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Abstract
The exponential growth of data necessitates distributed stor-

age models, such as peer-to-peer systems and data federa-

tions.While distributed storage can reduce costs and increase

reliability, the heterogeneity in storage capacity, I/O perfor-

mance, and failure rates of storage resources makes their

efficient use a challenge. Further, node failures are common

and can lead to data unavailability and even data loss. Erasure
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coding is a common resiliency strategy implemented in stor-

age systems to mitigate failures by striping data across stor-

age locations. However, erasure coding is computationally

expensive and existing systems do not consider the heteroge-

neous resources and their varied capacity and performance

when placing data chunks. We tackle the challenges of using

erasure coding with distributed and heterogeneous nodes,

aiming to store as much data as possible, minimize encoding

and decoding time, and meeting user-defined reliability re-

quirements for each data item.We propose two new dynamic

scheduling algorithms, D-Rex LB and D-Rex SC, that adap-

tively choose erasure coding parameters and map chunks to

heterogeneous nodes. D-Rex SC achieves robust performance

for both storage utilization and throughput, at a higher com-

putational cost, while D-Rex LB is faster but with slightly less

competitive performance. In addition, we propose two greedy

algorithms, GreedyMinStorage and GreedyLeastUsed, that
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optimize for storage utilization and load balancing, respec-

tively. Our experimental evaluation shows that our dynamic

schedulers store, on average, 45% more data items without

significantly degrading I/O throughput compared to state-of-

the-art algorithms, while GreedyLeastUsed is able to store

21% more data items while also increasing throughput.

CCS Concepts
•Computer systems organization→Reliability; •Hard-
ware → External storage; • Information systems →
Distributed storage; • Theory of computation→ Sched-
uling algorithms.
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1 Introduction
The increasing size of data, coupled with its distributed pro-

duction and acquisition, is driving the adoption of distributed

data storage models. Distributed storage is often seen as a

way of reducing costs, increasing fault tolerance, and improv-

ing performance. However, achieving these benefits requires

addressing the challenges posed by heterogeneous storage

nodes (potentially geographically distributed) with varying

capacities, bandwidths, and failure rates.

A key challenge in this context is the resilient storage of

data in a cost-efficient manner. Erasure coding (EC) [23] is

a well-known technique that provides the same resilience

guarantees as full data replication but uses significantly less

storage space at the cost of additional computations. EC tech-

niques divide a data item 𝑑 into 𝐾 chunks of size 𝑠𝑖𝑧𝑒 (𝑑)/𝐾
and add 𝑃 parity chunks of the same size, such that any

𝐾 of the 𝐾 + 𝑃 chunks are sufficient to recover the origi-

nal item through a decoding operation. Thus, if each of the

𝐾 + 𝑃 chunks is placed on a different storage system, up to

𝑃 failures can be tolerated before data items are lost.

However, EC faces two main challenges. First, it incurs

costs due to the complexity of chunking objects and calcu-

lating the parity data [24, 28]: costs that tend to increase

with the number of chunks. To illustrate these costs, we con-

ducted an experiment in which we encoded and decoded
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Figure 1: Breakdown of encode, decode, and upload
times to store 400MB across a varying number of nodes
based on [28] on a 48-core Intel Xeon E5-2670. The
parity chunks 𝑃 = 2, resulting in 𝐾 data chunks equal
to total number of chunks minus two.

a 400 MB data item with a fixed 𝑃 = 2 and varying values

of 𝐾 . As shown in Figure 1, increased 𝐾 reduces storage

overhead but increases decoding time. Second, state-of-the-

art distributed storage algorithms employ EC using fixed

values of 𝐾 and 𝑃 and distribute chunks uniformly, under

the assumption that all data items are equal and the storage

nodes are homogeneous. Given the diversity of storage re-

quirements (e.g., some data items require a higher reliability

guarantee and/or accessed faster than others) and hetero-

geneity of storage nodes (e.g., due to federation of storage

systems), this assumption is outdated and necessitates more

adaptive EC.

To address these challenges, we propose D-Rex (Dynamic

Resilience Extension), an adaptive EC algorithm based on an

innovative reliability model that allows a customized reliabil-

ity target for each stored data item. Based on this reliability

model, we contribute two greedy algorithms and two adap-

tive algorithms that automatically decide the number of data

chunks, parity chunks, and allocation of chunks on storage

nodes in order to satisfy reliability targets, maximize stor-

age space utilization, and minimize the I/O overhead of data

access. D-Rex is grounded in real-world applications and

can be integrated into existing data transfer and storage in-

frastructures, such as Globus [2] or DynoStore [35, 36]. We

summarize our contributions as follows:

(1) We introduce an innovative reliability model that lever-

ages the notion of a reliability target, expressed as the

chance of successful access to a data item within a given

time interval, making it easy for users to express and

reason about quality-of-service guarantees (§3.1).

(2) We introduce two greedy algorithms, GreedyMinStorage

and GreedyLeastUsed, and two dynamic algorithms, D-

Rex LB and D-Rex SC, based on our reliability model. The
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D-Rex algorithms aim to solve the multi-objective opti-

mization problem (§3.2) of successfully storing as much

data as possible, satisfying the reliability target and stor-

age capacity constraints, and minimizing I/O overheads

associated with read/write operations (§4).

(3) We design and implement a dynamic data storage sim-

ulator that we employ to evaluate our proposed algo-

rithms against the state-of-the-art algorithms (§5.2) un-

der controlled settings. Using the simulator, we run ex-

tensive simulations using diverse datasets, showing that

D-Rex SC and D-Rex LB store on average 45% and 31%

more data while only 0.4 and 0.3 MB/s slower, respectively,

than state-of-the-art algorithms (§5) when using hetero-

geneous nodes. GreedyLeastUsed increases the amount of

data stored by up to 21% while also increasing throughput.

(4) We integrate our algorithms into a real memory system

to perform experiments in an unconstrained memory sce-

nario and show that our algorithms do not significantly

degrade throughput under such conditions (§6).

2 Related Work
Distributed Storage: Distributed object stores and file sys-

tems often rely on replication, where full copies of a data

item are stored on different nodes to ensure availability. AWS

S3 [1] replicates objects across at least three availability

zones. Similarly, Hadoop Distributed File System (HDFS)

replicates each data item twice [6], resulting in a total of

three copies and a storage overhead of 200%. The Inter Plan-

etary File System [11] is a peer-to-peer (P2P) file system

that fully replicates data items as they are shared between

different peers and, by the nature of P2P, must manage many

heterogeneous nodes. SkyStore [27] dynamically replicates

and evicts objects across different cloud storage providers

according to application access patterns with the goal of

optimizing for lower cost. Our solutions differ by using era-

sure coding, which has lower storage overhead than full

replication.

Erasure Coding in Distributed Storage: HDFS [3]

uses the well-established Reed-Solomon [41] erasure coding

scheme and stores data and parity chunks in a distributed

fashion to minimize inter-rack write traffic. It relies on a cen-

tralized NameNode to manage the encoding process. Glus-

ter [33] is a distributed file system that combines disk storage

from multiple servers into a single namespace. Gluster inte-

grates erasure coding with a default configuration of 4 data

chunks and 2 parity chunks. It uses dispersed bricks rather

than dedicated nodes to store chunks, allowing for more

granular storage. Distributed Asynchronous Object Storage

(DAOS) is an object store where objects are managed as

collections, called containers, that can scale across multiple

storage devices [17]. It implements EC and allows users to

define the desired level of reliability. The storage efficiency

of EC has motivated its implementation in distributed data

storage systems such as EdgeHydra [16] and ELECT [34]. In

these systems, erasure codes stripe data items across multiple

storage nodes to balance workloads and enable parallel data

access for improved performance. OceanStore [21] and ER-

Store [26] implement a combination of EC and replication

to provide high availability of data, assuming that all nodes

are prone to fail. While these systems efficiently manage

EC, they assume that all nodes are homogeneous, and as a

result, the number of data and parity chunks can be static.

Our approach differs by incorporating heterogeneity into

decisions on how to utilize EC and where to place chunks.

Erasure Coding Optimizations: SMFRepair [42] sug-

gests saturating the bandwidth of the least busy node and

transferring data from links with the largest possible band-

width to minimize the transfer time when decoding data. We

consider a simpler model where we do not include trans-

fers between storage nodes. [19] propose a linear program-

ming model for the data block placement problem at the

edge in order to minimize storage cost while maintaining

quality of service. Some approaches use TOPSIS to optimize

chunk placement on heterogeneous storage nodes to improve

read/write throughput [32] but do not consider storage size

limitations.

While these solutions optimize for either transfer time or

storage cost, we have developed an approach that optimizes

for both time and space in the context of data storage on

heterogeneous nodes with limited storage.

Failure-Recovery Techniques Erasure coding (EC) sig-

nificantly lowers repair bandwidth compared to full replica-

tion [40]. To further reduce recovery latency, schemes such

as proactive repair rebuild lost chunks immediately upon

failure detection, or even preemptively when failures are pre-

dicted [25, 37]. These techniques focus solely on the repair

phase, and can be layered on top of our chunking and place-

ment model without any modifications. Checkpoint-restart

is another actively researched area. Several efforts leverage

multiple storage levels to asynchronously hide the I/O over-

head of persisting checkpoints [15, 29, 30]. EC is used to

protect the node-local checkpoints against node failures, as

an alternative to storing checkpoints to a parallel file system.

3 Framework
Here, we formalize the problem statement. First, we intro-

duce an innovative reliability model that addresses the ques-

tion of satisfying resilience based on user-specified quality

of service constraints. Then, we formulate an optimization

problem to decide how to encode and distribute multiple data

items that need to be written to a resilient data repository
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Table 1: List of notations.

Notation Description

Known to the algorithms

𝐿 Number of available storage nodes.

S = {𝑆1, . . . , 𝑆𝐿} The set of storage nodes.

𝑠𝑖𝑧𝑒 (𝑆𝑖 ) Total storage size of node 𝑆𝑖 .

𝐹 (𝑆𝑖 , 𝑡) Free storage size on node 𝑆𝑖 at time

𝑡 .

𝑃𝑟failure (𝑆𝑖 ,Δ𝑡) Probability of node 𝑆𝑖 failing at least

once over a time period Δ𝑡 .
𝐵𝑟 (𝑆𝑖 ) Read bandwidth of 𝑆𝑖 , in MB/s.

𝐵𝑤 (𝑆𝑖 ) Write bandwidth of 𝑆𝑖 , in MB/s.

𝑇encode (𝑁𝑑 , 𝐾𝑑 , 𝑠𝑖𝑧𝑒 (𝑑)) Time required to encode a data item

𝑑 of size 𝑠𝑖𝑧𝑒 (𝑑) into 𝑁𝑑 chunks,

each of size 𝑠𝑖𝑧𝑒 (𝑑)/𝐾𝑑 .
𝑇decode (𝐾𝑑 , 𝑠𝑖𝑧𝑒 (𝑑)) Time required to recreate a data

item of size 𝑠𝑖𝑧𝑒 (𝑑) from𝐾𝑑 chunks.

Known for each data item 𝑑 at the time that it is to be stored

𝑠𝑖𝑧𝑒 (𝑑) Size of 𝑑 in MB.

Δ𝑡𝑑 Duration 𝑑 has to stay available.

RT (d) Reliability target of 𝑑 .

Unknown to the algorithms

𝑚 Number of data items to store.

D = {𝑑1, . . . , 𝑑𝑚} The set of data items to store.

Chosen by the algorithms for each data item 𝑑

𝐾𝑑 Number of data chunks required to

retrieve data item. Controls the data

item’s chunk size (= ⌈𝑠𝑖𝑧𝑒 (𝑑)/𝐾𝑑⌉).
𝑃𝑑 Number of parity chunks added for

𝑑 .

C𝑑 Set of chunks for data item 𝑑 .

𝑁𝑑 Total number of chunks: 𝑁𝑑 = 𝐾𝑑 +
𝑃𝑑 .

M𝑑 Subset of nodes in S where the

chunks of C𝑑 have been loaded.

|C𝑑 | = |M𝑑 | = 𝐾𝑑 + 𝑃𝑑

subject to our reliability model. Key notations are summa-

rized in Table 1.

3.1 Reliability Model
As a first contribution, we introduce a reliability model that

allows the user to input the level of reliability they want for

their data. The goal is to give the user as much flexibility

as possible without over-complicating how the user must

reason about resilience. Intuitively, each data item that needs

to be stored has a well-defined life cycle. For example, the

intermediate results of an application need to persist for

the lifetime of the application. Experimental results from

scientific applications typically need to be persistent for days

or months until data are analyzed and summarized. Some

important results need to be archived and retained for years.
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Figure 2: Data storage and retrieval, from top left, clock-
wise, with algorithm decisions in blue. (1) Encoding
of data 𝑑 into 𝑁 = K data chunks + P parity chunks;
(2) Writing of chunks to storage nodes, with choices
shown by→; (3) Reading of 𝐾 chunks from selected
nodes (more choices,←); and (4) Decoding of original
content from read chunks.

Thus, each data item 𝑑 (out of a total of𝑚 data items) to be

stored in the repository has a retention time Δ𝑡𝑑 < ∞ (i.e.,

an expiration). We propose the notion of a reliability target

𝑅𝑇 (𝑑), a value between (0, 1) representing the chance that
𝑑 can be successfully retrieved before expiration. The user

only specifies Δ𝑡𝑑 and 𝑅𝑇 (𝑑).
A repository consists of 𝐿 storage nodes S = {𝑆1, . . . , 𝑆𝐿}.

A storage node may fail at any time. We assume an erasure-

coded representation that splits each data item𝑑 into a chunk-

ing C𝑑 of 𝐾𝑑 equally sized data chunks, complemented by

𝑃𝑑 parity chunks of the same size. Each chunk is stored on a

different node. We denote the mapping of chunks to nodes

asM𝑑 . If at least 𝐾𝑑 chunks of the total 𝐾𝑑 + 𝑃𝑑 chunks are

still accessible on nodes before 𝑑 expires, the data item is

available. For example, Figure 2 shows the encoding of a

data item into 3 data chunks and 2 parity chunks that are

written to 5 distinct nodes with mapping (𝑆1, 𝑆3, 𝑆5, 𝑆7, 𝑆9).
Assuming 𝑆5 has failed, the data item can be reconstructed

from the two remaining data blocks and any parity block

using a decoding operation. Encoding and decoding involve

overheads 𝑇𝑒𝑛𝑐𝑜𝑑𝑒 and 𝑇𝑑𝑒𝑐𝑜𝑑𝑒 , respectively. Note that the

erasure-coded representation is the most general one. For

example, replication can be seen as a particular case in which

𝐾𝑑 = 1 represents the original data item, 𝑃𝑑 is the number of

replicas, and 𝑇𝑒𝑛𝑐𝑜𝑑𝑒 = 𝑇𝑑𝑒𝑐𝑜𝑑𝑒 = 0.

We assume a fail-stop failure model in which the storage

nodes are either operational or have permanently failed.
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Failure results in the permanent loss of any chunks stored

on the node. For simplicity, the probability of node failure

is equivalent to the probability of disk failure (detailed in

§5.3). We assume the remaining components in the node

will not fail, but this model can be extended to account for

such failures. Lastly, we assume that the failure rate of a

storage node is constant. Then, the probability of a storage

node failing at least once during a period Δ𝑡 (expressed as a

fraction of a year):

𝑃𝑟failure (𝑆𝑖 ,Δ𝑡) = 1 − 𝑒−𝜆rate ·Δ𝑡 (1)

Assuming failures follow a homogeneous Poisson pro-

cess with a constant rate of occurrence 𝜆𝑟𝑎𝑡𝑒 [13], we can

compute the probability of a data item 𝑑 with 𝑃𝑑 parity

chunks and a mappingM𝑑 to remain available for Δ𝑡𝑑 days:

𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ). This is equivalent to the probability of

no more than 𝑃𝑑 nodes failing. To this end, we use the cu-

mulative Poisson binomial distribution function to calculate

the probability of a certain number 𝑋 of events (i.e., node

failures in our case) across a set of independent Bernoulli

trials with probability 𝑃𝑟failure (𝑆𝑑 ,Δ𝑡𝑑 ):

𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ) = 𝑃𝑟 (𝑋 ≤ 𝑃𝑑 ) =
𝑃𝑑∑︁
𝑙=0

∑︁
𝐴∈𝐹𝑙

∏
𝑖∈𝐴

𝑃𝑟failure (𝑆𝑖 ,Δ𝑡𝑑 )
∏
𝑗∈𝐴𝑐

(
1 − 𝑃𝑟failure (𝑆 𝑗 ,Δ𝑡𝑑 )

)
(2)

with 𝐹𝑙 the set of all possible subsets of nodes inM𝑑 con-

taining exactly 𝑙 nodes. Equation 2 is precise but quadratic in

complexity, so we implemented an approximation inspired

by previous work [18, 38]. This approximation yields the

reliability constraint of each data item, defined as:

𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑) (3)

Equation 3 is a key optimization constraint based on a simple

user-specified reliability target.

While we assume uniform and independent node failures,

our framework extends to any failure-prediction model (e.g.,

as in [8]). We would only need to replace 𝑃𝑟failure (𝑆𝑖 ,Δ𝑡) with
the predicted probability of node 𝑆𝑖 to fail, given its current

age, within the next Δ𝑡 . Equation 2 could then be applied

without any modification.

3.2 Problem Formulation
We assume the𝑚 requests to store data items are ordered.

Multiple users may submit requests concurrently, but for the

purposes of space allocation, each item must be considered

sequentially. This does not preclude physically writing many

items concurrently. Each data item in D = {𝑑1, . . . , 𝑑𝑚} is
associated with a submission timestamp 𝑡𝑖 > 𝑡 𝑗 for each

𝑖 > 𝑗 , repository-assigned based on concurrency control

policies.

For each storage node, the following information is avail-

able: its total capacity, 𝑠𝑖𝑧𝑒 (𝑆𝑖 ); free space at time 𝑡 , 𝐹 (𝑆𝑖 , 𝑡);
write bandwidth, 𝐵𝑤 (𝑆𝑖 ); read bandwidth, 𝐵𝑟 (𝑆𝑖 ); and prob-

ability of failure over a given Δ𝑡 , 𝑃𝑟failure (𝑆𝑖 ,Δ𝑡): see Equa-
tion 1. Our goal is to automatically determine for each data

item 𝑑 : (i) the number of data chunks, 𝐾𝑑 ; (ii) the number of

parity chunks, 𝑃𝑑 ; and (iii) the mappingM𝑑 of these chunks

onto a subset of 𝐾𝑑 +𝑃𝑑 storage nodes in S, while optimizing

two quality metrics: (i) the total size of data items success-
fully stored and (ii) the I/O overhead of the write/read

operations. Furthermore, the optimization must be done in

an online fashion, meaning any decision about 𝑑𝑖 can only

depend on decisions taken for previous data items 𝑑 𝑗 with

𝑗 < 𝑖 , i.e., foreknowledge of storage requests is not available.

The motivation behind the quality metrics is based on

two observations: (i) the goal of a storage repository is to

maximize effective use of its capacity and (ii) users desire

requests to be served quickly in addition to successfully.

These two quality metrics may require a trade-off: increasing

the success rate of write requests may come at the cost of

greater I/O overhead.We do not prioritize onemetric because

both are important.

More formally, we consider a write operation successful

if and only if it simultaneously satisfies two constraints: (i)

there is capacity available on each node inM𝑑 to store the

new chunk and (ii) the reliability constraint 𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,

Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑) (introduced in Equation 3) can be satisfied.

Then, the total amount of data successfully stored is defined

as:

W =
∑︁

𝑑∈Dsuccess

𝑠𝑖𝑧𝑒 (𝑑)

where:

Dsuccess = 𝑑 ∈ D |
𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑)

and ∀𝑆𝑖 ∈ M𝑑 , 𝐹 (𝑆𝑖 , 𝑡𝑑 ) ≥
𝑠𝑖𝑧𝑒 (𝑑)
𝐾𝑑

We are concernedwith I/O overheadsT required to encode,
decode, write, and read each successfully stored data item.

These overheads depend on 𝐾𝑑 , 𝑃𝑑 and M𝑑 . The relative

importance of each overhead can be weighed depending

on the application and user requirements, but we assume

overheads share equal importance for the purposes of this

work. Thus, we define average I/O throughput as T where:

T =
W∑

𝑑∈Dsuccess

𝑇encode +𝑇decode +𝑇write +𝑇read
We assume that all chunk transfers are parallelized and

that no two nodes share a connection, whichwould introduce

contention. Thus, the slowest node inM𝑑 is the bottleneck
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for both writing (𝑇write) and reading (𝑇read). We assume that

encoding and decoding times are constant for a given con-

figuration 𝐾𝑑 , 𝑃𝑑 , and 𝑠𝑖𝑧𝑒 (𝑑).
Given the formal definitions ofW and T, we summarize

the optimization problem in 1.

Problem 1. Given a sequence of𝑚 data itemsD = {𝑑1, . . . ,
𝑑𝑚} and 𝐿 storage nodes S = {𝑆1, . . . , 𝑆𝐿}, determine a chunk-
ing C𝑑 of each data item 𝑑 ∈ D as a set of 𝐾𝑑 data blocks and
𝑃𝑑 parity blocks, plus a mappingM𝑑 that assigns each data
block and parity block to a storage node, such as to maxi-
mize the average I/O throughput T and the total amountW of
successfully stored data items while subject to capacity avail-
ability on each storage node in M𝑑 to store the chunks in
C𝑑 and a target reliability constraint defined asM𝑑 satisfy
𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑).

4 Dynamic Resilience Extension (D-Rex)
To address the limitations described in §2, in this section

we present four algorithms that aim to solve the problem

described in §3.2. The first two algorithms we propose are

greedy algorithms (§4.1 and §4.2). To address the limitations

of these greedy algorithms, we propose two more algorithms.

The first algorithm, presented in §4.3, aims to achieve good

load balancing while having low complexity, making it easily

applicable. The second algorithm, presented in §4.4, is more

computationally expensive but seeks to optimize the trade-

off between throughput and amount of data stored. For each

algorithm, we describe below the decision made when a new

data item 𝑑 is stored at time 𝑡 .

4.1 Greedy Storage Minimization
We assume that a reasonable solution for a cost minimiza-

tion problem like Problem 1 is to minimize the total stor-

age overhead for each data item. We denote this algorithm

GreedyMinStorage. It selects values for 𝑁𝑑 and 𝐾𝑑 that mini-

mize the storage overhead for each data item by solving an

optimization problem such as:

minimize

𝑠𝑖𝑧𝑒 (𝑑)
𝐾𝑑

× 𝑁𝑑

s.t. 𝑃𝑟avail (M𝑑 , 𝐾𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑)
(4)

and use 𝑃𝑑 = 𝑁𝑑 − 𝐾𝑑 for the number of parity chunks.

The mappingM𝑑 is chosen by favoring the nodes with the

fastest bandwidth. This usually corresponds to selecting high

values of 𝑁 and 𝐾 , so as to make each chunk as small as

possible. The intuition is that, first, smaller chunks are faster

to transfer, so in the multi-objective problem we defined, this

would ensure read/write efficiency. Second, it incurs minimal

storage overhead, allowing for more data items to be stored,

thus satisfying the storage objective we defined.

4.2 Greedy Maximum Free Space
The GreedyLeastUsed algorithm prioritizes nodes with the

most available storage when placing chunks. This approach

ensures that data is distributed to the least utilized nodes,

balancing storage consumption across the system, which

we believe is a reasonable approach that a system manager

would want to use. The algorithm selects values for 𝑃𝑑 and

𝐾𝑑 that are as small as possible in order to greedily reduce

the encoding/decoding overhead:

minimize 𝑃𝑑 + 𝐾𝑑
s.t. 𝑃𝑟avail (M𝑑 , 𝐾𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑),
and M𝑑 = 𝐾𝑑 + 𝑃𝑑 nodes with highest 𝐹 (𝑆𝑖 )

(5)

4.3 D-Rex LB: Adding Load Balancing
The greedy algorithms presented above do not account for

varying storage sizes. The intuition behind D-Rex LB is to cal-

culate a balance penalty for all nodes, regardless of whether

a node stores a given item. By assigning penalties to nodes

that do not store the data item, the algorithm promotes a

more even distribution of load across the system, enhancing

load balancing and overall system efficiency.

The first step of the algorithm, detailed in 1, is to compute

the average free capacity (𝐹average) of the storage nodes. We

then iterate over the number of data chunks 𝐾𝑑 required to

reconstruct the original data item. For nodes that would store

the data item 𝑑 , we calculate a balance penalty based on the

node’s free storage, the average free storage across all nodes,

and the chunk size. For nodes that would not store 𝑑 , we

still compute the penalty but exclude the chunk size. When

the average free capacity is high, indicating that most nodes

are relatively empty, the chunk size has minimal impact on

the balance penalty, and the algorithm prioritizes filling the

largest nodes first. Conversely, when the average free storage

is small, the nodes begin to saturate and the chunk size has

a greater impact on the balance penalty. This incentives the

algorithm to use larger values of 𝐾𝑑 . Ultimately, we choose

the value of 𝐾𝑑 that yields the smallest penalty while also

minimizing 𝑃𝑑 and ensuring the reliability target is met.

D-Rex LB requires looping
𝐿 (𝐿+1)

2
times over eachmapping.

Verifying whether a mapping satisfies the reliability con-

straint requires computing the CDF for the Poisson-Binomial

distribution, which in our implementation has a cost of at

most 𝑂 (𝐾2). Since 𝐾 can be at most 𝐿 − 1, the worst-case
complexity simplifies to 𝑂 (𝐿4). However, in most cases 𝐾

is small and the break condition at Line 23 is reached early.

Consequently, the scheduling overhead per data item is neg-

ligible compared to the data transfer time, as summarized in

Table 2.
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Algorithm 1 D-Rex Load Balancing (D-Rex LB)

1: 𝐹average ← 1

𝐿

𝐿∑
𝑖=1

𝐹 (𝑆𝑖 , 𝑡𝑑 )
2: Sort S in order of decreasing 𝐹 (𝑆𝑖 , 𝑡𝑑 )
3: 𝑚𝑖𝑛_𝑏𝑝 ←∞ // bp: balance penalty
4: 𝑚𝑖𝑛_𝐾 ← −1
5: for 𝑃𝑑 ← 1 to 𝑃𝑑 < 𝐿 do
6: for 𝐾𝑑 ← 2 to 𝐾𝑑 ≤ 𝐿 − 𝑃𝑑 do
7: 𝑏𝑝 ← 0

8: M𝑑 ← first 𝐾𝑑 + 𝑃𝑑 nodes in sorted S
9: if 𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑) then
10: for each 𝑆 𝑗 ∈ M𝑑 do
11: 𝑏𝑝 +=

��𝐹 (𝑆 𝑗 , 𝑡𝑑 ) − 𝑠𝑖𝑧𝑒 (𝑑)/𝐾𝑑 − 𝐹average��
12: end for
13: for each 𝑆 𝑗 ∉M𝑑 do
14: 𝑏𝑝 +=

��𝐹 (𝑆 𝑗 , 𝑡𝑑 ) − 𝐹average��
15: end for
16: if 𝑏𝑝 < 𝑚𝑖𝑛_𝑏𝑝 then
17: 𝑚𝑖𝑛_𝐾 ← 𝐾𝑑
18: 𝑚𝑖𝑛_𝑏𝑝 ← 𝑏𝑝

19: end if
20: end if
21: end for
22: if 𝑚𝑖𝑛_𝐾 ≠ −1 then
23: Break

24: end if
25: end for
26: Create 𝑚𝑖𝑛_𝐾 + 𝑃𝑑 chunks of size 𝑠𝑖𝑧𝑒 (𝑑)/𝑚𝑖𝑛_𝐾 and

store them on the first𝑚𝑖𝑛_𝐾 + 𝑃𝑑 nodes of sorted S

4.4 D-Rex SC: Considering System Capacity
We propose a second dynamic algorithm, D-Rex SC (see 2),

that is more computationally intensive than D-Rex LB but

adapts better to node storage saturation. The intuition is to

consider three key parameters: (i) the cost of encoding and

decoding, (ii) the erasure coding storage overhead for a given

𝑁 and 𝐾 , and (iii) the proportion of free storage remaining

across the nodes.

We begin by considering different node mappings (e.g.,

[1, 2, 3], [1, 2, 4], [1, 2, 3, 4], etc.) as described in Lines 2–8.

We consider the first 2
10
mappings of nodes with the highest

available storage, starting with the top nodes sequentially.

As an example, initially, we examine mappings of nodes [1,

2], then expand to [1, 2, 3] and so on up to [1, 2, ..., L]. Then,

we explore other combinations such as [2, 3] etc. Limiting

to 2
10
mappings ensures a balance between complexity and

effective results at scale.

For each mapping M, we know the number of nodes,

𝑁 = |M|, and the failure rate of each node inM. We then

calculate the couple 𝐾 , 𝑃 that minimize storage overhead

while meeting the data reliability goal as well as the three

key parameters: duration, storage cost, and saturation cost.

Duration comprises the encoding and decoding times and

the parallelized read and write times (assumed to be the time

for the node with the worst bandwidth) using the nodes in

M. Linear regression is used to estimate the encode and

decode times given a set of encode and decode times from

different data item sizes and numbers of data and parity

chunks. In practice, our tests over data sizes ranging from 1

to 500 MB show that the linear regression prediction closely

matches the actual measurements. Storage cost is the storage
overhead of erasure coding for 𝑁 nodes with 𝐾 data chunks.

Saturation cost aims to evaluate how close a node is to its

storage limit. We assign a saturation score ranging from 0

to 1 based on the node’s utilization relative to its maximum

capacity. The scoring function (denoted as 𝑓 (𝑥) on line 8)

follows an exponential curve to penalize nodes approaching

their limit (see Figure 3). Completely filling a node is often

a bad solution, as it reduces the number of nodes that can

be used for future data items, thus forcing the use of smaller

values of 𝑁 , which is worse overall for storage overhead.

These parameters are interrelated, and optimizing one can

lead to trade-offs in the others. For instance, reducing storage

overhead with larger values of 𝑁 and 𝐾 increases the decod-

ing time. Therefore, instead of choosing solutions that excel

in only one parameter, we retain only those on the Pareto

front (Line 12) that we call candidate mappings. In Line 16,

we compute for all candidates the progress that they made

on each parameter relative to the other candidates. Thus, if

all candidates have a similar or equal storage overhead, they

will not make much progress relative to others. This favors

solutions that are radically better than others on one or more

parameters.

Finally, a score is calculated that combines the progress of

the three parameters. In order to account for the available

capacity of the nodes, we compute the total system saturation
(see line 11) using the same exponential function as before.

However, instead of evaluating individual nodes, we compute

the overall free space across all storage nodes. This system
saturation is used to diminish the importance given to the

duration parameter. As a result, this penalizes solutions that

try to use parameters that are costly in terms of storage when

the system is already saturated. The candidate solution with

the highest score is selected.

Choosing 𝐾 (Line 4) requires iterating over 𝐿 − 1 possible
values of𝐾 and computing the CDF for the Poisson-Binomial

distribution. This results in a complexity of 𝑂 (𝐿3) for this
step. This step is repeated for each mapping, which is at most

2
10

times. This does not affect the asymptotic complexity,

but it does affect the scheduling overhead for smaller val-

ues of 𝐿. Adding the loop Line 15, the overall complexity

is 𝑂 (𝑚𝑎𝑥 (𝐿3, |C|)). However, the scheduling overhead per
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Algorithm 2 D-Rex System Capacity (D-Rex SC)

0: Task: Determine for supplied 𝑑 theM, 𝐾 , 𝑃 that provide best trade-off between amount of data stored and throughput

1: Sort S in order of decreasing 𝐹 (𝑆𝑖 , 𝑡𝑑 )
2: M𝑠𝑒𝑡 ← First 2

10
combinations of nodes

3: for each mappingM ∈ M𝑠𝑒𝑡 do
4: Choose (𝐾, 𝑃) such that ⌈ 𝑠𝑖𝑧𝑒 (𝑑 )

𝐾
⌉ × (𝐾 + 𝑃) is minimized and 𝑃𝑟avail (M, 𝑃,Δ𝑡) ≥ 𝑅𝑇 (𝑑)

5: 𝐶 ← (𝐾, 𝑃,M)
6: 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐶) ←𝑚𝑖𝑛(𝐵𝑤 ∈ M) × ⌈ 𝑠𝑖𝑧𝑒 (𝑑 )𝐾

⌉ +𝑚𝑖𝑛(𝐵𝑟 ∈ M) × ⌈ 𝑠𝑖𝑧𝑒 (𝑑 )𝐾
⌉ // Compute duration for given 𝑑 ,M, 𝐾

+𝑇encode ( |M|, 𝐾, 𝑠𝑖𝑧𝑒 (𝑑)) +𝑇decode (𝐾, 𝑠𝑖𝑧𝑒 (𝐷))
7: 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝐶) ← ⌈ 𝑠𝑖𝑧𝑒 (𝑑 )

𝐾
⌉ × |M| // Compute storage for given 𝑑 ,M, 𝐾

8: 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐶) ← ∑ |M |
𝑘=1

𝑓 (𝑠𝑖𝑧𝑒 (𝑆𝑘 ) − 𝐹 (𝑆𝑘 , 𝑡) + ⌈ 𝑠𝑖𝑧𝑒 (𝑑 )𝐾
⌉) // Compute saturation for given 𝑑 ,M, 𝐾

9: Add 𝐶 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠

10: end for
11: 𝑆𝑦𝑠𝑡𝑒𝑚_𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑓 (𝑠𝑖𝑧𝑒 (S) − 𝐹 (S)) for 𝑓 (𝑥) = exp(𝑚𝑖𝑛(𝑠𝑖𝑧𝑒 (𝑑) ∈ D at time 𝑡), 1/𝐿) (𝑠𝑖𝑧𝑒 (S), 1)
12: C← Pareto front of all 𝐶 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 based on {𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐶), 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝐶), 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐶)}
13:

(
duration𝑚𝑖𝑛, storage𝑚𝑖𝑛, saturation𝑚𝑖𝑛

)
←

(
min𝑐∈C 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑐), min𝑐∈C 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝑐), min𝑐∈C 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑐)

)
14:

(
duration𝑚𝑎𝑥 , storage𝑚𝑎𝑥 , saturation𝑚𝑎𝑥

)
←

(
max𝑐∈C 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑐), max𝑐∈C 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝑐), max𝑐∈C 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑐)

)
15: for each candidate mapping 𝐶𝑖 ∈ C do
16:

(
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛progress (𝐶𝑖 ), 𝑠𝑡𝑜𝑟𝑎𝑔𝑒progress (𝐶𝑖 ), 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛progress (𝐶𝑖 )

)
←

(
1 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖 )−duration𝑚𝑖𝑛

duration𝑚𝑎𝑥−duration𝑚𝑖𝑛
, 1 −

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝐶𝑖 )−storage𝑚𝑖𝑛

storage𝑚𝑎𝑥−storage𝑚𝑖𝑛
, 1 − 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖 )−saturation𝑚𝑖𝑛

saturation𝑚𝑎𝑥−saturation𝑚𝑖𝑛

)
17: 𝑆𝑐𝑜𝑟𝑒 (𝐶𝑖 ) ← (1 − 𝑆𝑦𝑠𝑡𝑒𝑚_𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛) × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛progress (𝐶𝑖 ) + (𝑠𝑡𝑜𝑟𝑎𝑔𝑒progress (𝐶𝑖 ) + 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛progress (𝐶𝑖 ))/2
18: end for
19: Select candidate mapping 𝐶𝑏𝑒𝑠𝑡 = (𝐾𝑏𝑒𝑠𝑡 , 𝑃𝑏𝑒𝑠𝑡 ,M𝑏𝑒𝑠𝑡 ) with highest score

20: Partition 𝑑 into 𝐾𝑏𝑒𝑠𝑡 chunks of size 𝑠𝑖𝑧𝑒 (𝑑)/𝐾𝑏𝑒𝑠𝑡 , add 𝑃𝑏𝑒𝑠𝑡 parity chunks and distribute across nodes inM𝑏𝑒𝑠𝑡
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Figure 3: Example of the function used to calculate
the saturation cost. The exponential curve spans from
the smallest known data item size to the total storage
capacity of the node. The green dot is an example of a
node’s available free storage.

data item remains reasonable even as the number of nodes

scales, as shown in Table 2.

5 Experimental evaluation
We evaluate our algorithms using a simulator written in C,

since processing hundreds of terabytes of data in real-world

Table 2: Measured scheduling overhead per data item
(in milliseconds) for varying numbers of nodes.

Alg. ↓ # of nodes→ 10 50 100 500

GreedyMinStorage 0.007 0.146 0.943 9.464

GreedyLeastUsed 0.001 0.003 0.006 0.027

D-Rex LB 0.001 0.015 0.057 2.462

D-Rex SC 0.488 2.871 6.671 343.3

experiments is costly. The simulator also allows us to eas-

ily explore different scenarios and node failures. We obtain

data workloads (data items, sizes, arrival times) from four

real-world datasets. The simulator processes data items us-

ing their release date from the dataset. It calculates transfer

times using user-reported bandwidths without interference,

i.e. in a best-case scenario. We implemented all strategies

and state-of-the-art (SOTA) baselines in this simulator.
1
We

calibrated the simulator with real measurements, and as will

be shown by Figure 8 and Figure 13, the results measured in

the simulation are confirmed by real experiments. We first

1
Our simulator, algorithm implementations, and details of storage nodes

and datasets are available for reproducibility: https://github.com/Double-

Blind-975/Drex-repro-anonymous.git.

https://github.com/Double-Blind-975/Drex-repro-anonymous.git
https://github.com/Double-Blind-975/Drex-repro-anonymous.git
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Table 3: Number of data items and per-item statistics
for the four datasets used in our experiments.

Per-item statistics

Dataset # of items (m) Avg. Min Max Std

MEVA 4157 117.1 MB 1.4 MB 856.1 MB 68.1 MB

Sentinel-2 256,351 475.9 MB 2.7 MB 969.9 MB 256.5 MB

SWIM 5214 23.4 GB 1.0 B 5329.5 GB 177.0 GB

IBM COS 47,529 2.6 GB 0.2 MB 1345.8 GB 18.9 GB

Algorithm 3 Erasure-Coding

1: Function EC(𝐾 , 𝑃 , 𝑑 , 𝑡 )

2: Sort S by descending value of 𝐵𝑤
3: 𝑁 ← 𝐾 + 𝑃
4: Create 𝑁 chunks, each of size ⌈ 𝑠𝑖𝑧𝑒 (𝑑 )

𝐾
⌉

5: Store chunks on first 𝑁 nodes that satisfy ∀𝑆𝑖 ∈ M,

⌈ 𝑠𝑖𝑧𝑒 (𝑑 )
𝐾
⌉ ≤ 𝐹 (𝑆𝑖 , 𝑡) and 𝑃𝑟avail (M, 𝑃,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑)

6: End function

describe the datasets and storage nodes used in the experi-

ments and then evaluate our algorithms across different sets

of nodes, datasets, and node failure scenarios.

5.1 Datasets
We use four datasets, summarized in Table 3. The MEVA
dataset [7] contains 4, 157 five-minute video clips, totaling

346 hours, captured from multiple cameras. It is widely used

for human activity recognition research [10]. The Sentinel-
2 dataset [12] provides multispectral Earth imagery. Imagery

data are emitted and processed nearly daily, with a stable

size. We sampled a representative portion of the dataset for

benchmarking. The Statistical Workload Injector for MapRe-

duce (SWIM) [5] is a tool for evaluating HDFS performance

with realistic workloads, widely used in big data systems

research [22]. The IBM Cloud Object Storage (IBM COS)
dataset [14] captures public data such as PDF documents,

media files, database backups, or disk images. It has been

used to study caching policies [39]. For benchmarking consis-

tency, we standardize the total size of all requests performed

for each dataset to 122 TB, trimming the last three datasets

and repeating the MEVA dataset to meet this size.

5.2 State-of-the-Art Algorithm Baselines
Within the scope of the proposed reliability model and prob-

lem formulation, we compare our algorithms against two

state-of-the-art baseline algorithms that are widely used in

modern file systems and cloud platforms: three static erasure

coding (EC) approaches and another with a varied replication

factor.

5.2.1 Static Erasure Coding. Popular solutions like HDFS
[3] and Gluster [33] use static erasure coding to store data

items. We implement the default configurations of HDFS and

Gluster, utilizing 10 or fewer storage nodes, as this will be the

standard number of nodes in our experimental evaluation.

For HDFS, there are two erasure coding configurations: three

data and two parity blocks, referred to as 𝐸𝐶 (3, 2); and six

data and three parity blocks, referred to as 𝐸𝐶 (6, 3). Gluster
uses an 𝐸𝐶 (4, 2) configuration. We describe how we apply

this erasure coding in 3. For fairness, we assume that HDFS

and Gluster prioritize nodes with the highest bandwidth.

5.2.2 Erasure Coding with Varied Replication Factors. DAOS
provides users with a selection of predefined erasure coding

configurations [9, 17], including 𝐸𝐶 (8, 1), 𝐸𝐶 (8, 2), 𝐸𝐶 (4, 1),
and 𝐸𝐶 (4, 2). For scenarios requiring higher reliability, DAOS
also supports full data replication with configurations of 2×,
4×, or 6× full copies. To ensure a fair evaluation, we prior-

itize choosing the configuration that meets the predefined

reliability target 𝑃𝑟avail (M𝑑 , 𝑃𝑑 ,Δ𝑡𝑑 ) ≥ 𝑅𝑇 (𝑑) with the low-

est storage overhead, aligning their performance with our

objectives.

5.3 Storage Nodes from Backblaze
We use statistics from Backblaze [4] to identify commonly

used storage HDDs and their failure rates (SSDs and HDDs

have similar failure rates [31]). We construct four distinct

storage node sets where each node contains a single drive

and each set contains 10 nodes: (i)Most Used: 10 most used

HDDs from Backblaze, representing a realistic scenario with

popular hardware; (ii) Most Unreliable: 10 HDDs with the

highest failure rates, modeling a worst-case pathological sce-

nario; (iii)Most Reliable: 10 HDDs with the fewest failures;

and (iv) Homogeneous: 10 identical HDDs, each represent-

ing the most used HDD model from Backblaze.

Figure 4 shows the distribution of storage size and annual

failure rates for the Most Used and Most Unreliable sets. Stor-
age sizes vary from 5 to 20 TB, and failure rates show signif-

icant variability for Most Unreliable. Write bandwidths vary

between 100 and 250 MB/s, and read bandwidths between

100 and 400 MB/s. Table 4 shows the pairwise correlations

across all HDDs. The storage properties are largely indepen-

dent, displaying no strong correlations, with the exception

of read and write bandwidths.Thus, it is unreasonable to

simply rely on the most performant drives, which motivates

exploiting the heterogeneity of the drives/nodes.

5.4 Varying Reliability Target
Figure 5 shows the proportion of data stored using the Most
Used nodes and MEVA dataset while varying the target reli-

ability. At higher reliability targets, some bars are missing

as some algorithms cannot deliver the required reliability
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Figure 4: Distributions of storage size and annual fail-
ure rate for the Most Used (top) and Most Unreliable
(bottom) sets.

Table 4: Pairwise Pearson correlation among storage
properties for all drives recorded by Backblaze.

Storage Size Write BW Read BW Failure Rate

Storage Size 1

Write BW 0.614 1

Read BW 0.495 0.915 1

Failure Rate 0.078 -0.044 -0.092 1

level. In all cases, D-Rex SC and GreedyMinStorage store the

most data. GreedyLeastUsed stores 10% to 30% less data items

than D-Rex SC. GreedyLeastUsed spreads the load evenly but

always tries to create as few data chunks as possible. As a re-

sult, larger chunks of data are created to satisfy the reliability

constraint, which increases the overall storage overhead of

the stored data and thus allows fewer data items to be stored

overall. The SOTA algorithms (EC(3,2), EC(4,2), EC(6,4) and

DAOS) perform poorly due to the fixed storage overhead

associated with their fixed choice of 𝑃 and 𝐾 . Additionally,

they do not load balance causing certain nodes to become

saturated. For example, Figure 6 shows the storage distri-

bution of EC(3,2) with a 90% reliability target. The fastest

nodes (1–5) are saturated; however, as EC(3,2) requires at

least five nodes, no remaining items can be stored once node

9 is full, although significant storage remains available. In

contrast, D-Rex SC, D-Rex LB, and GreedyMinStorage avoid

this limitation and fully utilize nodes.

Figure 5 shows that D-Rex SC effectively incorporates
the strengths of a greedy approach, storing at least 73%
more data than the SOTA strategies and as much data
as a greedy algorithm that minimizes storage overhead.

5.5 Varying Storage Node Characteristics
Figure 7 shows the amount of data stored on different node

sets when each data item is assigned a reliability target (a

“number of nines”) chosen at random, as follows. Let 𝑥 be a

discrete random variable over the range {−1, 0, 1, 2, 3, 4, 5}.
Define:

𝑓 (𝑥) =


90 if 𝑥 = −1,
100 − 10−𝑥 if 0 ≤ 𝑥 < 5,

99.99999 if 𝑥 = 5.

Then, if 𝑥 ≠ 5, the reliability target is a random number

chosen uniformly from the range [ 𝑓 (𝑥), 𝑓 (𝑥 + 1) ], else it is
99.99999.

The storage proportion results are consistent with the

previous results: both D-Rex SC and GreedyMinStorage store

significantly more data, even when dealing with unreliable

or homogeneous nodes, than the other algorithms.

Figure 8 compares the average data storage throughput

of the D-Rex algorithms with the greedy and SOTA algo-

rithms. Since different algorithms store varying amounts of

data and use different subsets of nodes, a fair comparison

requires matching the amount of data stored. For instance, a

load-balancing strategy may utilize slower nodes, reducing

throughput compared to a strategy that stores less data but

uses only the same fast storage nodes. Thus, we compare

the average throughput for each algorithm for the same data

items. For example, if EC(3,2) stores only the first 40% of

the workload, we compare its throughput with that of D-

Rex SC/LB on the same set of data items. We observe that

the only algorithms faster than the D-Rex algorithms are

GreedyLeastUsed, EC(3,2), and EC(4,2). The largest differ-

ence occurs on the Homogeneous node set, where algorithms

using fewer nodes, such as GreedyLeastUsed and EC(3,2),

benefit from reduced encoding/decoding time without the

cost of not optimizing data placement for heterogeneity. This

result is to be expected, as D-Rex SC/LB were not designed

for homogeneous scenarios. In contrast, with diverse nodes

like the Most Unreliable or Most Used, the difference with

the D-Rex algorithms is negligible, approximately a 0.4 MB/s

decrease at most.

To better understand the performance of the different al-

gorithms, we show in Figure 9 a breakdown of the time spent

on each data operation for a subset of the MEVA workload.

(We use a subset so that all strategies can store all data items.

Otherwise, a fair comparison would not be possible, as some

strategies store more data and thus spend more time on data

operations.) We see that time spent reading & writing is neg-

ligible compared to that spent encoding & decoding because

encode & decode operations cannot be parallelized. While

GreedyMinStorage saves time on reading & writing by creat-

ing smaller chunks, D-Rex LB and SC have faster encoding

& decoding because they balance storage and time overhead.
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the sum of all data sizes in the workload) across varying reliability targets with theMost Used nodes and MEVA
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Most Used Most Reliable Most Unreliable Homogeneous
0

20

40

60

80

100

P
ro

p
or

ti
on

of
D

at
a

S
iz

es
S

to
re

d
(%

)

D-Rex SC

D-Rex LB

GreedyMinStorage

GreedyLeastUsed

EC(3,2)

EC(4,2)

EC(6,3)

DAOS

Figure 7: Proportion of data stored (the sum of the
sizes of data stored by an algorithm relative to the sum
of all data sizes in the workload) with different sets
of nodes and random reliability targets between 90%
and 99.99999% assigned to each item from the MEVA
dataset.

Overall, the D-Rex algorithms consistently store
more data items across a heterogeneous set of nodes

than SOTA algorithms while achieving comparable or
better throughput (slow-down ranging from 0.2 to 0.8
MB/s for D-Rex SC and from 0.2 to 0.4 MB/s for D-Rex
LB compared to the best SOTA result). In a homoge-
neous scenario, althoughD-Rex storesmore data items,
it suffers greater loss in terms of throughput as our
algorithms are not designed for such scenarios. In that
case, GreedyLeastUsed is the better algorithm to use.
Compared to a greedy algorithm that focuses on min-
imizing storage space, D-Rex SC stores as much data
with significantly better throughput.

5.6 Different Datasets
Figure 10 shows the amount of data stored using D-Rex and

baseline algorithms for three different datasets: Sentinel-2,

SWIM, and IBM COS (see §5.1). Figure 11 shows the differ-

ence in throughput between the D-Rex algorithms and the

SOTA algorithms with the same datasets. Across several
datasets with different data item counts and sizes, the
D-Rex algorithms (SC and LB) store on average at least
45% and 31% more data than EC(3,2), EC(4,2), EC(6,3),
or DAOS, respectively, while improving throughput or
showing negligible degradation. Compared to a greedy
algorithm that optimizes for storage overhead, D-Rex
SC stores almost as many data items while achieving
higher throughput, by an average of 1.5 MB/s across
the three workloads. GreedyLeastUsed stores on aver-
age 21% more data items while improving throughput
compared to the SOTA.

5.7 Resilience against Node Failures
Tables 12a and 12b present the results of an experiment

where we simulate the failures of varying numbers of nodes.
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Figure 8: Average throughput difference when compar-
ing D-Rex SC (plain) and D-Rex LB (hashed) against the
rest of the algorithms using different sets of nodes and
random reliability targets between 90% and 99.99999%
assigned to each item from the MEVA. We compare
equivalent data volumes by taking the minimum
amount stored between the D-Rex and the compared
algorithms. Values above 0 indicate that D-Rex algo-
rithms are faster, while values below 0 indicate slower
performance.

The experiment uses the Most Unreliable set of nodes and
the MEVA dataset, which consists of 70 days of input data.

To simulate node failures, we calculate the daily failure rate

of each node based on its known annual failure rate. Jobs

are submitted as usual, and after one day of job submissions

(tracked using the known jobs’ submission times), we sim-

ulate node failures. For each node, we generate a random

number between 0 and 1; if the random number is less than

or equal to the node’s daily failure rate, the node is consid-

ered to have failed. The algorithms schedule data items as

in previous experiments. When a node fails, they resched-

ule the lost chunks to meet the reliability target. If a data

item cannot meet the target, its chunks are removed from

all nodes, reducing the percentage of stored data shown in
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Figure 9: Time span of the data operations with a
dataset that does not saturate the nodes and a relia-
bility target of 99.99%.
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Figure 10: Proportion of data stored with the Sentinel-
2, SWIM, and IBM COS datasets, a workload saturating
all nodes, using the Most Used nodes and random re-
liability between 90% and 99.99999% assigned to each
item.

the tables. Figure 12a shows the amount of data retained

after failures with a target reliability of 90%. The two D-Rex

algorithms and GreedyMinStorage retain the most data by

using more storage nodes to reduce storage overhead and

larger values of 𝐾 and 𝑃 to survive more failures. Overall,

D-Rex SC retains the most data items.

When increasing the target reliability to 99.999%, as shown

in Figure 12b, fewer failures can be survived across all al-

gorithms, yet GreedyMinStorage and D-Rex SC still retain

the most data items. With a fixed 𝐾 and 𝑃 , the static algo-

rithms cannot achieve sufficient reliability after two nodes

fail—maintaining 100% reliability until that point. Node fail-
ures change the reliability that can be achieved with a
given set of nodes. Therefore, dynamic strategies that
can increase the number of parity chunks and the to-
tal number of nodes used are able to retain more data
items after failures.
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Table 5: Infrastructure used to evaluate D-Rex on the
Chameleon Cloud.

Node(s) Site # CPUs RAM (GB) Storage
Size (GB) Drive

0, 1 TACC 40 125 370 INTEL SSDSC1BG40

2 TACC 40 126 2000 Seagate ST2000NX0273

3 TACC 160 251 450 Micron MTFDDAK480TDS

4, 5 NRP 48 125 200 Seagate ST9250610NS

6 UC 96 251 960 Dell Express Flash CD5

7 UC 96 251 7600 INTEL SSDPF2KX076TZ

8 UC 96 187 240 Dell MZ7KM240HMHQ0D3

9 UC 96 251 865 INTEL SSDPF2KX076TZ

6 Validation on Real Infrastructure
To show the effectiveness of the D-Rex algorithms, we con-

duct real experiments with a wide-area storage system called

DynoStore (DS) [35, 36]. DynoStore implements a federated

storage overlay across distributed storage nodes using com-

mon interfaces called data containers. DynoStore can be

configured to use different algorithms to map data items to

storage nodes. Thus, while DynoStore manages the access

to data and storage resources, we use D-Rex to control the

chunking and placement of data items. We deploy DynoS-

tore with D-Rex using ten storage nodes distributed across

three Chameleon Cloud sites: CHI@UC, CHI@TACC, and

(a) Reliability target of 90%.

Alg. ↓ # failure→ 2 3 4 5 6 7

D-Rex SC 100% 100% 100% 56% 38% 28%

D-Rex LB 100% 100% 100% 54% 38% 23%

GreedyMinStorage 100% 100% 100% 52% 34% 28%

GreedyLeastUsed 100% 100% 100% 15% 0% 0%

EC(3,2) 100% 100% 100% 22% 0% 0%

EC(4,2) 100% 100% 82% 0% 0% 0%

EC(6,3) 0% 0% 0% 0% 0% 0%

DAOS 100% 100% 100% 0% 0% 0%

(b) Reliability target of 99.999%.

Algo ↓ # failure→ 2 3 4 5 6 7

D-Rex SC 100% 100% 100% 15% 0% 0%

D-Rex LB 100% 100% 100% 0% 0% 0%

GreedyMinStorage 100% 100% 100% 15% 0% 0%

GreedyLeastUsed 100% 100% 100% 15% 0% 0%

EC(3,2) 0% 0% 0% 0% 0% 0%

EC(4,2) 0% 0% 0% 0% 0% 0%

EC(6,3) 0% 0% 0% 0% 0% 0%

DAOS 85% 66% 41% 0% 0% 0%

Figure 12: Proportion of data items retained after node
failures under different reliability targets.
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iterations.

CHI@NRP [20]. To achieve a heterogeneous setup, we se-

lected nodes of various types and purposes. The hardware

details are presented in Table 5.

We compared the performance of D-Rex with HDFS. For

HDFS, we evaluated two erasure code policies using Reed-

Solomon with parameters EC(3,2) and EC(6,3). Figure 13

shows the average throughput observed when uploading

(top) and downloading (bottom) 1000 randomly generated

data items with a resilience target of 99.999%. The upload op-

erations include the encoding of objects, whereas the down-

load operations include the decoding of objects. The total
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size of the dataset is 113.5 GB with an average data item size

of 116.3 MB. D-Rex SC/LB, GreedyLeastUsed, and HDFS with

EC(3,2) achieved similar performance: in Figure 13, for data

uploading, these algorithms yield a throughput of 42.4, 41.3,

41.9, and 44.2 MB/s, respectively. HDFS with EC(3,2) per-

forms slightly better because D-Rex utilizes a larger number

of nodes, including some that are slower. Since the work-

load does not saturate the nodes, the advantages observed

in simulations, where D-Rex achieved superior performance,

are not yet apparent. When increasing the number of nodes

used with HDFS EC(6,3), we observe that HDFS performs

worse than D-Rex. In particular, D-Rex SC and D-Rex LB

are 21% and 19% faster, respectively. A similar trend is ob-

served in download operations. D-Rex stores more data
items, retains more data items after failures (as demon-
strated in the simulation results), and produces similar
throughput to static algorithms from the literature (as
demonstrated via experiments).

7 Conclusion
Distributed storage systems use erasure coding (EC) to in-

crease reliability and reduce costs. However, EC is compu-

tationally intensive, and the varying capacity, performance,

and failure rates of heterogeneous nodes present placement

challenges. Existing solutions rarely take node heterogeneity

into account when using EC. We address this gap by propos-

ing two new dynamic schedulers that jointly select EC param-

eters and assign chunks to nodes: D-Rex-SC, which optimizes

for overall system capacity, and D-Rex-LB, which balances

load across nodes. Through rigorous simulations, we showed

that D-Rex is able to store on average 45% more data items

across different datasets and sets of nodes compared to classic

state-of-the-art algorithms. Through real-world experiments,

we showed that D-Rex achieves comparable throughput com-

pared to HDFS’s erasure coding. D-Rex SC provides the best

overall performance compared to classic state-of-the-art al-

gorithms in terms of both storage utilization and through-

put, although its complexity increases with the number of

nodes. In contrast, D-Rex LB offers a balanced tradeoff with

reduced complexity. When storage is the primary concern,

GreedyMinStorage is the best choice, while GreedyLeast-

Used is superior when throughput is the sole focus. In future

work, we plan to enhance our heuristics by developing a

system that selects the most appropriate algorithm based on

hardware characteristics and user priorities. Future work will

also focus on exploring real-world deployments in storage

systems such as Gluster. By advancing the state-of-the-art in

data storage algorithms and erasure coding, this work lays

the foundation for resilient and high-performance storage

leveraging distributed and heterogeneous storage nodes.
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