑖 ∈ Z3. In the matrix, the
nonzero elements of a row (𝑖, 𝑗, 𝑘) match columns (𝑖 + 𝑥, 𝑗 +
𝑦, 𝑘 + 𝑧), where each (𝑥,𝑦, 𝑧) is a coordinate in S. The total
stencil size is noted by 𝑠 := |S|, with S𝐿 and S𝑈 denoting the
lower and upper stencil subsets, 𝑠𝐿 and 𝑠𝑈 similarly. The term
Degree of Freedom (𝐷𝑜𝐹 ) refers to the number of variables
at each grid point, and each nonzero matrix entry forms a
𝐷𝑜𝐹 × 𝐷𝑜𝐹 dense block.

The application of ILU consists of two fundamental stages.
❶ The factorization phase occurs only once during the
setup stage of the iterative solver, which involves compli-
cated arithmetic. Algorithm 1 shows the process of ILU fac-
torization with zero fill-in (ILU(0)) on a structured grid, with
matrices 𝐿 and 𝑈 stored in place. ❷ The triangular solve
phase is repeatedly executed during each iteration of the
iterative solver. Algorithm 2 illustrates the process for the
lower triangular solve step on a structured grid. Note that
both phases involve inherent loop-carried data dependencies,
posing significant challenges for parallelization.
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Algorithm 1: Inplace ILU(0) on a structured grid.

1

Input: Original matrix 𝐴 with stencil S.
Output: Factorized matrices 𝐿,𝑈 store in 𝐴, Diagonal

inversion 𝐷𝑖𝑛𝑣 .
for row in grid_points: # LOOP1: Grid

2 for pt_l in S𝐿: # LOOP2: Intra-row
3 if (row + pt_l) in grid_points:
4
5

A[row][S.index(pt_l)] *= D_inv[row + pt_l]
for pt_u in S𝑈 : # LOOP3

6
7

pt_elim = pt_l + pt_u
if pt_elim in S:

8 A[row][S.index(pt_elim)] # Intra-element
9 -= A[row][S.index(pt_l)]
10
11

* A[row + pt_l][S.index(pt_u)]
D_inv[row] = inv(A[row][S.index((0,0,0))])

Algorithm 2: Lower triangular solve.

1

Input: Lower triangular matrix 𝐿 with identity diagonal,
RHS vector 𝑏.

Output: Solution vector 𝑥 .
for row in grid_points: # LOOP1: Grid

2
3

result = 0
for pt in S𝐿: # LOOP2: Intra-row

4
5

col = row + pt
if col in grid_points:

6 result +=
7
8

L[row][S𝐿.index(pt)] * x[col] # Intra-element
x[row] = b[row] - result

2.2 Level-set and Sync-free Methods
Despite the intrinsic loop-carried data dependencies and the
massive parallelism of GPUs, several dependency-preserving
methods have been developed for ILU and SpTRSV. We dis-
cuss the implementation of different existing methods using
the Star-7P stencil as an example in Figure 2.

Level-set Method. The ILU computation is inherently se-
quential, yet the sparse nature of the matrix allows for a
certain degree of parallelism in LOOP1 of Algorithms 1 and
2. To manage data dependencies effectively, the level-set
method [2, 53] has been employed. This method categorizes
the solution process into distinct levels, with each level con-
sisting of tasks that can be executed independently. Specifi-
cally, dependencies among grid points are depicted using a
directed acyclic graph (DAG). By analyzing the longest path
from any vertex with zero incoming edges and assigning
levels accordingly, nodes at the same level can be executed
concurrently. As the classical level-set method processes
each level sequentially using separate GPU kernels [33], high
global synchronization overheads are introduced.

Sync-free Method. Targeting triangular solve,
synchronization-free (sync-free) methods on GPUs have
been developed to mitigate synchronization overhead. These
methods employ a flag array to monitor the completion sta-
tus of each row, enabling warps or threads to actively check
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Task 0
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CUDA Grid

(e) potential deadlock

Task 1

Figure 2: (a) Dependency graph for the lower triangu-
lar solve of Star-7P stencil. (b) Sparse pattern of the
lower matrix 𝐿. (c) The classical level-set method. (d)
The sync-free method. (e) Potential deadlock can be
caused by cyclic dependency between thread blocks if
the number of thread blocks exceeds the maximum
active block count: Thread block A cannot exit until B
starts, while B lacks the resources to start until A exits,
resulting in a deadlock.

the flag array while awaiting the completion of dependent
rows, thereby eliminating the need for global synchroniza-
tion. Specifically, the thread-level sync-free methods [56]
allocate different rows to individual threads, while the warp-
level approach [19, 37] assigns the computation of each row
(LOOP2 in Algorithm 2) to the collaborative effort of threads
within a single warp [25, 75].

3 Motivation and Overview
Modern GPUs are characterized by their massive parallelism,
featuring thousands of core units designed for various types
of computations. For example, the NVIDIA A100 GPU pro-
vides 10368 CUDA Cores for floating point and integer oper-
ations and 432 Tensor Cores for accelerating matrix opera-
tions. To fully harness the powerful computational capabili-
ties of GPUs to parallelize Algorithms 1 and 2, we introduce
the hierarchical parallelism in StructILU, which encom-
passes three distinct tiers: grid, intra-row, and intra-element.
In addition, in terms of memory, to align with computations
and ensure efficient coalesced access, we also optimize the
memory layout through transformation.
Grid Parallelism. Using the stencil pattern associated

with a structured sparse matrix, level information can be an-
alytically determined without traversing the matrix’s nonze-
ros. Therefore, grid parallelism from LOOP1 in Algorithms 1
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and 2 can be maximized by applying the level-set method,
whose global synchronization needs further optimization.
For example, the level-set-based implementation in cuSPARSE
[46, 47] launches separate kernels for different levels. Con-
versely, Sync-free methods break down synchronization into
point-to-point interactions, but their parallelism is limited
by task mapping. Figure 2(d) demonstrates a scenario where
sync-free methods fail to maximize parallelism. Moreover,
deadlocks may occur when bidirectional dependencies exist
between thread blocks, as shown in Figure 2(e). These obser-
vations highlight a trade-off between achieving higher grid
parallelism and mitigating the synchronization costs. There-
fore, we designed an acyclic dependency taskmappingmethod
using the level-set philosophy, discussed in Section 4.1, while
adopting a block-to-block waiting scheme inspired by the
Sync-free method [37] to minimize synchronization costs
between levels.

Intra-RowParallelism.During the triangular solve phase,
each row requires a dot product operation (Line 6 in Algo-
rithm 2). The classical level-set methods [46] and thread-level
sync-free approaches [56] neglect this form of parallelism. In
contrast, warp-level methods [75] assign all threads within
a warp to work collaboratively on a single row using warp
reduction. However, this strategy often results in low warp
utilization, as the number of nonzeros per row is relatively
small for most stencils (e.g., Diamond-13P has 𝑠𝐿 = 6, which
uses only 18.8% of the 32-thread warp size) [25]. By noting
that some of the dependent elements are available before the
previous grid level completes, we introduced latency-aware
pipeline dot product in Section 4.2.1.
Intra-row parallelism for ILU factorization is more intri-

cate than that in SpTRSV, as multiple updates to the current
row’s nonzero elements (Line 4, 8 in Algorithm 1) must ad-
here to the specific order dictated by LOOP2. This results in a
computational complexity of 𝑂 (𝑠2𝐿), which significantly sur-
passes that of SpTRSV. For instance, a Box-27P stencil row
requires 114 updates and one diagonal inversion. For stencil-
based problems, dependency analysis can be performed with
negligible cost during the initial setup phase, enabling our
proposal of Intra-row level-set parallelization. Additionally,
a two-substage pipeline is also introduced in Section 4.2.2,
which improves load balancing and reduces block synchro-
nization overhead during the factorization of each row.

Intra-Element Parallelism. Finally, inmulti-physics prob-
lems, each nonzero element in the sparse matrix becomes a
𝐷𝑜𝐹 × 𝐷𝑜𝐹 dense block, necessitating further intra-element
parallelism. During the triangular solve phase, this paral-
lelism can be fully utilized by assigning 𝐷𝑜𝐹 threads to a
single grid point. For ILU factorization, dense block compu-
tations involve matrix multiplication and matrix inversion
operations, both with a complexity of 𝑂 (𝐷𝑜𝐹 3). Although
the block sparse row (BSR) interface in cuSPARSE and other

studies [28, 43, 44] support these computations, the acceler-
ated Tensor Cores on modern GPUs remain underutilized.
To fully leverage these hardware units, we introduce Tensor
Core utilized matrix operations to maximize intra-element
parallelism; details are provided in Section 4.3.

Memory Transformation. In addition to maximizing par-
allelism across three hierarchical levels, we also adapt the
memory layout to align with computations and ensure co-
alesced memory access, particularly during the memory-
intensive SpTRSV phase. Existing methods for general Sp-
TRSV fail in achieving coalesced access for stencil-based
problems. For example, in the classic level-setmethod, threads
process grid points of the same level concurrently. However,
in a non-degraded 3D stencil, successive grid points along the
𝑥-axis never belong to the same level. Similarly, in warp-level
sync-freemethods, threads within a warp access solution vec-
tor entries correspond to non-successive columns (x[col] in
Algorithm 2), resulting in uncoalesced access patterns. How-
ever, the fixed pattern of the stencil enables the chance to
design specific memory layouts. Therefore, delicately match-
ing the computation pattern of hierarchical parallelism, we
design a vector-oriented matrix layout combined with level-
based transformation to ensure coalesced access for both
matrix and vector data, as detailed in Section 4.4.

4 Detailed Design of StructILU
In this section, we introduce the detailed design to utilized
grid, intra-row, and intra-element parallelism in Section 4.1,
4.2, 4.3 respectively, and memory transformations in 4.4.

4.1 Grid: Acyclic Dependency Task
Mapping

As discussed in Section 3, existing methods involve a trade-
off between achievable grid parallelism and synchroniza-
tion overhead. Considering both factors, we propose an
acyclic dependency task mapping method. This method di-
vides tasks into slice hyperplanes based on geometric infor-
mation, adopting a level-set perspective to ensure maximum
parallelism. Building upon the principles of sync-free meth-
ods, we then propose a block-to-block waiting scheme that
allows points at subsequent levels to enter iterations rapidly,
while maintaining dependencies between levels. This task
mapping is inherently deadlock-free, eliminating the limit
on total thread block count and thereby enhancing hardware
utilization. Furthermore, by preserving dependencies across
multiple levels within a single thread block, our approach
also enhances data reuse. In the subsequent, we delve into
the specifics of this approach, beginning with a simple Star-
7P stencil and then moving to a general case, as illustrated
in Figure 3.
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Figure 3: Acyclic dependency task mapping on GPUs. (a) Star-7P stencil. (b) General stencil cases, taking Diamond-
13P stencil as an example.

Star-7P stencil. ❶ Data dependencies exist solely in the
positive directions of the 𝑥 , 𝑦, and 𝑧 axes. The level of a grid
point (𝑖, 𝑗, 𝑘) is 𝑖+ 𝑗 +𝑘 , resulting in a total of 𝑁𝑥 +𝑁𝑦 +𝑁𝑧−2
levels. This arrangement allows points on the same level to
be processed concurrently. ❷ We partition the grid in the
𝑥𝑦-plane, assigning each point on this plane to a thread.
These threads are then organized into thread blocks that are
orthogonal to the coordinate axes. ❸ Each thread performs
computations along the 𝑧-axis, ranging from 𝑧 = 0 to 𝑁𝑧 − 1.
Threads within a block execute tasks synchronously at the
same level, forming a wavefront hyperplane.
A block-to-block waiting scheme is proposed to preserve

dependencies between thread blocks. This scheme involves
a flag array in device memory, where each entry tracks the
number of levels completed by the corresponding thread
block. Before starting level 𝑙 , a thread block (bid𝑥 , bid𝑦) spin-
waits until the blocks below it (bid𝑥 , bid𝑦 − 1) and to its
left (bid𝑥 − 1, bid𝑦) complete level 𝑙 − 1. Upon completing
level 𝑙 and performing a block synchronization (block-sync)
with a memory fence, the flag for the current block is incre-
mented. Figure 3(a)❹ shows that direct data dependencies
between thread blocks occur only in the positive 𝑥 and 𝑦
directions. This design handles dependencies without global
synchronization and effectively avoids deadlocks.
General stencil cases. The major difference between

star-shaped stencils and other cases lies in the existence of
nonzero lower points in {(𝑥,𝑦, 𝑧) ∈ S𝐿 |𝑥 > 0∧𝑦 < 0∧𝑧 = 0}
and {(𝑥,𝑦, 𝑧) ∈ S𝐿 | (𝑥 > 0 ∨ 𝑦 > 0) ∧ 𝑧 < 0}, which
cause backward dependencies. For Diamond-13P stencil,
these points are colored red in Figure 3(b)❶. Here, points

(1,−1, 0), (1, 0,−1), and (0, 1,−1) can potentially cause back-
ward dependencies. If we directly map the 𝑥𝑦-plane to the
thread grid, thread block (𝑏𝑖𝑑𝑥 , 𝑏𝑖𝑑𝑦) depends on (𝑏𝑖𝑑𝑥 +
1, 𝑏𝑖𝑑𝑦) and (𝑏𝑖𝑑𝑥 , 𝑏𝑖𝑑𝑦 + 1) for computation at the next level.
This results in a cyclic dependency, which can cause poten-
tial deadlocks when the number of thread blocks exceeds the
maximum active block count of the GPU. A global synchro-
nization would be required to prevent this, as illustrated in
Figure 2(e).

To resolve this issue, we perform an affine transformation
on the coordinate system. Let the original basis vector be
𝒆𝑥 , 𝒆𝑦, 𝒆𝑧 . We first define 𝒆𝑥 := 𝒆𝑥 as the 𝑥 direction. Then, we
check the slice plane 𝑧 = 0 ofS𝐿 and use the upper-rightmost
red point in the lower half plane to define the 𝑦 direction as:

−𝒆 𝑦̂ ∈ argmax
(𝑥,𝑦,0) ∈S𝐿,𝑥>0,𝑦<0

|𝑥 |
|𝑦 | . (1)

❷After applying the affine transformation base on (𝒆𝑥 , 𝒆 𝑦̂),
we obtain the 𝑥𝑦-coordinate. Thus all lower points in slice
plane 𝑧 = 0 satisfy 𝑥 ≤ 0 and 𝑦 ≤ 0. Next, we consider points
where 𝑧 < 0, and derive 𝒆𝑧 as follows:

−𝒆𝑧 ∈ argmax
(𝑥,𝑦,𝑧 ) ∈S𝐿,(𝑥>0∨𝑦>0)∧𝑧<0

|𝑥 | + |𝑦 |
|𝑧 | . (2)

Take Diamond-13P stencil as an example, the lower point
(1,−1, 0) satisfies the condition in (1) leading to 𝒆 𝑦̂ := 𝒆𝑦−𝒆𝑥 .
Then, the lower point (0, 1,−1) has 𝑥 = 1, 𝑦 = 1, 𝑧 = 1, which
satisfies the maximum condition in (2). This leads to the
transformation 𝒆𝑧 := 𝒆𝑧 − 𝒆𝑦 . Actually, the choice of 𝒆 𝑦̂ and
𝒆𝑧 may not be unique. ❸ By applying affine transformation
based on 𝒆𝑥 , 𝒆 𝑦̂, 𝒆𝑧 , we transform the 𝑥𝑦𝑧-coordinate to 𝑥𝑦𝑧-
coordinate. This results in the set {(𝑥,𝑦, 𝑧) ∈ S𝐿 | (𝑥 > 0∨𝑦 >
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0) ∧ 𝑧 < 0} = ∅, which implies that no points are causing
backward dependencies. ❹ A view of the stencil in the 𝑥𝑦𝑧
coordinate system is shown.
For the allocation of tasks to threads, we employ an ap-

proach similar to the one utilized in the Star-7P case, with
the new coordinates (𝑥,𝑦, 𝑧). Specifically, we map the 𝑥𝑦-
plane onto 2D thread blocks for the Diamond-13P stencil,
assigning each thread a line of points along the 𝑧 direction.
Here, a grid point (𝑖, 𝑗, 𝑘) in 𝑥𝑦𝑧-coordinate corresponds to
(𝑖, 𝑗, 𝑘) = (𝑖 + 𝑗 +𝑘, 𝑗 +𝑘, 𝑘) in 𝑥𝑦𝑧-coordinate. Thus the level
under this transformation is given by 𝑖 + 𝑗 + 𝑘 = 𝑖 + 2 𝑗 + 3𝑘 .
Figure 3(b)❺ illustrates that there are no cyclic dependencies
between thread blocks. Each thread block (𝑏𝑖𝑑𝑥 , 𝑏𝑖𝑑𝑦) waits
for the completion of the block (𝑏𝑖𝑑𝑥 − 1, 𝑏𝑖𝑑𝑦 − 1) due to
the diagonal dependencies. Finally, we sort the thread blocks
by their minimum effective level for GPU kernel launch to
further improve scheduling efficiency.

Similarly, we can obtain 𝒆𝑥 := 𝒆𝑥 , 𝒆 𝑦̂ := 𝒆𝑦 − 𝒆𝑥 , 𝒆𝑧 := 𝒆𝑧 −
𝒆𝑦 − 𝒆𝑥 for the Box-27P stencil. The grid point (𝑖, 𝑗, 𝑘) in 𝑥𝑦𝑧-
coordinate has a new coordinate of (𝑖, 𝑗, 𝑘) = (𝑖 + 𝑗 + 2𝑘, 𝑗 +
𝑘, 𝑘) in 𝑥𝑦𝑧-coordinate, with level 𝑖 + 𝑗 +𝑘 = 𝑖 +2 𝑗 +4𝑘 . Let us
denote 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 as the number of levels and 𝑃𝑔𝑟𝑖𝑑 := 𝑁𝑥𝑁𝑦𝑁𝑧

𝑁𝑙𝑒𝑣𝑒𝑙𝑠

as the average grid parallelism. Then, 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 for the Star-7P
case and Box-27P case are given by 𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 − 2 and
𝑁𝑥 + 2𝑁𝑦 + 4𝑁𝑧 − 6, respectively. For 𝑁 3 grid case, the 𝑃𝑔𝑟𝑖𝑑
is about 𝑁 2

3 and 𝑁 2

7 , implying that the grid parallelism for
the Box-27P case is only 43% of that for the Star-7P case,
necessitating further fine-grain parallelization.

4.2 Intra-Row: Latency-Aware Pipeline
Methods

For cases with many levels, grid parallelism becomes insuffi-
cient, making it crucial to fully exploit fine-grained intra-row
parallelism to reduce latency at each level. Parallel computa-
tion of a single row reduces the number of floating point oper-
ations 𝑁𝑓 𝑝 along the critical path, although it may introduce
additional synchronization overhead due to 𝑁𝑏𝑠 block-syncs.
We propose latency-aware pipeline parallelization strategies
for both the triangular solve and factorization phases, to par-
allelize intra-row computations, corresponding to LOOP2 in
Algorithms 1 and 2. The grid level definition adheres to that
in Section 4.1, and the pipeline methods are demonstrated us-
ing a Diamond-13P stencil in Figure 4. Nonzeros are sorted
by their intra-row levels, where each intra-row level for a
nonzero in S𝐿 is calculated as the sum of its transformed
𝑥𝑦𝑧-coordinates. For example, shown in (a), the lower points
in Diamond 13P have intra-row levels ranging from -3 to -1.
This paper introduces pipeline optimizations for the lower
triangular solve phase in (b), and the ILU factorization in
segments (c) through (f).

4.2.1 Triangular solve phase. Intra-rowpipelined dot prod-
uct. For the lower triangular solve phase, the task of each
row, i.e. LOOP2 in Algorithm 2 is an inner product with length
𝑠𝐿 . To parallelize it, the nonzeros are partitioned into 𝑃𝑟𝑜𝑤
stages. The choice of 𝑃𝑟𝑜𝑤 is not unique, but the maximum
reasonable value to ensure load balance is determined by the
following rule: The level of nonzeros in each stage does not
exceed 𝑠𝑡𝑎𝑔𝑒_𝑖𝑑 − 𝑃𝑟𝑜𝑤 , where 0 ≤ 𝑠𝑡𝑎𝑔𝑒_𝑖𝑑 < 𝑃𝑟𝑜𝑤 . After-
ward, these stages are mapped to 𝑃𝑟𝑜𝑤 groups within a thread
block and processed in parallel using a pipeline manner. Fig-
ure 4(b) shows the pipeline for the Diamond-13P stencil with
𝑃𝑟𝑜𝑤 = 2. For a grid point with grid level 𝑙 , the summation
corresponds to three nonzero elements with intra-row level
−1 is performed at the grid level 𝑙 ; However, the other three
elements with intra-row level −2 and −3 are summarized
earlier during the execution of grid level 𝑙 − 1. Assuming
sufficient free resources in SM, the 𝑁𝑓 𝑝 is reduced from 6 to
3. It is worth noting that compared to warp-level methods,
whose warp reduction gives an overhead of an addition, 𝑁𝑓 𝑝

is reduced by 25%. Specifically, the dependencies between
pipeline stages are maintained by the block-to-block waiting
scheme described in Section 4.1, with no additional synchro-
nization cost, i.e. 𝑁𝑏𝑠 = 0. For Star-7P whose grid parallelism
is much greater, this pipeline method is not applicable due
to its compact dependencies that row with level 𝑙 depends
only on rows with level 𝑙 − 1. For other stencils, the effect of
pipelining is summarized in Table 2.

4.2.2 ILU factorization phase. Intra-row level-set paral-
lelization. Since the computational cost of the factorization
is typically higher than that of the triangular solve phase, it
is necessary to utilize finer-grained parallelism when elimi-
nating each matrix row. As stated in Algorithm 1, during the
elimination, each lower triangular nonzero (pt_l in LOOP2)
performs several updates to subsequent nonzeros (pt_elim
in LOOP3). Simply parallelizing LOOP3 is sub-optimal for com-
plex stencils, as the latency is strictly limited by 𝑠𝐿 of LOOP2.
To address this issue, we construct an intra-row dependency
graph for the elements within rows based on dependencies,
as shown in Figure 4(c). The dependency graph can then
be executed using level-set parallelization with 𝑃𝑟𝑜𝑤 thread
groups. The 𝑃𝑟𝑜𝑤 can be chosen according to the load balanc-
ing result. Unlike the original serial algorithm, the updates
of each nonzero pt_elim are merged, at the node corre-
sponding to pt_elim in the graph. The computation cost
of each nonzero includes multiple updates from previously
completed elements (line 8 in Algorithm 1), coupled with
the multiply for the lower part (line 4) and the inversion of
diagonal (line 11).

Figure 4(d) illustrates the level-set parallelization of
Diamond-13P using 𝑃𝑟𝑜𝑤 = 4, the length of bricks showing
the computational cost of each nonzero. Assuming that the
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substage pipeline. (f) Latency and load balance of Two-substage pipeline.

cost of fused multiply-add (FMA) or inverse is 1, the latency
per row involves a computational cost𝑁𝑓 𝑝 = 13, along with 3
block-syncs between levels. This is a notable reduction com-
pared to the straightforward parallelization of LOOP3, which
incurs 14 computational costs and 12 block-syncs. However,
it can be observed in (d) that workload imbalance between
thread groups still prevents full utilization of parallelism.

Two-substage pipelinemethod.Although intra-row elim-
ination has been parallelized, the multiple block synchro-
nizations and exacerbated load imbalance within levels still
result in high overhead. Additionally, the red arrows in Fig-
ure 4(e) denote dependencies between nonzero elements in
rows with adjacent grid levels (across LOOP1), which prohibit
direct pipelining of intra-row stages. Therefore, we adopt a
two-substage pipeline to allow the overlapping of rows in
successive grid levels. After the first two intra-row levels of
a row at grid level 𝑙 are completed, the computation for the
row at grid level 𝑙 + 1 begins. This approach ensures that
only one additional block-sync between two substages is
involved, and other dependencies are implicitly handled by
the block-to-block waiting scheme between grid levels. Also,
(f) shows the load balancing improvement due to the more el-
ements in each substage (from rows of successive grid levels)

Table 2: Computation latency with pipeline paralleliza-
tion on a single row, under typical choices of 𝑃𝑟𝑜𝑤 .

Stencil Triangular Solve Factorization
Serial 𝑁𝑓 𝑝 𝑃𝑟𝑜𝑤 Parallel 𝑁𝑓 𝑝 Serial 𝑁𝑓 𝑝 𝑃𝑟𝑜𝑤 Parallel 𝑁𝑓 𝑝

Star-13P 6 2 3 19 2 11
Diamond-13P 6 2 3 29 4 10
Diamond-25P 12 4 3 95 4 25
Box-27P 13 4 4 115 4 30

to be parallelized compared to the original intra-row level set
parallelization. For Diamond-13P stencil, the floating point
cost 𝑁𝑓 𝑝 is reduced to 10, and 𝑁𝑏𝑠 is reduced to 1.
As observed in Table 2, the pipeline method reduces la-

tency for both triangular solve and factorization phases.
Moreover, with compact updates of nonzero elements, seg-
menting multiple pipeline stages within a thread block also
improves the spatial locality of data.

4.3 Intra-Element: Tensor Core Utilization
For the case with 𝐷𝑜𝐹 > 1, the introduction of 𝐷𝑜𝐹 × 𝐷𝑜𝐹
dense matrix operations significantly increases the arith-
metic intensity of the ILU factorization. It is essential to fully
exploit the acceleration units provided by the hardware, such
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Figure 5: Tensor Core utilized dense matrix operations
for multi-𝐷𝑜𝐹 cases.

as Tensor Cores in the A100 GPU, to maximize intra-element
parallelism. For 𝐴 = 𝐴 − 𝐵 ×𝐶 , shown in Figure 5, when the
𝐷𝑜𝐹 is sufficiently large, we utilize the FP64 Tensor Cores to
perform matrix multiply-add (MMA) operations. In this case,
the warp directly corresponds to the parallelism across the
entire 𝐷𝑜𝐹 dimension. During elimination, the original ma-
trix is negated and stored in registers, and after completing
all MMA operations, the result is negated again and writ-
ten back to device memory. In this case the intra-element
parallelism 𝑃𝐷𝑜𝐹 = 32. For 𝐴 = 𝐴−1, we inverse the matrix
using Gauss-Jordan elimination, where threads in a warp
collaborate using warp shuffle.

In other cases where Tensor Cores cannot be utilized, each
thread is responsible for the computation of one row during
matrix multiplication and inversion, storing intermediate
results in shared memory, and 𝑃𝐷𝑜𝐹 = 𝐷𝑜𝐹 . For the trian-
gular solve with multiple 𝐷𝑜𝐹 s, we assign successive 𝐷𝑜𝐹
threads to each variable in the solution vector, and no warp
divergence is incurred since the computation is independent
of other variables within the current grid point.

4.4 High Throughput Memory
Transformation

With the exploration of hierarchical parallelism to fully ex-
ploit the massive parallelism of GPUs, adapting the memory
layout becomes essential to achieve high bandwidth utiliza-
tion. We apply transformations to the matrix and vector
storage formats to align with the computational patterns,
thereby ensuring coalesced memory access.
Vector-oriented matrix layout. Sparse matrices from

structured grid PDEs are shaped by the underlying stencil,
enabling an optimized storage scheme through zero-padding
and avoidance of extra indices. In StructILU, we represent the
sparse matrix as a 6D tensor with dimensions 𝐷𝑜𝐹 × 𝐷𝑜𝐹 ×
𝑠 ×𝑀 × 𝑁 × 𝑃 , where the physical arrangement of tensor
dimensions critically influences memory-access efficiency.
Figure 6(a) illustrates different storage formats using the
lower matrix from Star-7P as an example. Common formats,
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such as CSR and BSR, store nonzero elements in row-major
order, failing to achieve coalesced memory access under our
task mapping. To address this, we propose a vector-oriented
matrix layout, which splits each block column-wise. Each
column of length 𝐷𝑜𝐹 is stored contiguously along the grid
axes, resulting in multiple 𝐷𝑜𝐹 ×𝑀 ×𝑁 ×𝑃 arrays that align
with vector-based storage.

Level-based memory layout transformation. In our
task mapping, threads corresponding to the same level are
successive along the grid’s 𝑥 axis. However, they do not ac-
cess adjacent locations. Taking Star-7P as an example, when
computing level 𝑙 , adjacent threads (𝑖, 𝑗) and (𝑖 + 1, 𝑗) in the
thread grid process (𝑖, 𝑗, 𝑙 − 𝑖 − 𝑗) and (𝑖 + 1, 𝑗, 𝑙 − 𝑖 − 𝑗 − 1),
respectively, leading to non-coalesced access due to different
𝑧 coordinates. To resolve this, we employ an affine transfor-
mation, similar to subsection 4.1, but elevate 𝑧 to 𝑙 = 𝑥 +𝑦 +𝑧.
Figure 6(b) shows this on a 3× 3× 3 grid. Under this scheme,
the vector data for (𝑖, 𝑗, 𝑘) is stored at (𝑖, 𝑗, 𝑙), ensuring adja-
cent threads access contiguous data and achieving coalesced
memory access. For matrices, we apply a corresponding off-
set transformation to the proposed vector-oriented layout,
also ensuring coalesced access. Furthermore, any storage
overflow from increased level numbers can be mitigated by
applying a modulus to each dimension, preventing excessive
memory usage.
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5 Evaluation
5.1 Setup
We implement StructILU with CUDA C++. StructILU is com-
piled with Clang 18.0 and CUDA 12.2. Our experiments run
on two machines. The first one has an Intel Xeon Gold 6326
CPU and an RTX 3090 GPU. The second features a same CPU
along with one A100 PCIe GPU [11]. An RTX 3090 GPU has
24GB device memory, offering a theoretical memory band-
width of 936 GB/s and an FP64 performance of 556 Gflop/s,
with a boost clock of 1950MHz. Conversely, an A100 GPU has
80GB memory, providing a theoretical memory bandwidth
of 1935 GB/s, with a 1410MHz GPU boost clock. The FP64
CUDA Core performance for the A100 GPU is 9.7 Tflop/s,
and 19.5 Tflop/s when utilizing the FP64 Tensor Core units.
All tests use the double precision.

5.2 Single Kernel Performance
To our best knowledge, no existing GPU implementation
is specifically tailored for dependent-preserving structured
grid ILU. Consequently, we compare our StructILU approach
with several baselines designed for general sparse matrices,
including the latest cuSPARSE 12.1, AG-SpTRSV [25], and Re-
cursive Block (Rec-Block) [42]. Among these, only cuSPARSE
provides implementations for ILU factorization. We evalu-
ate both CSR and BSR formats in cuSPARSE, enabling level
information to ensure enhanced kernel performance. For
AG-SpTRSV, an exhaustive search is conducted to optimize
performance outcomes, while Rec-Block is implemented us-
ing its default blocking parameters. AG-SpTRSV and Rec-
Block are variants of Sync-free methods. We evaluate the
single kernel performance of the lower triangular solve and
ILU factorization stages using five different stencil patterns
under various 𝐷𝑜𝐹 settings, as in Table 3.

The results are shown in Figure 7. For the lower triangular
solve phase, StructILU achieves an average speedup of 2.16x
on the RTX 3090 and 2.06x on the A100 GPUs compared
to the fastest baseline. It is evident that StructILU delivers
consistently high performance across various stencils and
𝐷𝑜𝐹 s, ranging from 99 Gflop/s to 296 Gflop/s. In contrast,
the baselines face a dramatic performance degradation for
small 𝐷𝑜𝐹 and 𝑠 , possibly due to the few nonzeros in a row.
Therefore, StructILU achieves an average speedup of 4.1x for
𝐷𝑜𝐹 = 1. Notably, StructILU achieves an average bandwidth
of 700.4 GB/s on the RTX 3090, which is 74.8% of the theo-
retical peak. This indicates that StructILU effectively utilizes
parallelism but is limited by hardware memory bandwidth.
For the ILU factorization phase, StructILU achieves aver-

age speedups of 4.22x on the RTX 3090 and 3.56x on the A100
GPUs compared to the best baseline. The trend in speedup is
similar to that observed in the triangular solve phase. With
the Diamond-25P stencil using 𝐷𝑜𝐹 = 8, StructILU sustains

Stencil 𝐷𝑜𝐹=1 𝐷𝑜𝐹=2 𝐷𝑜𝐹=4 𝐷𝑜𝐹=6 𝐷𝑜𝐹=8

Star-7P 512 | 560 336 | 416 208 | 256 160 | 192 128 | 160
Star-13P 432 | 544 272 | 336 160 | 208 128 | 160 96 | 128
Diamond-13P 432 | 544 272 | 336 160 | 208 128 | 160 96 | 128
Diamond-25P 336 | 416 208 | 256 128 | 160 96 | 128 80 | 104
Box-27P 336 | 416 208 | 256 128 | 160 96 | 128 80 | 104

Table 3: The configuration of single kernel tests. To
make full use of the device memory, we choose appro-
priate 𝑁 3 grids for RTX 3090 | A100 GPU.

a performance of 385 Gflop/s on the RTX 3090, 69.2% peak
performance. This indicates that the achievable performance
of the RTX 3090 is limited by its peak FP64 performance
under such a complicated case, in which case the A100 GPU
achieves 959 Gflop/s, thanks to FP64 Tensor Core units.

5.3 Performance Breakdown
In this subsection, we explore how StructILU benefits from
the proposed techniques. Figure 8 details the results on an
A100 GPU. We use acyclic dependency task mapping as the
baseline. By applying level-based memory layout transforma-
tion, the performance of the four cases improves by 2.8x, 1.7x,
3.8x, and 2.2x, respectively. Next, we implement pipeline opti-
mization for intra-row dot products. The speedups achieved
are 1.1x, 1.8x, 1.8x and 2.9x, respectively. This technique
offers slight acceleration for the Star-13P case as its grid
parallelism is nearly sufficient to utilize GPU resources.

For the ILU decomposition, using taskmapping as the base-
line, memory transformation provides speedups of 5.1x, 3.4x,
1.6x and 1.5x for four cases. By applying the two-substage
pipelining method, performance improves by 16%, 26%, 31%,
and 47%, respectively, to exploit the intra-row parallelism
and reduce latency. This performance gain is less than de-
sired 𝑃𝑟𝑜𝑤 due to the limitation of SM resources. Finally, by
enabling Tensor Core when 𝐷𝑜𝐹 = 8, we observe perfor-
mance improvements of 81% and 82% for Diamond-25P-8
and Box-27P-8, respectively, demonstrating a performance
gain matching the hardware feature.

5.4 Parallelism Under Different
Configuration

We also scale problem sizes across different GPUs to observe
performance changes. Figure 9 compares the lower triangular
solve performance for the Star-13P and Diamond-13P sten-
cils. In both cases and on both devices, StructILU achieves a
significant performance gain over cuSPARSE, especially for
large 𝑁 . Additionally, by leveraging the geometric structure,
we eliminate the need for index arrays and preprocessing
storage, enabling StructILU to handle larger problems on
memory-limited GPUs.
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Figure 7: Performance comparison of StructILU and baselines on the lower triangular solve and ILU factorization
phase, excluding the time for preprocessing and symbolic factorization. The speedup of StructILU over the fastest
baseline is marked.

Moreover, parallelism analysis can be performed by com-
paring the two stencils. Both Star-13P and Diamond-13P
stencils use a two-stage pipeline with similar memory and
computation footprints. However, Star-13P has fewer lev-
els, 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 = 3𝑁 − 2, compared to Diamond-13P, which has
𝑁𝑙𝑒𝑣𝑒𝑙𝑠 = 6𝑁−5, nearly doubling the number of levels. On the
A100, for 𝑁 ≤ 192, the performance of Star-13P is roughly
twice that of Diamond-13P, indicating that performance is
primarily limited by grid parallelism 𝑃𝑔𝑟𝑖𝑑 = 𝑁 3

𝑁𝑙𝑒𝑣𝑒𝑙𝑠
. The aver-

age overall parallelism 𝑃𝑔𝑟𝑖𝑑𝑃𝑟𝑜𝑤𝑃𝐷𝑜𝐹 ≈ 2𝑁 2

3 of Diamond-13P
is half that of Star-13P, which is 4𝑁 2

3 . Therefore, Diamond-
13P, with a grid size of

√
2𝑁 , achieves similar performance

to Star-13P with an 𝑁 grid due to comparable parallelism.
Additionally, it is noteworthy that RTX 3090 outperforms
A100 for very small 𝑁 due to insufficient parallelism, and its

performance is linearly related to the GPU core frequency.
As 𝑁 increases, A100 performs better owing to its superior
hardware parallelism and higher memory bandwidth.

5.5 ILU Preconditioned Iterative Solver Test
Furthermore, six real-world applications are selected to com-
pare the performance of different ILU implementations as
preconditioners for iterative solvers. Table 4 and Figure 10
present the configuration and time breakdown results for
each problem, respectively. Ensuring numerically consistent
solutions, StructILU achieves an average speedup of 2.35x
and 1.73x on RTX 3090 and A100 GPUs, respectively. For
example, in the Cahn-Hilliard problem with 22 iterations
on RTX 3090, cuSPARSE-CSR spends 25.6% of the time on
the factorization phase, while StructILU only spends 9.8%,
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Figure 9: Performance of the lower triangular solve
with two stencils with 𝐷𝑜𝐹 = 2, using StructILU and
cuSPARSE-CSR on A100 and RTX 3090 GPUs. The grid
size is 𝑁 3.

indicating a significant reduction in ILU factorization cost.
Additionally, StructILU outperforms cuSPARSE in matrix-
vector multiplication due to its vector-oriented matrix layout,
which ensures coalesced accesses and eliminates indexing
overhead.
Specifically, due to the typically high cost of the analysis

and symbolic factorization phases in ILU, StructILU directly
leverages geometric information within the kernel, elim-
inating this overhead. Therefore, it is excluded from our

Table 4: Problem configuration for iterative solver tests.
The grid size is 𝑁 3. # LI denotes the number of linear
iterations.

PDEs Solver Stencil 𝐷𝑜𝐹 𝑁 # LI

Poisson [6] CG-IC(0) Star-7P 1 304 46
Poisson [6] CG-IC(1) Diamond-13P 1 304 29
Convection-Diffusion [31] GMRES-ILU(0) Star-7P 1 304 23
Navier-Stokes [29] GMRES-ILU(0) Box-27P 4 104 12
Euler [64] GMRES-ILU(0) Star-13P 5 112 11
Cahn-Hilliard [35] GMRES-ILU(0) Diamond-25P 2 160 22

comparison. For example, in the Poisson-IC(0) case on RTX
3090, cuSPARSE’s preprocessing takes 1.16 seconds, while
the linear solve time is only 1.76 seconds. In contrast, the
memory layout transformation in StructILU takes just 0.002
seconds, negligible compared to the total linear solve time
of 0.53 seconds.

5.6 Convergence Test of Preconditioners
Finally, we are interested in the efficiency of different vari-
ations of ILU preconditioners, especially non-dependency-
preservingmethods, includingmulti-color ILU (MC-ILU) [33],
ParILU [13] and ParILUT [4], whose IC variants are used. We
use the csrcolor routine in cuSPARSE [48] for MC-IC, and
Ginkgo [3] 1.9.0 for ParIC and ParICT. We conduct the ex-
periments using the Poisson equation in Table 4 on an A100
GPU with the conjugate gradient (CG) solver. The default
parameters are used for baselines, where ParIC(0) performs
5 sweeps during factorization, and the maximum fill-in level
of ParICT is 2. For StructILU, IC(0) and IC(1) are tested.
Figure 11 shows the iteration and timing results. The

dependency-preserving IC(0) algorithm requires 223 itera-
tions to converge to a relative residual norm of 10−5, achiev-
ing a total CG iteration time 3.68x faster than ParIC(0), which
necessitates 246 iterations. This reduction in iteration count
by approximately 10.3% is due to maintaining data depen-
dencies. In contrast, the ParICT algorithm converges in only
179 iterations; however, due to threshold constraints, its con-
vergence rate is slower than that of the IC(1) method using
the Diamond-13P stencil, which requires only 148 iterations,
achieving a 2.78x speedup relative to ParICT. MC-IC(0) con-
verges after 295 iterations, due to the drop of extra nonzeros
resulting from multi-color reordering.
Furthermore, regarding decomposition time, the numeri-

cal factorization for IC(0), IC(1), ParIC(0), and MC-IC(0) takes
0.012s, 0.045s, 0.014s, and 0.081s respectively. These results
show that StructILU not only converges faster but also of-
fers greater decomposition efficiency. In contrast, ParICT
performs numerical and symbolic factorizations together,
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leading to a total decomposition time of 2.16s. Besides, the
coloring of MC-IC(0) takes 0.21s.

6 Related work
Non-dependency-preserving Methods. These algorithms
can be classified into two categories. One category is based
on reordering the matrix 𝐴 into a new matrix by using
some multi-coloring schemes [52]. Compared to the level-set
method, this method captures more parallelism but the re-
sulting ILU preconditioner may have a significant reduction
in convergence rate than the serial ILU since many more
nonzero elements are dropped. GPU performance of the
method can be found in [33, 48]. The other category is inex-
act methods. ParILU [12, 13] is an inexact ILU preconditioner
in which nonzeros in 𝐿 and𝑈 are updated asynchronously
without any data dependency for several sweeps during fac-
torization. Convergence degradation can also be faced when
using inexact preconditioners [13]. ParILU and its threshold-
based version ParILUT [4] are implemented in Ginkgo linear

solver library [3]. Blocked versions of asynchronousmethods
are also designed [28, 44].

Dependency-preserving parallelization of SpTRSV. For
parallelizing dependency-preserving ILU on GPUs, much
of the focus has been on the triangular solve. A level-set
method leveraging multiple SpMV kernels for SpTRSV is
implemented [33]. A synchronization-free algorithm [37]
eliminates global synchronizations between level sets us-
ing the Compressed Sparse Column (CSC) format. A similar
approach, offering warp-level sync-free operations for the
CSR format, is introduced [19]. To enhance performance
in matrices with a low average number of nonzeros per
row, a thread-level sync-free method is developed [56]. Rec-
Block [42] employs a recursive blocking strategy to lever-
age the 2-D spatial structure of matrices, improving Sp-
TRSV performance. AG-SpTRSV [25] applies kernel tem-
plates to optimize performance search. Numerous other ad-
vancements in triangular solve optimization have been made,
including data formats [34, 41, 54, 62, 70], adaptive schedul-
ing [1, 20, 21, 57, 75], the preprocessing stage [18, 22], and
multi-GPU systems [39, 66]. cuSPARSE [46, 47] is an NVIDIA-
developed library designed for sparse matrix computations,
supporting both ILU(0) and triangular solves, with CSR and
BSR formats.
Optimization of ILU-like preconditioners for struc-

tured grids. A block ILU scheme using a Star-7P stencil
is implemented through a level-set method on GPUs [43].
On Sunway systems, structured grid triangular solve em-
ploys a producer-consumer model [32, 63]. DBSR [72] is a
data format for vectorizing structured grid sparse triangu-
lar solve on CPUs, using block multi-color ordering. Mixed
precision preconditioners in structured multigrid on CPUs
are also studied [78]. Further research extends to other pre-
conditioners with similar loop-carried dependencies, like the
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Gauss-Seidel and SOR smoothers in multigrid methods, both
on Sunway processors [76] and multi-core CPUs [7, 59, 77].
Other work with related massive parallel optimiza-

tion techniques. CuMF_SGD [67] adopts multi-level par-
allelism for matrix factorization on GPUs using stochastic
gradient descent. Centauri [9] improves communication par-
titioning and hierarchical scheduling for overlap in large
language model training. An FPGA framework enabling au-
tomatic parallelism for stencil computation is proposed [61].
Tensor Cores in modern GPUs are also utilized for the nu-
merical solution of PDEs [10, 14, 40].

7 Concluding remarks
In this work, we propose StructILU, an efficient GPU frame-
work to parallelize dependency-preserving ILU for structured
grid PDEs. We decompose the parallelism inherent in ILU
computation into three hierarchical tiers: grid, intra-row,
and intra-element. By leveraging the geometric properties
of structured grids, StructILU incorporates acyclic depen-
dency task mapping, latency-aware pipeline parallelization,
Tensor Core utilization for multiphysics problems, and high-
throughput memory transformations, thereby fully exploit-
ing the massive parallelism of GPUs.

We remark that although this work focuses on structured
grid problems, the techniques and performance model we
propose can be further extended to ILU and other similar
preconditioners on unstructured grids, to exploit parallelism
while reducing overhead based on geometric information.
Additionally, although the experiments presented in this
paper were conducted solely in double precision and on
NVIDIA GPUs, the proposed approach is applicable to other
precision formats and GPUs from different vendors as well.
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