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Abstract
The Linux Foundation’s HPCToolkit is a measurement tool
that enables profiling and tracing HPC applications on het-
erogeneous exascale supercomputers. Using HPCToolkit,
users can measure applications at scales up to thousands
of GPU-accelerated compute nodes and collect fine-grained,
instruction-level measurements of CPU and GPU code. How-
ever, analyzing performance measurements from such large-
scale program executions can be challenging. Performance
databases for exascale executions can grow to terabytes, mak-
ing manual inspection using a graphical user interface diffi-
cult and time-consuming. Methods for automated and pro-
grammatic data inspection are necessary to inspect the vast
measurement data and identify characteristics of interest.
In this paper, we present a new approach to analyzing

the performance of applications measured with HPCToolkit,
with a focus on measurement data from large-scale execu-
tions. Our analysis framework provides access to HPCToolkit
data with Python and analyzes it with the Pandas library.
Analysis tasks can be automated, integrated, and saved in-
side Jupyter notebooks.When extracting data from persistent
storage, users can employ techniques for automatically prun-
ing code regions with low information content and sampling
large-scale executions using specialized query expressions.
We tested and evaluated our solution by analyzing execu-
tions with several thousands of profiles and traces.

CCS Concepts
• Software and its engineering → Software organiza-
tion; • Computing methodologies → Parallel computing
methodologies; Performance analysis.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3730417

Keywords
Performance analysis, Exascale supercomputers, GPU-

accelerated applications, Performance profiles, Calling con-
text trees, Parallel execution traces, Programmatic analysis
ACM Reference Format:
Dragana Grbic and John Mellor-Crummey. 2025. Analyzing the
Performance of Applications at Exascale. In 2025 International Con-
ference on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City,
UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3721145.3730417

1 Introduction
Applications running on exascale platforms pose significant
challenges to performance measurement tools. An aim of
the US Department of Energy’s Exascale Computing Project
(ECP) was to build a software ecosystem for exascale su-
percomputers (Frontier [25, 26], Aurora [4, 5], and El Capi-
tan [21]) whose compute nodes are accelerated with Graphic
Processing Units (GPUs). With the support from ECP, Rice
University extended the HPCToolkit performance tools to
support the measurement and analysis of programs that run
on thousands of GPU-accelerated compute nodes [1, 30].
However, the project team observed that HPCToolkit per-
formance databases for exascale executions can be huge [1],
making them difficult to analyze and interpret.
The traditional approach to analyzing the performance

data collected by HPCToolkit involves using its graphical
user interface (GUI). However, visual inspection using a GUI
has its limits. When a user measures a program that executes
on thousands of compute nodes, profiles and traces become
massive. Manually analyzing large traces using a GUI is dif-
ficult. Although the gross application characteristics may be
visually evident, understanding the aggregate impact of fine-
grained characteristics is hard without automation. Users
need support for programmatic and automated inspection
of large-scale performance datasets.

This paper presents a novel approach to analyzing the per-
formance of applications at scale, specifically those measured
with HPCToolkit. We developed a framework that enables
users to access HPCToolkit data with Python and analyze it
with the Pandas [22] library. The framework enables users to
write programs that perform the desired analysis tasks, au-
tomating the workflow for greater efficiency. One can write
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programs inside Jupyter notebooks and reuse them on dif-
ferent datasets. Because the goal was to develop a scalable
and efficient solution for processing large-scale out-of-core
datasets, we implemented techniques for pruning code re-
gions with low information content and sampling large-scale
executions using specialized query expressions.

The paper makes the following contributions:
• it describes the framework and its interface for sam-
pling and analyzing profiles and traces of large-scale
executions collected by HPCToolkit,

• it explains the format in which extracted data are
stored inside Pandas DataFrame tables and how users
can leverage DataFrame operations to manipulate the
data,

• it outlines how the interface for sampling large-scale
data accommodates scalable and efficient analysis, and

• it demonstrates the framework’s efficiency in analyz-
ing large-scale executions using several case studies.

The paper is organized as follows. Section 2 provides an
overview of the HPCToolkit performance tool for measuring
applications at exascale. Section 3 reviewswork related to the
framework we developed for analyzing performance at exas-
cale. Section 4 describes our new framework, including its
architectural design, methodology for storing and sampling
large-scale performance datasets, and its use of the Pandas
library for manipulating and exploring extracted data. Sec-
tion 5 presents several case studies conducted on the largest
supercomputers, where we utilized the new framework to
process and analyze performance datasets containing thou-
sands of profiles and traces. Finally, Section 6 summarizes
our findings and outlines some potential next improvements
for analysis of application performance at exascale.

2 HPCToolkit Overview
HPCToolkit [1, 2, 30]—an open-source project by the Linux
Foundation—is a measurement tool for profiling and tracing
applications across a wide range of systems, from desktop
computers to GPU-accelerated supercomputers. It captures
detailed, instruction-level measurements of CPU and GPU
code during executions that may involve tens of thousands
of processes. HPCToolkit is designed to provide efficient,
low-overhead performance measurement at various scales,
enabling users to evaluate their applications with minimal
disruption to their execution. One of its key advantages is
that users can measure the performance of their applications
without modifying the source code or recompiling; they only
need to make a few adjustments to the command line used
to launch their applications. This eliminates the need for
time-consuming annotations of code regions to measure.

HPCToolkit collects calling context trees that contain de-
tailed information about program execution. Calling context

Figure 1: HPCToolkit’s workflow

trees (CCTs) store information about the hierarchical struc-
ture of program execution. Each node in the tree represents
a static program context (e.g., a procedure, inlined function,
loop, or statement) or a dynamic context (e.g., a function
call), and the sequence of contexts along a path from the root
of the tree to any node represents the calling context of that
node. HPCToolkit’s detailed calling context trees support
precise attribution of program performance.
HPCToolkit records performance profiles that consist of

calling context tree nodes annotated with metric values. By
examining a calling context tree annotated with metrics,
users can identify performance bottlenecks, understand pro-
gram behavior, and optimize it in various ways, such as re-
placing expensive algorithms, avoiding unnecessary copies,
or reducing load imbalance. When measuring parallel pro-
gram executions, HPCToolkit records local calling context
trees for each process, thread, and GPU stream. Local call-
ing context trees annotated with metric values form parallel
performance profiles. During postmortem analysis, HPC-
Toolkit unifies local trees for each parallel execution context
to construct a global calling context tree and generates a
summary profile by annotating the global tree with derived
metrics. Summary-derived metrics aggregate metrics across
individual parallel profiles using an aggregation function:
sum, average, min, max, and/or variance.
When measuring an application with HPCToolkit, users

can optionally collect traces for each parallel execution con-
text. Traces provide insight into how program behavior
changes over time. A trace for an execution context is paired
with a profile containing a local calling context tree. Traces
are recorded as a sequence of events, each described with an
ID of a calling context tree node and a timestamp.
Fig. 1 shows the traditional workflow of measuring and

analyzing applications with HPCToolkit. The workflow con-
sists of four steps:
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• measurement: hpcrun measures performance as the
application executes and records profiles, traces, and
copies of GPU binaries observed during execution.

• binary analysis: hpcstruct analyzes CPU and GPU bi-
naries, recovers information on how machine instruc-
tions map to source code, and records it in program
structure files.

• postmortem analysis: hpcprof reads profiles, traces,
and program structure files, correlates performance
metrics with program structure, and generates a per-
formance database containing sparse representations
of profiles and traces.

• presentation: the hpcviewer GUI enables users to ex-
plore and analyze profiles and traces in a performance
database.

This paper describes an alternative to the final step in HPC-
Toolkit’s traditional workflow, where users analyze collected
data with a GUI, with a new framework for programmatic
inspection using Python and the Pandas library. This new
approach enables users to write programs that inspect HPC-
Toolkit performance data and automate the analysis using
modern techniques and frameworks.

3 Related Work
Before developing our own framework, we explored exist-
ing tools that enable users to programmatically inspect and
analyze performance data.
Hatchet [6] is a Python library that enables users to ex-

amine performance profiles of parallel programs. It can read,
process, and analyze performance data collected by vari-
ous tools, including HPCToolkit, Caliper [8], and others.
Hatchet’s main data structure is GraphFrame, which con-
sists of a Graph object that stores the calling context tree
and a Pandas DataFrame table that attributes nodes in the
calling context tree with metric values. Performance profiles
stored in the DataFrame table are indexed by nodes in the
Graph object, called a structured index. Using Hatchet, users
can filter, group, and aggregate performance metrics and
visualize structured profiles in a hierarchical tree view.

Thicket [9] is a Python library that enables users to analyze
and compare application performance across multiple exper-
iments. It can analyze multi-dimensional, multi-scale, multi-
architecture, and multi-tool performance datasets. With
Thicket, users can compare performance profiles collected
using various tools and experiments, which enables them to
determine the optimal configuration for large-scale applica-
tion codes. A Thicket profile is a set of Hatchet profiles that
represent individual application runs.
Pipit [7] is a Python library that enables users to read

and analyze traces from various file formats, including HPC-
Toolkit, Nsight [14], Projections [19], OTF2 [12], and others.

It provides a consistent data structure as a Pandas DataFrame
table, which can aggregate, filter, and transform events in
a trace dataset. The library supports various types of data
exploration, manipulation, and visualization. It also provides
analysis routines for identifying performance issues in par-
allel executions. Pipit automates common performance anal-
ysis tasks for analyzing both single and multiple executions.

Several issues exist with these tools that make them prob-
lematic and inefficient for analyzing and processing large-
scale performance datasets collected by HPCToolkit:

• They load entire datasets into memory at once. They
don’t provide techniques for sampling and extracting
slices of large-scale data. This is infeasible when ana-
lyzing datasets containing terabytes of performance
data for exascale executions. For such cases, users need
tools that support reading and analysis of selective
slices of data, e.g., for specific contexts in profiles or
restricted time intervals in selected traces. In addi-
tion, users could benefit from pruning detailed mea-
surements for libraries without source code or mea-
surements of code regions that fall below a specified
threshold.

• They store data in a dense format. Metrics in HPC-
Toolkit performance profiles are sparse because dif-
ferent code regions are annotated with different sets
of metrics. A case study by the HPCToolkit team [3]
showed that in some cases, dense representations of
metrics in profiles of GPU-accelerated applications on
thousands of MPI ranks are over 1000× larger than
sparse ones.

• They limit data exploration to either profiles or traces.
Hatchet can analyze performance profiles from sin-
gle application runs, Thicket can analyze performance
profiles from multiple application runs, and Pipit can
analyze parallel execution traces. This limits users to
performing more complex analysis tasks, which in-
clude correlating information between different types
of performance data. An example is reconstructing the
calling context tree for a specific time interval within
a trace.

NVIDIA Nsight Systems [24] also enables users to write
programs to analyze execution traces collected by the tool.
Their method requires converting an entire performance
database collected by their tool into a SQLite format. In
contrast, our tool enables users to selectively explore and
read slices of large-scale data without reprocessing it all.
Google-Wide Profiling [27] periodically collects perfor-

mance data from Google’s data centers. This ongoing process
involves sampling and measurement, continuously adding
to existing databases. The data is stored in highly distributed
and scalable databases optimized for fast data ingestion and
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query performance. Users analyze collected data at their con-
venience by submitting queries that execute across the entire
database. In our workflow, we focus on using specialized
query expressions to sample and extract slices of data from
a large-scale database. Once the slices are extracted, users
can inspect them and gain insight into program behavior
without examining the entire database.

We also acknowledge graph-based approaches for an-
alyzing performance data, such as Perflow [17, 18] and
Scalana [15, 16]. These tools provide an alternative method-
ology to automate performance analysis by converting pro-
gram execution into a Program Abstraction Graph (PAG)
for automated root cause identification and optimization.
However, they lack interactive methods for sampling and ex-
tracting slices of large-scale data. Our focus is on providing
direct, interactive access to massive performance datasets
collected at exascale, emphasizing user-driven data slicing
and exploration, prior to in-memory import. Additionally,
these graph-based approaches consider only profiles, which
limits their ability to analyze time-varying behavior.
To support programmatic analysis of large-scale perfor-

mance data collected by HPCToolkit, we developed a frame-
work that enables users to analyze profiles and traces, se-
lectively explore and read slices of large-scale data, reduce
large calling context trees using techniques for pruning code
regions with low information content, and perform detailed
and complex analysis tasks. The main goal of the work de-
scribed in this paper was to create a scalable and efficient
solution for processing and analyzing large-scale out-of-core
datasets in a fast and responsive way.

4 Our Solution
We developed the hpcanalysis framework [28], which enables
users to access HPCToolkit performance data using Python
and analyze it with the Pandas library. The framework is
structured hierarchically and consists of several layers. Fig. 2
shows the structure of the framework: users extract data
with Read API and Query API interface and analyze it using
Pandas DataFrame operations or functions implemented in
the Data Analysis layer. When extracting data, users can
employ techniques for pruning code regions with low infor-
mation content or selectively exploring and reading slices of
large-scale data.
hpcanalysis is designed to be memory-efficient. When

users open a database for analysis, they are presented with an
object that enables them to examine the data. However, data
is fetched and stored in memory only upon request. The size
of the extracted data on the first access depends on the type
of requested data. Small data sections are extracted in their
entirety, while large data sections are sampled. Sampling is
performed by pruning code regions with low information

Figure 2: Structure of the hpcanalysis framework

content or by extracting slices of large-scale data using query
expressions. Fetching upon request and extracting slices rele-
vant to the current request ensure scalability, efficiency, and
responsiveness.

4.1 Small Metadata
HPCToolkit collects various performance metrics. It can pro-
vide information about CPU time in seconds or CPU cycles.
For applications that use GPUs, it collects GPU metrics that
vary based on the vendor (Intel, AMD, or NVIDIA). It can
also collect hardware performance counter metrics using
tools such as PAPI [23] and perf [11]. When generating the
summary profile, it derives summary metrics that aggregate
metrics across all execution contexts. Descriptions of met-
rics measured across all execution contexts are stored in
a separate section within the performance database. This
section typically occupies a few megabytes of data, making
it feasible to extract the entire section on the first access.
hpcanalysis stores extracted metric descriptions in a separate
Pandas DataFrame table, as shown in Fig. 3.
For each parallel execution in the program, HPCToolkit

records a description that specifies the execution. This in-
cludes details about MPI ranks for applications that execute
on several ranks, CPU threads when using multithreading,
and GPU streams when offloading computations to GPUs.
HPCToolkit collects distinct information for each of these
contexts. MPI tasks are identified by the compute node ID
and task rank ID, CPU threads are identified by thread ID,
and GPU streams are identified by stream ID. This informa-
tion uniquely distinguishes each performance profile and its
corresponding parallel execution trace. Descriptions of pro-
files are stored in a separate section within the performance
database. This section typically occupies a few megabytes of
data, making it feasible to extract the entire section on the
first access. hpcanalysis stores extracted profile descriptions
in a separate Pandas DataFrame table, as shown in Fig. 3.

Metric descriptions and profile descriptions tables enable
efficient validation of the database. Since they store entire
sections of data, users can use them to ensure that proper
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Figure 3: Architecture of the hpcanalysis framework. The framework organizes different types of performance data
into separate DataFrame tables and correlates them to create valid representations of the collected measurements.

metrics and execution contexts are present in the database.
This can be useful whenmaking changes in the measurement
methodology: users can validate that the new methodology
produces valid measurements. For instance, when measuring
applications that use GPUs, they can validate the existence of
specific GPU metrics by examining the content of the metric
descriptions table.When applications are executed on several
compute nodes using multiple ranks on each node, they can
validate the existence of specific nodes and specific ranks on
each node. We discuss this in more detail in Section 5.1.

4.2 Large Metadata
HPCToolkit records a detailed calling context tree that pro-
vides in-depth information about program execution. It can
include implementation details of library functions, nodes
of various types (functions, line statements, loops, machine
instructions), and many code regions with little inclusive
cost. For instance, a call to an MPI routine can be recorded as
a subtree that contains hundreds of nodes, and each MPI call

will generate a substantial subtree. In addition, when applica-
tions are executed at larger scales, HPCToolkit gathers more
unique samples in low-portability code regions. This means
that if we increase the number of ranks when measuring an
application, its calling context tree will grow and contain
more nodes with little inclusive cost.
When an application is measured on several thousands

of compute nodes, its calling context tree can become huge,
making it inefficient to parse and store the entire tree in
memory. To address this issue, when users open a database
for analysis, hpcanalysis enables them to import the subtree
of interest by specifying code regions they want to prune
from the global calling context tree. We implemented several
strategies that enable users to prune code regions with low
information content. For instance, users can remove imple-
mentation details of functions in MPI, OpenMP, and CUDA
libraries. They can also set a threshold to eliminate nodes
with an inclusive cost less than a specified percentage of
the total application time. This can significantly accelerate
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reading the data because subtrees of nodes marked for re-
moval can be skipped, and they can constitute a substantial
portion of the entire tree stored in the database. Users can
also choose to remove nodes that are not functions (line
statements, loops, machine instructions) or instructions in a
binary where mappings to source lines have been stripped.
We discuss this in more detail in Section 5.2.

hpcanalysis stores the extracted calling context tree in a
separate Pandas DataFrame table, as shown in Fig. 3. The
hierarchical structure of the tree is represented using the
parent and children fields. hpcanalysis uses them to visualize
the tree in a hierarchical tree view. Long strings are stored in
separate tables: columns file_path, module_path, and name
store the index of string representation from the string table.

Metadata tables enable users to sample and extract slices
of large-scale performance data. Users may want to retrieve
performance data for a specific range of MPI ranks, CPU
threads, or GPU streams, select every 100th profile or trace,
extract trace lines for particular time intervals, among other
requests. This sampling is performed using query expres-
sions, outlined in Section 4.4. Users submit queries that spec-
ify desired slices of profiles or traces, queries are associated
with unique IDs stored in metadata tables, and IDs are then
used to access and extract selected slices from the file.

4.3 Large Performance Data
For each parallel execution context, HPCToolkit records a
local calling context tree that contains code regions executed
within that context. Once nodes in a local calling context
tree are annotated with metrics, they form a performance
profile: profiles are calling context trees annotated with met-
ric values. HPCToolkit performance profiles are sparse in
two ways: a set of contexts present in different profiles and
a set of metrics present for different contexts. Context spar-
sity exists because local calling context trees for individual
profiles may differ. For instance, threads may have different
local calling context trees because they may execute different
code. Metrics sparsity exists because different code regions
are annotated with different metrics: CPU code is annotated
with CPU metrics, while GPU code is annotated with GPU
metrics.
During postmortem analysis, hpcprof constructs the

global calling context tree outlined in Section 4.2 and gener-
ates a summary profile. Global calling context tree represents
a union of local trees for each parallel execution context.
Global calling context tree is annotated with summary pro-
file metrics that aggregate metrics across individual parallel
profiles. Given that profiles for executions performed on
several thousands of compute nodes are huge, users need
techniques for sampling. hpcanalysis supports the following
strategies for sampling profiles.

• Sampling profiles by execution context. Extract
profiles for specific execution contexts. A query might
specify a range of MPI ranks, CPU threads, or GPU
streams.

• Sampling calling contexts in profiles. Extract val-
ues for specific calling contexts for each selected pro-
file. A query specifies nodes or subtrees of interest
(discussed in Section 4.2).

• Sampling metrics in profiles. Extract values for spe-
cific metrics for calling context tree nodes of interest
within or across profiles.

HPCToolkit organizes profiles into an array where profiles
are indexed by their ID and sorts CCT nodes and metrics
within individual profiles by their ID. This file format en-
ables hpcanalysis to perform sampling efficiently: query for
execution context is mapped to a list of profile IDs to access
specific profiles from the file, and we use binary search to
access specific values within selected profiles. In addition,
hpcanalysis employs parallelism when parsing data for in-
dividual profiles. The number of parallel tasks it spawns is
proportional to the number of extracted profiles. hpcanal-
ysis stores extracted slices of profiles in a separate Pandas
DataFrame table, the format of which is shown in Fig. 3.
This format accommodates the sparse format of profiles:
both the CCT node ID and the metric ID are stored inside
the DataFrame index. Storing them as separate columns, as
Hatchet does, would store empty cells for sparse elements.

When measuring applications with HPCToolkit, users can
also enable tracing and collect traces for each parallel execu-
tion context. Individual traces are represented as a sequence
of events, each described with a CCT node ID and a times-
tamp. Given that traces for executions performed on several
thousands of compute nodes are huge, users need techniques
for sampling. hpcanalysis supports the following strategies
for sampling traces.

• Sampling traces by execution context. Extract
traces for specific execution contexts. A query might
specify a range of MPI ranks, CPU threads, or GPU
streams.

• Sampling time intervals in traces. Extract events
for specific time intervals for each selected trace. User
provides time intervals of interest.

HPCToolkit organizes traces into an arraywhere traces are
indexed by their ID and sorts events within individual traces
by their timestamp. This file format enables hpcanalysis to
perform sampling efficiently: query for execution context is
mapped to a list of trace IDs to access specific traces from the
file, and we use binary search to access specific events within
selected traces. As when extracting profiles, hpcanalysis em-
ploys parallelism when parsing data for individual traces.
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Table 1: Query/Read API Interface

Query API method Arguments Read API method Arguments

query_metric_descriptions query for metrics read_metric_descriptions none - entire section of data is fetched
query_profile_descriptions query for profiles read_profile_descriptions none - entire section of data is fetched
query_cct query for CCT read_cct none - entire section of data is fetched
query_profile_slices queries for profiles, CCT, and metrics read_profile_slices argument that specifies slices of profiles with profile IDs, CCT IDs, and metric IDs
query_trace_slices query for profiles and time intervals read_trace_slices argument that specifies slices of traces with trace IDs and time intervals

hpcanalysis stores extracted slices of traces in a separate
Pandas DataFrame, as shown in Fig. 3.

4.4 Interface for Extracting Data and Query
Expressions

Users request specific types of performance data using Query
API interface, a high-level API that enables requesting data
using query expressions. Read API is a low-level API that
parses raw data from storage and is called byQuery API when
a request is made for data that was not previously parsed
and stored in memory. Extracted data are stored in Pandas
DataFrame tables, which are initially empty. Depending on
the type of requested data, different subsets are extracted
and stored in memory. Table 1 specifies the Read API and
Query API interface. When the user requests metadata (met-
ric descriptions, profile descriptions, calling context tree),
it provides a single query that specifies the subset of inter-
est, and, on the first request, Read API will fetch the entire
section. When requesting the calling context tree, specific
nodes/subtrees will be excluded, which is configured by the
user when it opens the database and specifies the subtree
of interest. When the user requests profiles or traces, it pro-
vides several arguments/queries that specify slices of interest.
When a request is made for a profile or trace with an exe-
cution context that was not previously parsed and stored
in memory, Read API will access the requested slices in the
file and perform sampling as specified, such as sampling by
calling context and set of metrics for profiles, and sampling
by time intervals for traces. After the data is extracted and
stored in memory, slices specified by queries are presented
to the user.

Listing 1 shows how users can request metadata. Queries
for calling context tree extract specific call paths from the
tree. Call path queries can specify different types of nodes:
functions, line statements, loops, and machine instructions.
They can also use wildcards for call path fragments or node
attributes, such as function names. This simplifies complex
queries, such as extracting all calling contexts that invoke
GPU operations. Queries for metric descriptions extract de-
scriptions of metrics with a specific name and/or scope. The
two most common types of scope are inclusive and exclu-
sive scope. The inclusive cost of a node refers to the total
cost of the node along with all its descendants in its subtree.

1 import hpcanalysis
2
3 query_api = hpcanalysis.open_db("path/to/database")._query_api
4
5 # extract CPU time metric with inclusive and exclusive scope
6 query_api.query_metric_descriptions("cputime␣(i,e)")
7
8 # extract profiles with rank ID 0 and thread IDs 1,2
9 query_api.query_profile_descriptions("rank (0).thread (1-2)")
10
11 # extract specific call path from the calling context tree
12 query_api.query_cct("function(foo).line(foo.c:12)")

Listing 1: Extracting metadata using queries

1 import hpcanalysis
2
3 query_api = hpcanalysis.open_db("path/to/database")._query_api
4
5 # extract slices of profiles for rank ID 0 and thread IDs

1,5,6,7, for MPI functions , and for inclusive CPU time
6 query_api.query_profile_slices(
7 "rank (0).thread (1,5-7)",
8 "function(MPI_*)",
9 "cputime␣(i)",
10 )
11
12 # extract slices of traces for rank ID 0 and thread IDs

1,5,6,7, and for a specific time interval
13 query_api.query_trace_slices(
14 "rank (0).thread (1,5-7)",
15 (1713838621 ,1713910621) ,
16 )

Listing 2: Extracting performance data using queries

The exclusive cost of a node refers to the cost of the node
itself, excluding the cost of its subtree. Queries for profile
descriptions extract descriptions of profiles with a specific
execution context. Execution contexts can be specified with
a range of values for MPI rank IDs, CPU thread IDs, or GPU
stream IDs. Wildcards can be used in both queries for metrics
and queries for profiles.

Listing 2 shows how users can request profiles and traces.
When requesting profiles, the user provides a query for exe-
cution context, a query for calling context, and a query for
metrics. When requesting traces, the user provides a query
for execution context and a time interval.

In Fig. 3, we presented the overall architecture of the hpc-
analysis framework and illustrated the correlation between
different types of performance data. Metadata tables include
metric descriptions, profile descriptions, and the calling con-
text tree. They store entire sections of data, with the excep-
tion of the global calling context tree, which can be pruned
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using heuristics declared when opening the database. Meta-
data tables do not reference other tables; all necessary data
is contained within them, with the exception of long strings,
which are stored in separate string tables. In contrast, ta-
bles for slices of profiles and traces store sampled sections
of data. They contain slices of data that the user requests
over time, utilizing specialized query expressions. Tables for
profiles and traces provide context for the collected meta-
data, associating themwith measured metrics or trace events.
These tables contain IDs that link back to the metadata tables,
enabling them to be referenced and connected with appro-
priate values. This architecture facilitates efficient querying
of performance data, as queries that request slices of profiles
or traces can be easily mapped to the IDs stored in meta-
data tables. Once these IDs are retrieved, they can be used
to either extract slices from the performance files, if they
were not previously requested and stored in memory, or to
retrieve them from memory if they had been stored earlier.
After the slices are extracted and stored in memory, they are
linked with metadata, creating a clear reference between the
metadata and the collected metric values or trace events.

4.5 Performing Common Analysis Tasks
After users request data using the Query API interface, they
are presented with a DataFrame table containing the result.
They can comprehend program behavior and performance
using DataFrame operations, such as filtering, pruning, and
aggregating. However, some tasks are performed more fre-
quently and can benefit from automation. Such tasks are
creating flat profiles, detecting load balance, detecting GPU
idleness, visualizing calling context tree, etc. Therefore, we
implemented an additional Data Analysis layer atop Query
API that exposes several functions that automate the exe-
cution of common analysis tasks. They internally use the
Query API interface to extract relevant subsets and perform
additional transformations, such as mapping with metadata
tables or grouping by execution context.

One utility in Data Analysis layer is hpcreport, which auto-
matically analyzes the summary profile of program execution
and generates a high-level overview of its behavior. hpcre-
port breaks down time spent in the program into three main
categories: MPI, OpenMP, and GPU execution. It also breaks
down time into several subcategories, such as timings for
specific subsets of MPI operations, OpenMP, and GPU opera-
tions. For instance, for GPU operations, it reports timings for
kernel execution, memory allocation, memory deallocation,
memory setting, explicit data copy, implicit data copy, and
synchronization. One of the strengths of hpcreport is that
it can automatically detect whether a program execution is
compute bound, memory bound, communication bound, or
I/O bound. Table 2 shows an example of hpcreport output.

Table 2: hpcreport output

Major Minor Time (sec) Percentage (%)

CPU

CPU Total 1.18e+04 100.00
OpenMP Idle 8.81e+03 74.55
MPI Collective 8.32e+01 0.70
MPI Point-to-Point 2.62e+01 0.22
OpenMP Wait 1.48e+01 0.12
MPI Environmental Inquiry Functions and Profiling 1.80e-01 0.00

GPU
GPU Total 6.91e+02 100.00
GPU Kernel Execution 5.95e+02 86.04
GPU Explicit Data Copy 9.65e+01 13.96

While the functionality of hpcreport is similar to Intel
VTune Application Performance Snapshot (APS) [13], hpcre-
port produces summaries from detailed information col-
lected at runtime, whereas APS only collects summaries.
This means that if the summary from hpcreport is concern-
ing, one can write specialized queries to look deeper into
areas of concern; with APS, one cannot.

5 Case Studies
This section describes several case studies that showcase
analysis tasks using hpcanalysis framework. We evaluated
the efficiency and scalability of processing large-scale out-
of-core datasets by analyzing executions performed on thou-
sands of compute nodes.

5.1 Validating Performance Metadata
For the first several case studies, we analyzed the perfor-
mance data for a large-scale execution of LAMMPS [29]—
a molecular dynamics code developed by Sandia National
Laboratories—measured on Frontier. The execution contains
measurement data for 8,192 compute nodes, with 8MPI ranks
per node, yielding a total of 65,536 ranks. The execution did
not employ multithreading, so each rank operated with a
single CPU thread. The total size of the file containing sparse
profiles was nearly 100 gigabytes. The entire performance
database contained approximately 4TB of data, most of which
represented parallel execution traces. Analyzing such large-
scale performance data enabled us to evaluate the efficiency
of hpcanalysis at scale.
The first step we took for the LAMMPS experiment was

to conduct basic validations of the database. As discussed in
Section 4.1, tables that store metric descriptions and profile
descriptions are typically small, making it feasible to extract
them in entirety upon the first access. Once extracted, we
can use them to verify the accuracy of collected metadata.
Listing 3 shows the code we used to ensure the correctness
of the execution contexts recorded in the LAMMPS database.
We verified that the database contains measurements for the
proper number of compute nodes, ranks on each node, cores,
and threads.
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1 import hpcanalysis
2
3 hpc_api = hpcanalysis.open_db("path/to/database")
4 profs = hpc_api._query_api.query_profile_descriptions("rank")
5
6 # there are in total 65,536 execution profiles
7 assert len(profs)==65536
8 # execution is performed on 8,192 compute nodes
9 assert len(profs["node"]. unique ())==8192
10
11 for node in profs["node"]. unique ().tolist ():
12 # each compute node has 8 ranks executing on it
13 assert len(profs[profs["node"]== node]["rank"]. unique ())==8
14 # each rank is executed on a separate core
15 assert len(profs[profs["node"]== node]["core"]. unique ())==8
16 # each rank has a single CPU thread executing on it
17 assert len(profs[profs["node"]== node]["thread"]. unique ())==1

Listing 3: Verifying performance metadata in the
LAMMPS experiment

5.2 Pruning Code Regions
We continued examining the LAMMPS experiment by an-
alyzing its calling context tree. Listing 4 shows the inter-
face we implemented for specifying strategies for pruning
code regions from large calling context trees. The CCTRe-
duction object from Listing 4 can receive an arbitrary set
of user-defined filters for pruning the calling context tree.
We defined some strategies for pruning the tree, but users
can define their own filters as long as they implement the
appropriate interface. One strategy we implemented is to
set a threshold that will eliminate all nodes with inclusive
time below a specific percentage of the total application
time, along with their entire subtrees. Since the LAMMPS
experiment was conducted on 65,536 ranks and the HPC-
Toolkit collects more unique samples in low-portability code
regions at larger scales, we anticipate that the resulting tree
will contain numerous code regions with little inclusive cost.
Another strategy is to remove implementation details of
commonly used libraries, such as MPI. Even in smaller-scale
experiments, we encountered subtrees of MPI functions that
contained several hundreds of nodes. Since each call to a
library routine generates a substantial subtree, a significant
portion of the database can consist of the implementation
details of library functions. Users can also choose to elim-
inate nodes that are not functions (line statements, loops,
machine instructions). We tested various combinations of
these pruning techniques and analyzed the trees they pro-
duced.
Table 3 shows the size of the calling context tree for the

LAMMPS experiment after pruning various code regions.
The entire tree contains 1,006,440 nodes. Interpreting perfor-
mance using a tree that contains more than a million nodes is
difficult and time-consuming. We experimented with setting
different thresholds to remove regions with little inclusive
cost. We evaluated pruning regions that accounted for less
than 0.0001%, 0.001%, 0.01%, 0.1%, and 1% of the total appli-
cation time. For each of these thresholds, we also examined

1 import hpcanalysis
2
3 cct_reduction = CCTReduction ()
4
5 # remove nodes that are not functions
6 cct_reduction.add_reduction(FunctionReduction ())
7
8 # remove nodes with little inclusive cost
9 cct_reduction.add_reduction(TimeReduction(percentage_threshold

=1))
10
11 # remove implementation details of MPI
12 cct_reduction.add_reduction(MPIReduction ())
13
14 # remove implementation details of OpenMP
15 cct_reduction.add_reduction(OpenMPReduction ())
16
17 hpc_api = hpcanalysis.open_db("path/to/database", cct_reduction=

cct_reduction)

Listing 4: Specifying strategies for pruning the calling
context tree

Table 3: Size of the calling context tree in the LAMMPS
experiment with different pruning techniques

Threshold None 0.0001% 0.001% 0.01% 0.1% 1%
Nodes in the entire
calling context tree 1,006,440 15,981 5,222 2,047 618 165
Remove implementation
details of MPI library 791,035 10,270 3,059 1,102 310 98
Remove nodes that
are not functions 248,022 6,896 2,557 1,056 372 112
Remove implementation
details of MPI and nodes
that are not functions 196,851 4,577 1,571 596 200 63

Table 4: Percentage of specific code regions in the
LAMMPS experiment with different pruning thresh-
olds

Threshold None 0.0001% 0.001% 0.01% 0.1% 1%
Implementation details of MPI 21% 36% 41% 46% 50% 41%
Nodes that are not functions 75% 57% 51% 48% 40% 32%
Implementation details of MPI
and nodes that are not functions 80% 71% 70% 71% 68% 62%

the effects of removing implementation details of MPI and
eliminating nodes that are not functions. Table 4 shows the
percentages of MPI implementation details and nodes that
are not functions within the calling context tree for each
pruning threshold.

An interesting finding is that if we apply a 0.0001% thresh-
old, which is relatively low, we reduce the tree size from one
million nodes to only fifteen thousand. With larger thresh-
olds, we reduce the size even further, reaching only 165
nodes for the 1% threshold. These thresholds enable users
to focus their analysis tasks on the most time-consuming re-
gions.Whenwe tested removingMPI implementation details,
we observed that 20-50% of the tree can consist of subtrees
rooted in MPI functions. Eliminating these regions can signif-
icantly accelerate the analysis workflow by reducing loading
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Figure 4: Pruned calling context tree for the LAMMPS
experiment, showcasing the most time-consuming
functions

times. When inspecting performance data from multiple pro-
grams, we found that nodes that are not functions account
for 30-70% of the calling context tree. Pruning nodes below
the function level accelerates high-level analysis tasks.
Removing both MPI implementation details and nodes

that are not functions for each pruning threshold for the
LAMMPS experiment reduced the tree size from 1,006,440
nodes to 4,577 for the 0.0001% threshold, 1,571 for the 0.001%
threshold, 596 for the 0.01% threshold, 200 for the 0.1% thresh-
old, and 63 for the 1% threshold. These results indicate that
a significant portion of the database consists of regions with
low information content. Analyzing performance for such
regions adds unnecessary complexity when trying to under-
stand the program behavior over time or identify opportu-
nities for improving performance. Pruning strategies such
as those we implemented help thin the representation and
focus analysis on important program regions.
We visualized the calling context tree after applying a

1% threshold and removing MPI implementation details and
nodes that are not functions. We used the visualize_cct func-
tion we implemented in the Data Analysis layer, which dis-
plays a hierarchical view of a calling context tree. Fig. 4 shows
the pruned calling context tree for the summary profile of the
LAMMPS execution. Users can expand and collapse nodes
and display metrics from the summary profile. In Fig. 4, we
expanded the nodes that consume the most time and dis-
played the total execution time for each. This provides an
overview of the most time-consuming regions, which we can
use to guide further exploration of program performance.

1 fn = [
2 'LAMMPS_NS :: VerletKokkos ::run',
3 'LAMMPS_NS :: CommKokkos :: forward_comm_device ',
4 'MPI_Send ',
5 'MPI_Wait ',
6 'LAMMPS_NS :: NeighborKokkos :: build_kokkos ',
7 'LAMMPS_NS :: CommKokkos :: exchange_device ',
8 'LAMMPS_NS :: CommKokkos :: borders ',
9 'LAMMPS_NS :: ModifyKokkos :: final_integrate ',
10 'LAMMPS_NS :: LAMMPS :: LAMMPS ',
11 ]
12
13 load_bal = hpc_api.load_balance
14
15 load_bal(fn, "rank (0 -65536:4096)") # extract every 4096th rank
16 load_bal(fn, "rank (0 -65536:512)") # extract every 512th rank
17 load_bal(fn, "rank (0 -65536:64)") # extract every 64th rank
18 load_bal(fn, "rank (0 -65536:8)") # extract every 8th rank
19 load_bal(fn, "rank (0 -65536:1)") # extract every rank

Listing 5: Detecting load balance in the LAMMPS
experiment by extracting different numbers of ranks

5.3 Sampling Performance Profiles
After pruning the calling context tree and identifying the
most time-consuming regions, we analyzed their distribution
across MPI ranks. This analysis enables us to determine
whether the application workload is evenly distributed or
if certain ranks are performing more work than others. We
implemented the load_balance function in the Data Analysis
layer, which calculates the load balance of a specific calling
context, such as an MPI routine, across selected execution
contexts, such as MPI ranks. It estimates the load balance by
dividing the average execution time of the routine across the
selected ranks by the maximum time it spent across those
ranks. A ratio close to 1 indicates that the routine is well-
balanced, while a lower ratio signifies a greater imbalance.
When the user selects a range of ranks to examine, it can set
a step value to sample the range and estimate results on a
smaller subset. For instance, when analyzing an execution
on 100,000 ranks, it can set a step of 100 to extract every
100th rank and examine 1,000 ranks instead of all 100,000.
We will also add support for the probability of examining a
rank so that one can examine a random subset rather than a
strided subset. This approach enables users to sacrifice some
accuracy for faster analysis.
For the LAMMPS experiment conducted on Frontier, we

selected the most time-consuming functions from Fig. 4 and
analyzed their load balance across MPI ranks. We evaluated
the load balance over the entire range of 65,536 ranks using
five different steps: we tested extracting 65,536/4,096 = 16,
65,536/512 = 128, 65,536/64 = 1,024, 65,536/8 = 8,192, and all
65,536 ranks. Listing 5 shows the code we used to sample
ranks and examine the load balance among them. Initially,
we estimated the load balance when extracting only 16 ranks.
We observed that most functions were well-balanced, except
for the MPI functions MPI_Send and MPI_Wait, which had a
balance ratio of around 0.5, indicating an uneven distribution.
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Table 5: Load balance estimates for themost time-consuming functions in the LAMMPS experimentwhen extracting
different numbers of ranks. Notice that the cost of MPI routines is imbalanced.

VerletKokkos:: CommKokkos:: LAMMPS:: ModifyKokkos:: NeighborKokkos:: CommKokkos:: CommKokkos:: MPI_Send MPI_Wait
run forward_comm_device LAMMPS final_integrate build_kokkos borders exchange_device

16 ranks 0.99 0.99 0.98 0.99 0.97 0.93 0.95 0.52 0.52
128 ranks 0.99 0.99 0.98 0.98 0.96 0.91 0.91 0.52 0.52
1,024 ranks 0.99 0.99 0.98 0.98 0.96 0.90 0.91 0.51 0.51
8,192 ranks 0.99 0.98 0.98 0.97 0.94 0.87 0.88 0.51 0.50
65,536 ranks 0.99 0.98 0.98 0.97 0.94 0.86 0.85 0.46 0.44

Table 6: Times in seconds for pruning and extracting
pruned calling context trees for different numbers of
MPI ranks in the LAMMPS experiment

Number of MPI ranks 16 128 1,024 8,192 65,536

Serial 0.21 1.05 7.87 67.80 565.80
8 parallel tasks 2.57 0.31 2.03 14.10 124.35
16 parallel tasks 4.29 0.27 1.54 10.59 92.89
64 parallel tasks 0.14 6.78 1.70 12.15 103.71

Subsequently, we tested extracting 128, 1,024, 8,192, and
finally, all 65,536 ranks. Table 5 shows the balance estimates
for each number of ranks extracted. The table represents
balance estimates for inclusive function costs. We found
that the results were quite similar for each number of ranks
extracted: most functions were well-balanced, except theMPI
functions. These findings suggest an irregular distribution
of communication time across ranks, which can be further
investigated for communication anomalies in the program.
Notably, we were able to detect this imbalance even when
extracting only 16 ranks.

We evaluated the performance of sampling the LAMMPS
execution when analyzing the load balance. Table 6 shows
the performance, measured in seconds, for each experiment
when extracting different numbers of MPI ranks. We tested
using a serial solution and spawning different numbers of
parallel tasks. We can employ parallelism when parsing data
for individual profiles, as they are stored in distinct sections
within the performance file, indexed by profile ID. Extracting
all 65,536 ranks with a serial solution took 565.80 seconds,
which is nearly 10 minutes. When we spawned 8, 16, and
64 parallel tasks, the extraction time for all 65,536 ranks
dropped to 124.35, 92.89, and 103.71 seconds, respectively.
However, results from Table 5 show that we can achieve
highly accurate load balance estimates even when extracting
a smaller number of ranks. Extracting 1,024 ranks took less
than 10 seconds with a serial solution, and when employing
parallelism, it dropped to only 1-2 seconds. Nevertheless, the
estimates obtained when extracting 1,024 ranks were almost
the same as those for all 65,536 ranks.

Table 7: Times in seconds for extracting entire calling
context trees for different numbers of MPI ranks in
the LAMMPS experiment

Number of MPI ranks 16 128 1,024 8,192 65,536

Serial 18.58 85.63 676.38 > hours > hours
8 parallel tasks 12.21 17.90 109.99 843.87 > hours
16 parallel tasks 12.04 13.11 71.20 537.43 > hours
64 parallel tasks 11.88 15.52 46.56 345.55 > hours

When we sampled different numbers of MPI ranks to ana-
lyze the load balance, we extracted parallel profiles for call-
ing context trees pruned using techniques discussed in Sec-
tion 5.2. hpcanalysis prunes the global calling context tree
and then attempts to extract the same subset of tree nodes
for each selected parallel profile.1 Table 7 shows the time
when extracting different numbers of ranks without pruning
the calling context tree. This is much slower than extracting
data for pruned trees, as reported in Table 6. As detailed
in Section 4.3, hpcanalysis employs techniques for efficient
access and extraction of slices of profiles from the database.
Profiles are organized into an array within the performance
file, enabling us to index them by their ID. CCT nodes are
sorted by their ID within individual profiles, enabling us to
access them through a binary search rather than iterating
through entire profiles. If we don’t prune the calling context
tree, we could end up sampling parallel profiles with local
trees that contain up to 1,006,440 nodes, which is the size of
the entire global tree. When extracting all 65,536 ranks, we
would need to parse 65,536 × 1,006,440 values, assuming that
the local trees for individual ranks are as large as the global
calling context tree. As shown in Table 7, we were unable
to extract/parse data for all 65,536 ranks, even after several
hours of processing. When we attempted to extract smaller
numbers of ranks, such as 1,024 and 8,192, the loading times
were several minutes, which is significantly longer than the
few seconds it took when we pruned the tree. For large-scale
experiments, one might not even have enough physical mem-
ory on a single compute node to extract complete calling
context trees for all MPI ranks.

1Some profiles may not contain some of the nodes of interest.
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The significant decrease in loading time—from several
hours when extracting all ranks and the entire calling context
trees to only a few secondswhen sampling ranks, pruning the
calling context trees, and utilizing parallelism—demonstrates
that hpcanalysis enables users to efficiently explore and se-
lectively read slices of large-scale performance data. Users
can conduct their analysis tasks in a fast and responsive way
without having to reprocess the entire database. In most
cases, a modest number of samples should yield results of
sufficient accuracy. If concerned about the accuracy of a set
of samples, one can extrapolate from the sampled set and
compare it with the summary profile. If the difference be-
tween the estimate of the summary profile and the actual
summary profile is too large, then sample additional profiles.
In the LAMMPS experiment, we investigated the load

balance of the most time-consuming functions identified
while pruning the calling context tree and highlighted the
MPI load imbalance as the most significant finding. Users
can, however, examine any metric for any context, such as
GPU kernels, by modifying the query expressions used when
extracting slices of performance data. Specifically, in the
LAMMPS experiment, when we analyzed the performance of
GPU kernels, we found that the GPUworkwas well-balanced
and not noteworthy.

5.4 Detecting Communication Anomalies
While analyzing the load balance of the most time-
consuming regions in the LAMMPS experiment, we detected
an irregular distribution of communication time across MPI
ranks. This prompted us to investigate these communica-
tion anomalies further. We selected all MPI functions using
query "function(MPI_*)" and analyzed their values across
1,024 ranks. For each rank in this range, we computed the
total time spent in each MPI routine. Subsequently, we cal-
culated the minimum and maximum total time across ranks
for each MPI routine. We observed the highest variance be-
tween the minimum and maximum total time in MPI_Bcast,
where the minimum was 0.05 seconds, and the maximum
was 101.81 seconds. This indicates that some rank spent 0.05
seconds in MPI_Bcast and some spent 101.81 seconds. When
we tested extracting 8,192 ranks to determine the variance
for a larger set of ranks, the minimum total time was 0.002
seconds, and the maximum was 102.22 seconds. This didn’t
significantly differ from the results obtained with the initial
sample of 1,024 ranks.
After observing a significant variance between the min-

imum and maximum total time spent in MPI_Bcast across
ranks, we plotted a histogram of its execution times across
ranks. When analyzing the minimum and maximum total
times, we reduced the global calling context tree using a 1%
threshold. This resulted in only one instance of MPI_Bcast

Figure 5: Distribution of MPI_Bcast execution time
across 1,024 ranks in the LAMMPS experiment

appearing in the resulting tree. We selected this instance and
plotted a histogram of its execution times across 1,024 ranks.
Fig. 5 shows the histogram. We noted an uneven distribution
of execution times; some ranks reported values of less than
one second, while others reported times close to two min-
utes. Most values were either under one second or nearly
two minutes. We also plotted a histogram when extracting
8,192 ranks, which showed a similar distribution as when
extracting 1,024 ranks.
We tested applying lower thresholds when pruning the

calling context tree to examine the balance of additional in-
stances of MPI_Bcast that might exist in the entire tree. We
decreased the threshold from 1% to 0.0001%, resulting in a
tree that contained two additional instances of MPI_Bcast.
The first instance had a minimum total time of 0.002 sec-
onds and a maximum total time of 3.62 seconds. The second
instance had a minimum total time of 0.002 seconds and
a maximum total time of 6.08 seconds. When we plotted
histograms of their execution times across 1,024 ranks, we
observed that the values were relatively evenly distributed.
This indicates that the critical instance of MPI_Bcast, which
exhibited communication imbalance in the program, was
detected when applying the 1% threshold. When we used
this threshold, we identified theMPI_Bcast call that exhibited
a wide spread of execution times across ranks, ranging from
less than a second to several minutes, signaling a significant
communication imbalance in the program possibly caused
by workload imbalance.

After identifying the irregular distribution of communica-
tion time with hpcanalysis, we visualized parallel execution
traces using HPCToolkit’s hpcviewer graphical user inter-
face. Fig. 6 shows the trace view of parallel execution traces
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Figure 6: LAMMPS trace view, showcasing strange net-
work delays and patterns of propagating idleness

that perform GPU work. We observed unusual delays and
peculiar patterns of propagating idleness. One theory is that
these delays may stem from congestion in the Slingshot [10]
network on Frontier. Given that LAMMPS was measured on
a large number of MPI ranks (65,536) with short intervals of
computation between communications, it may have stressed
the network. To further investigate the underlying causes of
these propagating delays, we would need to gather more in-
formation than what is currently measured with HPCToolkit.
For instance, we could measure the network counters for the
Slingshot interconnect during each call to an MPI function
and analyze how these values change as we increase the
number of execution ranks. By intercepting each MPI rou-
tine call, we can collect various counters and identify those
that closely correlate with increased congestion. This would
provide us with deeper insights into the network behavior
and help us understand the reasons behind the observed
delays and communication anomalies.

When we used HPCToolkit’s graphical user interface, we
parsed the entire database and visualized numerous traces to
identify strange network delays that were difficult to further
examine through a visual inspection. With hpcanalysis, we
examined these communication anomalies by pruning the
calling context tree from one million nodes down to about a
hundred, which detected the critical instance of MPI_Bcast.
After sampling only 1,024 ranks from a total set of 65,536, we
noted a significant variance in MPI_Bcast execution times
across ranks. We could investigate Slingshot network coun-
ters and their correlation with MPI_Bcast times to analyze
network congestion and identify patterns of propagated idle-
ness that we observed on Frontier.

5.5 Experiments on Aurora
We conducted several experiments on the Aurora supercom-
puter to further investigate the size of calling context trees

Figure 7: Reducing calling context trees in the scaling
study of AMG benchmark

when measuring large-scale executions and how these trees
grow as the number of ranks increases. We performed a scal-
ing study of AMG [20]—an algebraic multigrid benchmark
developed by the Lawrence Livermore National Laboratory—
measured on Aurora. We executed the benchmark using 10,
100, 1,000, 10,000, and 100,000 ranks. For each test, we al-
located 1,000 compute nodes and evenly distributed ranks
among them. These experiments enabled us to assess the
correlation between the number of ranks used for execution
and the size of the resulting tree. In addition, we also eval-
uated the effectiveness of pruning techniques discussed in
Section 5.2, where we reduced the calling context tree for
the LAMMPS experiment.
Fig. 7 shows the size of the calling context tree for each

experiment. The red bars represent the size of the tree with-
out pruning any code regions. Notice that the size of the
tree grows as the number of ranks increases. This happens
because HPCToolkit captures more infrequent instructions
in low-probability code regions at larger scales, resulting
in more tree nodes that have low inclusive cost. Table 8
shows the exact number of CCT nodes for each experiment.
When we executed the benchmark on 10 ranks, the size of
the tree was 326 nodes. When we performed the same execu-
tion using 100,000 ranks, the size increased to 97,833 nodes.
We evaluated the impact of removing MPI implementation
details (blue bars) and nodes that are not functions (green
bars). Both produced trees of similar sizes. Table 9 shows the
percentage of these code regions within the entire calling
context tree. For the experiments conducted on Aurora, on
average, 57% of code regions were attributed to MPI imple-
mentation details, and 52% were nodes that are not functions
(line statements, loops, machine instructions).
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Table 8: Size of the calling context tree in scaling study
of AMG benchmark with different pruning techniques

Number of MPI ranks 10 100 1,000 10,000 100,000
Nodes in the entire
calling context tree 326 2,792 18,932 37,567 97,833
Remove implementation
details of MPI library 139 979 7,255 17,273 49,943
Remove nodes that
are not functions 190 1,411 8,330 16,757 42,545
Remove nodes with <1%
of total application time 315 303 210 191 224
Apply all
pruning techniques 101 96 75 93 110

Table 9: Percentage of specific code regions in the scal-
ing study of AMG benchmark

Number of MPI ranks 10 100 1,000 10,000 100,000 Average
Implementation details of MPI 57% 65% 62% 54% 49% 57%
Nodes that are not functions 42% 49% 56% 55% 57% 52%
Nodes with <1% of
total application time 3% 89% 99% 99% 99% 78%

We also evaluated removing nodes with an inclusive time
of less than 1% of the total application time (orange bars
in Fig. 7). This pruning technique produced trees of similar
sizes across experiments at different scales: the height of the
orange bars is similar for each experiment. This happens
because the strategy eliminates more nodes in larger-scale
experiments, which tend to have more regions with low
inclusive costs. When we applied the technique to the ex-
periment conducted on 10 ranks, we reduced the tree size
from 326 nodes to 315. When we applied it to the experi-
ment conducted on 100,000 ranks, the tree size decreased
from 97,833 nodes to 224. Table 9 shows that for most ex-
periments, the percentage of code regions with less than 1%
of the total application time was 99%. Finally, we evaluated
applying all pruning techniques to each experiment (purple
bars in Fig. 7). For the experiment on 10 ranks, we reduced
the tree size from 326 nodes to 101. For the experiment on
100,000 ranks, we reduced the tree size from 97,833 nodes
to 110. These results demonstrate that pruning techniques
effectively simplify the calling context tree by removing un-
interesting regions and providing a clear abstraction of the
program.

6 Conclusions and Future Work
This paper describes the hpcanalysis framework for program-
matic analysis of large-scale performance data for exascale
executions. Rather than reading all profiles and/or traces
into memory for analysis, hpcanalysis can extract interesting

slices of performance data, focus on key calling contexts, or
a sample of profiles.
We demonstrated using hpcanalysis to explore and ana-

lyze an execution of LAMMPS on 64K MPI ranks. By lever-
aging techniques for pruning large calling context trees and
sampling performance profiles, we detected and examined
load balance issues and communication anomalies by ana-
lyzing a small fraction of the entire tree and a few samples
from the entire set of MPI ranks. Pruning and sampling sig-
nificantly accelerate the analysis of large-scale out-of-core
performance datasets containing gigabytes of profiles.
In the future, we plan to extend hpcanalysis to support

multi-experiment analysis of application performance. Such
a capability would enable users to compare an original code
with an optimized version or analyze the same code compiled
with different compilers or optimization flags. These compar-
isons will help users identify the most suitable configurations
for their application codes. In addition, we will focus more
on trace analysis. This will include comparing traces across
different execution contexts, detecting phases within traces,
and detecting and comparing iterations within and across
traces. We also plan to explore using frameworks such as
RAPIDS cuDF or Dask in conjunction with our framework
to accelerate the analysis. Furthermore, since we now have
an interface for sampling and importing HPCToolkit data
into Python, we can train AI models to identify performance
patterns and suggest optimization strategies.
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