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Abstract

Computing a maximal independent set (MIS) of a graph is an
important problem in many scientific applications. Several
parallel algorithms exist to perform this computation quickly.
Though the state-of-the-art GPU implementation is very ef-
ficient, it cannot process graphs that do not fit in the global
memory of a single GPU. We proposeMG-MIS, a multi-GPU
algorithm that addresses this problem. It distributes the com-
putation across the GPUs in a compute node and uses novel
techniques to minimize inter-GPU communication. Our re-
sults show that, for graphs that require more than 32 GB
memory, MG-MIS outperforms the state-of-the-art single-
GPU code with UVM by a geometric mean of 17.73× on a
system with 4 V100 GPUs, each with 32 GB global mem-
ory. For another set of graphs that require more than 12 GB
memory, MG-MIS outperforms the same single-GPU code
by 22.88× on a system with 2 RTX 3080 GPUs, each with
a global memory of 12 GB. On average, the size of the MIS
computed by MG-MIS is 2.6% smaller than that produced by
the state-of-the-art single-GPU code.
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1 Introduction

A subset of vertices in an undirected graph is considered
an independent set if no two vertices within the subset are
connected by an edge. An independent set is maximal if no
other vertex can be added without violating this indepen-
dence. Such a set is a maximum independent set if it has the
largest cardinality among all possible maximal independent
sets. A graph can have multiple maximal as well as maximum
independent sets. Findingmaximum independent sets is com-
putationally very expensive due to the exponential number
of possibilities that need to be examined [12]. A Maximal
Independent Set (MIS) serves as a useful alternative, since a
high-quality MIS can be quite close in size to the maximum
independent set and can be computed much faster, based on
some heuristics [5].
Computation of a MIS is a key step in many scientific

problems such as job scheduling [8], structural analysis of
proteins [11], VLSI design [27], etc. The parallel computing
domain itself benefits from MIS, since a MIS in this context
corresponds to a large set of jobs that can be run in parallel.
For the results to be useful in this domain, the MIS implemen-
tation must be fast. Several parallel algorithms [5, 14, 18, 19]
have been proposed to perform the MIS computation quickly.
Among the publicly available parallel implementations for
multi-core CPU [3, 29] and GPU [5–7] systems, ECL-MIS [5],
a single-GPU algorithm, is the fastest we could find.

Although ECL-MIS is highly efficient and produces larger
maximal independent sets than other MIS algorithms in the
literature, it has a major drawback: it cannot process graphs
that do not fit in the global memory of a single GPU. By
changing ECL-MIS to use Unified VirtualMemory (UVM) [10,
24], we enabled it to process larger graphs. However, its
efficiency is significantly reduced due to the high frequency
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of data transfers between the CPU and the GPU. In this paper,
we describe MG-MIS, a multi-GPU algorithm that efficiently
computes maximal independent sets of large graphs that do
not fit in the global memory of a single GPU.

Multi-GPU algorithms typically divide the data among the
available devices (where host refers to the CPU and devices
refers to the GPUs in the system). In this context, memory
accesses can be categorized as follows: (i) local, that is, a de-
vice accesses data in its own global memory, and (ii) remote,
that is, a device accesses data that is physically located in
another device. GPUs typically have high-bandwidth mem-
ory, making local accesses very efficient. In contrast, remote
memory accesses are much slower because they must go
through an interconnect such as PCIe or NVLink and might
conflict with the requests from other GPUs.
Support for Peer-to-Peer (P2P) memory accesses makes

inter-device communications faster since the data transfers
are not host-mediated; otherwise, the data transfer between
two devices must go through the host memory, making it
slower. Though NVLink can provide higher bandwidths than
PCIe, it is still slower than local memory accesses. Using
unified memory is another option, but it is even slower since
it uses on-demand paging to migrate data between the host
and the GPUs or between the GPUs.
Even in the best-case scenario — where NVLink is avail-

able and the system supports P2P access — inter-GPU com-
munication can still be a performance bottleneck if not op-
timized properly. Hence, the key challenge in designing an
efficient multi-GPU algorithm lies in identifying ways to
reduce both the volume and the frequency of inter-GPU data
transfers.MG-MIS addresses these challenges by minimiz-
ing the frequency of communications between GPUs and
by combining a large number of remote accesses into more
efficient bulk data transfers between devices. It efficiently
processes large graphs whose data does not fit in the global
memory of a single GPU but fits in the total global memory
of all the GPUs in the system.
MG-MIS divides the vertices of the graph into equally

sized chunks of vertices with consecutive IDs. Each GPU in
the system owns a chunk of the vertices, all edges incident
to them, and the corresponding auxiliary data structure that
stores the MIS-inclusion status of those vertices. We use the
term status of a vertex to indicate if it is included in the MIS.
The possible values of status are in, out, and undecided.

MG-MIS employs the elegant priority-based approach pro-
posed by Luby in his seminal paper on parallel MIS compu-
tation [19] in which vertices are assigned random priority
values. If a vertex 𝑣 has either the highest priority among
its neighbors, or all of its higher-priority neighbors have
already been excluded from the MIS, 𝑣 is added to the MIS.
The algorithm proceeds in rounds. In each round, all un-

decided vertices are processed to see if their status can be

finalized. Once each vertex’s status is decided, the algorithm
terminates. Note that the neighbor vertices whose inclusion
status needs to be checked will require remote memory ac-
cesses if those neighbors reside on another device.
Handling the remote memory accesses efficiently is non-

trivial and the most challenging part of adopting Luby’s
approach in our multi-GPU MIS algorithm. To minimize
inter-GPUmemory accesses,MG-MIS employs the following
strategies. (i) Whenever possible, we finalize the status of
a vertex without checking any remote neighbors. (ii) If a
vertex 𝑣 is decided to be in the MIS, all its neighbors in each
remote device are informed together so that they all canmark
themselves out, avoiding the need for these neighbors to
later individually query the status of 𝑣 over multiple remote
memory accesses. (iii) If each vertex in a set of vertices 𝑆 ,
owned by a device, requires to check the status of some
neighbor on a remote device, we combine these requests into
a buffer and send it to the target device in a single transaction.
The target device prepares the response for all vertices in 𝑆
and sends it back to the requesting device via another single
transaction. (iv) We assign priorities to vertices in such a
way that priority values depend only on the vertex IDs and
a fixed hash function, avoiding inter-GPU communication
altogether when determining priorities of remote neighbors.
These strategies help minimize remote accesses and, in

some cases, avoid them entirely. Whenever remote accesses
are performed, we combine them into a single transfer to
reduce the frequency of inter-GPU communication.

Our results from a systemwith four V100 GPUs (each with
32 GB of global memory) demonstrate that for inputs with a
memory requirement exceeding 32 GB,MG-MIS achieves a
geometric-mean performance improvement of 17.73× over
ECL-MIS, the state-of-the-art single-GPU algorithm aug-
mented with UVM. On a system with two RTX 3080 GPUs
(each with 12 GB of global memory), our results show that,
for inputs with a memory requirement exceeding 12 GB,
MG-MIS is 22.88× faster than ECL-MIS with UVM.
This paper makes the following main contributions.

• It presents MG-MIS, the first multi-GPU algorithm to
compute a maximal independent set in large graphs
that do not fit in the global memory of a single GPU.
• It describes algorithmic optimizations that help reduce
inter-GPU communication.
• It shows how dividing the computation into local and
remote memory access phases that are mutually exclu-
sive leads to fast processing.
• It discusses how the communication of priority values
can be avoided altogether.
• It demonstrates that our implementation of MG-MIS
significantly outperforms the state-of-the-art single-
GPU code with UVM on large graphs.
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Our CUDA implementation of MG-MIS is available in
open source on the web [21] and on github [22].
The rest of the paper is organized as follows. Section 2

presents background information and related work. Section 3
explains our technique and optimizations in detail. Section 4
describes the experimental methodology. Section 5 presents
and analyzes the results. Section 6 concludes the paper.

2 Computation of MIS

This section provides background information on MIS com-
putation and reviews Luby’s approach to set the stage for
describing MG-MIS in detail.

2.1 Background

An independent set of an undirected graph 𝐺 = (𝑉 , 𝐸) is a
subset 𝑆 of 𝑉 such that, for any pair of vertices (𝑢, 𝑣) where
𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆 , 𝑢 and 𝑣 are non-adjacent in 𝐺 , that is,
(𝑢, 𝑣) ∉ 𝐸. Figure 1(a) highlights {𝐴, 𝐵}, an independent set in
the graph shown. However, it is not a maximal independent
set (MIS) since either vertex 𝐷 or vertex 𝐸 can be added
to it without violating the definition of an independent set.
Figure 1(b) shows an independent set, {𝐶}, that is maximal
since no other vertex can be added to it. Several MISs are
possible for the given graph. A MIS is called a maximum
independent set if no other MIS with a larger cardinality
exists for the same graph. By adding either 𝐷 or 𝐸 to the set
{𝐴, 𝐵}, we get two independent sets that are both maximal
and maximum, shown in Figure 1(c).

A B
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D E

(a) A set

A B

C

D E

(b) Maximal

A B

C

D E

A B

C

D E

(c) Two maximum sets

Figure 1: Examples of independent sets

Computing a maximum independent set is an NP-hard
problem in general, whereas computing a MIS can be done
much faster based on heuristics. Computing MISs of large
graphs in parallel is the focus of this paper. To choose which
vertices to include in the MIS, we use the priority-based
approach proposed by Luby [19], which works as follows.
In the initialization phase, each vertex is assigned a ran-

dom priority value as shown in Figure 2. This graph will be
used as a running example throughout the paper. Each ver-
tex is labeled with an <ID, Priority> pair. The MIS-inclusion
status of a vertex can have three possible values – undecided,
in, or out. Initially, all vertices are undecided. One thread is
assigned to each vertex. The algorithm proceeds in rounds.
In a round, each thread processing an undecided vertex 𝑣
checks if any of the neighbors of 𝑣 are in the MIS; If so, 𝑣 is

A: 13 B: 2

C: 4 D: 7

E: 9

F: 6

I: 11

G: 8

H: 10

J: 3

K: 1

L: 5

M: 12

Figure 2: Input graph with random vertex priorities

decided to be out of the MIS. Otherwise, the thread checks if
𝑣 has a higher priority than all of its neighbors that are yet
to be decided. If it does, the thread marks 𝑣 to be in the MIS.
If 𝑣 has at least one higher-priority neighbor whose status
is undecided, 𝑣 ’s status cannot be decided immediately; it
has to wait for that neighbor’s status to be decided first. In
each round, at least one vertex will be added to the MIS,
and several vertices may be excluded from the MIS. At the
end of a round, if there is at least one vertex whose status
is undecided, the algorithm performs another round of the
same computation. When the status of all vertices has been
decided, the algorithm terminates – The MIS consists of the
vertices whose status is marked as in. Note that the status
of each vertex changes from undecided to either in or out
exactly once. The monotonic nature of this update along
with the guarantee that at least one vertex’s status will be
decided in each round ensures termination of the algorithm.
In the example shown in Figure 2, in the first round, ver-

tices 𝐴 and 𝑀 are included in the MIS, and vertices 𝐵, 𝐶 , 𝐼 ,
𝐾 and 𝐿 are marked as out. In the second round, only 𝐻 is
added to the MIS, and 𝐸 and 𝐺 are marked as out. The third
round marks 𝐷 as in and 𝐹 as out. With the fourth round
marking 𝐽 to be in, the algorithm terminates and the final
MIS contains the vertices {𝐴,𝐷 ,𝐻 , 𝐽 ,𝑀}. The discussion here
assumes that the rounds are executed synchronously, but
this is not a requirement. Section 3.3 provides more detail
on why certain vertices are included and others are not.

2.2 Related work

There are several parallel algorithms that compute maximal
independent sets. There are a few multi-GPU implementa-
tions of other graph algorithms, but none for computing
MISs. In this section, we discuss the prior work that is rele-
vant to MG-MIS.

The first parallel algorithm for computing MISs was pro-
posed by Karp and Wigderson [14]. It identifies a suitable
subgraph of the given graph G on which independent sets
can be computed in parallel and then shortens G by remov-
ing the vertices in the computed set and their neighbors.
The process is repeated on the new graph until the graph
is empty. Based on this algorithm, Luby proposed a number
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of more efficient parallel algorithms [18, 19], which vary in
the way they choose the vertices to include in the MIS. We
discuss one of them in detail in Section 2.1.

Similar toMG-MIS, ECL-MIS [5], the state-of-the-art single-
GPU algorithm for computing MISs, is also based on Luby’s
approach. The priority values in it take the degree of the ver-
tices into consideration and, hence, are not totally random.
ECL-MIS is able to compute larger MISs compared to other
algorithms that use entirely random priorities, but to com-
pute a neighbor’s priority, it requires the neighbor’s degree
information. Whereas this is not a problem when dealing
with small graphs that fit in the global memory of a GPU, it
can become a bottleneck in a multi-GPU processing setup –
In order to know the priority of each remote neighbor of a
vertex 𝑣 , inter-GPU communication is required. Hence, we
use random but fixed priority values in MG-MIS so that the
vertex ID alone is sufficient to compute a vertex’s priority.

Since ECL-MIS cannot directly process graphs that do not
fit in the global memory of a single GPU, we extended it to
support large graphs through the use of unified virtual mem-
ory. The modifications we made to the original ECL-MIS
code are: (i) we changed the int types to long since the range
of vertex IDs on our input graphs exceeds INT_MAX, (ii) we
changed the allocation of all arrays from global memory to
unified memory, and (iii) we added prefetching of data to the
device before the processing starts so that as much data as
possible is available in the global memory when the process-
ing starts. Note that the prefetch time is not included in the
runtimes we report. Importantly, due to the prefetching, the
unified memory version of ECL-MIS delivers the same per-
formance as the original code on graphs that fit completely
in the global memory of a single GPU. We also note that the
sets produced by the original and the unified memory ver-
sions of ECL-MIS are exactly the same. We compareMG-MIS
to the unified memory version of ECL-MIS.
Even though there exist more single-GPU implementa-

tions for MIS in suites such as CUSP [7], Pannotia [6], and
IrGL [26], they are slower than ECL-MIS [5]. The parallel
CPU codes for computing MISs from suites such as PBBS [3]
and Ligra [29] are also much slower than ECL-MIS. We tried
running PBBS on a system with 256 GB of main memory
after changing the data type from 𝑖𝑛𝑡 to 𝑙𝑜𝑛𝑔, but the code
does not terminate on most of our large inputs.
Recent work by Ma et al. [20] discusses computation of

MISs of 𝑘-mers with an edit distance, which has applications
in computational biology. It proposes three serial algorithms,
two of which use greedy strategies, and the third one uses a
BFS-based approach. Work by Kelley and Rajamanickam [15]
discusses a variant of MIS, known as Distance-2 MIS, which
computes a maximal subset of vertices of a given graph such
that no two vertices in the subset are connected by a path of
length less than or equal to 2 in the input graph.

Several recent works [12, 13, 30, 31] exist on maximum in-
dependent set computation. Though they target the problem
of maximum (and not maximal) independent set computa-
tion, two of them by Imanaga et al. [12, 13] perform repeated
computation of maximal sets on multiple instances of the
same graph that vary in the vertex priorities and finally out-
put the largest cardinality set found among these instances
as the maximum independent set. They use ECL-MIS (which
they refer to as DP-MIS in their paper to indicate the use
of degrees in deciding priorities) for the MIS computations.
They also run their algorithm on a multi-GPU system. How-
ever, they assign one full graph instance to each GPU and
run several graph instances in parallel using the multiple
GPUs. They do not use multiple GPUs to compute a MIS on
a single large graph, which is the target of our work.

3 Technique

We propose a new multi-GPU algorithm named MG-MIS to
compute a maximal independent set (MIS) of a large graph
that does not fit in the global memory of a single GPU. The
graph data is divided among the devices for processing. The
devices communicate with each other as needed. In each
round, MG-MIS decides the status of as many vertices as
possible, based on their priorities. The algorithm is designed
in such a way that inter-GPU communication, when un-
avoidable, is performed as bulk transfers. In this section, we
discuss MG-MIS, detailing its key algorithmic optimizations
to reduce the volume as well as the frequency of inter-GPU
data movement. It can process graphs whose data fits in the
global memory of all devices in the system combined.

3.1 Outline of MG-MIS

Initially, the graph vertices𝑉 are partitioned into equal-sized
sets based on consecutive vertex IDs. Each set 𝑆 is assigned
to a device together with a list of all edges incident to the
vertices in 𝑆 . We refer to the neighbors of a vertex 𝑣 as local
neighbors if they are on the same device as 𝑣 . Otherwise, they
are remote neighbors. Each device also maintains an array
to store the status of the vertices in 𝑆 and another array to
record which remote neighbor each vertex in 𝑆 is waiting for,
if any. Importantly, we compute the priority of each vertex
using a deterministic hash function that only takes the ID of
the vertex as input (and uses vertex IDs to break ties). This is
essential because it means that the priority of any neighbor,
including remote neighbors, can be computed locally and
does not require a remote access. However, a remote access is
required to obtain the status of a remote neighbor. The status
of a vertex can be decided only after the statuses of all its
higher-priority neighbors have been decided. We note that,
unlike many other graph algorithms, Luby’s MIS algorithm
tends to visit only a couple of neighbors per vertex as it
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Algorithm 1 ComputeStatus
1: repeat
2: done[gpuId]← true;
3: runLocalRound(&done[gpuId]);
4: for each remote device do
5: sendNbrData(); ⊲ barrier
6: for each remote device do
7: setVerticesToOut(); ⊲ barrier
8: if !done[gpuId] then
9: for each remote device do
10: prepareRemoteNbrQueries();
11: sendQueries(); ⊲ barrier
12: for each remote device do
13: prepareResponse();
14: for each remote device do
15: sendResponse(); ⊲ barrier
16: for each remote device do
17: processResponse(); ⊲ barrier
18: done← done[0] && · · · && done[GPUs - 1];
19: until done

stops when reaching the first higher-priority neighbor. This
property alleviates the need for load balancing [5], rendering
warp- or block-based processing unnecessary.

In the initialization phase, the status of all vertices is set
to undecided, and the remote-neighbor-index value of each
vertex is set to point to its first neighbor in the edge list. Then,
the main iterative computation phase starts. Algorithm 1
outlines the steps of this phase. The main phase ends when
the status of every vertex has been decided. The following
subsection explains each step in this phase in detail.

3.2 Detailed description

Each iteration of the main computation phase shown in
Algorithm 1 is run by the threads on all devices in parallel.
It works as follows. For each device, a single thread sets the
done flag to true (Line 2). Once the flag is set, all threads in
the device proceed to the local computation step, which is
outlined in Algorithm 2.

Computation - runLocalRound:This kernel is launched
with one thread per vertex (Line 1). The goal of the thread is
to see if 𝑣 has a higher priority than all of its neighbors so that
its status can be marked as in. If the status of 𝑣 is currently
undecided, the thread scans the neighbors (Line 3). If the
neighbor 𝑢 is local, its status is read (Line 4). If it is out, the
status of 𝑣 does not depend on it, irrespective of the priority
of 𝑢. Hence, the thread proceeds to the next neighbor of 𝑣
(Line 5). Otherwise, the priorities of 𝑣 and 𝑢 are compared. If
𝑢 has a higher priority than 𝑣 , the status of 𝑣 can be in only
if the status of 𝑢 is out. If 𝑢 is a local neighbor, it cannot be

Algorithm 2 runLocalRound(done)
1: 𝑣 ← vertex assigned to the current thread;
2: if status[𝑣] is undecided then

3: for each neighbor 𝑢 in edge-list[𝑖] of 𝑣 do
4: if isLocal(𝑢) && status[𝑢] = 𝑜𝑢𝑡 then
5: continue;
6: if priority(𝑢) > priority(𝑣) then
7: if isRemote(𝑢) then
8: if 𝑖 < remoteNbrIndex[𝑣] then
9: continue; ⊲ 𝑢 is known to be 𝑜𝑢𝑡
10: else

11: remoteNbrIndex[𝑣]← 𝑖;
12: break;
13: if 𝑖 points to a neighbor of 𝑣 then
14: done← false; ⊲ 𝑣 waits
15: else

16: status[𝑣]← 𝑖𝑛;
17: processAllNeighbors(𝑣);
18: else if status[𝑣] = 𝑖𝑛 then

19: if remoteNbrIndex[𝑣] points to a neighbor of 𝑣 then
20: addRemainingNbrsToBuffer();

out due to the continue statement on Line 5. Hence, 𝑣 must
wait for 𝑢 and there is no point in scanning the remaining
neighbors, so the thread breaks out of the loop (Line 12).
If 𝑢 is a remote neighbor (Line 7), we need to know if its

status is 𝑜𝑢𝑡 . The value stored in remoteNbrIndex[v] provides
the edge-list index of the first remote neighbor whose status
is still unknown to 𝑣 . If the edge-list index 𝑖 pointing to 𝑢
is less than remoteNbrIndex[v], it is guaranteed that 𝑢 is out
or has a lower priority than 𝑣 . In either case, the thread can
skip 𝑢 and proceeds to the next neighbor (Line 9). Otherwise,
remoteNbrIndex[v] is set to 𝑖 to indicate that the next remote
neighbor whose status 𝑣 needs to know is at index 𝑖 , and the
thread breaks out of the for loop (Line 12).

Once the thread comes out of the neighbor-scanning loop,
it checks if it has processed all of 𝑣 ’s neighbors (Line 13). If
not, 𝑣 either has an undecided local neighbor with a higher
priority or a higher-priority remote neighbor whose status
is unknown. Hence, the thread sets the done flag to false
(Line 14) to indicate that another iteration of Algorithm 1 is
needed. If, instead, the thread has successfully scanned all
neighbors, the status of 𝑣 can be marked as in (Line 16). Since
𝑣 is included in the MIS, we can mark all of 𝑣 ’s neighbors
as out. To accomplish this, the thread invokes the device
function outlined in Algorithm 3.

Any thread that invokes Algorithm 3 scans all neighbors
of the argument 𝑣 (Line 3). If a neighbor 𝑢 is local, its status
is updated to out via a local memory access (Line 5). If 𝑢 is a
remote neighbor,MG-MIS applies the following optimization
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Algorithm 3 processAllNeighbors(𝑣)
1: myId← ID of the GPU owning 𝑣 ;
2: minIndex← (index of the last neighbor of 𝑣) + 1; ⊲ end
3: for each neighbor 𝑢 in edge-list[𝑖] of 𝑣 do
4: if isLocal(𝑢) then
5: status[𝑢]← 𝑜𝑢𝑡 ;
6: else

7: target← getOwningGpuId(𝑢);
8: buffer← send_buffer[myId][target];
9: index← next slot in buffer; ⊲ atomic op
10: if index < MAX_BUF_SIZE then

11: buffer[index]← 𝑢;
12: else

13: done← false;
14: minIndex← min(minIndex, 𝑖);
15: remoteNbrIndex[𝑣]← minIndex;

to minimize inter-GPU data transfers – In each device, it
collects the IDs of the vertices whose status needs to be set
to 𝑜𝑢𝑡 on a remote device and records them in a per-target-
device buffer. To do so, we identify the ID of the GPU that
owns 𝑢 (Line 7), pick the dedicated buffer for sending data
from the owner of 𝑣 to the owner of 𝑢 (Line 8), and then
atomically insert 𝑢 into the next available slot in the buffer
(Line 11). After all threads in a device have finished their
local round of processing, another kernel is launched on
the device to transfer these buffers to the respective target
devices (Line 5 in Algorithm 1).
MG-MIS uses fixed-size buffers for these bulk data trans-

fers. If there are 𝑑 devices in the system, each device is allot-
ted 𝑑 − 1 such buffers (i.e., one per remote device). Similarly,
each device has another set of 𝑑 −1 buffers for receiving data
from the remote devices. Hence, each device has 2 × (𝑑 − 1)
dedicated buffers for sending and receiving data.
In Algorithm 3, the case may arise where a thread is un-

able to insert all remote neighbors of vertex 𝑣 it added to
the MIS due to buffer-size limitations. In that case, it will
store the edge-list index of the first such remote neighbor
in remoteNbrIndex[v] and set the done flag to false to force
another round of processing. In this next iteration, if the
status of a vertex 𝑣 is in and its remoteNbrIndex points to
a valid neighbor, the thread recognizes that there are more
remote neighbors whose status needs to be set to out and
tries again to add them to the corresponding buffers (Line 20
in Algorithm 2).

Communication - sendNbrData:Once the sending buffers
have been filled, their data needs to be transferred to the re-
spective receive buffers in the target devices. The communica-
tion phase invoked from Line 5 of Algorithm 1 accomplishes
this task. If the underlying system supports Peer-To-Peer

(P2P) access between devices, the data is copied directly be-
tween devices; otherwise, it must go through the host.
Computation - setVerticesToOut: As soon as the data

transfers have completed, the next kernel is invoked (Line 7
in Algorithm 1) once per remote device. This kernel is imple-
mented as illustrated in Algorithm 4. The receive buffer is
passed to the kernel as input. Each thread uses its ID as an in-
dex into the buffer. If it is valid, the thread reads the vertex ID
from the indexed buffer element and sets the corresponding
status to out via a local memory access (Lines 2-4).

Algorithm 4 setVerticesToOut
1: index← ID of thread
2: if index < buffersize then
3: 𝑣 ← buffer[index];
4: status[𝑣]← 𝑜𝑢𝑡 ;

After all devices have completed this process, they check
if their done flag is set to false (Line 8 in Algorithm 1). If so,
the status of some vertices owned by the device are not yet
decided due to a higher-priority neighbor. If those neighbors
are local, they will be checked again in the next iteration of
Algorithm 2. However, if some of those neighbors are remote,
we must check if their status is out so that the respective
local vertices need not wait for them any longer. The next
kernel prepares buffers that combine all such requests from
each device.

Algorithm 5 prepareRemoteNbrQueries
1: 𝑣 ← ID of the vertex assigned to the thread;
2: stop← (index to the last neighbor of 𝑣) + 1; ⊲ end
3: if status[𝑣] = undecided then

4: 𝑟 ← remoteNbrIndex[𝑣];
5: if 𝑟 < stop then

6: 𝑢 ← neighbor at index 𝑟 of 𝑣 ’s edge list;
7: if isRemote(𝑢) then
8: target← getOwningGpuId(𝑢);
9: buffer← send_buffers[myId][target];
10: index← atomicAdd(curBufferSize, 2);
11: if index < MAX_BUF_SIZE then

12: buffer[index]← 𝑣 ;
13: buffer[index + 1]← 𝑢;

Computation - prepareRemoteNbrQueries: Each thread
performs the steps outlined in Algorithm 5 if the status of
the vertex 𝑣 assigned to it is still undecided. It retrieves the ID
of the next remote neighbor, if any, that 𝑣 is waiting for by
looking up the remoteNbrIndex array (Lines 4-6). The check
on Line 7 ensures that 𝑢 is a remote neighbor. If so, the ID of
the device that owns 𝑢 (Line 8) and the buffer to be used are
identified (Line 9). The next available index in the buffer is
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computed via an atomicAdd operation (Line 10). Each thread
reserves two consecutive slots in the buffer. It inserts 𝑣 into
the first slot and 𝑢 into the second slot. In effect, the thread
sends a <requesterVertex, remoteVertex> pair to the remote
device. The ID of the requester vertex is needed in the next
kernel, which prepares the response data for these queries.

Communication - sendQueries: At this point, the next
data transfer phase is invoked (Line 11 in Algorithm 1). The
vertex-ID pairs in the send buffers of each device are copied to
the respective receive buffers in the target devices using P2P
accesses if available. Once the data transfers have completed,
the next kernel is launched on all devices to prepare the
response for these queries (Line 13 in Algorithm 1).

Algorithm 6 prepareResponse
1: index← ID of thread;
2: if index < (requestBufferSize / 2) then
3: requester← reqBuffer[2 * index];
4: 𝑢 ← reqBuffer[2 * index + 1];
5: if status[𝑢] = out then
6: resp_idx← atomicAdd(responseBufferSize, 1);
7: if resp_idx < MAX_BUF_SIZE then

8: responseBuffer[resp_idx]← requester;

Computation - prepareResponse: In this kernel, out-
lined in Algorithm 6, each thread uses its ID as an index to
access the request buffer (Line 1). Since each thread must
read two consecutive slots, the number of threads in this
kernel will be equal to half of the request-buffer size (Line 2).
Each thread reads the indexed pair of data (Lines 3-4). It
then checks the status of the requested vertex 𝑢 via a local
memory access. If the status is out, the thread inserts the
ID of the requester into the response buffer, which is again
done by atomically reserving a slot.
Communication - sendResponse: Once the response

data has been prepared, all devices send the buffers to the
respective receive buffers in the target devices (Line 15 in
Algorithm 1). Upon completion, all devices launch the last
kernel of the current iteration (Line 17 in Algorithm 1).

Computation - processResponse: The kernel shown in
Algorithm 7 scans the response buffer. Each thread uses its
ID, if it represents a valid index, to retrieve a vertex ID 𝑣 from
the buffer (Line 3). The mere presence of 𝑣 in the response
buffer indicates that the status of the remote neighbor that
𝑣 queried is out. Hence, 𝑣 does not have to wait for that
neighbor anymore. To skip it, remoteNbrIndex[v] is updated
to point to the next remote neighbor in 𝑣 ’s edge list (Line 4)
or to the end of the list if there are no more remote neighbors.

Termination Condition: At the end of each iteration of
the main computation phase, MG-MIS combines the done
flags from all devices using a logical AND operation and

Algorithm 7 processResponse
1: index← ID of thread;
2: if index < buffersize then
3: 𝑣 ← buffer[index];
4: remoteNbrIndex[𝑣] ← index of the next remote

neighbor in edge list of 𝑣 ;
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Figure 3: Iteration 1: asking for remote neighbor status

copies the result to the host. If the result is false, at least one
device has a vertex whose status has not yet been decided.
Hence,MG-MIS performs another iteration of the outer loop
in Algorithm 1. If, instead, the result is true, the algorithm
terminates since the status of all vertices has been decided.

3.3 Working example

This subsection illustrates the operation of MG-MIS on the
example graph from Figure 2. Let us assume that our system
has two devices. The first half of the vertices ({𝐴, 𝐵, · · · , 𝐹 })
is assigned to 𝐺𝑃𝑈0 and the second half ({𝐺 , 𝐻 , · · · , 𝑀}) to
𝐺𝑃𝑈1. Initially, the status of all vertices is undecided.

In the first iteration of the repeat-until loop in Algorithm 1,
the status of vertices 𝐴 and 𝑀 are decided to be in since
they both have a higher priority than all of their neighbors.
As a consequence, their neighbors, which all happen to be
local, are set to out. Since the two in vertices have no remote
neighbors, the data transfer and setting of remote neighbors
to out steps (Lines 5-7) are irrelevant in this iteration.

In the next step, vertices 𝐷 , 𝐸, and 𝐽 prepare to query the
status of their first higher-priority remote neighbors 𝐺 , 𝐼 ,
and 𝐹 , respectively. The devices transfer these queries to
each other (Line 11). Figure 3 shows the state at this point in
the algorithm. Vertices with thick blue borders are included
in the MIS, grayed out vertices are out, grayed out edges are
no longer relevant, and a question mark on an edge next to
a vertex indicates that the vertex is querying the status of
the corresponding remote neighbor.
Among the queried vertices, only 𝐼 is set to out. Hence,

only 𝐼 sends a response back, allowing 𝐸 to move its remote-
neighbor-index forward to point to 𝐻 .
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In the second iteration, 𝐻 is added to the MIS because its
only higher-priority neighbor 𝐼 is out, 𝐻 ’s local neighbor 𝐺
is set to out immediately, and its remote neighbor 𝐸 is set
to out after the communication round. Then, 𝐷 and 𝐽 query
the status of their higher-priority remote neighbors𝐺 and
𝐹 , respectively. The response from𝐺 allows 𝐷 to update its
remote-neighbor index. Since 𝐷 has no more higher-priority
remote neighbors, this index is set to the end of 𝐷’s edge list.

In the third iteration,𝐷 is set to in since it has no undecided
or higher-priority neighbors, and its neighbor 𝐹 is set to out.
Finally, 𝐽 queries the status of 𝐹 and, based on the response,
sets itself to in. At this point, all vertices are decided and the
algorithm terminates with the MIS {𝐴, 𝐷,𝐻, 𝐽 , 𝑀}.

4 Experimental Methodology

We compare the performance of MG-MIS with ECL-MIS [5],
the state-of-the-art single-GPU code, since there is no prior
multi-GPU MIS implementation. We obtained the code for
ECL-MIS from the official website [4]. The original version
of ECL-MIS can only process graphs that fit in the global
memory of a GPU. Hence, we wrote a second version in
which we enabled the use of Unified Virtual Memory (UVM)
so that it can process larger graphs. In the rest of the paper,
we use “ECL-MIS-UVM” to refer to this extended version.
Note that, for all inputs that fit in the global memory of a
single GPU, the complete data is prefetched into the global
memory before the processing starts. Hence, ECL-MIS-UVM
performs nearly identical to the original version of ECL-
MIS on all such inputs. We verified experimentally that the
runtimes of the two versions are the same on these graphs.
We evaluate the codes on two systems. System 1 is a

compute node with 2 NVIDIA RTX 3080 GPUs, each with
8704 CUDA cores and 12 GB global memory. It uses the PCIe
bus for data transfers between the GPUs and the CPU. In
addition, it does not support P2P accesses between the GPUs.
We use nvcc version 12.6 with the “-O3 -arch=sm_86” flags
to compile the codes. Due to the lower memory capacity, we
only use the smaller inputs on this system.
System 2 has 4 NVIDIA V100 SMX2 GPUs, each with

5120 CUDA cores and 32 GB global memory. It uses NVLink,
a high-speed interconnect that enables fast data transfer
between the GPUs as well as between the GPUs and the
CPU. It supports Peer-To-Peer (P2P) access, which enables
direct transfers between the GPUs, without the need for the
host to intervene. We use nvcc version 12.2 with the “-O3
-arch=sm_70” flags to compile the codes. On this system, we
use inputs that result in a single-GPU memory requirement
in the range of 20 GB to 52 GB. System 2 is a compute node
of the Expanse system [28] at the San Diego Supercomputer
Center, accessed via ACCESS [1].

We repeated each experiment 9 times and report the re-
sults corresponding to the execution yielding the median
runtime. We list the results as throughput (in edges per sec-
ond), which is the total number of edges in the graph divided
by the measured runtime. Throughput is a higher-is-better
metric and normalizes the execution times with respect to
the graph size. We verified the correctness of all codes by
checking the computed set of vertices for maximality and
ensuring that adjacent vertices are not included in the set.

4.1 Input graphs

We use the 21 graphs listed in Table 1 to evaluate the codes.
We need large graphs that do not fit in the global memory of
a single GPU to demonstrate the use of MG-MIS. We created
the graphs using generators from Graph500 [9, 23] and In-
digo3 [16, 17].We employed two generators to not only cover
a good range of graph sizes but also a wide range of vertex
degrees. Whereas the graphs generated by Graph500 have a
large maximum degree, the ones generated by Indigo3 have
a much smaller maximum degree. The number of vertices
in these graphs ranges from a few million to over a billion,
and the number of edges range from more than a hundred
million to over 6 billion. The last column in Table 1 lists the
memory requirement of each graph in ECL-MIS-UVM. Due
to the large difference in GPU memory capacity between
our two systems, we use the 10 smallest graphs as inputs in
System 1 and the remaining graphs as inputs in System 2.
We included a few graphs that fit in the global memory of a
single GPU to also studyMG-MIS’s behavior on such small
inputs. Note that the total amount of memory required for
MG-MIS is a little higher than that of ECL-MIS-UVM (listed
in Table 1) sinceMG-MIS uses buffers and an additional array
to store the remote-neighbor-index values.

5 Results

In this section, we first compare the performance of MG-
MIS to the state-of-the-art single-GPU code [4, 5] that we
extended with UVM support (ECL-MIS-UVM) on systems
with and without NVLink and P2P support. Then, we analyze
the effect of varying the buffer size in MG-MIS and study
the actual buffer-size requirement for two large inputs. Next,
we investigate the impact of storing the buffers in UVM as
well as the effect of turning off P2P access in a system with
NVLink on MG-MIS. We also evaluate the effect of prefetch-
ing data into the GPU’s global memory in ECL-MIS-UVM.
Lastly, we compare the sizes of the maximal independent
sets computed byMG-MIS and ECL-MIS-UVM.

5.1 Overall performance

We compare the throughput of MG-MIS running on multiple
GPUs to ECL-MIS-UVM running on one GPU in Figure 4.
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Table 1: Information about the input graphs

input Generator |V| |E| 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥 Memory Usage (GB)
g-25s-2ef Graph500 33,554,432 133,516,554 3.98 115,060 1.28
g-28s-2ef Graph500 268,435,456 1,070,786,720 3.99 419,426 10.23
g-26s-10ef Graph500 67,108,864 1,322,545,710 19.71 694,301 10.42
g-26s-11ef Graph500 67,108,864 1,453,274,642 21.66 748,870 11.39
g-26s-12ef Graph500 67,108,864 1,583,792,718 23.60 802,382 12.36
g-26s-14ef Graph500 67,108,864 1,844,210,488 27.48 905,020 14.30
g-26s-16ef Graph500 67,108,864 2,103,844,848 31.35 1,003,347 16.24
g-26s-18ef Graph500 67,108,864 2,362,730,378 35.21 1,097,929 18.17
g-26s-20ef Graph500 67,108,864 2,620,933,926 39.05 1,188,533 20.09
g-27s-10ef Graph500 134,217,728 2,652,246,640 19.76 1,081,828 20.89
g-29s-2ef Graph500 536,870,912 2,142,721,430 3.99 643,804 20.46
g-27s-16ef Graph500 134,217,728 4,223,282,274 31.47 1,572,126 32.59
g-28s-8ef Graph500 268,435,456 4,259,434,956 15.87 1,399,843 33.99
g-29s-4ef Graph500 536,870,912 4,278,119,462 7.97 1,196,042 36.37
g-30s-2ef Graph500 1,073,741,824 4,287,290,382 3.99 987,912 40.94
i-30s-e-3.4b Indigo3 1,073,741,824 3,393,687,134 3.16 4 34.28
i-27s-e-4.5b Indigo3 134,217,728 4,478,382,004 33.37 36 34.49
i-31s-e-3.2b Indigo3 1,600,000,000 3,200,000,000 2.00 3 37.25
i-29s-e-5.4b Indigo3 536,870,912 5,368,709,070 10.00 34 44.50
i-29s-e-5.9b Indigo3 536,870,912 5,904,900,130 11.00 35 48.49
i-29s-e-6.4b Indigo3 536,870,912 6,442,450,866 12.00 38 52.50
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Figure 4: Overall throughput comparison of MG-MIS against ECL-MIS

The x-axis lists the inputs. The y-axis shows the throughput
in million edges per second on a log scale. The two panels
display results from two different systems for different inputs.
The corresponding absolute runtimes are listed in Tables 3
and 4 at the end of the paper. Note that MG-MIS determines
the amount of global memory left after loading the graph
partition and its supporting data structures onto each GPU.
Then, it divides this amount by the number of buffers needed
to compute the size of each buffer and allocates them.

Figure 4(a) shows the results from a system with 2 GPUs,
no NVLink, and no P2P support. Both GPUs have 12 GB
of global memory. We observe that, on the first 4 inputs,

ECL-MIS-UVM performs much better thanMG-MIS because
these inputs fit fully in the global memory of a single GPU. In
such scenarios, using a multi-GPU solution leads to low per-
formance due to the communication cost. On the remaining
inputs, where the data size exceeds the single-GPU mem-
ory capacity of 12 GB, MG-MIS substantially outperforms
ECL-MIS-UVM. On these six larger inputs, MG-MIS delivers
a geometric-mean speedup of 22.88× over ECL-MIS-UVM.

We analyzed the UVM page transfers in ECL-MIS-UVM us-
ing NVIDIA Nsight Systems [25]. Column 2 of Table 2 shows
the total number of GPU page faults that led to UVM page
transfers in ECL-MIS-UVM. Column 3 shows the percentage
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of the total data that was transferred due to UVM. Note that a
UVM page fault typically moves 64 KB [2]. Column 4 shows
the percentage of the total data that was transferred between
devices in MG-MIS, and column 5 shows the total number of
bulk data transfers. Since the 4 smallest inputs fit in a single
GPU’s global memory, they do not incur anyUVMpage faults
in ECL-MIS-UVM (after prefetching); but since MG-MIS di-
vides the total data among the 2 GPUs, data transfers are
involved, leading to lower performance. On the remaining
inputs, the amount of data transferred in ECL-MIS-UVM is
not high compared to the amount of data transferred in MG-
MIS. Still, MG-MIS performs much better since the number
of times it performs data transfers is much lower, resulting
in more efficient transfers. This shows that the frequency of
data transfers plays an important role in the communication
cost. We also note that the total volume of data transferred
among devices in MG-MIS grows much more slowly with
the input sizes, making it a scalable solution.

Table 2: Comparison of data transfers in ECL-MIS-UVM

and MG-MIS on System 1

ECL-MIS-UVM MG-MIS
input # Page faults Data moved (%) Data moved (%) # Transfers
graph-25s-2ef 0 0.00% 13.57% 213
graph-28s-2ef 0 0.00% 12.50% 262
graph-26s-10ef 0 0.00% 9.76% 452
graph-26s-11ef 0 0.00% 9.50% 464
graph-26s-12ef 6818 3.37% 9.27% 490
graph-26s-14ef 11472 4.89% 8.85% 530
graph-26s-16ef 18353 6.89% 8.49% 594
graph-26s-18ef 28543 9.58% 8.19% 656
graph-26s-20ef 51806 15.74% 7.92% 666
graph-27s-10ef 24533 7.17% 9.40% 468

Figure 4(b) shows the result from a system with 4 GPUs,
NVLink, and P2P support. Each GPU has 32 GB of global
memory, which is why we use larger inputs on this system.
We separately show the performance of MG-MISwhen using
2, 3, and 4 GPUs. The results follow a similar trend as with
the previous system. Except for the first three graphs, which
fit in 32 GB,MG-MIS is significantly faster. The geometric-
mean speedups over the ten larger graphs show thatMG-MIS
is faster than ECL-MIS-UVM by 13.72×, 15.86×, and 17.73×
when run with 2, 3, and 4 GPUs, respectively.

The performance of MG-MIS with 4 GPUs is consistently
higher than with 2 GPUs. However, doubling the number of
GPUs does not double the performance because more inter-
GPU communication is needed with 4 GPUs. On the input i-
27s-e-4.5b, we observe a huge drop in the performance of ECL-
MIS-UVM. This is due to this graph having an average degree
that is almost equal to the maximum degree. To determine
the status of the neighbors, ECL-MIS-UVM frequently moves
pages back and forth in the UVM, making the code slow.

For conciseness, the following subsections only present
and discuss results for the system with 4 GPUs.

5.2 Effect of varying the buffer size

In this subsection, we show the impact of varying the buffer
size inMG-MIS. Recall that, in a system with 𝑑 GPUs, each
GPU has 𝑑 − 1 send buffers and 𝑑 − 1 receive buffers. Hence,
the total number of buffers in the system is 2 ∗ 𝑑 ∗ (𝑑 − 1).
The reported buffer size indicates the size of one such buffer
in number of words.
Figures 5(a) and 5(b) compare the throughput when the

buffer size is set to 16384000, 32768000, 65536000, and the
maximum possible words on 2 and 4 GPUs, respectively. Note
that the y-axes use a linear scale. For the larger graphs, as
we increase the buffer size, the performance improves. The
improvement is more significant when MG-MIS is run with
2 devices. This is expected – The load per device is higher
when there are only 2 devices and, hence, each device will
need to transfer more data.
To study the performance behavior in more detail, we

profiled MG-MIS on two large graphs and plotted the maxi-
mum buffer size required per iteration. Figure 6 shows the
results. On the i-29s-e-6.4b input with 2 devices, the first four
iterations require buffer sizes above 16384000 words (Fig-
ure 6(a)). In this case, increasing the buffer size leads to large
performance gains. With 4 GPUs, only the first two iterations
require buffer sizes above 16384000 words. Moreover, the
buffer-size requirements are substantially lower than with
2 GPUs, explaining why the performance benefit of larger
buffers is smaller in Figure 5(b) than in Figure 5(a). On the
second input, g-30s-2ef, shown in Figure 6(b), we see that
fewer iterations require large buffer sizes. Since the require-
ment is lower, increasing the buffer size has less impact on
the performance with this graph. In fact, in the 4-device case,
increasing the buffer size almost makes no difference at all.

5.3 Impact of unified virtual memory

This subsection investigates the impact of employing unified
memory inMG-MIS. We used the system with NVLink for
performing these experiments. Figure 7(a) shows how the
throughputs change when the buffers are stored in UVM. In
this case, the contents of one GPU’s buffer is not explicitly
copied over to another GPU. Instead, the pages containing
the buffer data of the sender GPU are moved to the receiver
GPU by UVM when the receiver accesses the data. Note that
both code versions in this experiment use a fixed buffer size
of 65536000 words since the notion of MAX_BUFFER_SIZE
does not apply to the UVM version. Also, in the original
version of MG-MIS, using this buffer size yields performance
close to that of the MAX_BUFFER_SIZE version.
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(a)MG-MIS on 2 GPUs
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Figure 5: Effect of varying buffer-size in MG-MIS
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Figure 6: Maximum buffer size requirement per iteration in MG-MIS
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Figure 7: Effect of using P2P access and Unified Virtual Memory (UVM) in MG-MIS on a system with NVLink
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Clearly, the movement of unified memory pages across
GPUs incurs significant overhead. The performance of the
base version of MG-MIS, which explicitly controls the buffer
transfers, is much higher than the version using UVM.

The UVM code, just like the no-UVM code, yields higher
performance with 4 GPUs than with 2 GPUs, except on the
smallest input, which has such a short runtime that the ex-
tra overhead incurred by using 2 more GPUs is not worth
it. More surprisingly, even the no-UVM version with just
2 GPUs outperforms the UVM version with 4 GPU on all
but two inputs. This clearly shows that using UVM is not
beneficial in this setting.

5.4 Effect of peer-to-peer access

We also studied the impact of disabling Peer-To-Peer (P2P) ac-
cesses inMG-MIS. If there is no P2P access, the data transfers
between GPUs have to go via the host’s memory. Of course,
this is much slower than direct transfers between GPUs, as
we can see in Figure 7(b). With and without P2P access, the
throughput of MG-MIS is higher with 4 than with 2 GPUs on
all inputs except the smallest. Without P2P, using 4 instead
of 2 GPUs does not increase performance much, whereas
with P2P, using 4 GPUs significantly improves performance
over using 2 GPUs. Moreover, MG-MIS with 2 GPUs on a
P2P-enabled system yields much higher performance than it
does with 4 GPUs on a system without P2P accesses.
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Figure 8: Comparison between ECL-MIS-UVM and MG-

MIS running on 4 GPUs when (a) buffers are in UVM

and (b) P2P access is disabled

In Figure 8, we contrast the performance of ECL-MIS-
UVM with MG-MIS running on 4 GPUs with (a) the buffers
allocated in the UVM and (b) P2P access disabled. Except
for the three smallest inputs, both versions of MG-MIS are
much faster than ECL-MIS-UVM. This demonstrates that
the performance benefit of MG-MIS is not primarily due to
using P2P accesses or not using UVM, but a result of our
implementation that optimizes when and at what granularity
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Figure 9: Effect of varying the amount of data

prefetched into the GPU in ECL-MIS-UVM

to transfer data between the devices. It also shows that using
P2P accesses is more important than avoiding UVM.

5.5 Effect of prefetching in ECL-MIS-UVM

Since our augmented version of ECL-MIS-UVM uses unified
virtual memory to enable the processing of large graphs, it
is important to minimize page movement. To this end, we
studied the impact of prefetching graph data into the (single)
GPU’s global memory before the processing starts. Figure 9
shows the throughput comparison of ECL-MIS-UVM when
the amount of data prefetched is varied. Note that the y-axis
uses a log scale. For the first three inputs that fit in the global
memory of a single GPU, the performance is significantly
lower if no data is prefetched. The version Prefetch_All tries
to load all graph data into the GPU. If the data size exceeds
the global memory size, the earlier pages brought into the
global memory will get replaced by later pages. This can lead
to page faults during processing of the initial vertices. As
a consequence, on all large graphs, this version performs
worse than the No_Prefetch version. In the Prefetch_Max
version, we compute how much data can fit in the global
memory and prefetch only that amount. This ensures that
the initial vertices’ data will be present in the global memory
for the threads to begin their processing. As expected, this
version performs better than the other two versions on all
large graphs. We used this best-performing version of ECL-
MIS-UVM for comparison with MG-MIS in Section 5.1.

5.6 Size of the computed MIS

Figure 10 compares the sizes of the MISs computed byMG-
MIS and ECL-MIS-UVM on each input. Note that all im-
plementations of Luby’s algorithm with the same priority
assignment compute the same solution and, hence, yield the
same result quality. Since ECL-MIS-UVM assigns priorities
to vertices based on their degrees to boost the set sizes [5],
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it produces somewhat larger sets thanMG-MIS, which em-
ploys Luby’s random priorities. However, the gap between
the MIS sizes is small. It should be noted that both ECL-MIS-
UVM and MG-MIS are deterministic and always compute
the same set for a given input, independent of the hardware.
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Figure 10: Comparison of the sizes of the MISs com-

puted by ECL-MIS-UVM and MG-MIS

Table 3: Absolute runtimes in seconds on a 2-GPU sys-

tem with neither NVLink nor P2P support

input ECL-MIS MG-MIS-2-GPUs
g-25s-2ef 0.017 0.084
g-28s-2ef 0.166 0.628
g-26s-10ef 0.076 0.441
g-26s-11ef 0.079 0.473
g-26s-12ef 2.710 0.504
g-26s-14ef 8.297 0.549
g-26s-16ef 15.174 0.627
g-26s-18ef 29.059 0.707
g-26s-20ef 51.013 0.735
g-27s-10ef 21.538 0.841

Table 4: Absolute runtimes in seconds on a 4-GPU sys-

tem with both NVLink and P2P support

input ECL-MIS MG-MIS-2-GPUs MG-MIS-4-GPUs
g-25s-2ef 0.021 0.057 0.088
g-28s-2ef 0.242 0.406 0.350
g-29s-2ef 0.512 0.884 0.721
g-27s-16ef 6.850 0.779 0.731
g-28s-8ef 7.985 0.928 0.788
i-30s-e-3.4b 11.527 1.141 0.819
i-27s-e-4.5b 63.610 0.901 0.676
g-29s-4ef 9.797 1.328 1.113
i-31s-e-3.2b 13.183 1.096 0.795
g-30s-2ef 12.799 1.779 1.390
i-29s-e-5.4b 25.996 1.412 1.037
i-29s-e-5.9b 29.518 1.542 1.118
i-29s-e-6.4b 32.309 1.657 1.182

6 Conclusions

Computing a maximal independent set (MIS) of a graph
is a frequently needed step in many computations. With
the ever-increasing data sizes, many applications need to
compute MISs in large graphs. Among the several parallel
algorithms for MIS computation, ECL-MIS, a single-GPU
algorithm, is currently the fastest. Though ECL-MIS is very
efficient in processing graphs that fit in the global memory
of a single GPU, it is not designed to process larger graphs.
We enabled it to process larger graphs by exploiting unified
virtual memory, but this approach is relatively slow.

As a remedy, we propose MG-MIS, the first multi-GPU
algorithm for computing MISs. It divides the computation
among the available GPUs and incorporates several algo-
rithmic optimizations to reduce the frequency as well as the
volume of inter-GPU communication. Moreover, it separates
computation and communication into mutually exclusive
phases and performs inter-GPU communications only in
bulk to improve performance. By using a deterministic hash
function that requires only the ID of a vertex to compute its
priority, it is able to completely avoid inter-GPU communi-
cation when it needs the priority of a remote vertex.

Our evaluation of MG-MIS on a system with 2 RTX 3080
GPUs (each with 12 GB of global memory, no NVLink, and
no P2P support) shows a geometric-mean performance im-
provement of 22.88× over ECL-MIS-UVM on graphs that
require more than 12 GB memory. On a system with 4 V100
GPUs (each with 32 GB of global memory, NVLink, and P2P
support),MG-MIS delivers a geometric-mean performance
improvement of 13.72× and 17.73× when run on 2 and 4
GPUs, respectively, over ECL-MIS-UVM on graphs that re-
quire more than 32 GB of memory. In all these cases, the set
sizes of MG-MIS are close to those of ECL-MIS-UVM.
Based on our results, we conclude that whenever an in-

put fits completely in the global memory of a single GPU, it
is best to use the single-GPU ECL-MIS code to compute a
MIS. Using a multi-GPU algorithm in such scenarios leads to
low performance since it involves slow inter-GPU commu-
nication. However, when the graph data does not fit in the
memory of a single GPU, it is beneficial to use our multi-GPU
algorithm,MG-MIS, that minimizes inter-GPU communica-
tion. ExtendingMG-MIS to support multi-node distributed
systems and incorporating support for dynamic graph pro-
cessing are exciting directions for future work.
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