
Statistical Treatment of Variable MPI Latencies and
MPI-Communication Hiding for Matrix-Free Finite

Element Operators
Max Heldman

Virginia Tech

Department of Mathematics

Blacksburg, VA, USA

maxh@vt.edu

Johann Rudi

Virginia Tech

Department of Mathematics

Blacksburg, VA, USA

jrudi@vt.edu

Julie Bessac

National Renewable Energy

Laboratory

Computational Science Center

Golden, Colorado, USA

Julie.Bessac@nrel.gov

Abstract
We consider large-scale implicit solvers for the numerical

solution of partial differential equations (PDEs). The solvers

require the high-bandwith networks of an HPC system for

a fast time to solution. The increasing variability in perfor-

mance of the HPC systems, most likely caused by variable

communication latencies and network congestion, however,

makes the execution time of solver algorithms unpredictable

and hard to measure. In particular, the performance vari-

ability of the underlying system makes the reliable compari-

son of different algorithms and implementations difficult or

impossible on HPC. We propose the use of statistical meth-

ods relying on hidden Markov models (HMM) to separate

variable performance data into regimes corresponding to

different levels of system latency. This allows us to, for ex-

ample, identify and remove time periods when extremely

high system latencies throttle application performance and

distort performance measurements. We apply HMM to the

careful analysis of implicit conjugate gradient solvers for

finite-element discretized PDE, in particular comparing sev-

eral new communication hiding methods for matrix-free

operators of a PDE, which are critical for achieving peak per-

formance in state-of-the-art PDE solvers. The HMM analysis

allows us to overcome the strong performance variability

in the HPC system. Our performance results for a model

PDE problem discretized with 135 million degrees of free-

dom parallelized over 7168 cores of the Anvil supercomputer

demonstrate that the communication hiding techniques can

achieve up to a 10% speedup for thematrix-freematrix-vector

product.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1537-2/25/06

https://doi.org/10.1145/3721145.3730413

Keywords
Numerical Linear Algebra, Matrix-Free Finite Element Meth-

ods, Performance Variability, High-Performance Computing,

Communication Hiding

ACM Reference Format:
Max Heldman, Johann Rudi, and Julie Bessac. 2025. Statistical

Treatment of Variable MPI Latencies and MPI-Communication

Hiding for Matrix-Free Finite Element Operators. In 2025 Inter-
national Conference on Supercomputing (ICS ’25), June 08–11, 2025,
Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3721145.3730413

1 Introduction
High Performance Computing (HPC) systems key capabil-

ities are performant compute nodes combined with a per-

formant network that exhibits low latencies and high band-

widths. Many applications in computational science and engi-

neering rely on performant networks generally. Specifically

in the context of the present work, HPC systems are well

suited for the computational solution of large-scale implicit

algebraic systems arising from discretized partial differen-

tial equations (PDEs) [26, 37, 41, 46]. Network latency and

bandwidth are known to be critical for performance, because

implicit PDE solvers exhibit lower computation to commu-

nication ratios relative to, for instance, dense matrix-matrix

multiplication.

Compute nodes of HPC systems have been becoming in-

creasingly capable as core counts andmemory per node grow.

In turn, this can increase pressure on network resources,

and as a result the variability of network communication

times has been observed to increase over the past decade

[12, 27, 55]. Additionally, HPC systems are shared resources

with hundreds or thousands of concurrently running jobs.

This creates variability in the load on the network and possi-

ble communication contentions that occur sporadically and

unpredictably. The increase in variance of communication

times can diminish the performance of many applications to

https://orcid.org/0000-0002-3602-2143
https://orcid.org/0000-0002-6563-9265
https://orcid.org/0000-0001-6407-2423
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3730413
https://doi.org/10.1145/3721145.3730413
https://doi.org/10.1145/3721145.3730413

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

Figure 1: Top: Performance variability of MatVec tim-
ings across iterations of an implicit solve. Warmer col-
ors indicate slowdowns and can affect most or all pro-
cesses at one iteration, but isolated slowdowns on only
a few processes are observed as well. Bottom: Classi-
fication of three regimes employed on the timing se-
quences (shown in top plot).

a much larger extent than an increase in themean of commu-

nication times [12, 56]. The run-to-run variability has caused

concerns [32] about confidence in and reproducibility of the

reporting of performance results. In addition to network vari-

ability, dynamic performance variability can also be caused

by the hardware or software on a compute node through

various mechanisms (e.g., noise of the operating system and

throttling of processor cores [22, 50, 55]).

The first purpose of this work is to address performance

variability from the perspective of the application of implicit

PDE solvers. We propose statistical treatment of the variabil-

ity in high-frequency timers that instrument the algorithms

of our solvers. In postprocessing, we can detect and filter

timing measurements within our algorithms (in this case,

matrix-vector products) into distinct regimes. This allows

us to analyze the performance at different, realistic latency

loads, which yields improved metrics for comparing the par-

allel performance of different implementations. With these

statistical tools, the second purpose of this work is to devise

new communication-hiding strategies to deal with variable

and imbalanced communication latencies in performance-

critical matrix-vector products.

1.1 Challenges of performance variability
We illustrate the challenges how performance variability af-

fects the timing of iterations during an implicit solve, in this

example using a (preconditioned) conjugate gradient method.

The Krylov solver mainly consists of matrix–vector products

(performed matrix-free for optimal computational efficiency,

see Section 2) and vector–vector inner products. The com-

munication is point-to-point during the matrix–vector mul-

tiplication; one Allreduce is required for each inner product.

Since the algorithm is static, the sequence of computations

and communications is identical for all iterations. Therefore,

the expected time per iteration is expected to be constant up

to (small) amounts of noise.

The illustration in Figure 1 (top), however, shows a dras-

tically different picture. Outliers in iteration times appear

sporadically, with extreme variation in magnitude. At a given

time, they can be present on any number of ranks (from a

handful to almost all ranks) within one iteration, and some

ranks can be affected by milder slowdowns for many con-

secutive iterations. The variability across iterations is most

likely caused by the HPC system and other jobs competing

for resources, because of the static nature of the executed

application. This results in strong differences between mea-

sured execution times from run to run. Therefore, we are

facing significant challenges when the objective is to mea-

sure the performance of an application.

An ensemble study of many repetitions of the same numer-

ical experiment would likely—though it is not guaranteed—

converge to a summary statistic (e.g., median or mean run-

time). In the presence of strong and frequent performance

variability, this requires very large amounts of computa-

tional resources and energy usage, which would increase

along with variability. Moreover, it incurs a high cost on

developers and slows down progress.

1.2 Model problem
We consider the numerical solution of an elliptic PDE for

scalar-valued functions 𝑢 : R𝑑 → R, 𝑑 ∈ {1, 2, 3},

−∇ · (𝜅∇𝑢) = 𝑓 in Ω (1)

with appropriate boundary conditions on 𝜕Ω. The given

forcing function 𝑓 : R𝑑 → R is on the right-hand side. The

coefficient of the PDE (1) is a positive, spatially varying scalar

field𝜅 : R𝑑 → R+. The Poisson Equation (1) frequently needs
to be solved in the context of computational fluid dynamics,

for example, for Stokes systems [46, 48] and Navier–Stokes

systems [23, 25], therefore they serve as a benchmark for

performance of implicit solvers [26, 43].

We discretize the computational domain Ω using hexahe-

dral meshes that can be adaptively refined, where adaptive

mesh refinement is based on the parallel forest-of-octree

library p4est [16]. The PDE solutions in Equation (1) are dis-

cretized with continuous nodal finite elements of polynomial

orders 𝑘 ≥ 1 and the discretization is nonconforming where

the mesh is adaptively refined. Upon discretization, we need

to solve an algebraic system of equations

Au = f (2)

with a sparse, positive definite matrix A ∈ R𝑁×𝑁 , where the
entries in the vector u ∈ R𝑁 are coefficients of the finite

element basis functions.

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

The number of degrees of freedom (DOF), 𝑁 , is typically

very large and (2) is very poorly conditioned. For an efficient

numerical solution, we employ preconditioned Krylov meth-

ods with multigrid as the preconditioner. Krylov methods

and our multigrid implementation [46] only require the ap-

plication of A to vectors, thus avoiding the construction and

storage of A [20]. The performance-critical subroutine of the

implicit solver becomes the matrix-free routine for apply-

ing the discretized PDE operator. This is referred to as the

MatVec. Latencies in point-to-point communication within

the MatVec often comprise the main bottleneck in parallel

numerical solutions of Equation (2) at large scales. To reduce

the cost of latency, we minimize the number of required

messages and hide the communication by overlapping it

with computations that are independent of communication.

One contribution of the present work is new techniques for

overlapping communication with computation during the

parallel application of MatVecs.

1.3 Current state
The impact of performance variability on a compute node is

confined to the job allocated on that node. This variability

may introduce synchronization related delays with other

compute nodes of the job that are not affected by any vari-

ability, but it does not directly impact the performance of

applications that do not communicate with the impacted

nodes. Performance interference primarily caused by com-

pute nodes have been discussed in [22, 33, 50, 59].

Shared networks pose further challenges in achieving con-

sistent run-to-run performance on large-scale HPC systems

when exclusive, system-wide allocations are not feasible. Net-

work interference between (independent) jobs is unlike the

performance variability of compute nodes, because it can be

greatly impacted by system behavior external to the job of

interest. Multiple independent job allocations can interfere

with each other through their shared network. Networks are

increasingly encountering performance variability as their

available bandwidth with respect to network injection rates

decreases. A focus shift from compute node performance

variability to the network is also observed in the literature

[12, 18, 27, 29, 30, 55, 60]. The growing disparity between net-

work traffic and communication latency and bandwidth leads

to increased chances of network contention and network per-

formance variability. In turn, the performance of applications

is greatly impacted by the variability [18, 21, 30, 56, 63].

A research direction related to performance variability of

applications is the monitoring of entire HPC systems [2, 52]

and data centers [31], from an operator perspective. The

goals in that body of research are extraction of features (i.e.,

telemetry data) and employing these in models for anomaly

detection and their diagnosis or classification. A number of

approaches for anomaly detection and diagnosis have been

proposed [5, 14, 15, 36, 42, 54, 55, 61] along with approaches

for benchmarking performance variability with synthetically

generated system noise [17, 56]. Detection and diagnosis typ-

ically requires processing large amounts of data collected

from the HPC system with the aim to improve the system

performance and user experience. A major challenge is that

processing needs to be in real time. The methods employed

to process the data can be time-series models with regres-

sion fitting [34, 40], statistical and machine learning methods

for unsupervised learning [1, 13, 31, 44, 62], and supervised

learning [4, 7, 39, 55]. While the cited literature addresses the

challenges arising from performance variability, especially

those caused by network congestion, from a system oper-

ation perspective, our work differs by taking the vantage

point of the application. In particular, our work takes the

perspective that we do not have access to data of the system.

In our application, we computationally solve finite-element

discretized PDEs based on fast and efficient parallel matrix-

free MatVec routines within the context of a Krylov solver.

Inside the MatVecs, overlapping the necessary point-to-point
communication of shared discretization nodes with compu-

tations on nonshared nodes is critical to attain performance

at large scales. Nonblocking scatter–gather algorithms for

communication are used in [24, 25, 53]. Scatter communi-

cates shared entries of the MatVec’s input vector among

neighboring processes, and gather communicates the contri-

butions from neighboring processes to the MatVec’s output
vector. It is more efficient to modify the communication to

gather-then-scatter if the input vector is always known to

contain consistent data on the shared entries [35]. In that

case, the communication phase of gather–scatter can be car-

ried out subsequently and can be overlapped with the entire

computation on nonshared discretization nodes.

The gather–scatter approach, however, can only be em-

ployed if the entire solver stack (including possible external

libraries) maintains the consistency of shared entries in input

vectors. If the assumption on input vectors is not possible,

two communication phases are required. The computations

on nonshared discretization nodes are then divided into two

phases, each of which is overlappedwith one of the communi-

cation phases. Existing finite element codes with two compu-

tation phases chose the computation volume to be equal for

both phases (i.e., splitting the communication-independent

computations in half) [6, 9, 38, 46].

In Section 2.4, we will propose two new methods for over-

lapping point-to-point communication within matrix-free

FEM operator apply routines. Our results in Section 4 specif-

ically compare the performance of matrix-vector products

within a (preconditioned) conjugate gradient routine. Our

research should not be confused with so-called pipelined

Krylov methods (e.g., [49]), which are designed to reduce the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

synchronization of global communication (e.g., Allreduce)

in Krylov iterations. In future work, we will investigate the

combination of our point-to-point communication-hiding

methods with pipelined Krylov methods to further improve

the performance of the Krylov solver.

2 Methods and Contributions
2.1 Summary of Contributions
Statistical treatment of performance variability. We

propose to use unsupervised learning with hidden Markov

models and Gaussian mixture models for highly variable

measurements of performance timings, which have a tempo-

ral dependence (see Section 2.2).

Measurement and analysis of detailed timing se-
quences across parallel processes. We instrument sub-

routines in our MatVec implementations (see Section 2.3) to

emit detailed timing sequences for individual parallel pro-

cesses (i.e., MPI ranks). We use our statistical tools to analyze

the sequences in postprocessing. We separate realistic com-

putation loads with variable communication latencies into

distinct regimes.

Improved communication hiding in MatVecs.We pro-

pose two new methods for overlapping point-to-point com-

munication with finite-element computations in MatVecs,
called dynamic 𝛼 and MPI test, which improve resilience to

performance variability (see Section 2.4). We compare the

performance to an established communication-hiding strat-

egy, called fixed 𝛼 . We are able to analyze the improvements

of the proposed methods more reliably with our proposed

statistical tools (see Section 4).

2.2 Statistical methods for variable
background latencies

This section describes the statistical methods we use to iden-

tify latencies in the timing data. The timing data of implicit

solver iterations 𝑘 , 0 ≤ 𝑘 < 𝑛it (with 𝑛it total iterations)

and MatVec subroutines within an iteration present a nat-

ural stochastic variability, because HPC systems are prone

to performance variability across interconnected processes

𝑝 , 0 ≤ 𝑝 < 𝑃 (with 𝑃 total processes) as introduced in Sec-

tion 1. The statistical models we propose cluster the timing

data 𝑇𝑝,𝑘 of each MatVec on process 0 ≤ 𝑝 < 𝑃 at iteration

0 ≤ 𝑘 < 𝑛it into subpopulations that are constitutive of an

overall population (entire dataset) without being given any

other information about the subpopulation identification.

In practice, the clustering methods we use are applica-

ble when multiple modes (i.e., maxima) are observed in the

probability distribution of the entire population. Each mode

represents the distribution maximum of a subpopulation. Fig-

ure 2 shows the probability density estimates of the median

MatVec times over all parallel processes in three numerical

0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

0
1
0

2
0

3
0

4
0

Computation time (s)

S
q
u
a
re

−
ro

o
t
o
f
p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

fixed alpha = .5

dynamic alpha

MPI test

Figure 2: Probability density functions of median
MatVec times, med𝑘 (𝑇𝑝,𝑘), across processes 𝑝 for the
threemethods: Fixed alpha (black), dynamic alpha (red)
and MPI test (green). The square-root of probability
density functions is displayed to enhance the visual-
ization of small probability area.

experiments with several thousand iterations. Three modes

can be observed in each experiment’s distribution suggest-

ing the use of mixture models. The three methods, which

are introduced in Section 2.4, exhibit similar multimodality

suggesting the use of mixture models with three subpopu-

lations. Consequently, we propose the use of unsupervised

statistical mixture models that represent multimodal data

and characterize statistical properties of each subpopulation.

As latencies can exhibit correlation across iterations, we will

use Hidden Markov Models (HMM) [10, 11, 45] for which

the hidden variable describing the belonging to a subpopula-

tion is a Markov chain. In the following, we will refer to a

subpopulation as regime, and we will denote the number of

regimes by 𝑛reg.

Remark 1. Our clustering methods also apply directly to
the analysis of reduces time series 𝑇𝑘 of 𝑇𝑝,𝑘 computed across
processes. In that case, we consider the time series𝑇𝑘 to fall into
the special case 𝑃 = 1. In our numerical experiments, we will
consider the maximum reduction, 𝑇𝑘 = 𝑇max

𝑘
= max𝑝 (𝑇𝑝,𝑘)

taken across all processes for each iteration 𝑘 .

Mixture models represent the probability distribution of

the entire population as a weighted sum of 𝑛reg probabil-

ity distributions 𝑔(𝑇) =
∑𝑛reg

𝑖=1
𝜔𝑖𝑔𝑖 (𝑇), where 𝑔𝑖 is repre-

sents the probability distribution of subpopulation/regime

𝑖 , 1 ≤ 𝑖 ≤ 𝑛reg. Often Gaussian distributions are used to

represent each subpopulation 𝑔𝑖 , or other parametric proba-

bility distributions can be used. In the following, we consider

Gaussian distributions to model each subpopulation/regime

𝑔𝑖 ∼ N(𝜇𝑖 , 𝜎2𝑖) with mean 𝜇𝑖 and standard deviation 𝜎𝑖 . The

weights𝜔𝑖 for each distribution represent the unknown prob-

ability of occurrence of a regime. In order to match the mix-

ture model parameters (weights 𝜔𝑖 , means 𝜇𝑖 , and standard

deviations 𝜎𝑖) to the data, these are estimated on the data

during a calibration procedure, which is performed using

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

maximum likelihood [19]. In the case of HMM, the transi-

tion matrix Π ∈ R𝑛reg×𝑛reg between regimes is also estimated

during the calibration to data procedure. The resulting fit-

ted mixture provides a description of each subpopulation’s

probability distribution and a probability for each datapoint

to belong to each subpopulation. Typically, a datapoint is

assigned to the regime with the highest probability. After

the calibration (i.e., fit) of mixture models and HMM, the

most likely regimes for each datapoint are estimated via the

Viterbi algorithm [28, 58], which we employ hereafter. A

proper calibration typically leads to regimes with distinct

statistical properties pertaining to, but not limited to, their

mean and variance.

The treatment of MatVec timing sequences with HMM

faces the following three challenges. First, HMM has to be

employed on data from 𝑃 sequences that are recorded con-

currently, where 𝑃 is the (typically large) number of parallel

processes. Second, a large 𝑃 and a large count of iterations

make it numerically challenging to accomplish fitting with

maximum likelihood. Third, fitting needs to be robust to

modifications to numerical algorithms and their implemen-

tations to allow a fair comparison between different com-

putational techniques. We avoid fitting HMM on sequences

of all 𝑃 processes and provide a regime separation that is

consistent across processes as well as across methods. This

is achieved by subsampling a smaller number of represen-

tative processes and also subsampling the iterations used

for fitting. Algorithm 1 summarizes our approach for fitting

the MatVec timing sequences on parallel processes, and its

practical details are discussed in Section 3.1. We note that

HMM fitting for a reduced time series 𝑇𝑘 , as described in

Remark 1, is simpler than considering𝑇𝑝,𝑘 with all processes.

In particular, 𝑇𝑘 does not require subsampling and the first

two steps of Algorithm 1 are skipped.

Algorithm 1 Regime extraction with HMM & Viterbi

Input: MatVec timings 𝑇𝑝,𝑘 , 0 ≤ 𝑝 < 𝑃 , 0 ≤ 𝑘 < 𝑛it, of 𝑃

processes, 𝑛it iterations; number of regimes 𝑛reg

Psub ← select subset of processes representative for fitting

Isub ← select iterations of MatVec timings

𝜇𝑖 , 𝜎𝑖 ,Π ← fit HMM(𝑛reg) on data 𝑇𝑝,𝑘 , 𝑝 ∈ Psub, 𝑘 ∈ Isub
𝜌 (𝑇𝑝,𝑘) ← estimate regimes via Viterbi using 𝜇𝑖 , 𝜎𝑖 ,Π

⊲ for all 0 ≤ 𝑝 < 𝑃 , 0 ≤ 𝑘 < 𝑛it

When using HMM methods, one needs to select an appro-

priate number of regimes 𝑛reg (subpopulations). The number

of regimes is typically selected via quantitative indices such

as Akaike information criterion (AIC) / Bayesian information

criterion (BIC) [3] alongwith visual inspections. As discussed

above, Figure 2 supports the choice of three regimes for the

HMM to be fitted. Following this choice, the HMM is fitted on

the subsampled dataset using the R package hmmr [57]. Out-

come regimes of MatVec times are inspected in Section 3.1 to

visually assess the realism (e.g., separate statistical properties

in each regime) of the HMM fit.

2.3 Overview of the matrix-free FEM
algorithm

Let Ω𝑝 ⊆ Ω be the subdomain associated with the compu-

tational process 𝑝 . We partition the elements E on 𝑝 into

three groups, E1, E2, andM, E = E1∪E2∪M. The first two

groups, E1 and E2, are local elements that do not touch the

interprocess boundaries, andM are mirror elements that do
touch the interprocess boundaries. During the application

of a finite element operator A to a vector u, the computa-

tion on E1 is overlapped with the input communication of

degrees-of-freedom on elements inM that are not owned
by 𝑝 . Similarly, the computation on E2 is overlapped with

the output communication, which are contributions from

neighboring processes to elements onM owned by 𝑝 . The

general algorithm is presented in Algorithm 2 below.

Algorithm 2 Parallel MatVec

Start MPI receive: non-owned DOFs of u on 𝐸 ∈ M
MPI send contributions to owned DOFs on 𝜕Ω𝑃
Start MPI receive: owned DOFs on 𝜕Ω𝑃
for 𝐸 ∈ E1 (non-mirrors, 1

st
block) do

Compute contributions to Au = b on 𝐸

end for
FinishMPI receive: non-owned DOFs of u on 𝐸 ∈ M
for 𝐸 ∈ M (mirror elements) do

Compute contributions to Au = b on 𝐸

end for
Start MPI send: non-owned DOFs of u on 𝐸 ∈ M
for 𝐸 ∈ E2 (non-mirrors, 2

nd
block) do

Compute contributions to Au = b on 𝐸

end for
FinishMPI receive: owned DOFs of b on 𝜕Ω𝑃

The elements inM and E1 ∪ E2 are determined by the

parallel partition, which for the purpose of this work we

consider to be a black box. However, the subgroups E1 and E2
can be freely chosen for the implementation. In many finite

element implementations (e.g., in [38]), the elements in E1
and E2 are chosen to have equal size, thus |E1 | ≈ |E2 |. This
is a reasonable choice if one does not have any information

about the expected input and output latencies. Indeed, except

in extreme cases (e.g., process 𝑝 has no non-owned DOFs)

the balance of time spent waiting for input and output on a

particular process can be difficult to determine; it depends

on not only the relative number of owned and non-owned

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

Figure 3: Top: MatVec algorithm with 𝛼 = 1

2
. The blue

computation blocks are divided evenly and only par-
tially overlap input and output communication. Bot-
tom: MatVec algorithm with dynamically adjusted 𝛼 .
The blue computation blocks are divided to exactly
overlap input and output communication.

DOFs on the process boundary, but also on the number of

communication partners and the parallel configuration.

2.4 Communication hiding methods
In this section, we consider several strategies for optimizing

the splitting E1 ∪ E2 on each parallel process, other than

the baseline strategy of |E1 | ≈ |E2 |, to optimize the overlap

of communication and computation during the MatVec. We

encode the splitting using a parameter 𝛼 , 0 ≤ 𝛼 ≤ 1, such

that |E1 | = ⌊𝛼 |E1 ∪ E2 |⌋ and |E2 | = ⌈(1 − 𝛼) |E1 ∪ E2 |⌉.
We emphasize that we aim to find an optimal splitting for

every process 𝑝 , so that each process 𝑝 will use a different

value of 𝛼 . The baseline strategy described in Section 2.3 sets

𝛼 = 1

2
for all processes; this strategy is depicted in Figure 3

(top). In the illustrated case, because the time to receive

input communication is significantly longer than it is for the

output, the even splitting is not optimal and the solver needs

towait to receive input (during the portion of communication

block 1 extending beyond computation block 1). The bottom

image rectifies this problem by choosing 𝛼 > 1

2
, so that

a greater portion of computation time is spent in the first

half. The splitting in Figure 3 (bottom) is optimal, since both

communication blocks are now hidden by computations. In

addition, output communication can only be sent after mirror

element computations are completed. Hence, although one

could further extend the first computation block and still

completely overlap the first communication block, doing so

would delay the whole MatVec by delaying the initiation of

output communication.

In practice, the optimal value of 𝛼 on a given process can

be influenced by many factors, including the topology of

the computing environment and the local mesh geometry,

making it difficult to determine the balance of input and out-

put communication a priori. In addition, altering the value

of 𝛼 on one process can affect the optimal value of 𝛼 on

other nearby processes, as observed communication laten-

cies are not independent. Therefore, we choose to take an

empirical approach, using a fixed-point routine for updating

𝛼 at runtime based on observed input and output waiting

times, 𝑇 in

𝑘
and 𝑇 out

𝑘
at iteration 𝑘 . In an MPI implementation,

the waiting times measure the duration of the call to the

MPI_Waitall function. The new algorithm has three param-

eters: the initial value for 𝛼 , 𝛼0, which we always take to be

1

2
, 𝜃 ∈ [0, 1], which determines the size of each increment or

decrement to 𝛼 , and a zero-latency threshold 0 < 𝜀 ≪ 1. The

algorithm is presented in Algorithm 3. We refer to the new

method as the dynamic 𝛼 technique, because 𝛼 is updated

throughout a computation based on an observed pattern of

latencies.

Algorithm 3 Update of splitting parameter

𝑟𝑘−1 = 𝛼𝑘−1

1−𝛼𝑘−1
if 𝑇 in

𝑘
> 𝜀 and 𝑇 out

𝑘
< 𝜀 then

𝑟𝑘 = 𝑟𝑘−1
𝑇 in

𝑘

𝜀

else if 𝑇 in

𝑘
< 𝜀 and 𝑇 out

𝑘
> 𝜀 then

𝛼𝑘 = 𝑟𝑘

1+𝑟𝑘
end if
𝛼𝑘 = 𝜃𝛼𝑘 + (1 − 𝜃)𝛼𝑘−1

The idea of the algorithm is that, when 𝑇 in

𝑘
> 𝜀 is large

and 𝑇 out

𝑘
< 𝜀, then the latency of the output communication

block is already entirely hidden but the latency of the input

communication is not. Therefore, in that case we can improve

the overlap by shifting some elements from E2 to E1. This
is the scenario depicted in Figure 3 (bottom). Conversely,

when 𝑇 in

𝑘
< 𝜀 is small and 𝑇 out

𝑘
> 𝜀 is large, then we can

improve the overlap by shifting some elements from E1 to
E2. We shift the splitting variable indirectly by adjusting

𝑟𝑘 = 𝛼𝑘−1

1−𝛼𝑘−1 =
| E1 |

| E1 |+| E2 | , which is the percentage of the total

number of local elements in E1. Then, we apply damping

using the factor 𝜃 to avoid too rapid oscillations of 𝛼 , because

our goal is to improve the MatVec performance on themodal
communication pattern.

When either of the conditions

𝑇 in

𝑘
> 𝜀 and 𝑇 out

𝑘
< 𝜀

𝑇 in

𝑘
< 𝜀 and 𝑇 out

𝑘
> 𝜀

is satisfied, we refer to 𝑇 in

𝑘
or 𝑇 out

𝑘
as excess waiting time.

The zero latency threshold, 𝜀, is chosen empirically so that

it is a fraction of the overall computation time available

to cover the communication. The size of the shift depends

on the magnitude of the input and output communication;

if the communication times are larger (smaller) then the

adjustment becomes larger (smaller). In other cases, when

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

there is no excess waiting time, we do not change 𝛼 because

the communication is already completely overlapped with

computation or the communication time is too large to be

hidden.

In Section 4, we compare the performance of MatVec op-
erations computed using the dynamic 𝛼 method and the

baseline fixed 𝛼 method. Note that the fixed 𝛼 method is

the current state of the art, as far as the authors are aware

(see the discussion at the end of Section 1.3). We also in-

troduce a third method, MPI test, which uses the function

MPI_Test_all to check for the completion of the input com-

munication. When the input communication is complete, the

computation on the mirror elements is immediately started.

In Figure 5, we show the evolution of the splitting param-

eter (bottom image) for the three different methods over

the course of 8,192 MatVec operations during a single run

of the CG algorithm, presented in Section 4. The splitting

parameter we record for the MPI test method is the location

where the first element loop was terminated. The value of 𝛼

is therefore inferred after each process-local MatVec, rather
than specified before the MatVec. We emphasize here the

main distinction between the two newmethods: the dynamic

𝛼 method uses a predetermined splitting for each MatVec,
and makes a damped update to the splitting for the next

MatVec based on observed input and output waiting times.

In contrast, the MPI Test method does not use a predeter-

mined splitting at all, instead adapting instantly to changing

communication latencies. In practice, this means that the

dynamic 𝛼 method adapts tomodal communication patterns.

Our numerical results (e.g., Figure 11 and Figure 12) suggest

that the two methods perform similarly; this is because most

MatVec iterations follow the modal communication pattern.

The top two rows in Figure 5 show the waiting times for

input (top row) and output (bottom row) communication dur-

ing the same run, with the MatVec operations with excess

input or output waiting times colored in blue. The dashed

black line represents the zero-latency threshold 𝜀 = 10
−4
,

which is roughly
1

10
the approximate non-mirror element

computation time of 10
−3
. The dashed red line indicates the

mean value of the waiting time over the course of the run. For

all three runs, the input communication experiences almost

exclusively latencies below the zero-latency threshold 𝜀, and

the output latencies are frequently slightly above 𝜀, which

leads to excess output waiting. For the dynamic 𝛼 method,

this means that 𝛼 adjusts to be close to zero, while the flex-

ibly adjusting MPI Test method also almost always splits

toward zero. The mean output waiting time for the dynamic

𝛼 method is reduced closer to the zero-latency threshold

compared with the fixed 𝛼 method. We can see the effect of

adjusting 𝛼 in time, as the first the few MatVec operations,

Figure 4: Mean splitting parameter for the dynamic
𝛼 method (left) and MPI test method (right) over the
course of a CG run (top) and GMG-CG run (bottom).

when 𝛼 is close to
1

2
have a larger waiting time than the later

iterations.

In Figure 4 below, we show the final distribution of the

splitting parameter on the first 1792 of the 7168 MPI ranks

used in the CG solve (top) and a separate GMG-CG solve,

i.e., a CG solve using geometric multigrid as a precondi-

tioner (bottom). The distribution of the GMG-CG splitting

parameter is only shown for the finest grid of the multigrid

hierarchy.

We see that for the CG solve, 𝛼 is heavily concentrated

near zero for both the dynamic 𝛼 and MPI test methods. For

the GMG-CG runs the distribution concentrated at a slightly

higher value. This likely reflects the fact that for GMG-CG,

the balance of input and output communication is not as con-

sistent because the processes can become unsynchronized

after the first smoothing step. In particular, processes which

finish their coarse grid computations earlier need to wait

longer for input communication.

3 Experimental Setup and Hardware
Platforms

We present the setup of numerical experiments, and the hard-

ware and software environments. The goal is to ensure the

reproducibility of the work and to introduce the computa-

tional studies described in the results Section 4.

3.1 Statistical regime extraction for
variable performance

Algorithm 1 is implemented on the data with the following

specifications. For per-process data 𝑇𝑝,𝑘 , we pick a subset of

processes Psub for fitting by equidistantly selecting 20 pro-

cesses across all 𝑃 processes sorted by their median MatVec
times (taken over iterations). 20 samples are sufficient to

capture the variety of timing statistics, because we observe

three major modes in the total population of MatVec timings.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

Figure 5: Top: Waiting times for input (top row) and
output (bottom row) communication during a single
run of the CG algorithm. The dashed black line rep-
resents the zero-latency threshold 𝜀, while the dashed
red line indicates the mean value of the waiting time
over the course of the run. The MatVec operations with
excess input or output communication are colored blue.
Bottom: Evolution of the splitting parameter 𝛼 over
the course of 8,192 MatVec operations during the same
run.

We furthermore subsample iterations, denoted by the set

Isub, for each process in Psub. The choice of subsampling is

corroborated by Figure 1 (top), which displays the timing

sequences across all iterations (x-axis) and across 100 pro-

cesses (i.e., MPI ranks, on y-axis). In the following, HMM is

fitted to each subsampled datasets of process-local MatVec
times of size |Psub | × |Isub | = 20 × 8192, for each numerical

method (see Section 2.4). However, when studying the max-

imum MatVec time 𝑇max

𝑘
= max𝑝 (𝑇𝑝,𝑘) across all processes

(see Remark 1), we repeat the same steps described above,

but skip the process selection step and we fit HMM to the

full time-series data {𝑇max

𝑘
}8192
𝑘=1

. The timing results are fitted

independently for different algorithms, because their compu-

tation throughput and communication latencies are expected

to differ.

To assess the realism of the HMM fit on the timing se-

quences, we visualize the associated regimes estimated from

Algorithm 1 and investigate statistics in each regime. We

expect regimes to exhibit different properties of latency, es-

pecially regimes gathering faster and slower MatVec timings.

Figure 6 displays HMM fitted MatVec times for the three

methods from Section 2.4 applied to CG and GMG-CG exper-

iments (see Section 3.2). Each HMM validation plot shows a

clear separation between the three regimes. The regime in

500 1000 1500 2000 2500 3000

−
2

.5
−

2
.0

−
1

.5
−

1
.0

CG

 Fixed alpha = .5

lo
g

(T
im

e
)

(s
) Regime 1 Regime 2 Regime 3

500 1000 1500 2000 2500 3000

−
2

.5
−

2
.0

−
1

.5
−

1
.0

Dynamic alpha

lo
g

(T
im

e
)

(s
)

500 1000 1500 2000 2500 3000

−
2

.5
−

1
.5

MPI test

Iteration

lo
g

(T
im

e
)

(s
)

500 1000 1500 2000 2500 3000

−
2

.5
−

2
.0

−
1

.5
−

1
.0

GMG−CG

 Fixed alpha = .5

lo
g

(T
im

e
)

(s
) Regime 1 Regime 2 Regime 3

500 1000 1500 2000 2500 3000

−
2

.5
−

2
.0

−
1

.5
−

1
.0

Dynamic alpha

lo
g

(T
im

e
)

(s
)

500 1000 1500 2000 2500 3000

−
2

.5
−

1
.5

MPI test

Iteration

lo
g

(T
im

e
)

(s
)

Figure 6: MatVec times across iterations for the median
MPI rank across the 20 training MPI ranks for the
three communication hiding methods: fixed 𝛼 (top),
dynamic 𝛼 (center), MPI test (bottom). Left panels show
results for CG and right ones show results for GMG-
CG. Regimes are indicated by color: fast (dark purple),
slower (cyan) and slowest (yellow).

Table 1: Regime statistics (mean 𝜇𝑖 and standard devia-
tion 𝜎𝑖) of MatVec times in each regime (𝑖 = 1, 2, 3) and
proportion of iterations/MatVecs (% it.) spent in each
regime for the three studied methods applied to CG.

Fixed alpha Dynamic alpha MPI test

𝑖 𝜇𝑖 𝜎𝑖 % it. 𝜇𝑖 𝜎𝑖 % it. 𝜇𝑖 𝜎𝑖 % it.

1 1.79e-03 5.89e-05 0.33 1.75e-03 5.12e-05 0.34 1.78e-03 4.30e-05 0.35

2 1.89e-03 5.49e-05 0.32 1.87e-03 5.22e-05 0.31 1.90e-03 5.61e-05 0.32

3 2.89e-03 6.19e-03 0.35 2.76e-03 6.00e-03 0.35 2.72e-03 4.28e-03 0.33

dark purple gathers faster times (dark purple dots) with a

smaller dispersion compared to the slower times (cyan dots);

the slowest times (yellow dots) have more dispersion and

successfully capture the higher variability in the timings.

This clear separation of regimes indicates a reliable fitting

of the HMM on the data. Additionally, Table 1 displays sta-

tistics (mean and standard deviation) of the MatVec timing

and proportion of iterations spent in each regime for the

three studied methods applied to CG experiments. Comple-

menting Figure 6, Regime 1 is the fastest with typically least

dispersion whereas Regime 3 is the slowest with largest dis-

persion. The slowest regime is dominated by slow times that

arise because of performance variability of the HPC system;

we believe it is likely caused by high peaks of communica-

tion latency or network congestion. Consistent results are

also observed for GMG-CG (not shown). Finally, Figure 6

and Table 1 provide consistent results in terms of physical

meaning of the regimes across the three studied methods

(fixed 𝛼 , dynamic 𝛼 and MPI test) and across the algorithms

they are applied to (CG and GMG-CG). This highlights the

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

robustness of Algorithm 1 with respect to reliable extraction

of regimes across different communication methods and for

the algorithms that we will analyze in Section 4.

3.2 Numerical experiments for implicit
PDE solvers

To measure the performance of our communication hiding

algorithm, we apply the conjugate gradient (CG) solver and

geometric multigrid (left)-preconditioned CG solver (GMG-

CG) to the model Poisson equation (1). For the spatial do-

main, we use the unit cube Ω = [0, 1]3 subdivided into a

uniform, hexahedral mesh with 2
27 =134,217,728 elements

with 135,005,697 unknowns in our piecewise trilinear finite

element discretization. We control the number of CG itera-

tions by choosing a diffusion coefficient 𝜅 with a jump dis-

continuity of several orders of magnitude, which increases

the condition number of the stiffness matrix, preventing the

solver from converging before the maximum iteration count

is reached. We note that the choice of 𝜅 does not influence

our performance results.

Our parallel partition on the Anvil HPC system (see de-

tails in Section 3.3) consists of 56 nodes with 128 MPI ranks

per node, for a total of 7168 MPI ranks with approximately

18,720 elements and 18,830 unknowns per rank. We chose

the node count to be the maximum available on Anvil, in or-

der to have the most realistic, and most challenging, parallel

environment possible for our experiments. On the Frontera

HPC system, we used a partition of 64 nodes with 56 MPI

ranks per node, resulting in 3,584 total MPI ranks. On both

systems, we chose the problem size per core to approach, but

not reach, the strong scaling limit of our application so that

we would have an amount of computation commensurate to

the network latency — if the ratio of available computation

relative to the latency is too high, for example, then the 𝛼 = 1

2

method will be able to hide all of the communication and

our new techniques will not be needed. In future work, we

plan to investigate the effect of our communication hiding

methods on a wider range of problems by varying per-core

problem sizes, node counts, and network architectures.

Our software stack includes the PETSc library [8] for the

CG solver and the Chebyshev-accelerated Jacobi multigrid

smoothers. We use our own implementation of MatVec apply
routines for the stiffnessmatrix and thematrix-free operators

for interpolation and restriction within multigrid. For the

coarse grid solve we use one V-cycle of geometric multigrid

with PETSc’s GAMG (algebraic multigrid) as the solver at

the coarsest geometric grid. As previously mentioned, the

parallel mesh generation is handled by the forest-of-octrees

library p4est [16].

During 10 runs of each solver, we record the waiting time

for input and output communication during the first 8192

Table 2: Specifications of
RCAC’s Anvil HPC sys-
tem.
Processors AMD EPYC

7763 64C 2.45GHz

“Milan”

Interconnect Mellanox InfiniBand

HDR100

CPUs per node 2

CPU cores per node 128

Hardware threads per core 1

CPU clock rate (nominal) 2.45 GHz

Memory per node 256 GB

C/C++ compiler GCC 11.2.0

MPI library OpenMPI 4.0.6

BLAS library OpenBLAS 0.3.17

Table 3: Specifications of
TACC’s Frontera HPC sys-
tem.
Processors Intel Xeon Platinum

8280 28C 2.7GHz

“Cascade Lake”

Interconnect Mellanox InfiniBand

HDR100

CPUs per node 2

CPU cores per node 56

Hardware threads per core 1

CPU clock rate (nominal) 2.7 GHz

Memory per node 192 GB

C/C++ compiler Intel 19.1.1

MPI library Intel MPI 19.0.9

BLAS library Intel MKL 2020.1

matrix-vector products computed on the first 1792 MPI ranks

(totally 5.8 · 107 process-local MatVec operations recorded

per run), along with the time spent computing over the first

and second groups of non-mirror elements. Referring to

Algorithm 2, this means we record the time 𝑇 in

𝑝,𝑘
as the total

time elapsed between the start of the computations over

the first block of non-mirror elements and the end of the

first MPI receive call, and the time 𝑇 out

𝑝,𝑘
as the time elapsed

between the start of the start of the second block of non-

mirror computations. Our timing data do not include mirror

element computations, since these do not depend in any way

on the splitting, and we refer to 𝑇𝑝,𝑘 = 𝑇 in

𝑝,𝑘
+ 𝑇 out

𝑝,𝑘
as the

MatVec time. For the smoothing steps, we only record the

MatVec timings on the finest mesh, and we report all of the

GMG-CG MatVec data as an aggregate instead of separating

the timings for the pre- and post-smoothing steps and the

energy inner product needed for the Krylov iteration.

3.3 HPC systems
Computations are carried out on two systems: the Anvil

HPC system at the Rosen Center for Advanced Computing

(RCAC) and the Frontera HPC system at the Texas Advanced

Computing Center (TACC). Table 2 lists the hardware and

software specifications of Anvil and Frontera, repsectively.

The software environment consists of C/C++ compilers, an

MPI library, and a BLAS/LAPACK library, as well as the

libraries PETSc [8] and p4est [16].

4 Performance Results
Performance of the communication hiding methods is pre-

sented with three granularities of measurements. First, we

look at the distribution of computation times on the Anvil su-

percomputer sampled from individual MPI ranks and taken

as a whole (see Section 4.1). Second, we summarize the dis-

tribution of these computation times on each MPI rank, still

viewing each rank individually. Finally, we aggregate the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

computation times across MPI ranks by measuring the maxi-

mum time per MatVec per rank (see Section 4.3). The third

measure (i.e., maximum across ranks) is influenced by the

first two, but is the most important measure, especially when

each MatVec alternates with (blocking) collective communi-

cation, such as the inner product in the CG algorithm. In that

case, it gives a good estimate for the expected bottom-line

speedup for the solver without the additional noise from

other CG operations, such as the collective Allreduce call.

In Section 4.4, we demonstrate our clustering method

when applied to the maximum computation time across MPI

ranks, this time using MatVec timing data from the Frontera

supercomputer. The Frontera timings feature an extreme,

temporally extended slowdown event which would make

it infeasible to compare the raw times of the different al-

gorithms without clustering. This contrasts with the Anvil

results, where the slow MatVecs typically appear intermit-

tently. From the fast regime data, we extract average per

MatVec timings that show clearly the overall improvement

of the new algorithms on Frontera.

4.1 Fine granularity performance: time per
MatVec per MPI rank

The purpose of this section is to compare individual, process-

local MatVec times between the three methods. The results

give insight not only into the relative performance of the

methods, but also into some of the details for how they work

to improve MatVec execution times. The scatter plots in the

top row and histograms in the bottom row of Figure 7 reflect

a sample of 10 process-local MatVec times on each MPI rank

for the fastest run of the CG (left panel) and GMG-CG (right

panel) solves. Each data point represents one MatVec on one

rank. The histograms contain the sums of the input and

output computation times of the points in the upper plots

(for the exact meaning of those times, see Section 3.2).

Looking at the top two plots of Figure 7, we observe that

the fixed 𝛼 method has a distribution concentrated around

10
−3

seconds for both input and output time. These points

reflect zero or near-zero latency MatVec times, where the

waiting time is significantly shorter than the computation

time and the latency is effectively hidden. Likewise, the sharp

line at ∼10−3 bounding the input and output computation

times from below in the fixed 𝛼 distribution reflects the time

to compute over half of the non-mirror elements — this is

the minimum possible time for 𝑇 in

𝑝,𝑘
or 𝑇 out

𝑝,𝑘
for the fixed 𝛼

method, achieved when there is no input or output latency.

On the other hand, the MPI test and dynamic 𝛼 methods,

which adjust the amount of computation based on the latency

and expected latency, respectively, have a lower minimum

amount of computation time for input and output depending

on how many elements are shifted from one computation

Figure 7: Scatter plot (top row) and histogram (bottom
row) of randomly sampled process-local MatVec times
for the fastest run of the CG (left column) and GMG-
CG (right column) solves. The scatter plots are partially
surrounded by two marginal density plots along the
horizontal and vertical axis, respectively.

block to the other. We also note that the MPI test method

has a slightly larger amount of input computation time for

MatVec operations with small output computation times,

which reflects the overhead of checking for completion of

the input communication during the first block of non-mirror

element computations.

Moving to the histograms in the bottom row of Figure 7,

for the CG experiment we can see three clearly separated

regimes: the three modes, interpreted from left to right, re-

flect MatVec operations where the latency is almost com-

pletely hidden, partially hidden, and hardly hidden at all

(typically extremely high latencies). In contrast, the GMG-

CG times appear as a single mode. We expect that the uni-

modal distributions for GMG-CG result from the absence of

global synchronization during each multigrid V-cycle, which

makes the behavior less predictable and less likely to sepa-

rate into distinct modes of regimes. We note that for both the

CG and GMG-CG histograms, the high latency MatVec times

extend much further to beyond the horizontal axis limits,

which we have constrained for readability.

Comparing the scatterplots and the scale of the histogram

axes for CG and GMG-CG, we see that MatVec times several

times higher than the minimum are much more typical for

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 8: Scatter plots of the MatVec times of the CG
iterations from Figure 7 separated into three regimes,
as described in 2.2: the fastest regime (top), a slower
regime (bottom left), and the slowest regime (bottom
right).

the GMG-CG solver. We can see that the computation times

for the CG experiment are shifted slightly to the left for

the dynamic 𝛼 and MPI test methods compared with the

fixed 𝛼 method. The shift is more noticeable for the GMG-

CG experiment, where the MPI test results in particular are

significantly more concentrated than the fixed 𝛼 results.

The analysis of Figure 7 can be enhanced by considering

the regimes as described in Section 3.1. We show the scatter

plots of the regime data for the MatVec times of the CG iter-

ation in Figure 8. The MatVec times clearly divide into three

categories: first, the fastest regime (top) has computation

times with essentially completely hidden latency; second,

the slower regime (bottom left) contains mainly times with

moderate latencies; and, third, the slowest regime (bottom

right) contains times with extremely high latencies. The in-

fluence of performance variability from network latencies is

clearly extracted in the slowest regime, while the first two

regimes have few large outliers. Compared to the unsepa-

rated data shown in Figure 7, the first two regimes provide

better insights into the different behaviour the methods in

practice, which we would be challenging to decipher other-

wise.

We observe that, toward the end points of the dynamic 𝛼

and MPI test regime 1 and regime 2 distributions, the two

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CG
 Fixed alpha = .5 − 3runs

x

P
(T

im
e

≤
x
)

0.001 0.002 0.003 0.005

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CG
 Dynamic alpha − 3runs

x

0.001 0.002 0.003 0.005

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CG
 MPI test − 3runs

x

0.001 0.002 0.003 0.005

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GMG−CG
 Fixed alpha = .5 − 3runs

x

P
(T

im
e

≤
x
)

0.001 0.002 0.003 0.005

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GMG−CG
 Dynamic alpha − 3runs

x

0.001 0.002 0.003 0.005

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GMG−CG
 MPI test − 3runs

x

0.001 0.002 0.003 0.005

Figure 9: Functional boxplots of cumulative distribu-
tion functions of MatVec times acrossMPI ranks. Cumu-
lative functions are computed for each communication
method (from left to right: fixed 𝛼 , dynamic 𝛼 and, MPI
test) applied to CG (top) and GMG-CG (bottom) solvers.
Black curve is the median CDF curve, purple region
contains 50% of the CDF curves and dashed lines are
outlier CDF curves.

methods are both able to decrease the input (output) compu-

tation time without increasing the output (input) computa-

tion time. We also note that the dynamic 𝛼 and MPI test also

spend a greater proportion of time in the fast regime—71%

and 75%, respectively, compared with 47% for the fixed 𝛼

method—because they mask more of the latency.

4.2 Intermediate granularity performance:
MatVec distribution per MPI rank

In this section, as a bridge between the previous section and

Section 4.3, we summarize the improvement per MPI rank

in Figure 9. We will show that the dynamic 𝛼 and MPI test

methods have a more significant improvement on the overall

runtime than the distribution of process-local MatVec times

from Section 4.1 would suggest. The result is due to the fact

that viewing process-local MatVec times individually (i.e.,

treating each one as an equally important data point) does

not account for cases where one slow MPI rank slows down

the computation on all other MPI ranks. The functional box

plots in Figure 9 capture the essence of the per-rank im-

provement via the cumulative distribution functions (CDF)

of MatVec times. The black curve on each plot represents the

median CDF, while the purple region represents the span of

the CDFs between the 25th and 75th percentiles. Functional

boxplots rely on the band-depth metric that measures the

centrality of a curve with respect of an ensemble of curves

[51]. Via this metric, one can order curves by their centrality

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Fixed alpha = .5 − 3 runs
 Regime 1

x

P
(T

im
e

≤
x
)

0.0015 0.0021 0.003 0.0043

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fixed alpha = .5 − 3 runs
 Regime 2

x

0.001 0.002 0.003 0.004 0.006

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fixed alpha = .5 − 3 runs
 Regime 3

x

0.001 0.005 0.018 0.064 0.227

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dynamic alpha − 3 runs
 Regime 1

x

P
(T

im
e

≤
x
)

0.0015 0.0021 0.003 0.0043

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dynamic alpha − 3 runs
 Regime 2

x

0.001 0.002 0.003 0.004 0.006

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dynamic alpha − 3 runs
 Regime 3

x

0.001 0.005 0.018 0.064 0.227

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MPI test − 3 runs
 Regime 1

x

P
(T

im
e

≤
x
)

0.0015 0.0021 0.003 0.0043

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MPI test − 3 runs
 Regime 2

x

0.001 0.002 0.003 0.004 0.006

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MPI test − 3 runs
 Regime 3

x

0.001 0.005 0.018 0.064 0.227

Figure 10: Functional boxplots as in Figure 9 for MatVec
times CDFs computed in each regime extracted as in
Section 3.1 for the GMG-CG solver. Regimes 1 to 3 are
shown from left to right and the three communication-
hiding methods (fixed 𝛼 , dynamic 𝛼 and MPI test) are
shown from top to bottom.

and create concepts similar to quantiles and their associ-

ated visualization, namely boxplot. When visualizing the

displayed CDFs, one expects the curves to reach the value

1 on the y-axis for the fastest times (most left values on x-

axis) indicating more probability mass (across MPI ranks)

allocated to faster MatVec times. For both CG and GMG-CG,

the dynamic 𝛼 and MPI test methods have a median CDF

that is shifted to the top left corner compared with the fixed

𝛼 method, which represents overall faster MatVec times for

dynamic 𝛼 and MPI test. Additionally, purple regions show

less spread for dynamic 𝛼 and MPI test methods than for

the fixed 𝛼 method, indicating more consistency across MPI

ranks for these methods. Finally, the outermost CDFs in the

envelope (dotted lines in each image) are significantly shifted

to the left for the dynamic 𝛼 and MPI test methods. This sup-

ports that the two new methods have the most significant

impact on the overall slowest MPI ranks, which ultimately

has the greatest impact on the solver performance.

Figure 10 shows a refinement of Figure 9 (bottom row)

for GMG-CG experiments, where CDFs are computed in

each regime extracted as in Section 3.1. Similarly, we observe

CDF curves shifted to the top left corner for the dynamic 𝛼

and MPI test methods in each regime, especially the fastest

regimes 1 and 2. Regimes 1 and 2 also exhibit a lesser spread

in the CDF envelope indicating more consistent computation

times across ranks. Consistent results are also seen on the

CG algorithm (not shown here).

Figures 9 and 10 show statistics from three runs. The sta-

tistics do not exhibit inconstistency (e.g., clustering of CDF

from each run) between the runs, suggesting that MatVec
times have similar distributions across runs. To corroborate

this, for each of the three communication techniques (fixed

𝛼 , dynamic 𝛼 , and MPI test) and solver types (CG and GMG-

CG), we applied a Kolmogorov-Smirnov test to compare the

probability distributions of MatVec times between different

runs. Results indicate that different runs using a particular

solver and communication method can be considered as sam-

ples from the same distribution, whereas runs using different

communication methods do not. We note that infrequent

and significant changes in communication patterns (e.g., the

major network slowdown observed in the Frontera results in

Section 4.4) could cause the distributions of MatVec times to

differ between runs. However, we expect that after removing

the outliers (by, e.g., separating the data into regimes), the

remaining data will still be drawn from the same distribution.

4.3 Coarse granularity performance:
maximum time per MPI rank

The left image in Figure 11 shows the cumulative sums of

the maximum time per MatVec, taken over all MPI ranks at

one iteration, for the CG solver. We combine the fastest three

runs for each communication-hiding method. The plotted

quantity is

𝑆𝐾 =

𝐾∑︁
𝑘=1

𝑇max

𝜎 (𝑘) ,

where {𝑇max

𝜎 (𝑘) }
𝑛it
𝑘=1

is a smallest-to-largest sorted version of

𝑇max

𝑘
, itself defined by reducing 𝑇𝑝,𝑘 over the processes 𝑝:

{𝑇𝑘 }𝑛it−1𝑘=0
with 𝑇𝑘 = max{𝑇𝑝,𝑘 }𝑃−1𝑝=0 .

The cumulative sums are similar to a CDF plot, in that they

reveal the difference in the performance of each method for

fast and slow MatVec times.

Labeling the cumulative sum value for fixed 𝛼 , dynamic 𝛼 ,

and MPI test by 𝑆
1/2
𝐾

, 𝑆𝛼
𝐾
, and 𝑆 test

𝐾
, respectively, the dashed

lines in Figure 11 (left) show the percentage differences

𝑆
1/2
𝐾
−𝑆1/2

𝐾

|𝑆1/2
𝐾
|

(blue dashed line) and

𝑆 test
𝐾
−𝑆𝛼

𝐾

|𝑆1/2
𝐾
|

(green dashed line) at

each point on the cumulative sum curve. These values show

the percentage improvement for each method if only the first

𝐾 fastest MatVec times were included in the dataset for each

method. The dynamic 𝛼 and MPI test method consistently

show up to 10% improvement in the overall performance for

both methods over fixed 𝛼 .

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0 5000 10000 15000 20000 25000

0

20

40

60

80

100

120

140

MPI test

fixed alpha = .5

dynamic alpha

10
4

10
3

10
2

10
1

10
0

C
um

ul
at

iv
e

su
m

s
of

 m
ax

im
um

 ti
m

e
pe

r
M

at
V

ec

CG iteration

P
ercentage speedup over baseline

MPI test fixed alpha = .5 dynamic alpha

3 × 10
3

4 × 10
3

6 × 10
3

Maximum time per MatVec: Fast regime only

Figure 11: Cumulative sums of the maximum time per
MatVec for the CG solver (left), where the maximum is
taken over all MPI ranks for each parallel MatVec. Cor-
responding box plots (right) summarize the maximum
MatVec times.

On the right side of Figure 11, we also show boxplots of

the 𝑇max

𝑘
, which are clustered using Algorithm 1 with two

regimes. The fast regime data also show better performance

for the dynamic 𝛼 method and the MPI test method com-

pared with the fixed 𝛼 method. In particular, we note that the

fastest MatVec times are improved for the dynamic 𝛼 method

and the MPI test method compared with fixed 𝛼 . This sup-

ports our conclusion from the cumulative sum plot, that the

dynamic 𝛼 method and the MPI test method reduce the level

of the fastest MatVec times. Since these low-latency MatVec
operations comprise a significant portion of all MatVec op-
erations, we expect the average overall runtime of the CG

solver to be improved by the new methods.

4.4 Frontera – Coarse granularity
performance: maximum time per
MPI rank

Our last experiments show performance results on the Fron-

tera supercomputer. In Figure 12, we show𝑇max

𝑘
for the three

methods. For this experiment, based on a visual inspection of

the data we again chose to perform the method of Section 3.1

with two regimes instead of three. The MatVecs for each time

series are clustered into fast (blue) and slow (red) regimes.

We observe an extreme slowdown event for the baseline

method (middle panel). The slowdown makes it impossible

to directly compare the overall computation times between

different algorithms. We experienced this type of extended

slowdown for repeatedly for different jobs on Frontera.

In the top panel of Figure 13, we show cumulative sums

of the 𝑇max

𝑘
times for the three methods (analogous to Sec-

tion 4.3); the 𝐾th point on each of the curves is the sum of

the fastest 𝐾 MatVec times, while the dotted lines show the

percent improvement of the new methods over the baseline.

Because of the slowdown event, the right tail of the fixed

𝛼 = 1

2
curve has a sharp increase, while the MPI test and

Figure 12: MatVec times𝑇max
𝑘

for each of 8192 iterations
of the CG solver run on a Poisson problem using three
different methods of communication hiding: MPI_Test
(top), fixed 𝛼 = 1

2
(middle), and dynamic 𝛼 (bottom).

dynamic 𝛼 curves are nearly straight lines. The increase for

the 𝛼 = 1

2
is similar to what we observed in the Anvil data in

Section 4.3 for all three methods. The overall runtimes (i.e.,

the right endpoint of each curve) cannot be directly com-

pared. In contrast, the bottom panel shows the fast regime

data only; in this case we can see clearly a 3-5% improvement

in runtime. The mean runtime for the fast regime shows a

3.5% improvement for the dynamic 𝛼 method and a 4.2% im-

provement for the MPI test method over the 𝛼 = 1

2
method.

Remark 2. The observed network latency patterns differ
significantly between Anvil and Frontera (compare, e.g., Fig-
ure 6 and Figure 12). While it is beyond the scope of this work
to analyze the exact reasons for timing variability on different
machines (and, indeed, this work takes the perspective that
the causes of performance variability are typically opaque to
users), we hope to document such differences and compare the
performance of our communication hiding methods on a wider
variety of machines in the future.

5 Conclusions
We document the challenges of analyzing application perfor-

mance in practice under strong performance variability of

the HPC system. We demonstrate that the analysis of timing

data in the presence of strong system variabilities is possible

with a careful choice of statistical methods. Through the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

Raw data

Fast regime data only

Figure 13: Cumulative sums of raw MatVec times (top)
and fast regime times only (bottom) over 8192 itera-
tions of the CG solver run on a Poisson problem.

use of unsupervised learning with hidden Markov models

and mixture models, we are able to realiably separate the

performance of numerical methods from machine noise. We

apply our new methodology to sequences of MatVec timings

on the parallel processes of an HPC system; however, the

methodology we introduce can be applied to any application

where users can add timing commands, especially parallel

applications with repeatedly called subroutines. In the future,

we will use our statistical tools to model and simulate com-

plex time-dependent MPI latencies of HPC systems, allowing

us to artificially inject and benchmark different latency sce-

narios that appear on real-world systems.

We have also proposed two new communication hiding

methods for matrix-free finite element operators. Only due

to our new statistical tools are we able to successfully analyze

the high-frequency timing measurements that are otherwise

polluted by the performance variablity of HPC systems.With

the current trends in HPC hardware architectures, we expect

the statistical analysis that we have performed here to be

essential for advancements of numerical methods.

In future work, we will consider the effect of allowing the

splitting parameter 𝛼 to vary more rapidly across MatVec ap-
plications to be able to adapt to higher-frequency variations

in communication patterns. Furthermore, wewant to analyze

individual MatVecs in complex iterations such as multigrid-

preconditoned Krylov methods and implicit solvers for block

systems that require block preconditioning [47, 48]. This

likely requires the use of different splitting parameters 𝛼 for

each phase of the preconditioner in a single iteration.

Finally, while the present work has studied one representa-

tive configuration of problem size and number of MPI ranks,

we will extend our statistical tools and communication hid-

ing to scalability studies on a variety of different machines.

Acknowledgments
This research used resources provided by the Rosen Cen-

ter for Advanced Computing (RCAC) at Purdue University.

and the Texas Advanced Computing Center (TACC) at The

University of Texas at Austin.

This research was partially supported by NSF grants OAC-

2139536 and EAR-2343865.

This work was authored by the National Renewable En-

ergy Laboratory, operated by Alliance for Sustainable En-

ergy, LLC, for the U.S. Department of Energy (DOE) under

Contract No. DE-AC36-08GO28308. This work is supported

by the U.S. Department of Energy Office of Advanced Sci-

entific Computing Research through the Scientific Discov-

ery through Advanced Computing (SciDAC) program and

through the FASTMath Institute.

References
[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,

Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. 2010.

HPCToolkit: Tools for performance analysis of optimized parallel pro-

grams. Concurrency and Computation: Practice and Experience 22, 6
(2010), 685–701.

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy

Enos, Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksineha-

boon, Jeff Ogden, et al. 2014. The lightweight distributed metric ser-

vice: a scalable infrastructure for continuous monitoring of large scale

computing systems and applications. In SC’14: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 154–165.

[3] Hirotugu Akaike. 1974. A new look at the statistical model identifica-

tion. IEEE Transactions on Automatic Control 19, 6 (1974), 716–723.
[4] Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J

Leung, Jim Brandt, Brian Kulis, Manuel Egele, and Ayse K Coskun.

2024. Runtime Performance Anomaly Diagnosis in Production HPC

Systems Using Active Learning. IEEE Transactions on Parallel and
Distributed Systems (2024).

[5] Burak Aksar, Yijia Zhang, Emre Ates, Benjamin Schwaller, Omar Aaziz,

Vitus J Leung, Jim Brandt, Manuel Egele, and Ayse K Coskun. 2021.

Proctor: A semi-supervised performance anomaly diagnosis frame-

work for production HPC systems. In High Performance Computing:
36th International Conference, ISC High Performance 2021, Virtual Event,
June 24–July 2, 2021, Proceedings 36. Springer, 195–214.

[6] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca

Heltai, Martin Kronbichler, Matthias Maier, Jean-Paul Pelteret, Bruno

Turcksin, and David Wells. 2021. The deal.II finite element library:

Design, features, and insights. Computers & Mathematics with Appli-
cations 81 (2021), 407–422.

[7] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff

Outhred. 2016. Taking the blame game out of data centers operations

Statistical Treatment of Variable MPI Latencies and MPI-Communication
Hiding for Matrix-Free FEM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

with netpoirot. In Proceedings of the 2016 ACM SIGCOMM Conference.
440–453.

[8] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed

Brown, Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro

Dalcin, Alp Dener, Victor Eijkhout, Jacob Faibussowitsch, William D.

Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Di-

nesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A.

May, Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell,

Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich,

Barry F. Smith, Hansol Suh, Stefano Zampini, Hong Zhang, Hong

Zhang, and Junchao Zhang. 2024. PETSc/TAO Users Manual. Techni-
cal Report ANL-21/39 - Revision 3.22. Argonne National Laboratory.

doi:10.2172/2205494

[9] Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. 2007. deal.II

-— A general-purpose object-oriented finite element library. ACM
Transactions on Mathematical Software (TOMS) 33, 4 (2007), 24–es.

[10] Leonard E. Baum and J. A. Eagon. 1967. An inequality with applications

to statistical estimation for probabilistic functions of Markov processes

and to a model for ecology. Bull. Amer. Math. Soc. 73, 6 (1967), 360–363.
[11] Leonard E Baum and Ted Petrie. 1966. Statistical inference for proba-

bilistic functions of finite state Markov chains. The Annals of Mathe-
matical Statistics 37, 6 (1966), 1554–1563.

[12] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E

Isaacs. 2013. There goes the neighborhood: performance degradation

due to nearby jobs. In SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
1–12.

[13] Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. 2011.

NADO: network anomaly detection using outlier approach. In Proceed-
ings of the 2011 International Conference on Communication, Computing
& Security. 531–536.

[14] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard,

and Hans Andersen. 2010. Fingerprinting the datacenter: automated

classification of performance crises. In Proceedings of the 5th European
conference on Computer systems. 111–124.

[15] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini.

2019. Online anomaly detection in HPC systems. In 2019 IEEE Interna-
tional Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 229–233.

[16] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011. p4est:
Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests

of Octrees. SIAM Journal on Scientific Computing 33, 3 (2011), 1103–

1133. doi:10.1137/100791634

[17] Sudheer Chunduri, Taylor Groves, Peter Mendygral, Brian Austin, Ja-

cob Balma, Krishna Kandalla, Kalyan Kumaran, Glenn Lockwood, Scott

Parker, Steven Warren, et al. 2019. GPCNeT: Designing a benchmark

suite for inducing and measuring contention in HPC networks. In

SC’19: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–33.

[18] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel

Oshin, Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run

variability on Xeon Phi based Cray XC systems. In SC’17: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–13.

[19] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum

likelihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society: Series B (Methodological) 39, 1 (1977), 1–22.

[20] Michel O. Deville, Paul F. Fischer, and Ernest H. Mund. 2002. High-
order methods for incompressible fluid flow. Cambridge Monographs on

Applied and Computational Mathematics, Vol. 9. Cambridge University

Press, Cambridge. xxviii+499 pages. doi:10.1017/CBO9780511546792

[21] Paul R Eller, Torsten Hoefler, and William Gropp. 2019. Using perfor-

mance models to understand scalable Krylov solver performance at

scale for structured grid problems. In Proceedings of the ACM Interna-
tional Conference on Supercomputing. 138–149.

[22] Kurt B Ferreira, Patrick Bridges, and Ron Brightwell. 2008. Charac-

terizing application sensitivity to OS interference using kernel-level

noise injection. In SC’08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing. IEEE, 1–12.

[23] Paul Fischer, Stefan Kerkemeier, Misun Min, Yu-Hsiang Lan, Malachi

Phillips, Thilina Rathnayake, Elia Merzari, Ananias Tomboulides, Ali

Karakus, Noel Chalmers, and Tim Warburton. 2022. NekRS, a GPU-

accelerated spectral element Navier–Stokes solver. Parallel Comput.
114 (2022), 102982.

[24] Paul Fischer, James Lottes, David Pointer, and Andrew Siegel. 2008.

Petascale algorithms for reactor hydrodynamics. In Journal of Physics:
Conference Series, Vol. 125. IOP Publishing, 012076.

[25] Paul Fischer, James Lottes, and Henry Tufo. 2007. Nek5000. Technical
Report. Argonne National Laboratory (ANL), Argonne, IL (United

States).

[26] Paul Fischer, MisunMin, Thilina Rathnayake, Som Dutta, Tzanio Kolev,

Veselin Dobrev, Jean-Sylvain Camier, Martin Kronbichler, TimWarbur-

ton, Kasia Świrydowicz, et al. 2020. Scalability of high-performance

PDE solvers. The International Journal of High Performance Computing
Applications 34, 5 (2020), 562–586.

[27] Paul F Fischer, Katherine Heisey, and Misun Min. 2015. Scaling limits

for PDE-based simulation. In 22nd AIAAComputational Fluid Dynamics
Conference. 3049.

[28] G David Forney. 1973. The Viterbi algorithm. Proc. IEEE 61, 3 (1973),

268–278.

[29] Ryan Grant, Kevin Pedretti, and Ann C Gentile. 2014. Overtime: A
Benchmark for Analyzing Performance Variation due to Network Interfer-
ence. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque,

NM (United States).

[30] Taylor Groves, Yizi Gu, and Nicholas J Wright. 2017. Understanding

performance variability on the aries dragonfly network. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, 809–
813.

[31] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward

Chuah, and James Browne. 2016. Crude: Combining resource usage

data and error logs for accurate error detection in large-scale dis-

tributed systems. In 2016 IEEE 35th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 51–60.

[32] Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking

of parallel computing systems: twelve ways to tell the masses when

reporting performance results. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–12.

[33] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Char-

acterizing the influence of system noise on large-scale applications by

simulation. In SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–11.

[34] Shi Jin, Zhaobo Zhang, Krishnendu Chakrabarty, and Xinli Gu. 2016.

Accurate anomaly detection using correlation-based time-series anal-

ysis in a core router system. In 2016 IEEE International Test Conference
(ITC). IEEE, 1–10.

[35] Stefan Kerkemeier and et al. 2024. gslib v1.0.9 – Sparse communication

library. https://github.com/Nek5000/gslib (Accessed: Dec. 11, 2024).

[36] Jannis Klinkenberg, Christian Terboven, Stefan Lankes, and Matthias S

Müller. 2017. Data mining-based analysis of HPC center operations. In

2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 766–773.

https://doi.org/10.2172/2205494
https://doi.org/10.1137/100791634
https://doi.org/10.1017/CBO9780511546792
https://github.com/Nek5000/gslib

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Heldman and Rudi, et al.

[37] Martin Kronbichler, Timo Heister, and Wolfgang Bangerth. 2012. High

accuracy mantle convection simulation through modern numerical

methods. Geophysical Journal International 191, 1 (2012), 12–29.
[38] Martin Kronbichler and Katharina Kormann. 2012. A generic interface

for parallel cell-based finite element operator application. Computers
& Fluids 63 (2012), 135–147.

[39] Zhiling Lan, Ziming Zheng, and Yawei Li. 2009. Toward automated

anomaly identification in large-scale systems. IEEE Transactions on
Parallel and Distributed Systems 21, 2 (2009), 174–187.

[40] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. 2015. Generic and

scalable framework for automated time-series anomaly detection. In

Proceedings of the 21th ACM SIGKDD international conference on knowl-
edge discovery and data mining. 1939–1947.

[41] EliaMerzari, Steven Hamilton, Thomas Evans, MisunMin, Paul Fischer,

Stefan Kerkemeier, Jun Fang, Paul Romano, Yu-Hsiang Lan, Malachi

Phillips, et al. 2023. Exascale multiphysics nuclear reactor simula-

tions for advanced designs. In SC’23: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–11.

[42] Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, and

Andrea Bartolini. 2023. RUAD: Unsupervised anomaly detection in

HPC systems. Future Generation Computer Systems 141 (2023), 542–
554.

[43] Peter Munch, Timo Heister, Laura Prieto Saavedra, and Martin Kron-

bichler. 2023. Efficient distributed matrix-free multigrid methods on

locally refined meshes for FEM computations. ACM Transactions on
Parallel Computing 10, 1 (2023), 1–38.

[44] Vinod Nair, Ameya Raul, Shwetabh Khanduja, Vikas Bahirwani, Qi-

hong Shao, Sundararajan Sellamanickam, Sathiya Keerthi, Steve Her-

bert, and Sudheer Dhulipalla. 2015. Learning a hierarchical monitoring

system for detecting and diagnosing service issues. In Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery
and data mining. 2029–2038.

[45] Lawrence R Rabiner. 1989. A tutorial on hidden Markov models and

selected applications in speech recognition. Proc. IEEE 77, 2 (1989),

257–286.

[46] Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler,

Michael Gurnis, Peter W. J. Staar, Yves Ineichen, Costas Bekas, Alessan-

dro Curioni, and Omar Ghattas. 2015. An Extreme-Scale Implicit Solver

for Complex PDEs: Highly Heterogeneous Flow in Earth’s Mantle. In

SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, Article 5, 12 pages.

doi:10.1145/2807591.2807675

[47] Johann Rudi, Yu-Hsuan Shih, and Georg Stadler. 2020. Advanced

Newton Methods for Geodynamical Models of Stokes Flow with Vis-

coplastic Rheologies. Geochemistry, Geophysics, Geosystems 21, 9 (2020).
doi:10.1029/2020GC009059

[48] Johann Rudi, Georg Stadler, and Omar Ghattas. 2017. Weighted BFBT

Preconditioner for Stokes Flow Problems with Highly Heterogeneous

Viscosity. SIAM Journal on Scientific Computing 39, 5 (2017), S272–S297.
doi:10.1137/16M108450X

[49] P. Sanan, S.M. Schnepp, and D.A. May. 2016. Pipelined, Flex-

ible Krylov Subspace Methods. SIAM Journal on Scientific
Computing 38, 5 (2016), C441–C470. doi:10.1137/15M1049130

arXiv:https://doi.org/10.1137/15M1049130

[50] David Skinner and William Kramer. 2005. Understanding the causes

of performance variability in HPC workloads. In IEEE International.
2005 Proceedings of the IEEE Workload Characterization Symposium,
2005. IEEE, 137–149.

[51] Ying Sun and Marc G Genton. 2011. Functional boxplots. Journal of
Computational and Graphical Statistics 20, 2 (2011), 316–334.

[52] Philip Taffet and John Mellor-Crummey. 2019. Understanding conges-

tion in high performance interconnection networks using sampling. In

SC’19: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–24.

[53] Henry M Tufo and Paul F Fischer. 1999. Terascale spectral element

algorithms and implementations. In SC’99: Proceedings of the 1999
ACM/IEEE Conference on Supercomputing. 68–es.

[54] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J

Leung, Manuel Egele, and Ayse K Coskun. 2017. Diagnosing perfor-

mance variations in HPC applications using machine learning. In High
Performance Computing: 32nd International Conference, ISC High Per-
formance 2017, Frankfurt, Germany, June 18–22, 2017, Proceedings 32.
Springer, 355–373.

[55] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J

Leung, Manuel Egele, and Ayse K Coskun. 2018. Online diagnosis of

performance variation in HPC systems using machine learning. IEEE
Transactions on Parallel and Distributed Systems 30, 4 (2018), 883–896.

[56] Robert Underwood, Jason Anderson, and Amy Apon. 2018. Measuring

Network Latency Variation Impacts to High Performance Comput-

ing Application Performance. In Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering (Berlin, Germany)

(ICPE ’18). Association for Computing Machinery, New York, NY, USA,

68––79. doi:10.1145/3184407.3184427

[57] Ingmar Visser and Maarten Speekenbrink. 2021. hmmr v1.0-0 – Mix-

ture and Hidden Markov Models with R. doi:10.32614/CRAN.package.

hmmr https://CRAN.R-project.org/package=hmmr (Accessed: Dec. 15,

2024).

[58] Andrew J. Viterbi. 1967. Error bounds for convolutional codes and

an asymptotically optimum decoding algorithm. IEEE transactions on
Information Theory 13, 2 (1967), 260–269.

[59] Hannes Weisbach, Balazs Gerofi, Brian Kocoloski, Hermann Härtig,

and Yutaka Ishikawa. 2018. Hardware performance variation: A com-

parative study using lightweight kernels. In High Performance Comput-
ing: 33rd International Conference, ISC High Performance 2018, Frankfurt,
Germany, June 24-28, 2018, Proceedings 33. Springer, 246–265.

[60] Xu Yang, John Jenkins, Misbah Mubarak, Robert B Ross, and Zhiling

Lan. 2016. Watch out for the bully! job interference study on dragonfly

network. In SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 750–
760.

[61] Li Yu and Zhiling Lan. 2015. A scalable, non-parametric method

for detecting performance anomaly in large scale computing. IEEE
Transactions on Parallel and Distributed Systems 27, 7 (2015), 1902–

1914.

[62] Xiao Zhang, Fanjing Meng, Pengfei Chen, and Jingmin Xu. 2016. Task-

insight: A fine-grained performance anomaly detection and problem

locating system. In 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). IEEE, 917–920.

[63] Yijia Zhang, Taylor Groves, Brandon Cook, Nicholas J Wright, and

Ayse K Coskun. 2020. Quantifying the impact of network congestion

on application performance and network metrics. In 2020 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). IEEE, 162–168.

https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1029/2020GC009059
https://doi.org/10.1137/16M108450X
https://doi.org/10.1137/15M1049130
https://arxiv.org/abs/https://doi.org/10.1137/15M1049130
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.32614/CRAN.package.hmmr
https://doi.org/10.32614/CRAN.package.hmmr
https://CRAN.R-project.org/package=hmmr

	Abstract
	1 Introduction
	1.1 Challenges of performance variability
	1.2 Model problem
	1.3 Current state

	2 Methods and Contributions
	2.1 Summary of Contributions
	2.2 Statistical methods for variable background latencies
	2.3 Overview of the matrix-free FEM algorithm
	2.4 Communication hiding methods

	3 Experimental Setup and Hardware Platforms
	3.1 Statistical regime extraction for variable performance
	3.2 Numerical experiments for implicit PDE solvers
	3.3 HPC systems

	4 Performance Results
	4.1 Fine granularity performance: time per MatVec per MPI rank
	4.2 Intermediate granularity performance: MatVec distribution per MPI rank
	4.3 Coarse granularity performance: maximum time per MPI rank
	4.4 Frontera – Coarse granularity performance: maximum time per MPI rank

	5 Conclusions
	Acknowledgments
	References

