
CLOVER: A GPU-native, Spatio-graph-based Approach
to Exact kNN

Victor Kamel

University of Toronto

Toronto, ON, Canada

vkamel@cs.toronto.edu

Hanxueyu Yan

University of Victoria

Victoria, BC, Canada

hyan76131@uvic.ca

Sean Chester

University of Victoria

Victoria, BC, Canada

schester@uvic.ca

Abstract
Finding the 𝑘 nearest neighbours (𝑘NN) of every point in a

dataset is a key primitive in many GPU applications. Unfortu-

nately, algorithmic techniques for 𝑘NN do not translate well

to GPUs, require (offline) preprocessing, sacrifice accuracy,

or require low query volume. Recently, ray-tracing cores

have been proposed to accelerate exact 𝑘NN, but it is not

well understood how these compare to grid-based methods.

This work introduces a novel approach to exact 𝑘NN for

spatial data that constructs and then traverses a graph from a

random voronoi tesselation. On an NVIDIA V100, we answer

ten million exact 30-NN queries with no prior preprocess-

ing in 2.71s, about 4× faster than an optimised grid-based

method, 10× faster than a GPU tree, and 230× faster than

FAISS. Furthermore, we show on an RTX card that RT-core

methods are uncompetitive when query volume is high.

CCS Concepts
• Computing methodologies→Massively parallel al-
gorithms; Graphics processors; • Information systems→
Top-k retrieval in databases; Spatial-temporal systems.

Keywords
nearest neighbours, GPGPU, ray tracing cores, voronoi

ACM Reference Format:
Victor Kamel, Hanxueyu Yan, and Sean Chester. 2025. CLOVER: A

GPU-native, Spatio-graph-based Approach to Exact kNN. In 2025
International Conference on Supercomputing (ICS ’25), June 08–11,
2025, Salt Lake City, UT, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3721145.3730415

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1537-2/25/06

https://doi.org/10.1145/3721145.3730415

A A B C

B B C A

C C D B

D D C B

Figure 1: Illustration of an all-points 3-NN problem.
The input (left) is an 𝑛 × 𝑑 matrix of 𝑛 points in R𝑑 .
The output (right) is an 𝑛 × 𝑘 matrix in which row 𝑖

contains the ids of the 𝑘 points closest to point 𝑝𝑖 . Here,
the 3-NN for each of four 2d points is visualised by a
circle whose radius is the distance to the 3rd closest
neighbour.

1 Introduction
Finding the 𝑘 nearest neighbours to a point (𝑘NN) for many

points simultaneously is a ubiquitous problem, known as a

𝑘NN join in databases and data mining [5, 26], all-points 𝑘NN
in computational geometry [34], and 𝑘NN graph construction
in machine learning [19, 22]. Figure 1 illustrates an example.

A 𝑘NN join is a bottleneck kernel in many GPU appli-

cations for low-dimensional spatial data, such as 𝑘-means

clustering, iterative closest point methods, remeshing with

centroidal voronoi tesselation (CVT) [32], and detecting in-

teractions among agents in animations and simulations [41].

In iterative problems such as these, points are dynamic and
GPU-resident; so, one cannot rely on a data structure pre-built
on the CPU: construction time matters.
A natural and common approach would be to use high-

throughput, massively parallel scans. State-of-the-art GPU

𝑘NN scan-based methods use tiling together with clever

priority queues stored in registers that are updated with

warp-level synchronisation primitives [20, 22, 31, 35, 36, 38].

Indeed, for small query batches (e.g., 𝑛 ≤ 10
3
) that barely

saturate the parallelism in a GPU device, these are blazingly

fast, requiring tens of microseconds in our experiments (Sec-

tion 4). However, as 𝑛 grows, the poor Ω(𝑛2𝑑 lg𝑘) work
complexity catches up to scans, despite the high throughput.

Figure 2 reports a preliminary experiment, showing on the

https://orcid.org/0009-0009-1999-6577
https://orcid.org/0009-0008-3128-9093
https://orcid.org/0000-0002-1065-605X
https://doi.org/10.1145/3721145.3730415
https://doi.org/10.1145/3721145.3730415

𝑦-axis the proportion of 94 3d meshes from Thingi10k [46]

for which our proposed method requires a given proportion

Figure 2: Proportion of
points scanned on 94 3d
meshes (|P | ≥ 100 000) .

of work performed by

a scan-based method. It

shows thatwe need just 1–

2% of the work; i.e., scans

need an impractical 50–

100× better throughput to
match performance.

On the CPU and with

preprocessing, 𝑘NN in 3d

can be done efficiently us-

ing trees like the 𝑘𝑑-tree

in nanoflann [3]. Ignoring
the expensive tree construc-
tion step, one can process

100K nearest neighbour

queries in dozens of mil-

liseconds [41]. However,

when processing should

be done on the GPU, these tree-based techniques perform

quite poorly, despite reasonable effort to adapt them [2, 12,

29, 45]. The irregular data layout and branch-heavy traversal

strategies impair throughput [15]. We show that, though

they can improve on scans, they are still uncompetitive.

More recently, 𝑘𝑑-trees have been superceded by RT-core-

accelerated bounding volume hierarchies (BVHs) [11, 25,

28, 47]. However, this introduces overhead by performing

problem reductions prior to BVH construction and we find

they degrade as query volume, and therefore the BVH, grows.

As it turns out, the simple grid method used for the 𝑘NN

step of CVT [32] is much faster than thesemethods. However,

it is sensitive to the data distribution. We are left in need of

a new approach to dramatically reduce work that can adapt

to skewed data without an expensive preprocessing step.

This work proposes CLOVER (Section 3): a lightweight

graph data structure that can be rapidly built on the GPU.

CLOVER partitions data into random voronoi cells. It then

constructs a graph over voronoi cells whose edge weights

bound the distances between any two points in those cells.

This gives a partitioning with similar properties to a grid

method, but that dynamically adapts to the underlying data.

The approach resembles data structures used in computer

vision [23], machine learning [7], information retrieval [4],

and robotics [14] for matching high-dimensional feature

vectors (ANN). However, it is not heuristic like hierarchical

graph-based [16, 30, 44] and quantization-based methods [17,

20], and is optimized for 3d data. We evaluate CLOVER

against state-of-the-art scan-based [20], tree-based [15], grid-

based [32], voronoi-based [6], and RT-core [25] methods.

In this paper, after reviewing background and related work

(Section 2) and before concluding (Section 5), we:

• Propose optimisations to truncated bitonic sort to utilise

warp-level synchronisation primitives (Figure 12)

• Introduce the CLOVER data structure and correspond-

ing𝑘NNquery algorithm for efficient and high-throughput

GPU performance (Section 3)

• Comprehensively evaluate CLOVER against scan-based,

grid-based, tree-based, voronoi-based, and RT-core al-

ternatives on a range of synthetic and real datasets

(Section 4), which additionally is the first comparison

between CUDA core grid-based and RT-core methods.

2 Background & Discussion
Let P be a set of 𝑛 = |P | points in R𝑑 and 𝑑 (𝑝𝑖 , 𝑝 𝑗) be a

metric distance function between points 𝑝𝑖 , 𝑝 𝑗 ∈ P, assumed

to be 𝐿2. A 𝑘NN query transforms a query point 𝑞 into a set

of the 𝑘 closest points in P to 𝑞; i.e.,

𝑘NN(𝑞,P, 𝑘) = argmin

𝑆⊆P, |𝑆 |=𝑘
Σ𝑝∈𝑆𝑑 (𝑞, 𝑝) .

One usually returns both the distances to and indices of

the 𝑘NN, ordered by ascending distance. We study massively

parallel 𝑘𝑁𝑁 (𝑝𝑖 ,P, 𝑘) queries, e.g., each 𝑝𝑖 ∈ P is a query.

2.1 Scan-based approaches
Scan-based techniques emphasise throughput on the GPU

and require very little additional memory. They obtain ex-

cellent utilisation, but complete Θ(𝑛2𝑑 lg𝑘) work.
Early scan-based techniques are characterized by 2 stages:

computing distances to the query points and then sorting

those distances [42]. More effective is to maintain and in-

crementally update a sorted top-𝑘 priority queue (PQ), as

in pytorch3d [31]. Parallel merge sorts can exploit that the

PQ is sorted and have been shown to quickly process a sin-

gle 𝑘NN query on 2
29
data points [35]. Repeated sorting is

expensive, even for low 𝑘 . Buffering updates with queues

outperforms truncated sorts [38]. Modern scan-based 𝑘NN

algorithms first compute an𝑛×𝑞 distance matrix using an op-

timized GEMM kernel, then maintain a priority queue such

as a heap along the rows [12, 40]. State-of-the-art scans, e.g.,

FAISS [20] and RAFT [43], will additionally apply tiling to

improve throughput, which then facilitates tensor cores [19].

From this class, we compare to an optimisation of FAISS.

2.2 Grid-based approaches
Grid-based methods reduce work by hashing points to grid

cells and then only comparing points that are in nearby cells.

Because the partitioning is simple and data-parallel, through-

put can be very high; however, performance is sensitive to

the data distribution. Figure 3 illustrates the general idea of

Figure 3: Searching concen-
tric rings with a static grid.

a grid-based method,

such as [32].
1
One nor-

malises the data to fill

a statically-defined grid,

reducing skew and pro-

viding O(1) lookup of a

point’s grid cell based

on its coordinates. Cell

widths are selected to fit

3.1 points per cell, on av-

erage. Cells are ordered

and points are physically sorted to enable coalesced reads.

Given a query point, such as the white in the figure, one

reads points in the same cell as the query point, then in the

neighbouring cells, then in the cells neighbouring those, and

so on until the minimum distance to a cell “ring” is greater

than to the 𝑘NN so far.

Throughput could be imparied if threads diverge on the

number of rings. The number of cells per ring grows very

fast, following the series [1, 26, 98, 218, 386, . . .]
2
in 3d and

(2𝑛+1)𝑑 −(2𝑛−1)𝑑 in general. Also, shared memory usage is

high and can impair occupancy. As a result, grid methods are

more common for GPU range queries (c.f., cuNsearch3 and
NVIDIA’s spatial processing warp library

4
) than for exact

𝑘NN, as then the search range is explicitly bounded and all

query points require examining the same number of rings.

From this class, we compare to [32], which supports 𝑑 ≤ 3.

2.3 Hierarchical spatial partitioning
Trees, such as the nanoflann 𝑘𝑑-tree [3], are successful on
CPUs due to good cache hit ratios and an effective reduction

in work. However, they depend on expensive preprocessing

and lack both data-level parallelism and read coalescing.

Nonetheless, 𝑘𝑑-trees [15], oct-trees [33] and R-trees have

been explored on the GPU [42]. A variant of the R-tree, the SS-

tree, can be constructed in a parallel bottom-up manner, and

traversed in parallel [29]. A list-of-clusters method and an

SSS-Index have also been tried on the GPU [2]. Recently, [48]

introduced a new GPU-based tree for high-𝑑 metric spaces.

Like scan-based methods, it is based on pre-materialisation

of a distance matrix. Tree construction is consistently demon-

strated to be too slow for online processing [9].

From this class, we compare to a well-maintained and

mature GPU 𝑘𝑑-tree library, Treeology [15].

1
This description is based on source code inspection, not the paper.

2
https://oeis.org/A010014

3
https://github.com/InteractiveComputerGraphics/cuNSearch

4
https://github.com/NVIDIA/warp/blob/main/warp/native/hashgrid.h

2.4 Flat voronoi partitioning approaches
Flat voronoi approaches induce a voronoi tesselation on the

data space and then use spatial pruning techniques based on

the triangle inequality. TOP [10] provides a framework for

applying this idea to a range of spatial problems, including

𝑘NN. The Sweet KNN [6] method applies this directly to the

GPU, attempting to balance several “sweet spots” between

throughput and efficiency with dynamic configurations of

parameters like shared memory.

CLOVER overlaps this class in that it also uses voronoi

partitioning. We compare against Sweet KNN [6].

2.5 Ray-tracing (RT) core approaches

Figure 4: Using RT cores
for truncated 𝑘NN. A BVH
is constructed over the two
query points {𝑞0, 𝑞1} and
a fixed-radius range query
is executed for every data
point 𝑝0–𝑝4 instead.

A special class of tree-

basedmethods use hard-

ware acceleration to tra-

verse a bounding vol-

ume hierarchy (BVH).

This can suggest higher

throughput, but involves

several caveats. First,

RT cores are not avail-

able on data centre GPUs

(e.g., V100, A100, H100).

Moreover, on an RTX

card, they may be better

allocated to expensive

rendering tasks than

𝑘NN. These methods do

not support beyond 3d data and confine one to a BVH, which

is not the preferred software-only tree for 𝑘NN. Finally, one

incurs the cost of a reduction to cast 𝑘NN into a range query

and then a ray tracing problem and back again.

These methods are all built off of two core ideas from

Evangelou et al. [11]. First, one can perform a truncated
𝑘NN as a range search instead, in which one introduces a

hyperparameter, 𝑟 , and only returns results within a distance

of 𝑟 . “[T]his truncation comes out of necessity rather than

choice” [11], requires a sufficiently large choice of 𝑟 , and

necessitates a filter step to remove false positives.

Second, if one assumes that 𝑛 is orders of magnitude larger

than the number of queries, then one can index the queries

in the BVH and execute range queries with the data points in-

stead. This leads to more, fine-grained parallel tasks travers-

ing shallower BVHs, and therefore faster parallel time. How-

ever, it now requires a fixed threshold, 𝑟 , to be used on all

queries, whereas the distance to the 𝑘th neighbour could

vary quite a lot across query points. Figure 4 illustrates this.

Subsequent work has tried to address the heuristic nature

of this approach and the difficulty of setting 𝑟 . RTNN [47]

https://oeis.org/A010014
https://github.com/InteractiveComputerGraphics/cuNSearch
https://github.com/NVIDIA/warp/blob/main/warp/native/hashgrid.h

spatially groups queries to nearby rays to reduce branch di-

vergence. It also partitions queries to create multiple, smaller

BVHs, improving parallel ray-tracing time at the expense of

BVH construction overhead. TrueKNN [28] produces correct

𝑘NN results by first sampling the data to estimate a good

𝑟 , then repeatedly executing RT range queries with increas-

ing diameters until it contains 𝑘 points. Finally, Arkade [25]

proposes reductions for non-Euclidean distances and demon-

strates a 1.3×–33.1× speedup over FastRNN for 𝐿1 distance.

From this class, we compare to the latest method, Arkade

[25], which reports much faster times than TrueKNN [28].

Figure 5: The lower bound concept. 𝐻 = 3 random
points are selected as “hubs” and all points are assigned
to the nearest hub (i.e., a random voronoi partitioning).
Then, as shown for the top cell, the asymmetric𝑑 (ℎ𝑖 , ℎ 𝑗)
is set to the distance from ℎ𝑖 to the closest point in ℎ 𝑗 .

3 CLOVER: Spatio-Graph-Based 𝑘NN
Both data structure construction and exact 3𝑑 𝑘NN queries

need to be massively parallel and efficient. We combine

spatial- and graph-based ideas with a random voronoi parti-

tioning and geometric identities to prune the search space.

We then in parallel determine which hub every point is

closest to, denoted with black lines, as in a graph-based

method [24, 27]. This produces random voronoi partitions.

ℓ

r

d(hi, pj) ≥ ℓ ⇒ d(q, pj) ≥ ℓ - r

d(hi, pj)

d(q, pj)

q

hi

pj

Figure 6: Application
of the triangle in-
equality in CLOVER.

Consider the set of points

in the leftmost subfigure of

Figure 5. We select a random

subset of reference points that

we call “hubs,” denoted as the

hollow points in the middle

subfigure. Although we draw

the boundaries between the

voronoi cells with white lines

in the figure, they are only con-

ceptual: we do not ever com-

pute these cell boundaries.

The first concept in our

technique is to create an asym-

metric distance bound be-

tween all of the hubs, similar

to GNAT [4]. Let 𝑃𝑖 be the set of points closest to hub ℎ𝑖 and

likewise and 𝑃 𝑗 for ℎ 𝑗 . The (minimum) distance from ℎ𝑖 to ℎ 𝑗

is defined as 𝑑 (ℎ𝑖 , ℎ 𝑗) = min𝑝 𝑗 ∈𝑃 𝑗
𝑑 (ℎ𝑖 , 𝑝 𝑗), i.e., the distance

from hub ℎ𝑖 to the closest of all points in ℎ 𝑗 ’s cell. This is

illustrated by arrows for one hub in the right subfigure.

This enables a lower bound on the actual distance between

any two arbitrary points, 𝑞 and 𝑝 𝑗 , as illustrated in Figure 6.

Let ℎ𝑖 be the hub to which 𝑞 is closest and ℎ 𝑗 , to which 𝑝 𝑗

is closest. Then, from Euclid’s triangle inequality, we know

that 𝑑 (𝑞, 𝑝 𝑗) ≥ 𝑑 (ℎ𝑖 , ℎ 𝑗) −𝑑 (ℎ𝑖 , 𝑞), since 𝑑 (ℎ𝑖 , 𝑝 𝑗) ≥ 𝑑 (ℎ𝑖 , ℎ 𝑗).
The figure illustrates that this distance is minimised when

the triangle is degenerate.

In fact, if this bound holds for some point, 𝑝 𝑗 , then it

holds for all points 𝑝′𝑗 in the same voronoi cell. We use these

lower bounds to prune a substantial number of points when

we know that their distance to a specific hub exceeds the

distance to the 𝑘th closest already-seen point [34].

,,
0.45 0.520.00

Figure 7: The novel graph
concept. An adjacency list
to other voronoi cells is or-
dered by edge weight.

Those ideas have

been used before. The

second concept, how-

ever, is that we trans-

form the partitions into

a graph: the voronoi

cells become the nodes,

the asymmetric dis-

tance becomes the edge

weights, and the pay-

load at each cell be-

comes the set of points within it. We sort each adjacency list

by ascending edge weight, illustrated in Figure 7.

The graph is stored in compressed sparse row format [21],

along with a mapping from points to cells and the distance

to their hubs. We call the data structure Contiguous Lower-
bound-Ordered Voronoi cells for Exact Retrieval (CLOVER),

as our key insight is to reorder voronoi cells by ascending

lower bound, 𝑑 (ℎ𝑖 , ℎ 𝑗), to terminate queries early.

𝑘NN queries are answered by traversing CLOVER. Query

point 𝑞 = 𝑝𝑖 is mapped to a voronoi cell; then, cells are

iterated in best-first, sequential order. The traversal ends

once we visit 𝑘 points that are closer than the distance bound

implies for the next—and remaining—voronoi cell(s).

Figure 8 conceptually illustrates four concurrent queries

with one CLOVER. Points in the same cell have the same

colour, the query point is denoted by , and the query point’s

hub is denoted by ◦. Each query traversal begins at ◦ and
includes all points that have the same hub as . The traversal

then expands concentrically to the voronoi cell that has the

next closest point to ◦. On each step, all points of one colour,

i.e., in one voronoi cell, are scanned collaboratively by a warp,

coalescing reads. Then the bound is rechecked to confirm if

the next concentric ring is closer to than to any 𝑘 visited

points. The number of cells scanned depends on 𝑘 . For the

Figure 8: Traversing the same rapidly-built CLOVER
data structure from the view of four concurrent 𝑘-
nearest neighbour queries on separate GPU warps.

query in the bottom left, only two cells/colours must be

scanned for 𝑘 ∈ [2, 5] as the fifth closest point to (including

both and ◦) is nearer to than the second ring is.

3.1 Data-parallel construction of CLOVER
Six kernels construct CLOVER: one to quickly select random

hubs, then three to build the bimapping from points to hubs

and two others to build the sorted adjacency lists.

Figure 9 illustrates the first stream of kernels. After𝐻 hubs

are randomly selected, each thread calculates and records the

distance of one point, 𝑝𝑖 , to all hubs,ℎ 𝑗 , keeping track of both

which and how close is the closest hub, ℎ 𝑗 . When the thread

is finished, it atomically increments the 𝑗th counter of cell

counts. After this kernel, we have a mapping from points to

hubs with distances, we have materialised the 𝑛×𝐻 distance

matrix for reuse, and we know the number of points in each

voronoi cell. Because 𝑑 is small, we physically reorganise

points by hub in a struct-of-arrays format to coalesce reads

during queries. The second kernel performs a prefix sum

over the cell sizes to transform it into an array of offsets. The

third kernel uses a copy of the prefix sum array to physically

transform points and counting sort them by voronoi cell. In

total, these kernels require Θ(𝑑𝑛𝐻) work and Θ(𝑑𝐻) span.
Figure 10 illustrates the second stream of kernels. Note

that the first kernel was already executed in Figure 9. In the

fourth kernel, we launch a thread block per row ℎ𝑖 of the

𝐻 × 𝐻 edge weight matrix in order to fit the row in shared

memory. Threads cooperatively read a column of the 𝑛 ×𝐻
distance matrix and use atomic min operations to identify

the lower bound distance to each other hub. Finally, the fifth

kernel physically sorts each row by distance bound using

n × H

1. Distance Matrix

H

H

n
n
n
n

n n

d(pi, hj)

minj∈[0, H-1] d(pi, hj)

argminj∈[0, H-1] d(pi, hj)

Number of points in cell hj

Point IDs

h0 h1 hH-1
...

X Coordinates

Y Coordinates

Z Coordinates

2. Prefix Sum

3. Bucket Sort

Prefix sum

Figure 9: Sequence of kernels to reorder points contigu-
ously by voronoi cell. Matrices & vectors with a border
are not used as input in the following kernel.

d(hi, hj)

n × H
H × H

1. Distance Matrix 4. Adjacency Matrix 5. Sorted Adjacency List

H

n n

d(pi, hj)

minj∈[0, H-1] d(pi, hj)

Rows sorted by ↑ distance

Indices sorted by ↑ distance

argminj∈[0, H-1] d(pi, hj)

Number of points in cell hj

n

Figure 10: Sequence of kernels to order adjacency lists
of voronoi cells by lower bound. Vectors with a border
are not reused in the following kernel.

one warp, registers and bitonic sort. Together, these kernels

do Θ(𝑑𝑛𝐻 + 𝐻 2
lg

2𝐻) work with Θ(𝑑𝐻 + lg2𝐻) span.
Once constructed, CLOVER consists of the following:

• the row min and argmin vectors from the first kernel

for Θ(1) look up of a query point’s hub and distance;

• the prefix sum and reordered data from the second and

third kernels to determine the contiguous list of points

assigned to a given hub in Θ(1) time;

• the 𝐻 ×𝐻 edge weight matrix from the fourth kernel;

• the 𝐻 ×𝐻 adjacency lists produced in the fifth kernel.

Thus, the memory footprint for CLOVER construction is

Θ(𝐻 (𝑛+𝐻)) and the data structure requiresΘ(𝐻 2+𝑛𝑑) space.
As 𝐻 should be a small multiple of the thread block size and

fit in shared memory, it is effectively a small constant.

Figure 11: Traversing voronoi partitions by lower
bound to 𝑞’s hub, ℎ𝑞 .

Algorithm 1 Process a 𝑘NN query with CLOVER.

Function CloverQuery(CloverDataStructure, query id, 𝑘)

1: Q← 𝑘 × (∞,∅) (dist, id) pairs for initial state
2: 𝑞 ← point_ids[query id] to group queries in same block

3: [ℎ𝑞, 𝑑𝑞] ← hub id and distance 𝑑 (𝑞, ℎ𝑞) for query 𝑞
4: sorted_cells← (ref to) sorted adjacency list for ℎ𝑞
5: for each hub ℎ𝑖 in sorted_cells do
6: if queue[k-1].d < 𝑑 (ℎ𝑞, ℎ𝑖) −𝑑 (𝑞, ℎ𝑞) then return Q

7: for each warp step in [offsets[ℎ𝑖], offsets[ℎ𝑖 + 1]) do
8: lane 𝑖 calculates distance to point 𝑖

9: if __any_sync(dist 𝑖 < queue[k-1].d) then
10: insert (new distance, new point id) into queue

3.2 Warp-collaborative 𝑘NN with CLOVER
Figure 11 illustrates and Algorithm 1 describes a 𝑘NN query

executed by a warp using CLOVER. First, query point

looks up its hub ◦ and the distance 𝑑 (, ◦) thereto using the

materialised map. In the figure, it is in the black voronoi cell;

so, the traversal will access cells in the order of the black

cell’s sorted adjacency list. We check if the ring is farther

from than the 𝑘th element in our priority queue. If not,

we retrieve the start and end indices of points in that cell

(𝑖 ∈ [5, 11) for that first black cell and 𝑖 ∈ [0, 5) for the next
one) and then the whole warp scans (strip mines) the cell.

To scan a cell, each thread steps with a stride of 32. It grabs

its next index, 𝑥-, 𝑦-, and 𝑧-coordinate (if there are enough

left) from the struct-of-arrays layout, coalescing reads, and

calculates the distance from this next point to . All threads

then compare their newly computed distance to the 𝑘th best

score in the priority queue, which they have each locally

stored in a register. If any thread in the warp votes to update

the priority queue, all threads invoke a push heap function

with their point to update the top-𝑘 correctly.

To track the top-𝑘 requires a priority queue (Q) data struc-

ture and careful consideration of state and register pressure.

One level of indirection (Line 2) reorders queries per the sort

bi
t_

ce
il(

k) k

Initialization Maintenance

Min Swap

w
ar

p
si

ze

Compare &
__any_sync()

Figure 12: Truncated bitonic sort as a priority queue in
registers. Illustrated with a warp size of two threads.
Insertions only require the last register for each thread.

order of points so that warps in the same block usually pro-

cess queries from the same voronoi cell. Wewant to avoid use

of shared memory to maximise the amount of L1 available

for temporal locality within the block. Moreover, updates

to Q and reads are really “hot” code and 𝑘 is small. So, we

prefer to maintain Q’s state in warp registers. Each thread

locally keeps ⌈𝑘/32⌉ keys (indices) and values (distances),

which will be synchronised with ballots and shuffles.

We use the per-thread buffering ideas [38] of FAISS [20].

We expect this to cost extra registers both for the buffers

themselves and the flushing logic to manage them, leading

to spills. Thus, we also design a register-native, warp-level

version of the truncated bitonic sort of [35, 36] (Figure 12).

To prove that the query will not miss one of the 𝑘 nearest

neighbours, 𝑝 𝑗 , assume for the sake of contradiction that

actually this has happened. Then either 𝑝 𝑗 was not scanned,

or it was not inserted into the priority queue because of the

ballot on Line 9. The latter is not possible, because otherwise

the thread processing 𝑝 𝑗 would have voted to enter the loop.

The former can only occur if 𝑝 𝑗 is in a voronoi cell ℎ 𝑗 for

which 𝑑 (ℎ𝑞, ℎ 𝑗) − 𝑑 (𝑞, ℎ𝑞) is greater than 𝑘 already-scanned

points. However,𝑑 (ℎ𝑞, ℎ 𝑗)−𝑑 (𝑞, ℎ𝑞) should be a lower bound
on 𝑑 (𝑞, 𝑝 𝑗) and 𝑑 (𝑞, 𝑝 𝑗) is among the 𝑘 smallest distances

from 𝑞. Thus, we arrive at a contradiction.

4 Experiments
In this section, we evaluate the performance of our proposed

CLOVER for exact 𝑘NN on the GPU.

4.1 Experiment design
4.1.1 Software. We compare eight methods implemented

in CUDA/C++.
5
Unless otherwise noted, each query is pro-

cessed with one warp and four warps per block.

5
Source code is publicly available at https://github.com/ampslab/clover-knn.

https://github.com/ampslab/clover-knn

Table 1: Properties of datasets used in experiments.

Name [source] abbrv 𝑛 𝑑

Stanford Bunny [39] BUN 362 272 3

KITTI-1M [13] KIT 1 000 000 3

Household [18] HH 2 049 200 4

Happy Buddha [8] BUD 4 586 124 3

Galaxy-10M [37] GXY 9 925 229 3

Uniform Synthetic UNI log(𝑛) ∈ {4, 5, 6} 3

Gaussian Mixed Model GMM log(𝑛) ∈ {4, 5, 6} 3

i. FAISS: The off-the-shelf bfKnn() scan-based method

from FAISS [20] with modest tuning to the device, such

as constraining registers to improve occupancy. This is

a tiled approach that does not use one warp per query.

ii. WarpSelectScan: A scan-based baseline that invokes

WarpSelect from FAISS [20], targeting low dimensions.

It uses neither tiling nor materialised distance matrices.

iii. Treeology: A well-maintained GPU 𝑘𝑑-tree method

used as a baseline in [25] with one query per thread.

iv. SweetKNN: The straight-forward application of voronoi-
based techniques to the GPU [6]. It processes one query

per thread and stores priority queues in shared memory.

v. Arkade: The state-of-the-art, ray-parallel, BVH-based
method on ray-tracing cores [25] (subsection 4.3 only).

vi. rsll18: The grid-based method used in CVT [32] (Fig-

ure 3). It processes one query per thread and stores pri-

ority queues in shared memory.

vii. BitonicClover: Our CLOVER proposal using truncated

bitonic sort as described by [35] but in registers with our

__any_sync() optimisation (Figure 12).

viii. WarpSelectClover: Our CLOVER proposal linking the

same priority queue as WarpSelectScan.

4.1.2 Datasets. We use three types of datasets, the proper-

ties of which are shown in Table 1. The first type are real

datasets used in recent ray-tracing 𝑘NN papers [28, 47] and

spatial processing for comparability. The Stanford Bunny is a

raw 3d scanned point cloud ubiquitous in computer graphics.

The KITTI-1M [13] dataset is a collection of LiDAR points

generated from self-driving cars. Household [18] is a time

series dataset of electric power consumption for individual

households that we project onto the active power, reactive

power, voltage, and intensity attributes. The Happy Bud-

dha [8] is a larger point cloud from the Stanford 3d scanning

repository. Galaxy [37] is our largest dataset, stressing scale.

The second set of experiments evaluate scalability in a con-

trolled fashion. We generate uniform synthetic points using

a std::mt19937 random engine and fixed seed (UNI). We

likewise generate data per a gaussian mixed model (GMM)

distribution. The GMM data is uniformly distributed be-

tween (−1000, 1000) over the 𝑥- and 𝑦-coordinates; for the
𝑧-coordinate, 1000 peaks6 are selected at random from the

range (−1000, 1000) and coordinate values are distributed

around those peaks with a standard deviation of 100. This

simulates a point cloud for a smooth but hilly 3d surface and

enables us to test sensitivity to non-uniformity in the data.

4.1.3 Environment. We test in two environments: anNVIDIA

Tesla V100-SXM2-32GB Volta (GV100) data centre GPU (sub-

section 4.2) and an NVIDIA RTX 4070 Laptop Ada Lovelace

(AD106) RT-core-equipped GPU (subsection 4.3).

In both environments, timings are startedwith std::chrono
just after calling cudaDeviceSynchronize() when input

data has been transferred to pre-allocated device arrays. They

end just after the final kernel invocation and another call

to cudaDeviceSynchronize(), but before transferring data

back to host. This reflects the scenario where 𝑘NN is part

of a GPU pipeline, rather than using the GPU as an acceler-

ator to CPU-centric processing. By default, the number of

neighbours is 𝑘 = 30 and CLOVER uses 𝐻 = 1024 cells.

4.2 Results & analysis on data centre cards
4.2.1 Speedups on all datasets. Figure 13 reports the rela-
tive performance of all methods for 30-NN on all datasets,

relative to our proposed WarpSelectClover method. Timings

include data structure creation, if applicable, and the total

time to complete all 𝑛 queries. Execution times for WarpSe-

lectClover are provided in the caption and slowdown values

are provided as data labels; so, the execution time of a par-

ticular method on a particular dataset can be obtained by

multiplying the WarpSelectClover time by the given slow-

down. Datasets are ordered first by 𝑑 and then by 𝑛. Note

that Treeology and rsll18 do not support 4d datasets.,

Observe first that the 𝑦-axis is split so that we can visu-

alise both small and extreme differences. Although WarpSe-

lectScan provides a marked improvement over FAISS, both

are uncompetitive, with FAISS regularly being over 200×
slower on large datasets. This is unsurprising, given the

poor work efficiency. Without data structures to reduce the

amount of work, the quadratic complexity is overwhelm-

ing. On the 10-million point GXY dataset, FAISS exceeds our

ten-minute time limit and WarpSelectScan barely finishes.

Treeology is also uncompetitive, ranging from 10–57×
slower thanWarpSelectClover.While the tree provides greater

efficiency than the scan-based methods, concurrent traver-

sals by multiple threads lead to both flow and memory diver-

gence on the GPU; high throughput is thus elusive.

SweetKNN performs better than Treeology, but runs out

of memory on datasets with 𝑛 > 1M.

6
We exclude an experiment that varied the number of peaks, i.e., the amount

of non-uniformity, from 500 to 5000, due to minimal effect and observations.

Figure 13: Slowdowns relative to WarpSelectClover (𝑘 = 30, NVIDIA V100), i.e., time(algorithm, dataset) /
time(WarpSelectClover, dataset). 0.0× indicates methods that did not complete. WarpSelectClover timings: 21.4ms
(BUN); 56.9ms (GMM); 80.2ms (UNI); 63.9ms (KIT); 617ms (BUD); 2.71s (GXY); 213ms (HH).

The most competitive methods are those based on light-

weight data structures, including the static grid of rsll18 and

the CLOVER methods. WarpSelectClover outperforms rsll18

on all datasets except Buddha, including a surprisingly high

18.6× outperformance on the KITTI dataset. The use of the

WarpSelect priority queue from FAISS provides a 25–109%

improvement over truncated bitonic sort. The extra register

pressure that we expected does not materialise.

We observe the same general trends on the 4d HH dataset,

except that Treeology and rsll18 cannot be run.

Table 2 evaluates the impact of data skew, reporting for

each algorithm the performance on 1M 3d GMM points di-

vided by the performance on 1M 3d UNI points. Predictably,

the scan-based methods, FAISS and WarpSelectScan, are un-

affected as they must scan all points for all queries. The grid-

based rsll18 method degrades appreciably, requiring more

than twice as long, as the number of rings to traverse varies

more between threads. Conversely, Treeology observes a

minor 4% improvement, likely due to better partitionability

of the data. The CLOVER methods run 25% faster on skewed

data because the𝐻 = 1024 randomly selected centroids adapt

(in expectation) to the underlying data distribution.

Table 2: Effect of data skew. Performance for each
method on 10

6 GMM points relative to 10
6 UNI points.

FAISS WS.Scan Treeology rsll18 WS.Clover

1.01× 1.00× 0.96× 2.36× 0.79×

4.2.2 Scalability analysis. Figure 14 reports the total time

of each method for 30-NN as the number of UNI data points

(and thus also query points), 𝑛, increases from 10K to 1M.

Both axes are log-scale. The rsll18 implementation throws

runtime exceptions on cases where
3

√︁
𝑛/3.1 < 16 as this

throws off the fine-tuned, hard-coded hyperparameters. So,

its curve starts at 𝑛 > 12697.

The scan-based methods perform best on small meshes,

but exhibit a quadratic performance curve. By 𝑛 = 1M, nei-

ther scan-based method completes in less than a second.

Treeology and rsll18 degrade at an apparently linear rate,

demonstrating better work-efficiency; however, Treeology

still requires over a second from 𝑛 ≥ 1M. CLOVER has an

overhead for data structure creation of 1–2ms, but then scales

gracefully. By 𝑛 = 1M, WarpSelectClover is 43% faster than

the grid-based approach and ≥ 47× faster than the others.

Comparing the two CLOVER instantiations, WarpSelect-

Clover consistently outperforms BitonicClover. High reg-

ister pressure leads to spills (per verbose ptxas output) in

WarpSelectClover when we set launch bounds to maximise

occupancy. Yet, the register spills do not impair performance.

Figure 15 repeats the scalability experiment with 3d GMM

data. Other than the previously reported lifts and penalties

due to data skew, we do not observe any significant differ-

ences in trend from the uniformly distributed data. Although

it is not shown, the same is true of 4d UNI and GMM data,

though in those cases we cannot run Treeology or rsll18.

Figure 16 instead holds 𝑛 = 1M fixed and varies the output

size from 𝑘 = 2
5
to 𝑘 = 2

7
. Broadly, we observe a perfor-

mance degradation with respect to increasing 𝑘 on the faster

methods (rsll18, BitonicClover, and WarpSelectClover); how-

ever, for the slower methods, the cost of in-register (FAISS)

Figure 14: Total time relative to
number of 3d UNI points (𝑘 = 30).

Figure 15: Total time relative to
number of 3d GMMpoints (𝑘 = 30).

Figure 16: Total time relative to
num. neighbours (3d UNI, 𝑛 = 10

6).

Figure 17: Histogram of hubs scanned per query. Figure 18: CDF of points scanned per query.

or shared memory (Treeology) top-𝑘 maintenance is a negli-

gible factor compared to the global memory read operations

that dominate cost. WarpSelectScan did not run for increased

𝑘 due to excess resources requested in the launch configura-

tion, but was already non-competitive at 𝑘 = 10.

SweetKNN outperformed Treeology for large 𝑛, but only

when 𝑘 was small, likely due to its use of shared memory.

4.2.3 Work analysis. The performance of CLOVER comes,

in part, from reducing work. Queries end as soon as finding a

𝑘th best distance smaller than the lower bound for all remain-

ing hubs. Figure 17 shows a distribution of the number of

voronoi cells scanned, out of𝐻 = 512, per query for𝑛 = 100K

and 𝑘 ∈ {16, 32, 64, 128} on UNI. Due to the random parti-

tioning, voronoi cells have non-uniform point populations.

So, Figure 18 also measures work, but instead counts the

number of points scanned and illustrates the information as

a cumulative distribution. Note that this experiment is inde-

pendent of the choice of priority queue used for the top-𝑘 ,

i.e., is the same for BitonicClover and WarpSelectClover.

Reading horizontally in Figure 18 shows the number of

points scanned by a given percentage of queries. At 𝑘 = 16,

50% of queries scan less than 2000 (2% of) points; 75% of

queries scan less than 3% of points; 99% of queries scan less

than 4% of points; and all queries scan at most 10% of points.

As 𝑘 increases, it takes longer to find a 𝑘th best point that

can prune all remaining hubs, but the trend is the same. Even

at 𝑘 = 128, 50% of queries still scan < 4% of points.

Regarding tail latency, the longest running query accesses

52/512 = 10.1% of hubs and ≈ 10
4/105 = 10% of points,

representing a 90% reduction in work compared to scans.

The spatial bound is more effective for query points closer to

their own hubs. Future work might reduce this tail latency

with a more systematic approach to selecting hubs, as done

with clustering methods like kmeans++ [1].

In summary, CLOVER incurs a small overhead for con-

struction that makes scan-based methods faster on small

inputs, but that regularly prunes over 96% of points, leading

to marked improvements on larger inputs. This suggests an

adaptive approach that uses CLOVER for large 𝑛.

Figure 19: Distribution of how many threads encounter points that improve the top-𝑘 , per warp step.

Figure 20: Execution time per kernel relative to 𝐻 . Figure 21: Throughput metrics from ncu.

4.2.4 Deeper analysis & profiling. We next investigate what

drives the behaviour of the algorithms. Our objective with

CLOVER was to balance construction and query time to

minimise end-to-end processing time. Figure 20 evaluates the

that goal by showing the relative time spent in each kernel

for the two CLOVER methods. It also enables studying the

effect of 𝐻 , the number of voronoi cells.

Observe that CLOVER is orthogonal to the priority queue

method that is chosen. The time for all construction kernels

is the same for both CLOVER instantiations, but we see that

WarpSelect halves query time. As𝐻 increases, execution time

predictably shifts from queries to construction. At 𝐻 = 1024,

where the shared memory usage is high enough to suppress

L1 cache hits, construction and queries are balanced already

for BitonicClover. To understand why it is expected that

increasing 𝐻 shifts time from queries to construction, con-

sider when 𝐻 = 1 (or, similarly, a pathologically bad random

partitioning). Then, CLOVER queries would degenerate to

a scan-based method like WarpSelect. With a finer-grained

partitioning of space, our spatial bounds are more effective.

Looking closer at the construction kernels, we observe

that the dominant cost is the stream for building the voronoi

adjacency lists. These are the two kernels for which our im-

plementation relied on atomic operations. A better design

with parallel reductions may be able to bring down these

costs. Nonetheless, at 𝐻 = 512, it only requires 1ms to con-

struct the entire data structure. If the CLOVER data structure

were constructed offline, we would continue to gain query

performance at 𝐻 = 1024, outperforming by an even larger

Figure 22: Total execution time relative to percent of points queried for 3d datasets (RTX 4070L, 𝑘 = 10).

margin, though a larger range of baselines with offline index

construction, such as [19], should be evaluated, then.

Figure 19 looks closer at the workload on the priority

queues. We additionally run a method, BitonicScan, that uses

the truncated bitonic sort priority queuewithin a simple scan-

based method to isolate effects. BitonicScan, WarpSelectScan,

BitonicClover, and WarpSelectClover all process 32 points

at a time, using one thread to check the distance to one new

point. A ballot instruction produces a mask of which threads

were assigned points that were closer than the 𝑘th closest

point already in the priority queue. The popcount of this

mask indicates how many updates to the priority queue are

required for this chunk. (This is exactly our __any_sync()
optimisation on Line 9 of Algorithm 1: skip all update logic

when the popcount is zero.) This experiment shows the his-

togram of those popcounts per warp step.

The first thing to note is that in BitonicScan, adding even

one point in a step is rare. Over 97% of the time at 𝑘 = 16,

there is no update and 2.4% of the time, only one thread

finds a new point. Even at 𝑘 = 128, 85% of warp steps have

no updates and 96% find at most one. Performance mostly

comes down to read throughput to calculate distances.

Finally, Figure 21 reports relevant throughput metrics col-

lected with NVIDIA Nsight Compute CLI (ncu). We com-

pare BitonicScan and BitonicClover as representatives of

scan- and CLOVER-based methods, because they have fully-

fused query kernels that are amenable to profiling. Because

CLOVER introduces memory indirection and predication, we

focus onmetrics related to those. Achieved occupancy as well

as memory, L1 cache, and compute throughput are reported

as a percentage of the device’s peak theoretical throughput.

Active warps are reported relative to device capacity (16

warps/SM). We report the percentage of 32 threads per warp

that are active and not predicated off due to divergence.

In general, CLOVER accepts a small drop in throughput

relative to a comparable scan on predication- and occupancy-

related metrics. Compute throughput is unaffected. Memory,

though not cache, throughput drops by 35%, but because the

volume of memory transfers also decreases by > 95%.

In summary, most warp steps of 𝑘NN algorithms just con-

firm that the next 32 points are not better than any already

seen. This supports optimising throughput over top-𝑘 main-

tenance logic. It supports even better CLOVER’s design strat-

egy to trade off a little throughput to spend 1–2ms building

a data structure that avoids > 97% of warp steps altogether.

4.3 Results & analysis on an RTX card
Henceforth, we use an RTX 4070L (AD106) card to compare

against an RT-core method, namely Arkade [25]. RTmethods

can only support 2d and 3d datasets. We repeat only the most

competitive methods from subsection 4.2. For Arkade, we

use the radius-tuning method described for TrueKNN [28],

which is not included in the reported times.

Table 3: Performance degradation at 𝑘 = 30 relative to
at 𝑘 = 10 per dataset/algorithm (RTX 4070L, |𝑄 | = 10

4).

Algorithm BUN GMM UNI KIT BUD GXY

Arkade 1.27× 2.99× 2.17× 3.34× 1.03× 0.95×
rsll18 1.18× 1.15× 1.12× 0.96× 1.11× 1.16×

Bit.Clover 0.98× 1.01× 1.03× 1.00× 1.00× 1.00×

4.3.1 Execution time on 3d datasets. Figure 22 reports the
total execution time in milliseconds for BitonicClover, rsll18,

and Arkade on the six 3d datasets, one per subplot. The

𝑥-axes are logarithmic. In this experiment, we fix 𝑘 = 10,

and vary the number of queries as a proportion of the total

number of data points in the dataset.

The first point to observe is that Arkade generally cannot

scale beyond 50k queries on this small but modern card.

Recall that the RT-core methods generally build a BVH over

the queries and then execute ray-parallel tree iterations using

the data points. Thus, as the number of queries increases,

so too does the size of the BVH and the span of the parallel

algorithm. This method benefits most when the number of

queries is many orders of magnitude smaller than 𝑛, in which

case substantial fine-grained parallelism is exposed.

The second observation is the inconsistent performance of

Arkade. It completes 50k queries on GMM and UNI in dozens

of milliseconds, but takes over one second on BUD. This,

we conjecture, is explained by the regularity of the data: if

the distance to the 𝑘th nearest neighbour is similar for most

queries, then methods like TrueKNN and Arkade require

fewer rounds. Indeed, the best performance for Arkade is

observed on regular, synthetic data. By contrast, the perfor-

mance of BitonicClover and rsll18 is more consistent, because

those methods answer the 𝑘NN query directly and therefore

never require additional iterations to refine results.

We also observe that the relative performance between

rsll18 and Clover is substantially affected by the GPU card.

On BUN, for example, BitonicClover takes 58ms on the 4070L

and 27ms on the V100; rsll18, by contrast, takes 19ms on

the 4070L and 50ms on the V100. The 4070L has 15% fewer

CUDA cores than the V100 and is optimised for thermal

management and power efficiency, all of which handicap

BitonicClover. On the other hand, it offers 5.3× more L2

cache, which benefits the memory-bound rsll18 method.

Lastly, we observe inflection points on larger datasets for

rsll18 and BitonicClover, typically around 100K queries on

skewed data (GMM, KIT, GXY). This is pronounced for rsll18

on KIT and often leads to BitonicClover outperforming rsll18

when executing all queries. We conjecture that this point is

where the GPU device is saturated and the effect of workload

balance shows up as a larger number of CTA barrier stalls.

4.3.2 Effect of k. The previous experiment used a very low

value of 𝑘 to run more queries with Arkade. Table 3 reports

the relative slowdown for executing 10
4
queries at 𝑘 = 30 in-

stead of 𝑘 = 10. Because BitonicClover is warp-collaborative,

it is unaffected by the increase in 𝑘 ; in fact, at 𝑘 = 10, there

were 22 threads that were idling during the maintenance of

the top-𝑘 priority queue.

rsll18 observes a muted 11–18% degradation in perfor-

mance, except on KIT where it performs slightly better. It

uses a thread-parallel priority queue in shared memory, so

increases in 𝑘 increase the size of thoses heaps and therefore

also the cost of any divergence on queue updates.

Arkade, in contrast, is affected unpredictably. It sees a

slight improvement in GXY but a 3× degradation on GMM

and KIT. Changing 𝑘 affects the tuning of 𝑟 , yielding a better

radius on GXY. An increase to 𝑘 also leads to more inconsis-

tency across queries to find the ideal radius search that will

contain the 𝑘NN. As a result, especially on skewed data like

GMM and KIT, more refinement iterations are likely needed

in order to obtain the correct result.

4.3.3 RTX Summary. The RTX card makes ray tracing cores

available for 3d datasets. Arkade, the latest RT method, can

perform well when the number of queries and the num-

ber of neighbours is small, though results are inconsistent

and depend on hyperparameter tuning. The grid-based rsll18

method benefits from extra L2 cache and our proposed voronoi-

based Clover method still offers better performance on half

of the datasets, despite the lower CUDA core throughput.

These massively parallel methods solve 𝑘NN directly with

efficient data structures, which gives them an inherent ad-

vantage over the indirect RT-core methods that perform a

reduction from 𝑘NN to range queries to ray tracing.

5 Conclusion
We proposed CLOVER, a novel spatio-graph-based approach

to answer exact 𝑘NN queries on a GPU by building a light-

weight index on-the-fly. We demonstrated that CLOVER is

4× faster than an optimised grid-based method, 10× faster
than a GPU tree-based method, and 230× faster than an op-

timised scan-based variant of FAISS on the largest of our

datasets—including the time to construct the data structure.

Moreover, we demonstrate scalability and reliability prob-

lems with the recently proposed line of research on RT-core-

accelerated methods. CLOVER-enabled 𝑘NN search enables

handling much larger scale for GPU-centric data processing.

Acknowledgments
This work was supported in part by the Natural Sciences and

Engineering Research Council (NSERC) of Canada through

the Discovery Grants program and by the BC DRI Group,

Compute Ontario, and Digital Research Alliance of Canada.

References
[1] David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages

of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (New Orleans, Louisiana) (SODA
’07). Society for Industrial and Applied Mathematics, USA, 1027–1035.

[2] Ricardo J. Barrientos, José I. Gómez, Christian Tenllado, Manuel Prieto

Matias, and Mauricio Marin. 2011. kNN Query Processing in Metric

Spaces Using GPUs. In Euro-Par 2011 Parallel Processing. 380–392.
[3] Jose Luis Blanco and Pranjal Kumar Rai. 2014. nanoflann: a C++

header-only fork of FLANN, a library for Nearest Neighbor (NN) with

KD-trees. https://github.com/jlblancoc/nanoflann.

[4] Sergey Brin. 1995. Near Neighbor Search in Large Metric Spaces. In

Proc. of the 21st VLDB Conference. 574–584.
[5] Christian Böhm and Florian Krebs. 2004. The k-Nearest Neighbour

Join: Turbo Charging the KDD Process. Know. Inf. Sys. 6 (2004), 728–
749. https://doi.org/10.1007/s10115-003-0122-9

[6] Guoyang Chen, Yufei Ding, and Xipeng Shen. 2017. Sweet KNN: An

Efficient KNN on GPU through Reconciliation between Redundancy

Removal and Regularity. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). 621–632. https://doi.org/10.1109/ICDE.2017.

116

[7] Felix Chern, BlakeHechtman, AndyDavis, Ruiqi Guo, DavidMajnemer,

and Sanjiv Kumar. 2022. TPU-KNN: K Nearest Neighbor Search at Peak

FLOP/s. In Advances in Neural Information Processing Systems, Vol. 35.
15489–15501. https://proceedings.neurips.cc/paper_files/paper/2022/

file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf

[8] Brian Curless and Mark Levoy. 1996. A volumetric method for building

complex models from range images. In SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques. 303–312.

[9] Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, and Philipp

Slusallek. 2014. Progressive Light Transport Simulation on the GPU:

Survey and Improvements. ACM Trans. Graph. 33, 3, Article 29 (June
2014), 19 pages. https://doi.org/10.1145/2602144

[10] Yufei Ding, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkow-

icz. 2015. TOP: a framework for enabling algorithmic optimizations

for distance-related problems. Proc. VLDB Endow. 8, 10 (June 2015),
1046–1057. https://doi.org/10.14778/2794367.2794374

[11] Iordanis Evangelou, Georgios Papaioannou, Konstantinos Vardis, and

Andreas A. Vasilakis. 2021. Fast Radius Search Exploiting Ray Tracing

Frameworks. Journal of Computer Graphics Techniques (JCGT) 10, 1 (5
February 2021), 25–48. http://jcgt.org/published/0010/01/02/

[12] Vincent Garcia, Eric Debreuve, and Michel Barlaud. 2008. Fast k

nearest neighbor search using GPU. In 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops. 1–6.
https://doi.org/10.1109/CVPRW.2008.4563100

[13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.

2013. Vision meets Robotics: The KITTI Dataset. International Journal
of Robotics Research (IJRR) 32, 11 (2013), 1231–1237.

[14] Bryant Gipson, MarkMoll, and Lydia E. Kavraki. 2013. Resolution Inde-

pendent Density Estimation for motion planning in high-dimensional

spaces. In 2013 IEEE International Conference on Robotics and Automa-
tion. 2437–2443. https://doi.org/10.1109/ICRA.2013.6630908

[15] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. Gen-

eral Transformations for GPU Execution of Tree Traversals. In Pro-
ceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC ’13). 1–12. https:

//doi.org/10.1145/2503210.2503223

[16] Fabian Groh, Lukas Ruppert, PatrickWieschollek, and Hendrik Lensch.

2023. GGNN: Graph-based GPU Nearest Neighbor Search. IEEE trans-
actions on big data 9, 1 (2023), 1–1. https://doi.org/10.1109/TBDATA.

2022.3161156 Place: Piscataway Publisher: IEEE.

[17] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix

Chern, and Sanjiv Kumar. 2020. Accelerating large-scale inference with

anisotropic vector quantization. In Proceedings of the 37th International
Conference on Machine Learning (ICML’20). JMLR.org, Article 364,

10 pages.

[18] Georges Hebrail and Alice Berard. 2006. Individual Household Elec-

tric Power Consumption. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C58K54.

[19] Zhuoran Ji and Cho-Li Wang. 2022. Efficient exact K-nearest neighbor

graph construction for billion-scale datasets using GPUs with tensor

cores. In Proceedings of the 36th ACM International Conference on Su-
percomputing (ICS ’22). Article 10, 12 pages. https://doi.org/10.1145/

3524059.3532368

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale

Similarity Search with GPUs. IEEE Transactions on Big Data 7, 3 (2021),
535–547. https://doi.org/10.1109/TBDATA.2019.2921572

[21] Terence Kelly. 2020. Compressed Sparse Row Format for Representing

Graphs. ;login: 45, 4 (2020), 76–82.
[22] Ivan Komarov, Ali Dashti, and Roshan M. D’Souza. 2014. Fast k-NNG

Construction with GPU-Based Quick Multi-Select. PLOS ONE 9, 5 (05

2014), 1–9. https://doi.org/10.1371/journal.pone.0092409

[23] David G Lowe. 2004. Distinctive Image Features from Scale-Invariant

Keypoints. International Journal of Computer Vision 60 (2004), 91–110.

https://doi.org/10.1023/B:VISI.0000029664.99615.94

[24] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approx-

imate Nearest Neighbor Search Using Hierarchical Navigable Small

World Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020),
824–836. https://doi.org/10.1109/TPAMI.2018.2889473

[25] Durga Keerthi Mandarapu, Vani Nagarajan, Artem Pelenitsyn, and

Milind Kulkarni. 2024. Arkade: k-Nearest Neighbor Search With Non-

Euclidean Distances using GPU Ray Tracing. In ICS ’24: Proceedings
of the 38th ACM International Conference on Supercomputing. 14–25.
https://doi.org/10.1145/3650200.3656601

[26] Takazumi Matsumoto and Man Lung Yiu. 2015. Accelerating Exact

Similarity Search on CPU-GPU Systems. In 2015 IEEE International
Conference on Data Mining. 320–329. https://doi.org/10.1109/ICDM.

2015.125

[27] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest

Neighbors with Automatic Algorithm Configuration. In International
Conference on Computer Vision Theory and Application (VISSAPP’09).
INSTICC Press, 331–340.

[28] Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. RT-

kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neigh-

bor Search. In Proceedings of the 37th ACM International Confer-
ence on Supercomputing (Orlando, FL, USA) (ICS ’23). Association
for Computing Machinery, New York, NY, USA, 289–300. https:

//doi.org/10.1145/3577193.3593738

[29] Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. 2016. Parallel

Tree Traversal for Nearest Neighbor Query on the GPU. In 2016 45th In-
ternational Conference on Parallel Processing (ICPP). IEEE, Philadelphia,
PA, USA, 113–122. https://doi.org/10.1109/ICPP.2016.20

[30] Hiroyuki Ootomo, Akira Naruse, Corey Nolet, Ray Wang, Tamas

Feher, and Yong Wang. 2023. CAGRA: Highly Parallel Graph

Construction and Approximate Nearest Neighbor Search for GPUs.

arXiv:2308.15136 [cs.DS]

[31] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon,Wan-

Yen Lo, Justin Johnson, and Georgia Gkioxari. 2020. Accelerating 3D

Deep Learning with PyTorch3D. arXiv:2007.08501 [cs.CV] https:

//arxiv.org/abs/2007.08501

[32] Nicolas Ray, Dmitry Sokolov, Sylvain Lefebvre, and Bruno Lévy. 2018.

Meshless voronoi on the GPU. ACM Trans. Graph. 37, 6, Article 265
(Dec. 2018), 12 pages. https://doi.org/10.1145/3272127.3275092

https://github.com/jlblancoc/nanoflann
https://doi.org/10.1007/s10115-003-0122-9
https://doi.org/10.1109/ICDE.2017.116
https://doi.org/10.1109/ICDE.2017.116
https://proceedings.neurips.cc/paper_files/paper/2022/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://doi.org/10.1145/2602144
https://doi.org/10.14778/2794367.2794374
http://jcgt.org/published/0010/01/02/
https://doi.org/10.1109/CVPRW.2008.4563100
https://doi.org/10.1109/ICRA.2013.6630908
https://doi.org/10.1145/2503210.2503223
https://doi.org/10.1145/2503210.2503223
https://doi.org/10.1109/TBDATA.2022.3161156
https://doi.org/10.1109/TBDATA.2022.3161156
https://doi.org/10.1145/3524059.3532368
https://doi.org/10.1145/3524059.3532368
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1371/journal.pone.0092409
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3650200.3656601
https://doi.org/10.1109/ICDM.2015.125
https://doi.org/10.1109/ICDM.2015.125
https://doi.org/10.1145/3577193.3593738
https://doi.org/10.1145/3577193.3593738
https://doi.org/10.1109/ICPP.2016.20
https://arxiv.org/abs/2308.15136
https://arxiv.org/abs/2007.08501
https://arxiv.org/abs/2007.08501
https://arxiv.org/abs/2007.08501
https://doi.org/10.1145/3272127.3275092

[33] Radu Bogdan Rusu and Steve Cousins. 2011. 3D is here: Point Cloud

Library (PCL). In IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, Shanghai, China.

[34] Michael Ian Shamos and Dan Hoey. 1975. Closest-point problems. In

16th Annual Symposium on Foundations of Computer Science. 151–162.
https://doi.org/10.1109/SFCS.1975.8

[35] Anil Shanbhag, Holger Pirk, and Samuel Madden. 2018. Efficient Top-K

Query Processing on Massively Parallel Hardware. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD
’18). 1557–1570. https://doi.org/10.1145/3183713.3183735

[36] Nikos Sismanis, Nikos Pitsianis, and Xiaobai Sun. 2012. Parallel search

of k-nearest neighbors with synchronous operations. In 2012 IEEE
Conference on High Performance Extreme Computing. 1–6. https://doi.

org/10.1109/HPEC.2012.6408667

[37] Volker Springel, Simon D. M. White, Adrian Jenkins, Carlos S. Frenk,

Naoki Yoshida, Liang Gao, Julio Navarro, Robert Thacker, Darren

Croton, John Helly, John A. Peacock, Shaun Cole, Peter Thomas, Hugh

Couchman, August Evrard, Jörg Colberg, and Frazer Pearce. 2005.

Simulations of the formation, evolution and clustering of galaxies

and quasars. Nature 435 (2005), 629–636. https://doi.org/10.1038/

nature03597

[38] Xiaoxin Tang, Zhiyi Huang, David Eyers, Steven Mills, and Minyi Guo.

2015. Efficient Selection Algorithm for Fast k-NN Search on GPUs. In

2015 IEEE International Parallel and Distributed Processing Symposium.

397–406. https://doi.org/10.1109/IPDPS.2015.115

[39] Greg Turk and Marc Levoy. 1994. Zippered Polygon Meshes from

Range Images. In SIGGRAPH ’94: Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques. 311–318.
https://doi.org/10.1145/192161.192241

[40] Polychronis Valentzas, Michael Vassilakopoulos, Antonio Corral, and

Christos Antonopoulos. 2023. GPU-Based Algorithms for Processing

the k Nearest-Neighbor Query on Spatial Data Using Partitioning

and Concurrent Kernel Execution. International Journal of Parallel

Programming 51, 6 (Dec. 2023), 275–308. https://doi.org/10.1007/

s10766-023-00755-8

[41] Jordi L. Vermeulen, Arne Hillebrand, and Roland Geraerts. 2017. A

comparative study of k-nearest neighbour techniques in crowd simu-

lation. Computer Animation and Virtual Worlds 28, 3–4 (2017), e1775.
https://doi.org/10.1002/cav.1775

[42] Bo Xiao and George Biros. 2016. Parallel Algorithms for Nearest

Neighbor Search Problems in High Dimensions. SIAM Journal on
Scientific Computing 38, 5 (Jan. 2016), S667–S699. https://doi.org/10.

1137/15M1026377

[43] Jingrong Zhang, Akira Naruse, Xipeng Li, and Yong Wang. 2023. Par-

allel Top-K Algorithms on GPU: A Comprehensive Study and New

Methods. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (Denver, CO,
USA) (SC ’23). Association for Computing Machinery, New York, NY,

USA, Article 76, 13 pages. https://doi.org/10.1145/3581784.3607062

[44] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate

Nearest Neighbor Search on GPU. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1033–1044. https://doi.org/10.

1109/ICDE48307.2020.00094 ISSN: 2375-026X.

[45] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-time

KD-tree construction on graphics hardware. In ACM SIGGRAPH Asia
2008 papers. ACM, Singapore, 1–11. https://doi.org/10.1145/1457515.

1409079

[46] Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of

10,000 3D-Printing Models. arXiv:1605.04797 [cs.GR]

[47] Yuhao Zhu. 2022. RTNN: accelerating neighbor search using hardware

ray tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Seoul, Republic of

Korea) (PPoPP ’22). Association for Computing Machinery, New York,

NY, USA, 76–89. https://doi.org/10.1145/3503221.3508409

[48] Yifan Zhu, Ruiyao Ma, Baihua Zheng, Xiangyu Ke, Lu Chen, and

Yunjun Gao. 2024. GTS: GPU-based Tree Index for Fast Similarity

Search. arXiv:2404.00966

https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1145/3183713.3183735
https://doi.org/10.1109/HPEC.2012.6408667
https://doi.org/10.1109/HPEC.2012.6408667
https://doi.org/10.1038/nature03597
https://doi.org/10.1038/nature03597
https://doi.org/10.1109/IPDPS.2015.115
https://doi.org/10.1145/192161.192241
https://doi.org/10.1007/s10766-023-00755-8
https://doi.org/10.1007/s10766-023-00755-8
https://doi.org/10.1002/cav.1775
https://doi.org/10.1137/15M1026377
https://doi.org/10.1137/15M1026377
https://doi.org/10.1145/3581784.3607062
https://doi.org/10.1109/ICDE48307.2020.00094
https://doi.org/10.1109/ICDE48307.2020.00094
https://doi.org/10.1145/1457515.1409079
https://doi.org/10.1145/1457515.1409079
https://arxiv.org/abs/1605.04797
https://doi.org/10.1145/3503221.3508409
arXiv:2404.00966

	Abstract
	1 Introduction
	2 Background & Discussion
	2.1 Scan-based approaches
	2.2 Grid-based approaches
	2.3 Hierarchical spatial partitioning
	2.4 Flat voronoi partitioning approaches
	2.5 Ray-tracing (RT) core approaches

	3 CLOVER: Spatio-Graph-Based kNN
	3.1 Data-parallel construction of CLOVER
	3.2 Warp-collaborative kNN with CLOVER

	4 Experiments
	4.1 Experiment design
	4.2 Results & analysis on data centre cards
	4.3 Results & analysis on an RTX card

	5 Conclusion
	Acknowledgments
	References

