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Abstract

We study exascale parallel algorithms for the selection of
intervention or monitoring strategies in massive realistic
socio-technical networks through scalable Influence Maxi-
mization (InfMax) algorithms. We employ novel techniques
to enable efficient scaling on up to 8k nodes of OLCF Frontier,
with 65k AMD GPUs and 458k AMD CPU cores. Current
state-of-the-art InfMax tools are limited to networks with
only a few million actors (vertices) and a few hundred mil-
lion interactions (edges). By overcoming these limitations,

https://orcid.org/0000-0002-4220-1420
https://orcid.org/0000-0002-7137-7599
https://orcid.org/0000-0002-6199-346X
https://orcid.org/0000-0001-8941-870X
https://orcid.org/0000-0001-6546-8948
https://orcid.org/0000-0003-3363-2947
https://orcid.org/0000-0002-8597-6197
https://orcid.org/0000-0001-5217-1467
https://orcid.org/0000-0002-4778-5744
https://orcid.org/0000-0001-9558-179X
https://orcid.org/0000-0002-3626-9939
https://orcid.org/0000-0001-5078-0031
https://orcid.org/0000-0001-6721-233X
https://orcid.org/0000-0001-8353-2915
https://orcid.org/0000-0003-1653-0658
https://orcid.org/0000-0002-2323-4753
https://doi.org/10.1145/3721145.3730414


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Minutoli et al.

we show that our approach is capable of processing a real-
istic social contact network of the United States with 285
million nodes and about 8 billion edges. This two orders-
of-magnitude improvement over the previous state-of-the-
art is obtained by leveraging algorithmic advancements for
the InfMax problem and designing several problem-specific
approaches to overlap communication with computation,
improve GPU efficiency, and lower the application’s memory
requirements.
We evaluate strong scaling for computing 10k most in-

fluential seeds using up to 8k nodes of an exascale system,
and weak scaling from 128 to 8k system nodes for seed sets
ranging from 625 to 40k seeds. We achieve the fastest-known
runtime of 25 minutes while performing 48 million diffusion
simulations totaling 2.31 petabytes to identify 40k influential
seeds using 8k nodes, and take 5.75 minutes to identify 10k
seeds while using 4k nodes.
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1 Introduction

Computational epidemiology aims to develop computer mod-
els and decision support systems to understand, predict and
control the spatiotemporal diffusion of disease through pop-
ulations. The models may range from descriptive, for exam-
ple, static estimates of correlations within large databases,
to generative, for example, computing the spread of differ-
ent kinds of contagions via person-to-person interactions
through a large population––these include the spread of
a disease, as well as (mis)information and fear about the
disease. Computational models help in understanding the
space-time dynamics of epidemics.
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Figure 1: Strong scaling on OLCF’s Frontier supercom-

puter up to 4,096 nodes on the USA-scale network. We

fix parameters to: 𝑘 = 10𝑘 , 𝜀 = 0.03, and 𝛿 = 0.01. This
problem instance does not fit on fewer than 1,024 nodes.

Due to ranks initializing at different times, we mark

the start of the program as the median start time of all

nodes.

The threat and impact of infectious diseases have shaped
our society and continue to be of major global importance
– the COVID-19 pandemic is a reminder that pandemics
will happen and cause severe social, economic, and health
impacts. Despite significant advances by scientists and public
health authorities, we continue to be surprised by disease
outbreaks of novel or known pathogens across the world and
are unable to mount a rapid and effective response. Climate
change, urbanization, globalization, immuno-compromised
populations, and the declining effectiveness of antibiotics in
treating common diseases pose new and difficult challenges.
Compartmental mass action models have been a corner-

stone of mathematical epidemiology. The basic idea is to
partition a homogeneously mixing population into a small
set of compartments representing the possible disease states,
e.g., susceptible (𝑆), infectious (𝐼 ), and removed/recovered (𝑅),
and specifying transition rates among the states. Compart-
mental mass action models, often represented using ordinary
differential equations (ODE), reproduce commonly-observed
features of outbreaks, such as a self-limiting period of nearly
exponential growth to a single peak followed by a gradual
decrease as the pool of susceptible (𝑆) population is depleted.

An alternativeway to study epidemics is to explicitly repre-
sent the underlying contact structure that drives an epidemic
[21, 27, 35, 43]. In this paper, we will focus on networked mod-

els, which consider epidemic spread on an undirected social
interaction network 𝐺 (𝑉 , 𝐸) over a population 𝑉 , each edge
𝑒 = (𝑢, 𝑣) ∈ 𝐸 implies that individuals (also referred to as
nodes) 𝑢, 𝑣 ∈ 𝑉 interact. The specific form of interaction de-
pends on the disease beingmodeled; e.g. sexually transmitted
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diseases require physical sexual contact, while influenza-like
illnesses require physical proximity. Let 𝑁 (𝑣) denote the
set of neighbors of v. The SIR model on the graph 𝐺 is a
dynamical process in which each node is in one of 𝑆 , 𝐼 or
𝑅 states. Infection can potentially spread from 𝑢 to 𝑣 along
edge 𝑒 = (𝑢, 𝑣) with a probability of 𝛽 (𝑒, 𝑡) at time instant 𝑡
after 𝑢 becomes infected, conditional on node v remaining
uninfected until time 𝑡 — this is a discrete version of the rate
of infection for the ODE model discussed earlier; we use 𝛽 to
refer to the vector of transmission probabilities over edges
over time. We let 𝐼 (𝑡) denote the set of nodes that become
infected at time 𝑡 . 𝐼 (0) denotes the set of source nodes where
the infection started; in general, there would be a lot of un-
certainty associated with the sources, and we assume they
are drawn from a distribution.

1.1 Problem Formulation

Intuitively, our goal is to choose an intervention that controls
the epidemic outbreak most effectively. Here, we focus on
vaccination strategies, i.e., which subset of nodes to vaccinate,
so that the expected outbreak size is minimized. If a subset
𝑋𝑡 of nodes are vaccinated at time 𝑡 , this can be modeled as
removing these nodes from the network at time 𝑡 , assuming
that the vaccine is perfect. It is possible that some nodes
of 𝑋𝑡 were already infected and become immune; in this
case, we assume the vaccine doesn’t impact their state. We
refer to the sequence X = (𝑋1, 𝑋2, . . . , 𝑋𝑛) as the vaccination
strategy. We assume there is a budget 𝐵𝑡 on the number of
vaccinations that can be administered at any time 𝑡 ; let B
denote the vector of budgets over time. Then, X is feasible if
|𝑋𝑡 | ≤ 𝐵𝑡 for all 𝑡 . Let #infections(𝐺, 𝛽, 𝐼 (0),X,B) denote the
number of infections for an SIR type disease model specified
by 𝛽 on 𝐺 , with the outbreak starting at set 𝐼 (0), when the
vaccination strategy is X and budget sequence is B. The
EpiControl problem is defined as follows:
Instance. Given a contact network 𝐺 = (𝑉 , 𝐸), a disease
model specified by 𝛽 , a set 𝐼 (0) of initial infections, and a
budget 𝐵𝑡 at each time.
Goal. Find a vaccination strategyX such that |𝑋𝑡 | ≤ 𝐵𝑡 for all
𝑡 , and the expected number of infections E[#infections(𝐺, 𝛽,
𝐼 (0),X,B)] is minimized.
This minimization problem has been shown to have a

direct relation with the maximization objective of the classi-
cal influence maximization problem [26]. More specifically,
given a graph𝐺 (𝑉 , 𝐸), a diffusion process𝑀 , and a budget
𝑘 > 0, the goal of the classical influence maximization prob-
lem is to identify 𝑘 vertices (as “seeds”) that maximize the
expected influence spread over the network. This problem
was first proposed by Domingos and Richardson [26] in the
context of viral marketing on online social networks, where
a product given freely to certain well-connected individuals

led to widespread adoption through a “word of mouth” prop-
agation, by building on ideas of network diffusion processes
in the social sciences. In [49], the authors show that the Epi-
Control problem of identifying a vaccination strategy X
(under budget 𝐵) can be reduced to identifying 𝑘 seeds un-
der the influence maximization problem, where 𝐵 = 𝑘 , with
the maximization objective set to the number of lives saved.
This problem transformation builds on the simple intuition
that for a node 𝑢 to be spared from the disease, there should
exist a vaccinated node along all paths from another infected
source to 𝑢. In essence, this strategy aims at building herd
immunity under budget constraints. Therefore, a subset of 𝑘
nodes that maximize the (probabilistic) reachability to the
rest of the network also signifies an optimal set of nodes to
be vaccinated.

While the preliminary results of [49] show the validity of
the approach, EpiControl algorithms are notorious for their
high computational and memory requirements [48]. The cur-
rent state-of-the-art generally limits at analyzing relatively
small networks with few millions of nodes and at most hun-
dreds million edges. When larger networks are used, the
experimental settings are such that they warrant reduced
computational and memory costs to arrive at the solutions
at the expenses of quality. Capitalizing on the key observa-
tions of [49] and recent algorithmic advancements [58], in
this paper, we make the next leap towards making scalable
influence maximization a practical option in implementing
pandemic planning by designing a parallel algorithm that
can process synthetic contact networks that are comparable
in size to the population of the United States of America and
in structure with its mobility patterns.

1.2 Contributions

Our key results include:

• The first parallel and distributed algorithm for the Epi-
Control problem based on OPIM-C [58] that can scale
on large distributed systems. Our proposed approach
includes communication and computation overlapping
techniques through a speculative execution scheme
that completely overlaps the simulation and seed se-
lection phases of the algorithm.
• A detailed performance study on how to optimize
the algorithm on the Frontier supercomputer at the
Oak Ridge Leadership Computing Facility (OLCF). We
present strategies to efficiently pack large graphs into
the GPUmemory of the system. Furthermore, we study
the efficiency of pseudo-random number generation
on GPUs, a vital component of diffusion simulations
within Influence Maximization algorithms.
• A tool that enables the analysis of US-scale contact
networks with ≈ 260𝑀 vertices and ≈ 8𝐵 edges. This
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tool demonstrates unprecedented scalability, achieving
nearly full machine runs on Frontier (8𝑘 nodes: 65𝑘
GPUs and 458𝑘 CPU cores). This provides a substantial
advancement in large-scale model exploration with
the potential to influence policy decisions, as has been
observed in previous works.

2 Related Work

Beginning in 2016 [34], several efforts have been made to par-
allelize InfMax on a variety of computing resources ranging
from multicore CPU-only servers to distributed multi-GPU
compute clusters [10, 24, 33, 51, 61]. Apart from some ap-
proaches based on mathematical programming to compute
InfMax better than the (1−1/𝑒)-approximation bound, most
efforts focus on two main approaches: reverse influence sam-
pling and greedy hill-climbing, which we will discuss briefly.
Reverse Influence Sampling (RIS): The Ripples library
represents the state-of-the-art InfMax implementations on
distributed multi-GPU systems [47, 48], and is based on the
IMM [59] algorithm that bounds the sampling effort for ap-
proaches leveraging RIS. Algorithms based on RIS generally
consist of two building blocks: (i) Randomized breadth-first
traversals collecting random reverse reachability (RRR sets)
information from the diffusion process originating at ran-
domly selected nodes, and (ii) a maximum 𝑘-coverage algo-
rithm used to select influential seeds (set 𝑆) from the RRR
sets. Performance analysis shows that computation is domi-
nated by the sampling steps producing the RRR sets [48], a
trait common to all RIS-based algorithms. Several techniques
have been proposed to accelerate sampling, such as fusing
the random traversals and collecting information as sketches
(summarizations) [30–32]. The Ripples framework imple-
ments similar ideas and is tailored to amortize the offloading
cost to GPUs as well as make better use of the memory band-
width of both GPUs and CPUs [50]. Recent approaches such
as GreediRIS [9] have also been developed to address the
scaling issues of the second building block (seed selection
phase) of the IMM algorithm.
The recent work of Neff et al. [50] shows the scalability

of the IMM algorithm up to 4k nodes (32k GPUs) of Fron-
tier at Oak Ridge Leadership Class Facility. However, their
largest runs are limited to selecting only hundreds of seeds on
networks with 4 million vertices. Modeling the memory re-
quirements of the IMM algorithm by analyzing the Ripples
implementation and the equations in Tang et al. [59], we
find that processing a USA-scale contact network with 258M
vertices would result in 223 billion RRR sets during the first
iteration of the algorithm that requires 892 petabytes of
memory to store them when assuming an average of 10 ver-
tices per RRR set. Frontier has 28 petabytes of aggregate

storage when considering the entire system’s DRAM and
SSDs, and therefore, necessitates innovation from this work.
GreedyHill-Climbing (GHC): The seminal work of Kempe
et al. [39] introduced the sequential greedy hill climbing
algorithm that is flexible for modeling different diffusion
models but computationally expensive. Its complexity is:
O(𝑘𝑛(𝑛 + 𝑒)𝜃 ), where 𝑛 is the number of vertices in𝐺 , 𝑒 the
number of edges, 𝜃 the number of simulations of the diffusion
process, and 𝑘 the size of the intervention set. Minutoli et al.
[49] used GHC to solve the epidemic control problem on city-
scale networks with few millions of nodes; and a subsequent
work by Barik et al. [10] used a graph partitioning-based
heuristic to scale GHC computations. However, their ap-
proaches have scalability limitations for problem instances
tackling intervention on US-scale social contact networks.
Computationally efficient RIS-based approaches (trade-off
between memory and compute) are better suited, if not the
only viable option, for problems of the scale considered in
this work. By following the established guideline in the lit-
erature using a 𝜃 value of 10k, GHC would need 10k years

to compute 10k seeds on a US-scale graph using 8k Frontier
nodes. This estimate is under the reasonable assumptions
that GHC simulations will be generated at the same rate
measured on Frontier for RIS-based algorithms and perfect
scalability. Therefore, innovation becomes necessary to solve
large inputs.
Epidemic Surveillance: Some of the earliest work on epi-
demic surveillance strategies was by Leskovec et al. [41], who
considered the problem of finding a subset 𝑆 ⊆ 𝑉 such that
testing 𝑆 would help in detection of an outbreak. Some of the
metrics considered include: detection probability, detection
penalty (formalized as the outbreak size before detection),
and detection time. It was shown by [41] that the detection
probability (which is the probability that some node in set 𝑆
gets infected) is submodular, and the same greedy strategy
as for InfMax gives a (1 − 1/𝑒)-approximation. The penalty
is not submodular, but an alternative approach of penalty re-
duction can be shown to be submodular; the same approach
works for detection time as well. Thus an InfMax type solu-
tion, with suitable changes for each metric gives a solution
with good performance.

Models from previous works have been used to directly
inform policy decisions. For instance, Reich et al. [52] high-
lights how the Scenario Modeling Hub (SMH), which inte-
grated over 30 models developed by various teams of the
SMH, have been used as a part of an ensemble to inform deci-
sion makers on several occasions during the pandemic. Con-
sidering the demonstrated impact of prior modeling efforts,
the innovations from this work hold significant potential to
help inform future policy decisions.
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3 Scaling to Billion-Edge Graphs

3.1 The OPIM-C Algorithm

As discussed in §2, the need for massive numbers of sim-
ulations arises from the theoretical bounds proved for the
offline InfMax algorithms. Recently published online ap-
proaches provide better sample efficiency and come with the
advantage of processing information actively as simulation
results are produced, and provide ways of stopping at any
point of the computation to generate a solution along with
an estimation of its quality. However, online algorithms ar-
rive at solutions with the required quality from "below" and,
therefore, tend to perform higher numbers of iterations to
get to the final solution then offline approaches. In paral-
lel and distributed settings, a higher number of iterations
implies more communication than offline approaches. Our
distributed multi-GPU implementation is based on the best
known serial online Opim-C algorithm proposed by Tang
et al. [58] and listed in Algorithm 1. Our analytical model of
Opim-C estimated that a USA-scale contact network would
require ≈ 43 billion random reverse reachable (RRR) sets
amounting to 1.7 terabytes of memory requirements in the
worst case, under the same assumptions described in §2. This
requirement is within the reach of Frontier and allowed us to
push the limits to compute higher quality epidemic-solutions
by computing larger seed sets (𝑘) and by getting closer to
the theoretical approximation bound of 1 − 1/𝑒 (63% of the
unknown optimal solution).

Algorithm 1: Opim-C Algorithm [58]

Input: 𝐺 , 𝑘 , 𝜀, 𝛿
Output: 𝑆

1 𝜃0 ← thetaZero(𝑛, 𝑘, 𝛿)
2 𝜃𝑚𝑎𝑥 ← thetaMax(𝑛, 𝑘, 𝛿, 𝜀)
3 R1 ← Generate 𝜃0 RRR sets from 𝐺

4 R2 ← Generate 𝜃0 RRR sets from 𝐺

5 for 𝑖 ← 1 to ⌈log2 𝜃𝑚𝑎𝑥

𝜃0
⌉ do

6 𝑆 ← findSeeds(R1, 𝑘)
7 𝑐1 ← findCoverage(R1, 𝑆)
8 𝑐2 ← findCoverage(R2, 𝑆)
9 𝜎𝑙 ← lBound(𝑐2, 𝛿, 𝑛,R2)

10 𝜎𝑢 ← uBound(𝑐1, 𝛿, 𝑛,R1)
11 𝛼 ← 𝜎𝑙/𝜎𝑢
12 if 𝛼 ≥ 1 − 1/𝑒 − 𝜀 then
13 return 𝑆

14 else

15 Double the size of R1 and R2
16 return 𝑆

Algorithm 1 starts by determining the minimum (𝜃0) and
the maximum (𝜃𝑚𝑎𝑥 ) sampling effort to compute the solution
𝑆 . The algorithm then generates two collections of RRR sets:
R1 and R2, where R1 is used to compute candidate solutions
(Line 6) while R2 constitutes a test set used to establish a
lower bound on the quality of the current solution (Line 9).
At every iteration of the algorithm, the size of R1 and R2 is
doubled. When the estimated approximation bound (𝛼) ex-
ceeds the user-requested bound (Line 12), the algorithm stops
and returns the solution 𝑆 . To the best of our knowledge,
we provide the first parallel and distributed implementation

of Opim-C, which can also scale on the current generation of

exascale computing systems. Next, we will summarize the
key implementation features for efficient execution on dis-
tributed multi-GPU platforms such as OLCF Frontier.

3.2 Parallel OPIM-C Algorithm

Efficient implementation of Algorithm 1 on distributed sys-
tems requires optimized implementations for the three fun-
damental building blocks that occur within each round of
the algorithm: (i) generating the RRR sets using diffusion
simulations (i.e., sampling); (ii) seed selection using a max
𝑘-coverage algorithm; and (iii) computing the coverage of
the current solution on R1 and R2. Fig. 2 provides a high
level overview of Ripples’s design. Specifically, the figure
illustrates one iteration of the algorithm.

Each compute node (rank) extracts multiple RRR sets (rep-
resented by different colors) and generates local histograms
counting vertex frequencies within those sets. Ranks then
collaboratively compute a globally partitioned histogram,
each finding the most frequent vertex within its partition.
An all-to-all reduction identifies the globally most frequent
vertex, which becomes the next seed. Histograms are up-
dated to remove RRR sets containing the new seed, and the
process repeats until all seeds are selected. Between seed
selection rounds, if all remaining RRR sets fit on a single
node, they are copied to rank 0, and other ranks speculate
the execution of the next round of simulations (sampling)
while rank 0 finishes seed selection for the remaining seeds,
eschewing expensive communication overhead. At the end
of each round, all ranks calculate coverage, which is the per-
centage of RRR sets covered by the selected seeds from that
round of seed selection. Below, we describe each process in
more detail, including heuristics for efficient sampling.
Efficient Parallel Simulations: A simulation (or a sample)
begins by randomly selecting a vertex as the source of a
random breadth-first traversal (BPT) using edge weights as
the probabilities and one diffusion model. In this work, we
build on the fused BPT approach of Neff et al. [50]. Memory
requirements for Opim-C are dominated by the two collec-
tions of RRR sets R1 and R2 (about 1.7𝑇𝐵 for the US-scale
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Figure 2: Illustration of the key building blocks of computation in InfMax using the Opim-C algorithm: Sampling
(𝑁 /𝜃 RRR sets per rank, where 𝑁 is the number of MPI ranks), Find Seeds (counting to select 𝑘 seeds), and Find
Coverage (evaluating seed set coverage to determine if another round is required). During Find Seeds, if the
remaining uncovered RRR sets are small enough, they are gathered to rank 0 while other ranks speculatively

sample for the next round.

network). We implement our distributed sampling process
so that R1 and R2 are partitioned evenly among the 𝑃 ma-
chines involved in the execution. The input graph (US-scale
network) requires about 60𝐺𝐵 of memory when using 32-
bit floating-point edge weights representing the infection
probability. Therefore, to avoid communication during the
sampling process, we store separate copies of the input graph
on the host and on each GPU to prevent inter-GPU mem-
ory operations. We note that the GPU memory available on
MI250X is 64𝐺𝐵 per computing die. Our graph storage leaves
limited space on the GPU to store the RRR sets produced
during the simulations. Therefore, we adopt a more compact
representation of the graph through the quantization of edge
probabilities into 16-bit integers. This compact representa-
tion reduces the graph storage requirements to ≈ 48𝐺𝐵. The
application’s sampling engine dynamically dispatches tasks
to CPUs and GPUs participating in the construction of R1
and R2 [47]. We adopt the task-fusion techniques proposed
in [50] to amortize the cost of offloading tasks to GPUs and
avoid redundant work during the simulations.
Scalable Seed Selection: RIS-based InfMax algorithms per-
form seed selection using a maximum 𝑘-cover algorithm,
where greedy approaches provide an approximation of 1−1/𝑒 .
At each iteration, our algorithm first computes the global
histogram of the occurrences of the vertices in the graph
over the collection of RRR sets (R1) and adds the most fre-
quent vertex 𝑣 to the solution set 𝑆 . Once 𝑣 is added to the
final solution, all the RRR sets containing the vertex 𝑣 are

0 100 200 300 400 500 600
Seed

0

500

1000

1500

2000

2500

3000

Ti
m
e
(m

s)

Reduced Count Time (ms)
Local Max Time (ms)
MPI AllReduce Time (ms)
Update Counters Time (ms)

Figure 3: Breakdown of time (max) spent by all ranks

for each of the phases of findSeeds when 𝑘 = 625,
where 𝑘 is the number of seeds to find. The Local Max

Time (orange) is barely visible as it takes much less

time.

marked as covered and are prevented from being considered
in computing the histogram during the subsequent iterations.
The algorithm stops when the solution 𝑆 is of size 𝑘 . Since
the collection of RRR sets R1 is partitioned over 𝑃 ranks,
building the global histogram to select each of the seeds in
𝑆 requires a global reduction of the local histograms on 𝑃

ranks. We note that the histogram of a USA-scale contact
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network is ≈ 1𝐺𝐵 on each rank, so at full scale we would
need to reduce ≈ 9𝑇𝐵 of data into a single histogram for
each selected seed. To scale this step, we introduce a novel
scheme where a subset of |𝑉 |/𝑃 nodes are reduced on each
rank, where |𝑉 | is the number of vertices in the graph. The
top seed is then reduced from locally-owned partitions by
an all-reduce step computing the seed with max coverage
(through MPI_MAXLOC).

Moreover, we leverage the submodular structure of the
problem to avoid unnecessary communication. Figure 3 shows
the time spent during the early iterations of of findSeeds.
Here, we see the first several seeds incur an expensive update
cost, but quickly shrink to a constant ≈ 350𝑚𝑠 for inter-node
reduction which, at 10k seeds, would require almost 1 hour
for each round, which is infeasible considering Opim-C typ-
ically requires iterations to reach the specified quality. To
address this communication bottleneck, our implementation
monitors the size of the remaining uncovered RRR sets and,
as soon as the cumulative size of these sets is small enough
to fit in a single machine, we gather all the uncovered sets
to rank 0 and complete seed selection from a single machine.
Note: this does not restrict the total size of RRR sets to a
single machine. To further improve the throughput of the
algorithm, we safely avoid updating the histograms once
each selected vertex covers only one RRR set. For histogram
updates, once a newly selected seed covers one RRR set,
all remaining seeds will cover no more than one RRR set.
At this point, instead of an expensive update operation, we
can pick one vertex from each remaining RRR set as a new
seed until |𝑆 | = 𝑘 . Each seed is guaranteed to be unique and
non-overlapping.
Find Coverage: The findCoverage algorithm is used as an
estimator of the influence function. This function computes
the number of RRR sets that are covered in R1 and R2 by
the vertices included in the current solution 𝑆 . The coverage
value is used to compute the upper and lower bounds as
described by the theoretical analysis in [58]. We note that
our implementation distributes R1 and R2 over 𝑃 ranks, and
therefore, our implementation requires reduction of the lo-
cal coverage into a global value on each rank. We fuse the
computation of 𝑐1 (Line 7) into the seed-selection step; only
𝑐2 requires explicit computation.
Speculative Execution: Moving the seed selection process
to a single machine as soon as the computation fits in mem-
ory provides the best application performance. However, this
approach alone is wasteful of computing resources at scale,
and therefore, we complement it by introducing speculative

sampling. While rank 0 is busy completing the solution for
iteration 𝑖 of Algorithm 1, the remaining 𝑃 − 1 ranks work
on expanding R1 and R2 that will determine the solution of
iteration 𝑖 +1. Our ablation study shows that growing R1 and

R2 by doubling their sizes does not provide enough work in
the early iterations to keep a large system busy for the entire
duration of seed selection, and also delays completion in later
iterations. To address this load balancing problem, we train
a predictor of the sampling effort at each iteration that aims
at balancing the execution time of the speculative sampling
and the seed selection process, and use the predictor to de-
termine the growth rate of R1 and R2. The doubling strategy
in Algorithm 1 is suggested by [58] to make the OPIM-C
algorithm comparable to the rest of the offline InfMax algo-
rithms literature. However, due to the online nature of the
approach, the doubling is not a requirement to preserve the
approach’s approximation guarantees. Empirical evidence of
the effectiveness of adapting the growth rate of R1 and R2
to load balance the overlapping sampling and seed selection
phases is presented in §5.

4 Experimental Setup

4.1 Application Used for Experiments

The application is rooted in highly resolved, individual-based,
computational epidemiology at the US national level. For
this, we have constructed a network capturing all the peo-
ple of the US and their contacts throughout a typical day.
These contact networks are constructed through a method-
ology using synthetic populations developed and refined
by the computational epidemiologists at the University of
Virginia over three decades (see, e.g. [2, 7, 14, 16, 21, 28, 64]).
These and their associated populations have had broad ap-
plication in computational epidemiology [3, 20–23, 36, 53],
transportation analysis [15, 29, 55], resilience assessments of
socio-technical systems [11], evacuation studies [18, 37, 38],
and planning scenarios addressing options for renewable
energy [45, 46, 57, 60].
The network construction, which is based on an exten-

sive collection of public and commercial data sources, uses a
broad range of techniques (e.g., data fusion, data modeling,
andmachine learning) in conjunctionwith high-performance
computing to construct and validate the following data com-
ponents for a given region (e.g., the US) at a specific spa-
tial resolution (e.g., block group): (i) A population 𝑃 parti-
tioned into a collection 𝐻 of households, all with associated
demographic and application-specific attributes. (ii) A de-
tailed representation of individual residential and non-res-
idential locations captured as a set 𝐿. (iii) A mapping Λ𝑅

of households to residential locations of 𝐿. (iv) For each
person 𝑝 ∈ 𝑃 , an assignment of a daily activity sequence
𝑎𝑝 = (𝑎𝑝,1, 𝑎𝑝,2, . . . , 𝑎𝑝,𝑘 ) where activities 𝑎𝑖 have type (e.g.,
home, work, school), start time, and duration. (v) A mapping
Λ that for each person 𝑝 and each activity 𝑎𝑝,𝑖 assigns a lo-
cation ℓ ∈ 𝐿. The maps Λ and Λ𝑅 coincide when restricted
to activities of type home. We remark that assignment of
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work activities is done to match the ACS commuting flows
in the case of the US [1]. (vi) Using the location assignment
Λ, a modified Erdős-Rényi random graph model is applied
at each location ℓ ∈ 𝐿 to infer which pairs of simultaneous
visitors 𝑝 and 𝑝′ come in contact and are connected by an
edge {𝑝, 𝑝′}. The union of these location graphs𝐺ℓ form the
contact networks 𝐺 used in this work.
The resulting synthetic populations statistically match

the real populations of each block on their demographic
attributes and household structure distributions. The same
holds for the county-county commute flows which govern
the assignment of people’s activities to locations. The net-
work was validated using real-world information that pro-
vided details about typical contact rates (such as typical
number of interactions), degree distributions, size of a giant
component and various metrics related to connectedness,
see [21] (SI-Section F), and are consistent with other pub-
lished observations on contact networks. The US-scale graph
used for empirical evaluation has 284, 567, 557 vertices and
7, 544, 209, 380 directed edges, and each edge weight (infec-
tion probability) is a simple linear mapping of the contact
duration from 0.0 (no duration) to 0.25 (12 hours or more).

4.2 System and Environment for

Experiments

We perform all our benchmarking and scaling studies in this
work on the US Department of Energy’s Frontier located at
the Oak Ridge Leadership Computing Facility (OLCF). The
full system comprises 74 cabinets each with 128 compute
nodes, for a total of 9,408 nodes. The nodes are connected
through an HPE Slingshot network with each node having 4
NICs. Each compute node includes a 64-core AMDOptimized
3rd Gen EPYC CPU, 512𝐺𝐵 of DDR4 memory, and four AMD
MI250X GPUs (Figure 4). Each AMD MI250X includes two
Graphics Computing Dies (GCDs) with 64𝐺𝐵 of HBM2E
memory. From a user perspective, one can think of GCDs as
separate GPUs. The GCDs are connected to each other and
to the CPU on the host through Infinity Fabric links. Each of
the compute nodes on Frontier has two 1.92𝑇𝐵 Non-Volatile
Memory (NVMe) storage devices. The full system has 75k
AMD GPUs and 600k CPUs, amounting to over half-a-billion
stream processors (14,080 stream processors per MI250X).
We use up to 8,192 nodes in our work.

Our application is developed in C++ using MPI + OpenMP
+ HIP. All our experiments were compiled using PrgEnv-
amd/8.3.3, which includes HIPCC 5.3.22061-e8e78f1a and
AMD clang 15.0.0. We use the ROCm runtime version 5.3.0,
MPICH runtime version cray-mpich/8.1.23, TRNG version
4.25 for random number generation, and ROCm-Thrust ver-
sion 5.3.0. The application code and all the benchmarks are
compiled with optimization flags -m64 -O3 and to instruct

Figure 4: Simplified illustration of a Frontier node

(Image credit: OLCF User Guide[6]) with an overlay

showing how our application maps on the hardware.

Crossed out cores are reserved to perform OS services

with the low-noise configuration; the nodes outlined

in black execute tasks on the CPU; the cores outlined

in salmon are used to perform GPU offloading to the

GPU closest to it.

the memory allocator to use interleaving across NUMA do-
mains. Our performance analysis showed that the applica-
tion is memory bound and, therefore, we avoid using hyper-
threading by setting the number of OpenMP threads to 56 and
OMP_PLACES to CORES. We unset MPICH_OFI_NIC_POLICY
and, for the 8,192 node strong scaling run, we set FI_CXI_
OFLOW_BUF_SIZE and FI_CXI_OFLOW_BUF_COUNT to 4× their
default value as advised by the facility.
Experimental Setup: Our application implements custom
engines to dynamically dispatch work to CPU cores and
GPUs so that every processing element on the node con-
tributes to the global solution as suggested in [47]. The en-
gine has two types of threads: (i) CPU workers consuming
tasks on the CPU cores, and (ii) GPU workers offloading
tasks to the 8 GPUs. CPU and GPU workers leverage fused
probabilistic traversals as described in [50] and we balanced
the CPU and GPU task-binding rates of the dynamic sched-
uler through preliminary tuning studies on the machine as
detailed in [50]. CPU workers are organized into teams of
6 and consume tasks at a rate of 14 simulations at a time.
Contrarily, GPU workers operate independently and push
work on the 8 GPUs at the rate of 64 simulations at a time.
All our experiments use the low-noise configuration in Fig. 4.
In low-noise mode, the cores that are crossed out in Fig. 4
are reserved to perform operating system tasks while the
rest are available for the user application. We map one core
per L3 cache region to its corresponding closest GPU. The
custom application engine maps the GPU workers to the
green-marked cores and the CPU workers to the red-marked
cores in Fig. 4.
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Although available in Ripples, we disabled the use of
GPUs for the seed-selection step: (findSeeds) in our exper-
iments. Enabling the use of GPUs requires swapping the
input graph (USA-scale network) in/out of the GPU memory
at each iteration of the algorithm. The additional data move-
ment negates any potential performance boost we would
get from leveraging GPUs during seed selection for graphs
of the US-scale. Finally, this choice enables the speculative
sampling approach that is central to our approach.
We report the results from two ablation studies in §5:

(i) a benchmarking and detailed performance analysis; and
(ii) a scalability study. The benchmarking and performance
analysis allowed us to evaluate various design options, pro-
viding critical insights that informed the development of our
approach. Specifically, we considered factors such as: (i) dif-
ferent graph representations; (ii) parallel pseudo-random
number generators using integer or floating point opera-
tions; (iii) different reduction strategies for the findSeeds
algorithm; (iv) different data movement strategies to aggre-
gate the RRR sets on rank 0; (v) the effect of speculative
sampling on performance; and (vi) the effects of the load
balancing between the findSeeds algorithm and the simula-
tion process. Ourmicro-benchmarks use the US-scale contact
network as input when the scope of the inference requires a
large input. However, for node-level measurements that do
not require large inputs, we use different synthetic networks
generated by NetworKit [5]: (i) Barabasi-Albert [8], (ii) LFR
[40], (iii) RMAT [19], and (iv)Watts-Strogatz [62]. We report
average execution time from multiple runs of a given feature
being tested in the micro-benchmarks.

We present a performance analysis of our approach as im-
plemented in the Ripples framework with strong and weak
scaling studies using a USA-scale contact network as the
input (§4.2). We used a very simple analytical model to esti-
mate the memory requirements so we could fit the problem
instance on 1024/128 nodes for the strong/weak scaling stud-
ies, respectively. We prioritized configurations with better
approximation guarantees. The algorithm has a constant
approximation factor of 1 − 1/𝑒 − 𝜖 and we used setting
𝜖 = .03 (previous SOTA was 𝜖 = .13) that provides 60% ap-
proximation with probability 99% (𝛿 = 0.01). For the strong
scaling study, we use parameters: 𝑘 = 10, 000, 𝜀 = 0.03, and
𝛿 = 0.01. We study the strong scaling of our application
from 1,024 nodes up to 8,192 nodes, as our problem instance
won’t fit on smaller allocations on Frontier. We study the
weak scaling of our application relative to the solution set
size (𝑆), specifically evaluating performance from 128 nodes
(𝑘 = 625) to 8,192 nodes (𝑘 = 40, 000). The remaining param-
eters stay unchanged. All our experiments report wall-clock
time from when the program starts reading the input file to
its completion.

5 Performance Results

5.1 Micro-Benchmarks and Ablation

Studies

Optimal GraphData Structure:Our application represents
the input graph in Compressed Sparse Row (CSR) format. To
improve the memory behavior of our application, we have
experimented with two different memory layouts of the CSR
format to store the input. While the first layout stores the
graph in an Array of Structures (AoS), the second layout
employs a Structure of Arrays (SoA). SoA are generally pre-
ferred when using GPUs, while AoS tend to be favored on
CPUs. Our application originally used two different repre-
sentations for CPUs (AoS) and GPUs (SoA). However, this
strategy incurs the additional cost of converting the CPU
data layout into an SoA. Our micro-benchmarks (Fig. 5) on a
collection of synthetically generated graphs showed that the
performance of diffusion simulations benefit from using the
SoA also on CPUs. Figure 5 plots the difference in execution
time between AoS and SoA when varying the scale of the
input, with AoS generally performing better from scale 16
onward.
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Figure 5: Difference in execution time of the simula-

tions algorithms on synthetic networks between the

graph layout in Struct of Arrays (SoA) and Array of

Structures (AoS) on CPUs. Times above zero means

SoA is better.

Pseudo-Random Number Generation: The performance
of diffusion simulations is significantly influenced by the per-
formance of the Pseudo-Random Number Generator (PRNG).
We use the TRNG4 library, which provides highly performing
PRNGs [13] and is used in the Ripples framework [47, 48].
While performant approaches on CPUs are well-established
in practice [12], performant PRNGs on GPUs are still evolv-
ing. We mentioned in §3 that we quantize the edge weights
to conserve memory in order to store the results of the simu-
lations required by InfMax. We compare two approaches to
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tions during simulation. The roofline shows rescaling

outperforms bitshifting in both performance metrics.

generate pseudo random numbers. The first approach (Fig. 6
Bitshift) consists of generating a 64-bit number and then
taking the high 16 bits, as they are higher quality random
numbers. The second approach (Fig. 6 Rescaling) instead
uses rescaling through floating-point operations to convert
the 64-bit number in a proper range and then casts the value
to integer type. Considering that integer operations are gen-
erally faster than floating-point operations, one might expect
that using the first approach relying solely on integer opera-
tions might provide the best performance. Surprisingly, our
roofline analysis (Fig. 6) shows that for the rescaling method,
we get a substantial increase in performance. In fact, we mea-
sure an increase of arithmetic intensity of 488 GIOPS (1.25×)
and 163 GFLOPS (19×) when moving from the bitshifting to
the rescaling method. We note that our workload is in the
“memory-bound” region of the roofline (below the inclined
solid line). Therefore, using floating-point units to generate
pseudorandom numbers reduces the pressure on the integer
units to generate more memory references, and consequen-
tially, improves application performance. The workload and
device architecture must be taken into careful consideration,
as other PRNG approaches may be more suitable in different
scenarios.
findSeeds Communication: In §3, we noted findSeeds
needs to reduce the local histograms storing the frequency
of each vertex in the collection of RRR on each machine
into a global histogram (Fig. 2). We benchmark two different
approaches to solve this problem. The first approach sim-
ply performs a reduce operation on a vector of size 𝑛, the

number of vertices in the input. The second approach block-
distributes the global histogram across the 𝑃 participating
machines and performs 𝑃 reductions of size 𝑛/𝑃 . Our micro-
benchmarks show that the second approach is on average
1.1× time faster than the other. While this gain might seem
slim at first, it gets amplified by a factor of 𝐼 · 𝑘 , where 𝑘
is the number of seeds selected over the single execution
of findSeeds, and 𝐼 is the number of rounds of findSeeds
that the application will run to find the final solution. We
note that our large runs use 𝑘 values from 10k to 40k, and 𝐼
is generally between 3 to 6.
Fig. 3 shows the time breakdown of a single iteration

of findSeeds when 𝑘 = 625. Two important observations
emerge from Fig. 3. First, the early iterations of the algo-
rithm take ≈ 7× more than the following iterations, which
implies that seeds selected early cover many of RRR sets,
and coverage quickly decays. The rate at which the decay
happens for our network is justified by the theoretical re-
sults of Kempe et al. [39], who showed that the influence
function, estimated through coverage, is submodular (has
diminishing returns). The second important observation is
that communication costs are fixed. At the specific scale of
this experiment, each round of the algorithm incurs a cost of
≈ 350𝑚𝑠 in network communication cost per selected seed.
These observations motivated our implementation, which
moves the data, necessary to select the remaining seeds, to
rank 0 as soon as it is profitable to do so.
Speculative Execution and Load Balancing: Speculative
execution alone would cause under utilization of resources,
as illustrated in Fig. 7. The top and the bottom figures show
the timeline of execution of the first 600𝑠 of the application
running at on 2048 nodes before (top) and after (bottom) in-
troducing the speculative sampling and predictor to balance
the simulations with the selection of seeds. The timeline
highlights when the predictor determining the growth rate
of R1 and R2 successfully hides the sampling process by
overlapping it with the findSeeds step (green), and when
the predictor overshoots and the sampling process lasts more
than findSeeds (red). In the ideal case, we want to balance
the two tasks and we should observe only very thin red or
green boxes between iterations.

5.2 Strong and Weak Scaling Studies

The high watermark we achieve in this study is performing
InfMax on a US-scale network to compute 40k seeds in 25
minutes while performing 48 million diffusion simulations
using 8k nodes of Frontier with 65k GPUs and 458k CPUs.
We take 5.75 minutes for 10k seeds using 4k nodes. In con-
trast to a normal scaling studies, our work is motivated by
executing InfMax on a US-scale realistic network that posed
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Figure 7: Timeline of performing InfMax on 2048

nodes with 𝑘 = 10k, 𝜀 = 0.03, and 𝛿 = 0.01, where 𝑘

is the number of seeds, 𝜀 is the approximation factor,

and 𝛿 is the failure probability. The top timeline shows

the first 600 seconds of the initial implementation of

Ripples after the gather optimization. The bottom plot

shows the final implementation with all applied opti-

mizations, including the rank 0 gather and speculative

execution, where red boxes indicate seed selection fin-

ished before sampling, and green boxes indicate the

opposite. The optimized implementation shown in the

bottom timeline better utilizes all compute nodes, com-

pleting the computation in under 600 seconds, unlike

the initial implementation. (Note: This description was

generated with the help of Google Gemini 2.0 Flash.)

significant challenges at smaller number of nodes due to
memory requirements.

We observe linear scalability in our strong scaling studies
from 1024 to 4096 nodes. After that we observe a slight in-
flection at 8192 nodes. There are two factors that cause this
inflection: (1) Our job experienced an abnormal startup time
(and we report total execution time) with many of the nodes
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Figure 8: Timeline of performing InfMax on 8192

nodes with 𝑘 = 10𝑘 , 𝜀 = 0.03 , and 𝛿 = 0.01, where 𝑘

is the number of seeds, 𝜀 is the approximation factor,

and 𝛿 is the failure probability. Red boxes indicate seed

selection finished before sampling, and green boxes

indicate the opposite. Note the large startup delay and

time spent on Reduced Count, which uses all-to-all com-

munication, compared to previous timelines.

taking up to 100 seconds to start the execution (Fig. 8). Even
when accounting for this anomaly, our total execution time
would be at around 5 minutes which is close to what the
execution time of our 4096 nodes run. (2) In Fig. 9, we extract
the time waiting for MPI_IReduce, which is the same cul-
prit communication cost described in § 5.1, to reduce counts
between all nodes during findSeeds. This poor scaling be-
havior ultimately limits the scalability of the 8k node setup,
as shown by the purple line where the total time without the
MPI_IReduce overhead is plotted as a reference.

Exactly controlling the amount of work performed by our
application is extremely challenging. We chose to double 𝑘
at each step of the study because it is in a linear relationship
with the initial number of simulations performed. However,
the speculation and the predictor vary the total number of
simulation performed at each configuration. Therefore, to ac-
count for this variability we normalized our execution times
by the total number of simulations performed. The weak
scaling study (Fig. 10) shows almost perfect weak scaling
for the simulation phase, while the findSeeds algorithm
show good weak scaling up to 2048 nodes. The degradation
is caused by the larger number of simulations between 4096
and 8192 preventing the use of our heuristic that speeds
up the final phases of seed selection in the rest of the runs.
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Figure 9: Strong scaling from 1024 nodes up to 8192

nodes on the USA-scale network. We fix parameters to:

𝑘 = 10k, 𝜀 = 0.03, and 𝛿 = 0.01, where 𝑘 is the number of

seeds, 𝜀 is the approximation factor, and 𝛿 is the failure

probability. This problem instance does not fit on fewer

than 1,024 Frontier nodes. Due to ranks initializing at

different times, wemark the start of the program as the

median start time of all nodes. Strong scaling reverses

after 4,096 nodes, indicated by the increasing cost of

MPI_IReduce.

More iterations before reducing to a single node for the re-
maining seeds in seed selection leads to more MPI_IReduce
rounds, making worse a similar issue shown earlier with
strong scaling.

6 Implications

Influence Maximization: This work represents the first
execution of InfMax on graphs that are comparable in size
with the US population and over two orders-of-magnitude
larger than the previous state-of-the-art. We show the results
from a run with 10k seeds in Fig. 11. Our results were en-
abled by a new algorithm and many optimization techniques
aiming at improving scaling. We believe that this work will
advance both the theory and practice of graph analytics and
will motivate algorithmic innovations and novel applications
beyond influence maximization. Given the scalability of the
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Figure 10: Weak scaling normalized with the number

of simulations and nodes to highlight its impact on

sampling and seed selection. While weak scaling is

nearly perfect, it encounters a similar scaling issue

with MPI_IReduce within findSeeds at 8,192 nodes, as

seen in Fig. 9

Figure 11: A spatial breakdown of the 10k seeds by

state depicted using a grayscale gradient. Seed vertices

correspond to persons in the synthetic population for

which the US network was generated, and accumula-

tion is done through person’s residence state. Califor-

nia has the largest number of seeds, accounting for

nearly 12.7% of the 10k seeds.

codes, we can now consider deploying the software for real
world applications that are sensitive to response times.
Implications for Pandemic Planning andResponse:The
role of major hubs as sources of importation of infectious
diseases into the US has been well documented for H1N1
and more recently COVID pandemics, see, e.g., the CDC
report [54]. Detailed analysis of the role of large hubs on
disease propagation is undertaken in a number of papers
including [4, 17, 25, 42] All of the pandemics in the last 50
years or more have arrived to the US via individuals coming
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to US, e.g., [44, 63]. This can include visitors, or residents
who might have gone and visited other countries. Today,
most of these initial cases arrive at one of the international
airports. Informally, importation refers to the arrival of the
first few cases of a pandemic to a region that would lead to
a sustained transmission in the region. Importation time is
a critical measure for planning a more efficient response to
the pandemic. It enables policy makers to start preparation
and, as discussed in subsequent sections, put a testing and
quarantine regimen in place to slow the importation time.

If cases arrive at one of the large international airports, an
important policy question is: How fast will pandemic spread

to other parts of the country? One way to capture the speed
of spread is to use a quantity called “importation time”. Infor-
mally speaking, for a region 𝑅, the importation time 𝑖𝑚𝑝 (𝑅)
is the expected time for the number of infections in the re-
gion 𝑅 to reach a threshold quantity 𝑅𝑡ℎ , assuming that initial
infections reach the international airports at time 0. Our goal
is to understand the distribution of expected importations
times in all the states in the US (i.e. the regions 𝑅 correspond-
ing to the states of US). Threshold value𝑅𝑡ℎ is used to capture
the fact that once this threshold value is reached, then the
epidemic can take off in that region 𝑅; we assume 𝑅𝑡ℎ to be
defined in terms of a percentage of the population in 𝑅.

This notion of importation is closely related to the notion
of “detection penalty” in a region 𝑅, studied by [41]— this
is the number of infections in 𝑅 by the time the outbreak is
detected in 𝑅; Leskovec et al. [41] show that an alternative
objective, namely reduction in penalty, is submodular, with
similar structure as the InfMax problem. Our parallel algo-
rithms can be used to study importation times for pandemic
planning. For this, we would use both optimal strategies and
random strategies for seed selection to maximize the number
of infections. These numbers provide appropriate bounds
(worst case and expected) for pandemic to take hold in the
US.
Surveillance using different kinds of testing strategies is

a fundamental component of pandemic response for detect-
ing an outbreak, and identifying importations at incoming
ports is one way to slow down pandemic spread in the early
period. Testing is expensive to implement, in terms of costs
of materials and staffing. For instance, testing on a large
scale for accurate estimation of disease prevalence has only
been done in a small number of regions during the COVID
pandemic, e.g., [56, 65], due to its expense. Different kinds of
metrics of public health interest are probability of detection
of an outbreak, estimation of prevalence, and early detection.
InfMax based methods can be highly valuable in finding
solutions to optimize these metrics, which can help us under-
stand how much testing is needed (dependent on test error
rates) to slow down the spread. However, spread simulations
at nation-scale and perhaps global-scale will be necessary

to better prepare and plan for future pandemics—which is
where our work here on scaling InfMax on the exascale
OLCF Frontier platform is an important step.
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