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Abstract
Training transformer models requires substantial GPU com-
pute and memory resources. While training systems are typ-
ically designed for homogeneous GPU clusters, sufficiently
large homogeneous clusters are difficult to acquire for most
organizations due to cost and GPU scarcity. Hence, it is in-
creasingly common to assemble heterogeneous clusters with
a mix of higher and lower-end GPUs featuring differing com-
pute power and memory capacity. Existing methods attempt
to distribute the workload across heterogeneous GPUs based
on compute capacity but often underutilize compute due to
memory constraints.We present Cephalo, a system that holis-
tically balances both compute and memory usage by decou-
pling compute distribution from training state assignment.
Cephalo uses an optimizer to efficiently distribute the com-
pute workload and storage of training state to account for
GPU heterogeneity in the cluster. Additionally, it separates
memory from compute requirements through an optimized
gradient accumulation strategy. Compared to state-of-the-
art methods, Cephalo achieves 1.2×–10.8× higher training
throughput while supporting larger models and batch sizes.
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Transformer models [52] have demonstrated state-of-the-art
performance in many domains including natural language
processing (NLP), computer vision, and recommendation sys-
tems [8, 9, 49]. In particular, large language models (LLMs),
which are based on the transformer architecture, have sig-
nificantly advanced NLP tasks such as question-answering,
translation, and summarization [5, 8, 62]. Since increasing
model size can yield significant improvements in accuracy,
this has led to the development of larger models that often
exceed modern GPU compute and memory capabilities [37].

Consequently, many strategies have been proposed to dis-
tribute and parallelize training across multiple GPUs. Data
parallelism replicates the model across GPUs, each training
on a different subset of the inputs in parallel. Model paral-
lelism splits the model across GPUs, with each GPU storing
and processing only a partition of the model’s parameters.

While existing parallelization strategies typically assume
GPU homogeneity, ML practitioners, in reality, often do not
have sufficiently large homogeneous clusters for training
transformers, even at smaller scales of fewer than 32 GPUs
[10, 17, 36, 47, 64]. For example, a small-scale company or
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Figure 1: AWS GPU availability (12-hour period).

research lab may not have the resources to purchase an
entire cluster of the latest GPUs. Instead, they are more
likely to accumulate a diverse array of GPUs with varying
compute and memory capacities over time [25, 51, 60]. Cloud
platforms like AWS offer VMs with a variety of GPU models,
but due to high demand, each model is available only in
limited quantities. Figure 1 plots a trace of GPU availability
on AWS over a 12-hour period in the us-west region. High-
end GPUs (A100, H100) are almost always unavailable, and
even mid-tier GPUs (A10G, V100, T4) are limited due to
capacity and quota. Thus, it is challenging to reserve a large
homogeneous cluster of GPUs.

By assembling heterogeneous clusters with different GPU
models, users can leverage a larger pool of compute resources
for training. However, existing systems are unable to utilize
resources efficiently in heterogeneous clusters. Systems for
homogeneous clusters divide compute andmemory demands
evenly among all GPUs [27, 39, 44]. In clusters with varying
GPU capabilities, training is bottlenecked by the slowest
GPU, leaving faster GPUs idle. Additionally, training fails if
GPUs with the least memory run out, even if others have
unutilized memory.
Heterogeneity-aware training methods have been pro-

posed, which aim to balance computational load across GPUs.
For instance, in data parallelism, the batch of inputs is dis-
tributed unevenly across GPUs according to their relative
computational speeds [16, 20, 29]. Systems using model par-
allelism partition the model’s layers or parameters unevenly
across GPUs to balance computation [30, 64]. Recent meth-
ods integrate both data and model parallelism to further
optimize compute distribution [51, 60].

These load-balancing techniques allocate memory on each
GPU proportional to its computational capacity. In data par-
allelism, a GPU assigned a larger batch of inputs requires
more memory for operations and activation storage. Simi-
larly, in model parallelism, a GPU handling a larger model
shard demands additional memory to maintain the training
state. However, as shown in Figure 2, a GPU’s memory ca-
pacity does not always scale with its compute speed. This
mismatch can prevent effective computational load balanc-
ing due to memory limitations. For example, while the L4
offers significantly faster computation than the P40, both

have the same memory capacity, meaning the L4 may lack
sufficient memory to handle twice the workload of a P40.
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Figure 2: GPU TFlops (FP32) vs. Memory Capacity.

Thus, existing systems are susceptible to both: (i) underuti-
lizing compute on GPUs with low memory capacity relative
to compute speed, and (ii) underutilizing memory on GPUs
with high memory capacity relative to compute speed.

To address these shortcomings, we designed Cephalo, a
system capable of effectively utilizing the aggregate compute
andmemory resources in heterogeneous GPU clusters when
training transformer models.

Cephalo partitions the global batch of training inputs un-
evenly across GPUs to control the computational workload
assigned to each GPU. To control the memory utilization on
each GPU, Cephalo combines the following strategies:

(i) The training state (parameters, gradients, and optimizer
state) is sharded across the GPUs to balance memory
utilization. Each GPU can store anywhere from none of
the training state to the entire training state. Flexibly
sharding the training state is implemented on top of
Fully Sharded Data Parallelism (FSDP) [65] that evenly
distributes the training state across GPUs.

(ii) Gradients can be accumulated over multiple smaller
batches to replicate training on larger batch sizes while
using less memory for compute operations.

(iii) Memory for storing intermediate activation and gradi-
ent values are eliminated with a combination of activa-
tion recomputation and offloading intermediate values
to CPU when they are not used.

These mechanisms for controlling computational work-
load and memory can be applied independently. This allows
Cephalo to decouple the assignment of compute and memory
to each GPU and fully utilize the aggregate GPU compute
and memory available within a heterogeneous cluster of
GPUs in scenarios where state-of-the-art systems fall short.
In this paper, we make the following contributions:

(1) We designed and implemented Cephalo, a system for
training transformer models on heterogeneous GPU
clusters that jointly optimizes compute and memory
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distribution to maximize training throughput by effi-
ciently utilizing resources across GPUs. Cephalo in-
cludes an optimizer to divide training data, manage
training state, and configure gradient accumulation to
accommodate resource heterogeneity.

(2) We integrate gradient accumulation along with ac-
tivation and gradient offloading efficiently in FSDP.
Our implementation of gradient accumulation mini-
mizes the overhead of gathering training state. Our
offloading strategy mitigates memory overhead from
gradient accumulation and overlaps with compute to
hide transfer latency.

(3) We perform an extensive evaluation of Cephalo on
heterogeneous GPU clusters with up to 64 GPUs and
on transformer models with up to 7 billion param-
eters. We show that Cephalo is able to achieve up
to 10× higher training throughput than comparative
state-of-the-art heterogeneous training systems while
supporting training for larger models and batch sizes.

1 Background
This section describes how transformers are trained, the
motivation for training on heterogeneous clusters, and how
prior work parallelizes training across homogeneous versus
heterogeneous clusters.

1.1 Training Transformers
Transformer models consists of a sequence of identical en-
coder and decoder layers, containing computationally expen-
sive self-attention mechanisms and feed-forward networks
[52]. These models are typically trained with stochastic gra-
dient descent (SGD) or its variants such as Adam [21]. This
process involves iteratively adjusting the model’s parameters
to minimize the loss, a measure of the difference between
the model’s predictions and the actual data. During each
iteration, the forward pass computes the loss of the model,
and during the backwards pass the gradients of the model
are computed from the loss. These gradients are then used
to update the model’s parameters. Adam requires 16 bytes
of memory per model parameter on the GPU [39, 46], cover-
ing not only the model parameters but also their gradients
and optimizer state. Besides maintaining the training state,
GPU memory is also required to run operations and store
intermediate activation outputs. Even a medium-sized model
like Llama 7B [50] requires more memory for training than
available on high-end H100 GPUs. Given these substantial
GPU memory and computational requirements, transformer
training is typically parallelized.
Data Parallelism [42] replicates the model across GPUs,
each computing a gradient on a local batch of data of size
𝑏. Then, the local gradients are averaged across 𝑁 GPUs

to compute the gradient as 1
𝑁

∑𝑁
𝑖=1

1
𝑏

∑𝑏
𝑗=1 ∇𝑖 𝑗 , where ∇𝑖 𝑗 is

the gradient from the 𝑗th data input of the 𝑖th GPU. This
"vanilla" data parallelism works only if each GPU can store
the entire training state. ZeRO-3 [39], or fully sharded data
parallelism (FSDP) [65] in PyTorch [23], is a variant of data
parallelism that evenly shards the training state across GPUs.
This allows for larger models to be trained by reducing the
training state stored per GPU by a factor of 𝑁 , albeit at the
cost of 50% more communication [39].
Model Parallelism partitions a model across GPUs, with
each GPU storing only the training state for its assigned
shard, enabling the training of models larger than a sin-
gle GPU’s memory. Pipeline parallelism [15, 31] divides the
model into stages of consecutive layers, passing activations
and gradients between stages. It parallelizes compute by pro-
cessingmicrobatches in a pipeline across these stages. Tensor
parallelism [43, 44] partitions inputs, computation, and pa-
rameters across GPUs, using AllReduce [35] to aggregate
partial outputs after each layer.

1.2 Training on Heterogeneous Clusters
IncreasingUbiquity ofHeterogeneous Clusters. Many dis-
tributed training systems assume a homogeneous GPU clus-
ter, dividing compute and memory demands equally. How-
ever, most organizations lack large homogeneous clusters
due to frequent GPU release cycles, high upgrade costs, GPU
shortages, and limited cloud availability [10, 25, 47, 48, 56].
As a result, organizations often assemble clusters with GPUs
from different generations to achieve higher compute power
in aggregate. Thus, training on heterogeneous clusters has
gained attention as it allows organizations to leverage all
available GPU resources for training [16, 36, 51, 60, 64].
Training Adaptations for Heterogeneous Clusters. Ex-
isting homogeneous training strategies are susceptible to
underutilizing GPU resources on a heterogeneous cluster
since faster GPUs will be idle while waiting to synchronize
with slower GPUs. Systems like Whale [16, 29] propose to
mitigate bottlenecks in data parallelism by assigning uneven
batch sizes to GPUs based on their relative compute speed.
However, a GPU with a high compute-to-memory ratio may
run out of memory before fully utilizing its compute.

In pipeline parallelism [31, 36], balancing compute latency
across stages is crucial as the slowest stage bottlenecks the
pipeline. In homogeneous clusters, dividing the layers evenly
across stages is effective since transformer layers are typi-
cally identical [32]. In heterogeneous clusters, compute can
be balanced by partitioning layers based on relative com-
pute speed of its GPUs. However, such a partition may not
be possible due to memory constraints. The fastest GPUs
may lack sufficient memory to handle the layers required
to maximize their compute potential, while slower GPUs
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might fully utilize their compute capacity but leave a sig-
nificant portion of their memory underutilized. HAP [64]
distributes workloads unevenly using data and tensor par-
allelism to align with GPU compute capacities, though it
still assumes faster GPUs have more memory. Additionally,
tensor parallelism requires high-bandwidth GPU intercon-
nects for efficiency, which are unlikely to be available in
heterogeneous clusters with lower-end GPUs. Metis [51]
and HexiScale [60] integrate heterogeneous data, pipeline,
and tensor (3D) parallelism, offering greater flexibility for
heterogeneous training configurations but inherit limitations
of each parallelism type.
In existing data and model parallelism approaches, com-

pute and memory allocation are tightly coupled, which be-
comes problematic in heterogeneous clusters since a GPU’s
memory capacity does not always match its compute speed
(Figure 2). This mismatch often prevents effective compute
balancing due to memory limitations. Cephalo solves these
problems by independently balancing compute and memory
during training in heterogeneous clusters. Cephalo targets
the training of medium sized models, such as Llama and Phi,
which offer competitive performance comparable to larger
models [1, 41, 63]. These models are feasible to train on mod-
erately sized heterogeneous clusters, making them attractive
options for organizations that seek high-performancemodels
without large, high-end homogeneous clusters.

Profiler

Compute
Memory
Network

Optimizer

Trainer

Batch Size
Training State

GPU 1

GPU 2

GPU N

Figure 3: Architecture of Cephalo.

2 Cephalo Design
Cephalo is designed to maximize training throughput by ef-
fectively balancing computational and memory loads across
heterogeneous GPUs, ensuring full utilization of the aggre-
gate resources available in the cluster.
Cephalo is built on top of FSDP [65], which divides the

training state and computation evenly across each GPU. To
balance compute, Cephalo assigns a batch size to each GPU
proportional to its compute speed. To balance memory uti-
lization, Cephalo partitions the training state and decides on
configurations for gradient accumulation, activation check-
pointing, and activation/gradient offloading according to the
relative memory capacities of each GPU. Given a model and

target cluster, Cephalo profiles the model to build perfor-
mance models predicting computation time, memory usage,
and communication time across configurations. The opti-
mizer then leverages these models to configure batch size,
training state shard, and gradient accumulation for each
GPU to maximize training throughput. Figure 3 illustrates
Cephalo’s architecture.

2.1 Division of Compute and Training State
A key feature of Cephalo is its ability to decouple the distri-
bution of compute and memory loads across GPUs, essen-
tial for optimizing performance in heterogeneous clusters
where GPU memory capacity does not necessarily scale with
compute power. Cephalo efficiently allocates compute and
training state across GPUs, leveraging the combined com-
pute and memory resources of the cluster. We describe the
mechanisms Cephalo uses for this division next.
Compute Partitioning. Given a global batch size𝐵, Cephalo
partitions the workload across GPUs by assigning each GPU
𝑖 a local batch size 𝑏𝑖 such that

∑
𝑖 𝑏𝑖 = 𝐵. To minimize it-

eration times, Cephalo balances 𝑏𝑖 to reduce the maximum
runtime on any GPU. To maintain equivalency with standard
training, each GPU’s local gradient is adjusted by 𝑁 · 𝑏𝑖/𝐵,
resulting in a final gradient of:

∇ =
1
𝑁

𝑁∑︁
𝑖=1
(𝑁 · 𝑏𝑖

𝐵
) 1
𝑏𝑖

𝑏𝑖∑︁
𝑗=1
∇𝑖 𝑗 =

1
𝐵

𝑁∑︁
𝑖=1

𝑏𝑖∑︁
𝑗=1
∇𝑖 𝑗 (1)

Training State Partitioning. The training state – com-
prising model parameters, gradients, and optimizer states
– consumes significant memory. FSDP partitions this state
evenly across GPUs to reduce memory utilization. The model
is divided into FSDP units which manage the computation
and communication for their respective parameters. As in
prior work [38], each unit in Cephalo contains a single trans-
former layer. Each unit shards its portion of the training
state evenly. During the forward and backward passes for
an FSDP unit, an AllGather collective gathers the full set of
parameters on each GPU. Parameters are subsequently re-
sharded to ensure only the current and prefetched next units
are materialized in memory. After a unit’s backward pass, a
ReduceScatter collective averages gradients and distributes
them to the responsible GPUs. FSDP overlaps AllGather and
ReduceScatter collectives with the computation of adjacent
units to hide communication latencies. In contrast to a fixed
even partitioning, Cephalo assigns each GPU 𝑖 a specific
training state ratio 𝑟𝑖 (where

∑
𝑟𝑖 = 1), enabling fine-grained

memory control independent of the compute distribution.

2.2 Managing Memory for Compute
Beyond storing training state, significant GPU memory is
needed for computation and storing intermediate activations.
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Figure 4: Gradient accumulation in FSDP (top) vs Cephalo (bottom) when training with 2 microbatches on a model
consisting of 3 FSDP units. 𝐹𝑖 𝑗 and 𝐵𝑖 𝑗 are the forwards and backwards passes of the 𝑖th FSDP unit on the 𝑗th
microbatch. 𝐴𝐺𝑖 and 𝑅𝑆𝑖 are the AllGather and ReduceScatter collectives for the 𝑖th FSDP unit.

We employ gradient accumulation [22, 31] to enable training
with larger effective batch sizes while reducing memory us-
age. Instead of computing gradients for the full batch size𝑏 at
once, we split 𝑏 into smaller microbatches of size𝑚 and accu-
mulate gradients over ℓ microbatches, where 𝑏 = ℓ ·𝑚. This
approach allows each GPU to process an effective batch size
of 𝑏 while reducing memory demands by managing smaller
microbatches. In Cephalo, we develop an optimized imple-
mentation of gradient accumulation for FSDP, and configure
it to control the amount of memory used for computation.
Layered Gradient Accumulation. Traditional gradient ac-
cumulation in FSDP performs the full forward and backward
pass for each microbatch sequentially. This requires ℓ times
more AllGather collectives than training without gradient
accumulation because sharded parameters must be gathered
for each microbatch. To reduce this overhead, we implement
layered gradient accumulation [22], which processes all mi-
crobatches for a layer before moving to the next. Sequentially
processing microbatches allows us to gather parameters only
once per pass for all microbatches.
Figure 4 illustrates the difference between gradient accu-

mulation in FSDP and Cephalo. Our implementation calls
AllGather to prefetch the next FSDP unit while the current
one is executing. This communication is overlapped with all
executing microbatches of the current FSDP unit, effectively
hiding the communication overhead even when network-
ing is slow relative to compute. Gradient accumulation can
add minor runtime overhead as smaller microbatches may
not fully utilize GPU cores, introducing a tradeoff between
memory savings and compute efficiency. Unlike prior sys-
tems, Cephalo automatically optimizes gradient accumula-
tion with compute and training state partitioning (Section
2.4), balancing this tradeoff effectively. Section 3.4 details

implementation optimizations that were necessary to run
gradient accumulation efficiently with FSDP.
Activation Checkpointing and Offloading. While lay-
ered gradient accumulation reduces communication over-
head, it introduces significant memory overhead compared
to traditional gradient accumulation. This is because activa-
tions must be stored for all microbatches of a layer until the
backward pass, whereas traditional gradient accumulation
maintains activations for only a single microbatch. For some
models, this additional activation storage can exceed the
memory savings gained from smaller batch sizes.
Cephalo addresses memory overhead in layered gradi-

ent accumulation with a combination of activation check-
pointing and offloading. Activation checkpointing saves ac-
tivations only at layer boundaries during the forward pass
[30, 44], allowing intermediate activations to be recomputed
in the backward pass, which significantly reduces memory
usage. However, even storing boundary activations adds
overhead. To mitigate this, Cephalo offloads boundary acti-
vations to CPUmemory until needed during backwards. Sim-
ilarly, Cephalo offloads boundary gradients in the backwards
pass. Combined, activation checkpointing and offloading
eliminate memory overhead when accumulating additional
microbatches. Hence, for a fixed microbatch size, Cephalo
can increase the number of microbatches without using addi-
tional memory. Activations and gradients are offloaded and
prefetched between the GPU and CPU asynchronously with
compute, hiding transfer overheads. In the forwards pass:

(1) Microbatch activations are offloaded to the CPU while
the next microbatch runs.

(2) Input activations for the nextmicrobatch are prefetched
while the current microbatch runs.
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Figure 5: CPU↔GPU offloading of activations and gradients during forward and backward passes in layered
gradient accumulation for layers 𝑖 and 𝑖 + 1 over three microbatches. RA marks activation recomputation in the
backward pass; 𝐺𝐶𝑎

𝑖 𝑗/𝐶𝐺𝑎
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gradients for microbatch 𝑗 .

In the backwards pass:
(1) Microbatch gradients are offloaded to the CPU while

the next microbatch runs.
(2) Input activations for recomputing the nextmicrobatch’s

activations are prefetched from the CPU.
(3) The subsequent layer’s gradients are prefetched from

the GPU to compute the current layer’s gradients.
We illustrate this process for gradient accumulation with 3
microbatches in Figure 5.
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Figure 6: Training latency and memory allocated for
compute as the microbatch size increases (Bert-Large).

2.3 Performance Modeling
The profiler runs training iterations on small batch sizes in
the target cluster to build predictive models for compute la-
tency and memory usage based on batch size. We use linear
models, as they are simple, require minimal profiling to fit,
and accurately predict both metrics. We profile communica-
tion latency for collectives with an evenly sharded training
state and apply a conservative model to adjust for latency
when the state is unevenly sharded. The optimizer then uses
these models to find a configuration that maximizes through-
put while respecting each GPU’s memory capacity.

Compute Latency Model. In the left plot of Figure 6, we
profile the compute latency of a single transformer layer as
the batch size increases. For small batch sizes, the latency
increases sublinearly as the batch size is not large enough
to fully utilize the compute on the GPU. Non-linearities can
also arise from certain batch sizes aligning better with GPU
memory architecture, or using better kernel algorithms se-
lected by the compiler. As the GPU compute is saturated for
larger batch sizes, there is a strong linear relationship. We
model latency by using the profiled data for smaller batches
to capture non-linearities, then extrapolate linearly for larger
batches. Profiling a single layer reduces time and resources,
and since transformer layers are typically identical, we can
use this to extrapolate the entire model’s latency.
Let 𝑇𝑓 (𝑚) and 𝑇𝑏 (𝑚) be the latency models for forwards

and backwards compute as a function of the microbatch size
𝑚. We linearly scale the latency of a single microbatch by
the number of microbatches ℓ to derive the total forwards
𝑇𝑓 (𝑚, ℓ) and backwards 𝑇𝑏 (𝑚, ℓ) compute latencies.
Memory Utilization Model. During training, GPU memory
utilization includes memory for the training state, 𝑀𝑠𝑡𝑎𝑡𝑒 ,
and computation,𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 , resulting in a total memory us-
age of 𝑀 = 𝑀𝑠𝑡𝑎𝑡𝑒 + 𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 . 𝑀𝑠𝑡𝑎𝑡𝑒 is derived from the
parameters in a GPU’s model shard |𝑃 |. We assume standard
full-precision training with the Adam optimizer, where each
parameter requires 4 bytes for the parameter, 4 bytes for its
gradient, and 8 bytes for the first and second gradient mo-
ments. Thus, the total memory needed for the training state
is𝑀𝑠𝑡𝑎𝑡𝑒 = 16 · |𝑃 |.𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 encompasses memory for ma-
terializing layer parameters, executing GPU kernels, storing
activations, and other framework state. In the right plot of
Figure 6, we plot𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 against batch size by subtracting
𝑀𝑠𝑡𝑎𝑡𝑒 from the total memory usage, showing a strong linear
relationship. We profile𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 for small batch sizes to fit a
linear model based on microbatch size. The linear increase is
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due to the need to run kernels and store activations for larger
batch sizes. Notably,𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒 is unaffected by the number of
microbatches, as activations are checkpointed and offloaded
after computation in Cephalo.
Communication Latency. FSDP uses NCCL [35] for inter-
GPU communication, using AllGather to collect parameters
and ReduceScatter to average gradients. With even training
state sharding, inputs to NCCL collectives are equal in size;
however, uneven sharding introduces variable input sizes.
Cephalo employs generalized collective implementations
which handle uneven inputs but incur overhead from extra
GPU memory copies [65]. We observed empirically that the
overhead of using uneven sharding remained within 25% of
even sharding latency regardless of the input skew, defined
to be the ratio of the size of the largest shard to the total input
size. Thus, we profile collective latency under even input
sizes and conservatively assume a 25% overhead for uneven
sharding. Since transformer layers are identical, profiling a
single layer suffices.

2.4 Optimizer
Given a model, cluster of 𝑁 GPUs, and a target batch size 𝐵
to train with, the optimizer decides how to divide the compu-
tation, training state, and configure gradient accumulation
to maximize training throughput. Next, we describe how the
optimizer formulates this as an optimization problem and
solves it with dynamic programming.
Optimization Formulation. Wemaximize training through-
put by minimizing the latency for one iteration of training.
Under the typical assumption that transformer layers are
identical, this problem is equivalent to minimizing the for-
wards and backwards pass for a single transformer layer. We
wrap each transformer layer as an FSDP unit [38], which
efficiently overlaps communication during the forwards and
backwards pass. The forwards pass runs in

𝑇𝑓 = max(max
𝑖
(𝑇𝑔𝑖

𝑓
(𝑚𝑖 , ℓ𝑖 )), 𝐴𝐺), (2)

Symbol Description
𝑁, 𝐵 Number of GPUs and global batch size

𝑚𝑖 , ℓ𝑖 , 𝑔𝑖 Microbatch size and number of microbatches for 𝑖th GPU 𝑔𝑖
𝑀 (𝑚, ℓ) Compute memory for ℓ microbatches of size𝑚
𝑀

𝑔𝑖
𝑐𝑎𝑝 Memory capacity of 𝑔𝑖

𝑇
𝑔𝑖

𝑓
(𝑚, ℓ) Forwards latency of 𝑔𝑖 for ℓ microbatches of size𝑚

𝑇
𝑔𝑖

𝑏
(𝑚, ℓ) Backwards latency of 𝑔𝑖 for ℓ microbatches of size𝑚

𝐴𝐺 , 𝑅𝐺 AllGather and ReduceScatter latency
𝑀𝑒𝑠

𝑠𝑡𝑎𝑡𝑒 Memory required to store an even training state share
Table 1: Notation and Definitions

where variables are defined in Table 1. The forwards pass
waits on the slowest GPU to finish its computation, as well
as the AllGather that is running concurrently to fetch the

next FSDP unit. Similarly, with activation recomputation,
the backwards pass runs in

𝑇𝑏 = max(max
𝑖
(𝑇𝑔𝑖

𝑓
(𝑚𝑖 , ℓ𝑖 ) +𝑇𝑔𝑖

𝑏
(𝑚𝑖 , ℓ𝑖 )), 𝑅𝑆 +𝐴𝐺), (3)

where a ReduceScatter is required to average the gradient.
The training state must be unevenly sharded if, for any GPU,
its combined compute memory and memory holding the
evenly distributed training state exceeds its memory capacity.
Then, the goal is to minimize the layer latency𝑇𝑓 +𝑇𝑏 subject
to the constraints: (I) Batch size: 𝐵 =

∑
𝑖 𝑏𝑖 =𝑚𝑖 · ℓ𝑖 , ℓ𝑖 ∈ Z>0

(II) Individual memory: 𝑀 (𝑚𝑖 ) ≤ 𝑀
𝑔𝑖
𝑐𝑎𝑝 ,∀𝑖 (III) Aggregate

memory:𝑀𝑠𝑡𝑎𝑡𝑒 +
∑

𝑖 𝑀 (𝑚𝑖 ) ≤
∑

𝑖 𝑀
𝑔𝑖
𝑐𝑎𝑝 .

The second constraint specifies that the memory used for
compute cannot exceed the memory capacity of the GPU.
The last constraint specifies that the aggregate GPU memory
in the cluster is at least as much as the sum of the memory
required to store the complete training state and perform
computation on each GPU. Under these conditions, Cephalo
is able to train the model without running out of memory.

Algorithm 1 Throughput Maximization using DP
1: Input: # of GPUs 𝑁 , Batch Size 𝐵
2: Output:Max achievable throughput, training configu-

ration
3: Initialize 𝐷𝑃 [0 . . . 𝑁 ] [0 . . . 𝐵] [0 . . . 𝐵] with∞
4: 𝐷𝑃 [0] [0] [0] ← 0
5: for 𝑖 ← 1 to 𝑁 , 𝑗 ← 1 to 𝐵, 𝑘 ← 1 to 𝑗 ,
6: 𝑚 ← 1 to 𝑘 , ℓ ← 1 to ⌊ 𝑗/𝑚⌋ do
7: if 𝑀 (𝑚, ℓ) > 𝑀

𝑔𝑖
𝑐𝑎𝑝 then

8: continue with the next𝑚
9: end if
10: 𝐴𝐺 ′ = 𝐴𝐺 , 𝑅𝑆 ′ = 𝑅𝑆

11: if 𝑀 (𝑚, ℓ) +𝑀𝑒𝑠
𝑠𝑡𝑎𝑡𝑒 > 𝑀

𝑔𝑖
𝑐𝑎𝑝 then

12: 𝐴𝐺 ′ = 𝐴𝐺𝑢𝑛𝑒𝑣𝑒𝑛 , 𝑅𝑆 ′ = 𝑅𝑆𝑢𝑛𝑒𝑣𝑒𝑛
13: end if
14: 𝑇𝑖,ℓ,𝑚 ← max(𝑇𝑔𝑖

𝑓
(𝑚, ℓ), 𝐴𝐺 ′) +max(𝑇𝑔𝑖

𝑏
(𝑚, ℓ), 𝐴𝐺 ′+

𝑅𝑆 ′)
15: 𝑅 ← max(𝐷𝑃 [𝑖 − 1] [ 𝑗 − ℓ ·𝑚] [𝑘 −𝑚],𝑇𝑖,ℓ,𝑚)
16: 𝐷𝑃 [𝑖] [ 𝑗] [𝑘] ← min(𝐷𝑃 [𝑖] [ 𝑗] [𝑘], 𝑅)
17: end for
18: 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ← 0, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑁𝑜𝑛𝑒

19: for 𝑘 ← 1 to 𝐵 do
20: if 𝐵/𝐷𝑃 [𝑁 ] [𝐵] [𝑘] > 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 then
21: 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ← 𝐵/𝐷𝑃 [𝑁 ] [𝐵] [𝑘]
22: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 (𝐷𝑃 [𝑁 ] [𝐵] [𝑘])
23: end if
24: end for
25: return 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

Dynamic Programming Solution. We solve the optimiza-
tion problem using dynamic programming. Let 𝐷 (𝑖, 𝑗, 𝑘) be
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the minimum achievable runtime for the first 𝑖 GPUs to pro-
cess a total batch size of 𝑗 and total microbatch size of 𝑘 .
That is, the sum of the batch sizes on the first 𝑖 GPUs is 𝑗 ,
and the sum of their microbatch sizes is 𝑘 . Suppose that the
optimal solution assigns ℓ microbatches of size𝑚 (batch size
of ℓ ·𝑚) to the 𝑖th GPU. Then the optimal solution can be
constructed by combining this assignment with the solution
to 𝐷 (𝑖 − 1, 𝑗 − ℓ ·𝑚,𝑘 −𝑚). Thus, by this optimal subproblem
property, we can compute 𝐷 (𝑖, 𝑗, 𝑘) as

𝐷 (𝑖, 𝑗, 𝑘) = min
𝑚,ℓ

max(𝐷 (𝑖 − 1, 𝑗 − ℓ ·𝑚,𝑘 −𝑚),𝑇𝑖,ℓ,𝑚) , (4)

where ℓ · 𝑚 ≤ 𝑗,𝑚 ≤ 𝑘,𝑀 (𝑚) ≤ 𝑀
𝑔𝑖
𝑐𝑎𝑝 and 𝑇𝑖,ℓ,𝑚 is the

runtime of forwards and backwards for ℓ microbatches of
size𝑚 on the 𝑖th GPU using Eqs. 2 and 3.

From our memory model, we can compute the aggregate
memory utilization using the sum of the microbatch sizes,
𝑘 . Hence, the last dimension in the recurrence represents
the aggregate memory utilization. This dimension is needed
in the recurrence to ensure constraint (III) is satisfied. The
minimum latency is min𝑘 𝐷 (𝑁, 𝐵, 𝑘) over all 𝑘 meeting the
memory constraint. We then backtrack to find the batch and
microbatch sizes that achieve this latency (Pseudocode is
provided in Algorithm 1).
Partitioning Training State. After determining the com-
pute partitioning, the optimizer allocates training state to
minimize the maximum memory utilization across GPUs,
balancing each GPU’s memory usage relative to its capacity.
This avoids out-of-memory issues and reduces memory allo-
cation overheads when utilization approaches capacity. This
allocation is determined with a greedy algorithm:

(1) Sort: Sort the GPUs in ascending order based on their
total memory utilization, which includes memory re-
quired for computation and memory allocated for the
training state by this algorithm.

(2) Assign: Allocate parameters to the GPU with the low-
est utilization until its memory matches the GPU with
the second-lowest utilization.

(3) Iterate: Repeat this for 𝑘 = 2, . . . , 𝑁 . In the 𝑘th itera-
tion, evenly distribute parameters to the GPUswith the
𝑘th lowest memory utilization until their utilization
matches the GPU with the (𝑘 + 1)st lowest utilization.

This process ensures that the parameters are distributed to
the GPUs with the lowest memory utilization first in order
to minimize the maximum memory utilization across GPUs.
Complexity Analysis. The optimizer runtime is dominated
by the dynamic programming algorithm which runs in𝑂 (𝑁 ·
𝐵3 · log𝐵), where 𝑁 is the GPU count and 𝐵 the global
batch size. This arises from 𝑂 (𝑁 · 𝐵2) states, each requiring
𝑂 (𝐵 · log𝐵) to compute. The greedy algorithm for training
state partitioning runs for 𝑁 iterations, where each iteration

compares and assigns parameters in 𝑂 (𝑁 ) time. Thus, the
greedy algorithm runs in 𝑂 (𝑁 2).

3 Implementation
This section details Cephalo’s implementation and optimiza-
tions. Cephalo is implemented on top of PyTorch FSDP and
consists of a profiler, optimizer and model trainer (Figure 3).

3.1 Profiler
The profiler conducts lightweight profiling to model com-
pute latency, memory usage, and communication latency. It
profiles a few training iterations for each batch size from 1
to 𝐵, fitting linear models for compute latency and memory
usage. In practice, 𝐵 = 8 suffices for accuracy. Additionally,
the profiler measures AllGather and ReduceScatter latencies
by averaging profiled latencies over 50 runs to obtain a rep-
resentative sample of network performance.

3.2 Optimizer
The optimizer uses models built by the profiler to configure
Cephalo for maximum training throughput (Section 2.4). It
determines each GPU’s microbatch size, number of micro-
batches, and assigned portion of the global batch size and
training state. To avoid memory allocation bottlenecks as
usage nears capacity, the optimizer caps GPU memory usage
at 80%. It completes within 20 minutes for all workloads — a
meager overhead to generate optimized, time-saving, train-
ing configurations compared to the GPU-years required to
train these models [50].
In practice, we further reduce the optimizer runtime by

observing that scaling the number of microbatches (ℓ𝑖 ) by
some constant𝐶 on each GPU increases the global batch size
(𝐵) without affecting computation or memory distribution.
With Cephalo’s offloading optimizations (Section 2.2), mem-
ory utilization remains constant for a microbatch regardless
of the number of microbatches. Moreover, constant scaling
maintains a proportional compute load across GPUs. Conse-
quently, we can optimize for a batch size of 𝐵 by running the
optimizer on a smaller batch size 𝐵/𝐶 and later adjusting the
number of microbatches to ℓ ′𝑖 = 𝐶 · ℓ𝑖 . This approach reduces
optimization time for larger batch sizes.

3.3 Trainer
Compute and Training State Division. The trainer trains
the model using the batch size and training state assignments
set by the optimizer. Each process’s data loader is configured
to load its assigned batch size. Implementing uneven param-
eter sharding required modifying FSDP’s shard and unshard
operations to follow the training state divisions configured
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by the optimizer. The gradient reduction logic in the back-
ward pass was also modified to average gradients according
to this training state division.

When the training state is unevenly sharded, Cephalo uses
generalized AllGather and ReduceScatter implementations to
handle uneven input sizes. We observed uneven sharding in-
curs up to a 25% runtime overhead, but does not have a strong
correlation with the input skew in shard sizes. Therefore, we
apply a greedy strategy to minimize uneven sharding across
FSDP units. For instance, if two identical FSDP units are split
across two GPUs in a 3:1 ratio, we would shard one unit
evenly (1:1) and the other as 1:0, thereby incurring uneven
sharding overhead for only one unit.

3.4 Layered Gradient Accumulation
The trainer implements a training loop for layered gradient
accumulation (LGA), splitting each batch into microbatches
and processing them one at a time through each FSDP unit
before moving to the next. This order differs from FSDP’s
assumed sequential unit-by-unit execution, which it uses to
overlap communication with computation. Consequently,
several changes were needed in FSDP to avoid unnecessary
communication and support communication-computation
overlap with this new order of execution.
FSDP reshards parameters after each forward pass, as-

suming the next unit runs next and the current is no longer
needed. However, in LGA, the same unit runs all micro-
batches before moving to the next. We modified FSDP to
reshard parameters only after all microbatches are processed,
avoiding unnecessary AllGather’s.
Communication-Computation Overlap. To maintain ef-
ficient overlap, we updated the prefetching logic to align
with the layered gradient accumulation order and scheduled
parameter unsharding logic on its own GPU stream to avoid
communication from blocking backwards computation. Fur-
thermore, we adjusted post-backward logic to accumulate
gradients across microbatches and reset the execution state
only after all microbatches are processed. We configured the
FSDP prefetcher (with the limit_all_gathers flag [7]) to retain
only the current and subsequent layers’ parameters in mem-
ory, avoiding memory overhead from excessive prefetching.
Compute Synchronization. We observed severe mem-
ory fragmentation from PyTorch scheduling multiple mi-
crobatches simultaneously, leading to out-of-memory errors
even below 50% memory usage. We avoid this fragmentation
by synchronizing the GPU’s compute stream to process one
microbatch at a time.
Offloading. PyTorch’s default activation offloading incurred
large runtime overheads due to synchronous CPU-GPU trans-
fer, which blocked GPU computation. Consequently, we im-
plemented our own offloading and prefetching logic on a

dedicated GPU stream, enabling GPU-CPU memory transfer
to run in parallel with computation.
In Section 4.4, we show that our optimizations for LGA

are essential for achieving high performance.

Task Model Layers Embd. Size Attn. Heads Parameters

IC ViT-G [61] 48 1664 16 1.8B

IC ViT-e [6] 56 1792 16 3.9B

TC BERT-Large [8] 24 1024 16 0.4B

TC BERT-XLarge [8] 36 1536 24 1.2B

TG GPT 2.7B [5] 32 2560 80 2.7B

TG GPT 6.7B [5] 32 4096 128 6.7B

TG Tiny Llama [63] 22 2048 32 1.1B

TG Llama 3B [12] 26 3200 32 3.5B

TG Llama 7B [50] 32 4096 32 6.7B

Table 2: Model Statistics.

Cluster GPUs Generation Memory TFlops
Total Total

Memory TFlops

A

3×P40 Pascal 24 GB 11.8

192 GB 153.32×P100 Pascal 12 GB 9.3
1×A6000 Ampere 48 GB 38.7
2×L4 Ada 24 GB 30.3

B
16×V100 Volta 16 GB 14.1

1120 GB 984.032×T4 Turing 15 GB 8.1
16×A10G Ampere 24 GB 31.2

Table 3: GPU Specifications (FP32 TFlops).

4 Performance Evaluation
We evaluate the performance of Cephalo compared to state-
of-the-art training methods on 9 popular transformer models
across 2 heterogeneous GPU clusters. End-to-end results are
presented in Section 4.2, and larger-scale experiments in Sec-
tion 4.3. Sections 4.4 and 4.5 analyze how Cephalo’s design
components impact performance. Section 4.6 evaluates the
accuracy of Cephalo’s performance model and Section 4.7
presents training configurations generated by Cephalo.

4.1 Experimental Setup
We evaluate popular transformer models used for text classi-
fication (TC), text generation (TG), and image classification
(IC) following the training setup from [38]. Activations are
checkpointed after each transformer layer and models are
trained in full precision with the Adam optimizer, using a
sequence length of 512 for language modeling (unless oth-
erwise specified). Table 2 provides further details on the
models.
Clusters. We evaluated Cephalo on environments repre-
sentative of typical heterogeneous GPU clusters used by
ML practitioners. Cluster A was assembled with four types
of GPUs acquired over several years. Cluster B is a mix of
higher- and lower-end GPU VMs on AWS, selected to reflect
the typical quantities available for reservation.
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Table 4: Throughput comparison of differentmodels/batch sizes on 8-GPUCluster A.OOM denotes Out-of-Memory.

System ViT-G ViT-e Bert-Large Bert-XLarge GPT 1.3B GPT 2.7B Tiny Llama Llama 3B

128 256 128 256 128 256 128 256 128 256 128 256 128 256 128 256

Megatron-Het 3.41 0.79 OOM OOM 19.77 20.57 6.40 6.80 4.18 4.35 1.82 1.82 7.93 8.63 OOM OOM
HexiScale 2.88 2.97 1.38 1.4 25.64 28.90 8.63 9.06 5.81 5.83 2.79 2.83 8.67 8.75 1.91 1.83
Cephalo 6.38 6.41 3.02 3.23 33.56 33.69 11.47 11.72 6.83 7.09 4.57 4.67 12.58 12.91 4.51 4.85

• Cluster A: 2 machines (8 GPUs), connected via a 50
Gbps link. One contains 2×L4, 1×A6000, and 1×P40;
the other contains 2×P40 and 2×P100.
• Cluster B: 8 VMs (64 GPUs), equipped with 100 Gbps
bandwidth. 2×g5.48xlarge (8×A10G), 2×p3.16xlarge
(8×V100-16GB), and 4×g4dn.metal (8×T4) VMs.

A summary of GPU specifications appear in Table 3.
Baselines.We compare against representative state-of-the-
art techniques for training on heterogeneous GPU clusters:
• Megatron-Het [34]: Pipeline parallelism across nodes
and data/tensor parallelism within nodes. We adapted
it for heterogeneous training by partitioning the model
proportionally to each node’s compute capacity.
• HexiScale [60]: Combines ZeRO-2 data [39] (optimizer
state and gradient sharding), tensor, and pipeline par-
allelism. An optimizer balances memory and compute.

4.2 Training Throughput
Weevaluated Cephalo’s end-to-end training throughput against
baselines, measuring throughput as samples processed per
second (images for image classification models, sequences
for language models). Experiments on Cluster A included
models of up to 3.9 billion parameters with global batch sizes
of 128 and 256. Cluster A is highly heterogeneous, with four
GPU types varying substantially in compute and memory.
Baselines do not auto-configure pipeline parallelism, so we
tested various microbatch sizes (powers of 2), with the best
results reported in Table 4. Cephalo consistently achieved sig-
nificantly higher throughput without out-of-memory (OOM)
errors across all models and batch sizes.
Comparison toMegatron-Het. Megatron uses four pipelines
of two GPUs each across the two nodes. However, each
pipeline must be partitioned identically, despite the mixed
GPU types on each node. This results in different GPUs being
assigned the same stage across pipelines, causing compute
bottlenecks due to the slower P40 GPUs, which underutilizes
faster L4 and A6000 GPUs, reducing throughput. For larger
models (GPT 2.7B and Llama 3B), Megatron applies tensor
parallelism within each node, further decreasing throughput
due to high communication overhead. Megatron is optimized
for clusters with fast interconnects like NVSwitch, which
Cluster A and most AWS VMs do not have (except mostly
unavailable A100 and H100 VMs).

Table 5: Throughput comparison on 64-GPU Cluster B.

System ViT-e GPT 6.7B Llama 7B
512 1024 512 1024 512 1024

Megatron-Het 12.06 12.12 3.59 1.71 5.53 1.65
HexiScale 12.84 13.37 4.78 4.99 5.42 5.47
Cephalo 20.37 26.08 11.62 17.04 13.12 17.74
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Figure 7: Left: Throughput (TFLOPs) with different het-
erogeneous cluster configurations. Right: Throughput
on Cluster B vs. a 32×A10G homogeneous cluster.
Comparison to HexiScale. Like Cephalo, HexiScale trains
larger batch sizes with a reduced memory footprint by using
smaller microbatches and gradient accumulation. However,
smaller microbatches may not fully utilize GPU compute, and
frequent gradient accumulation reduces pipeline parallelism
efficiency. Cephalo automatically optimizes the microbatch
size and gradient accumulation configuration, whereas Hex-
iScale requires manual tuning. Additionally, Cephalo’s lay-
ered gradient accumulation implementation does not incur
extra communication overhead. HexiScale, like Megatron-
Het, relies on communication-heavy tensor parallelism for
larger models. These factors enable Cephalo to achieve sig-
nificantly higher throughput across all configurations.

4.3 Larger Cluster Experiments
We evaluated Cephalo’s scalability on the larger Cluster B
featuring 64 GPUs (16 V100s, 16 A10Gs, and 32 T4s) using
ViT-e, GPT-6.7B, and Llama-7B models with batch sizes of
512 and 1024. Cephalo consistently delivered 2–10× higher
throughput than other systems.
At a batch size of 512, Megatron uses ZeRO-2 data paral-

lelism within each node. Since it does not shard the model pa-
rameters like Cephalo, Megatron needs to configure pipeline
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parallelism with a smaller microbatch size and a suboptimal
model partitioning to avoid running out of memory. It is
unable to fully utilize compute on the V100 GPUs since it
has similar memory to the T4 despite being significantly
faster. At a batch size of 1024, Megatron uses tensor paral-
lelism to manage memory. However, this reduces throughput
for GPT 6.7B and Llama 7B, as V100 GPUs’ NVLink lacks
all-to-all connectivity and is not fast enough to offset the
communication overhead of tensor parallelism.

HexiScale is able to more flexibly parallelize training, sup-
porting a different degree of tensor parallelism per pipeline
stage and a different number of GPUs for each pipeline. This
enables faster training at a batch size of 1024 when memory
pressure is larger. However, it still relies on tensor paral-
lelism (albeit less than Megatron) and partitions layers into
pipeline stages according to memory, rather than compute,
to avoid running out of memory. This partitioning assigns
the T4s a similar workload as the V100s, despite being slower,
resulting in a performance bottleneck.

In contrast, Cephalo leverages FSDP to shard training state,
reducing memory requirements and enabling training at a
batch size of 1024 without tensor parallelism. Additionally,
independent partitioning of training state from compute
allows Cephalo to fully utilize each GPU by assigning batch
sizes proportional to its compute capacity.
Scaling Heterogeneous GPUs. In the left plot of Figure 7,
we compare the training throughput (in TFLOPs) of Cephalo
as we scale from using only the fastest A10G GPUs in Clus-
ter B, to using the A10G and V100 GPUs, to finally using all
GPUs. The training throughput almost doubles when com-
paring using only A10G to utilizing all the heterogeneous
GPUs in the cluster. Cephalo is able to achieve a significant
improvement in training throughput by utilizing all of the
(heterogeneous) GPUs available on the cluster.
Comparison to Homogeneous Training. In the right plot
of Figure 7, we compare Cephalo’s training TFLOPs on Clus-
ter B to a homogeneous cluster of 32×A10Gs with similar
peak TFLOPs (984 vs. 998). Despite Cluster B’s mix of lower-
memory lower-compute GPUs, Cephalo is able to achieve
comparable TFLOPs to the homogeneous cluster, demon-
strating effective utilization of heterogeneous GPUs.
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Figure 8: Mixed Precision Training on Cluster B.

Mixed Precision Training. Our evaluation focuses on full
precision training since it preserves model convergence guar-
antees and older GPUs in cluster A were not optimized for
lower precision. However, Cephalo’s design is also effective
for lower-precision training, where non-proportional scaling
of GPU memory and compute still exists. For example, the
V100 and T4 have similar memory capacity but the V100 has
2× higher FP16 TFLOPs. We validate Cephalo’s effectiveness
at lower precisions by showing it outperforms other systems
when training Llama 7B with FP16 mixed precision [28], a
batch size of 1024, and a sequence length of 2048 on Cluster
B (Figure 8). Megatron-Het and HexiScale use more commu-
nication intensive configurations due to memory constraints
and obtain lower throughput due to communication over-
head. Generally, hiding latencies through communication-
computation overlap at lower precisions is more difficult as
both computation and communication latencies decrease, but
computation latency at a greater rate. Despite this, Cephalo
manages to effectively hide communication latencies with
its memory and communication efficient implementation of
FSDP with layered gradient accumulation.

4.4 Ablation Study
We conducted an ablation study to assess the individual and
joint contributions of compute and memory balancing to
Cephalo’s performance. We compared Cephalo’s throughput
with two variants: compute balancing only (Cephalo-CB)
and memory balancing only (Cephalo-MB), alongside base-
line FSDP. Experiments were run on Cluster A with ViT-e,
GPT-2.7B, and Llama-3B, scaling batch sizes to 256, as shown
in Figure 9. Cephalo-CB improves throughput over FSDP by
balancing compute but encounters out-of-memory (OOM)
issues beyond a batch size of 100 for all models, with through-
put declining as it nears max memory capacity. Cephalo-MB
prevents OOM by balancing memory with uneven training
state partitioning and using gradient accumulation with a
microbatch size of 1. However, its throughput is lower than
FSDP’s, as gradient accumulation with such a small micro-
batch size fails to fully utilize GPU compute, underscoring
the need for prudently configuring gradient accumulation.
Cephalo overcomes Cephalo-CB and Cephalo-MB limitations
by jointly balancing compute, memory, and gradient accu-
mulation, essential for high throughput on heterogeneous
clusters. It achieves the highest training throughput across
all batch sizes and sustains high throughput up to a batch
size of 256 without running OOM.

4.5 Gradient Accumulation Optimizations
In Figure 10, we investigate the throughput and memory im-
provements obtained from Cephalo’s gradient accumulation
optimizations. Starting from the existing gradient accumu-
lation in FSDP (FSDP-GA), we introduce layered gradient
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Figure 10: Speedup and memory reduction from our
gradient accumulation optimizations (LGA+CO+S+O).

accumulation (LGA), then add communication overlap with
computation (CO), compute synchronization (S), and offload-
ing (O). We train the GPT 6.7B model with a batch size of
256 (16 microbatches of size 1 per GPU). A homogeneous
cluster of 16×V100 GPUs is used to isolate from the effects
of heterogeneous GPUs.
While FSDP-GA encounters communication bottlenecks,

LGA achieves a 6× speedup by minimizing communication
overhead and increases throughput by 22% through full com-
munication overlap with gradient accumulation. Addition-
ally, compute synchronization and offloading eliminate mem-
ory overhead and fragmentation, boosting throughput by
an extra 11%. The final implementation with all optimiza-
tions (LGA+CO+S+O) delivers a 7.8× speedup over FSDP-GA
while reducing memory usage.

4.6 Performance Model Accuracy
Cephalo’s optimizer uses a performance model to predict
runtime across training configurations, which is essential for
efficiently navigating the large search space and optimizing
configurations. Figure 11 shows the absolute relative error
(ARE) between predicted and actual latencies on Cluster A.
Across all models and batch sizes, errors remained within
10%, with a mean absolute relative error of 2.9%. Notably,
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Figure 11: Performance model absolute relative error.
error rates did not increase for larger models or batch sizes,
demonstrating the performance model’s robustness.

4.7 Optimized Training Configurations

Batch Size 
(# GPUs x # Microbatches x Microbatch Size)

Training State 
(# GPUs x % Training State)

ViT-G

1x A6000
81 (1x1x81)
47.8% (1x47.8%)

2x L4
80 (2x5x8)
31.0%  (2x15.5%)

2x P100
44 (2x11x2)
8.6% (2x4.3%)

Llama 3B
2x L4

56 (2x14x2)
19.2%  (2x9.6%)

1x A6000
64 (1x2x32)
37.6% (1x37.6%)

2x P100
52 (2x1x26)
4.8% (2x2.4%)

3x P40
84 (3x1x28)
38.4% (3x12.7%)

3x P40

12.9% (3x4.3%)
51 (3x17x1)

Figure 12: Training configurations (ViT-G & Llama 3B).

In Figure 12, we show Cephalo’s optimized configurations
for ViT-G and Llama 3B on Cluster A with batch size 256.
The A6000 GPU, being faster and having more memory than
the L4s, P100s, and P40s, is assigned the largest portion of
the training state and compute. The L4s, with about half the
compute and memory of the A6000, receive roughly half the
batch size and training state. P100s and P40s are assigned
smaller batch sizes, with the P40 handling a larger training
state due to its greater memory capacity.

5 Discussion
Cephalo is designed to address compute and memory im-
balances in heterogeneous clusters. This section discusses
Cephalo’s adaptability to various networking environments.

5.1 Adapting to Slower Networks
Network communication can become a bottleneck during
training when network speed is slow compared to compu-
tation capabilities. The layered gradient accumulation opti-
mizations in Cephalo allow both communication overhead
and GPU memory usage to remain constant while increasing
the number of microbatches. Consequently, when network
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latency significantly limits training performance, users are
able to increase the global batch size to scale relative compu-
tation time, enabling full overlapping and masking of com-
munication overhead. Although extremely large batch sizes
could potentially impact model convergence, organizations
training at this scale typically possess very large, dedicated,
homogeneous GPU clusters [11, 18], eliminating the need
for heterogeneous training solutions. Cephalo specifically
targets mid-sized clusters where heterogeneous compute
is still frequently required [17, 26, 36, 64] and batch sizes
remain well within the established limits at which modern
transformers can achieve efficient convergence [11].

5.2 Adapting to Heterogeneous Networks
Heterogeneous networks with varying interconnect speeds
can bottleneck AllGather and ReduceScatter collectives in
FSDP on slower links. Although increasing batch size can
reduce networking overheads, modifying the parallelism
strategy can also be effective. Hierarchically-sharded FSDP
variants replicate parameters within GPU subgroups con-
nected by faster interconnects [53, 59, 65], minimizing com-
munication across slower links during parameter gathering.
Integrating pipeline parallelism with FSDP offers an or-

thogonal optimization. By partitioning the model into stages,
FSDP can be applied within each stage among GPUs with
faster interconnects, while GPUs connectedwith slower links
are assigned to different stages. This approach leverages
communication-efficient pipeline parallelism over slower
links and utilizes FSDP across faster links. In stages with
very fast interconnects, tensor parallelism can be combined
with FSDP to scale computation without increasing batch
size. Optimizations in compute-communication overlap for
tensor parallelism can help maintain high training efficiency
[54, 55]. We leave efficient integration of other parallelism
strategies in Cephalo for future work.

6 Related Work
Distributed training strategies falls into two main categories:
data and model parallelism. Data parallelism assigns each
GPU a distinct data batch to process on the complete model
[42]. ZeRO-3 [39] and FSDP [65] minimize memory usage by
sharding training states across GPUs rather than replicating
them. Model parallelism divides the model among GPUs,
with pipeline parallelism distributing model layers across
GPUs [15, 30] and tensor parallelism splitting individual
layer computations across multiple GPUs [43, 44].
Several systems combine data and model parallelism for

training [13, 18, 34, 45, 66]. Megatron-LM [34] uses heuristics
to select parallelization strategies: tensor parallelism is used
within nodes with fast interconnects, pipeline parallelism
spans nodes with slower connections, and data parallelism

is employed for further scaling. Alpa [66] utilizes a dynamic
programming optimizer to find optimal parallelism configu-
rations. Although Cephalo focuses solely on data parallelism,
it has demonstrated high effectiveness in evaluations on its
targeted workload and can be integrated with model-parallel
techniques for broader applicability (Section 5.2).

Given the cost and limited availability of GPUs, heteroge-
neous clusters are commonly assembled to aggregate com-
pute resources [3, 17, 47] for deep learning workloads. Prior
work has explored the optimization of data parallelism [16,
20, 29], model parallelism [64], and hybrid approaches [51,
60] for heterogeneous clusters. However, these methods dis-
tribute the workload solely based on compute speed and over-
look differences in memory capacity. In constrast, Cephalo
balances both the computational and memory workload
across GPUs, thereby maximizing cluster utilization and en-
abling the training of larger models and batch sizes without
sacrificing efficiency. Like prior work [16, 20, 51, 60, 64], our
evaluation utilizes NVIDIA GPUs due to their widespread
availability and common usage in training [24]. However,
Cephalo can be easily adapted for any accelerator compatible
with PyTorch, including AMD GPUs [4] and TPUs [14, 19].

Other systems optimize scheduling for multiple training
jobs in heterogeneous clusters but restrict each job to homo-
geneous GPU resources, precluding heterogeneous training
for a single job [2, 33, 48, 57]. Cephalo could be integrated
with cluster schedulers to improve utilization in shared het-
erogeneous clusters. Activation checkpointing [30, 32] and
offloading [40, 58] are techniques for reducing memory dur-
ing training. However, Cephalo is the first system to optimize
these techniques for layered gradient accumulation.

7 Conclusion
Cephalo is the first system that jointly resolves imbalances
in compute and memory across GPUs when training on a
heterogeneous cluster. It decouples compute and memory re-
quirements for each GPU through uneven compute division,
parameter sharding, and gradient accumulation. Cephalo
models compute, memory, and communication holistically
and uses an optimizer to optimally allocate training state,
batch size, and gradient accumulation across GPUs. Eval-
uations on multiple clusters show that Cephalo achieves
significantly higher training throughput while supporting
larger models and batch sizes than existing systems.
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