
An Efficient 2D Fusion Method for High-Performance
Two-Stage Eigensolvers on Modern Heterogeneous

Architectures
Yongxiao Zhou
Tsinghua University

Beijing, China
zhou-

yx23@mails.tsinghua.edu.cn

Yi Zong
Tsinghua University

Beijing, China
zong-y21@mails.tsinghua.edu.cn

Yuyang Jin
Tsinghua University

Beijing, China
jinyuyang@tsinghua.edu.cn

Heng Li
Tsinghua University

Beijing, China
liheng19@mails.tsinghua.edu.cn

Wei Xue
Tsinghua University, Beijing,

China; Qinghai University, Xining,
China

Beijing, China
xuewei@tsinghua.edu.cn

Abstract
Solving a significant portion of the eigensystem is a critical
problem in numerical linear algebra and is widely applied in
real-world applications. As problem sizes increase, the two-
stage tridiagonalization method has emerged as the state-of-
the-art approach and has been implemented in well-known
libraries such as LAPACK, PLASMA, and MAGMA. Its ma-
jor performance bottleneck is the tridiagonal-to-band back
transformation of eigenvectors (st2sb) due to the dilemma
between limited operational intensity and excessive compu-
tational cost. This challenge is further exacerbated by the
growing imbalance between computational speed and mem-
ory bandwidth in modern heterogeneous architectures.
To address this challenge, this paper introduces a 2D Fu-

sion method to decouple the operational intensity from the
computational cost of st2sb. To reduce the intrinsic overhead
of 2D Fusion for large fusion factors, we further propose
an effective skipping strategy. Our 2D Fusion enhances the
performance of all existing two-stage eigensolvers without
loss of accuracy. We evaluated the effectiveness of 2D Fu-
sion in MAGMA and LAPACK across various problem sizes:
on the Nvidia A100 GPU, 2D Fusion improves the perfor-
mance of eigenvalue decomposition in MAGMA by an av-
erage speedup of 1.06× for matrices larger than 24k×24k

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3730411

in FP64; on the SW26010-Pro, 2D Fusion accelerates the
two-stage eigensolver tuned on LAPACK with an average
speedup of 1.19× for eigenvalue decomposition in both FP32
and FP64.

CCS Concepts
•Mathematics of computing→Mathematical software
performance; Solvers; • Computing methodologies →
Parallel algorithms; • Computer systems organization
→ Heterogeneous (hybrid) systems.

Keywords
Eigenvectors, blocked Householder transformations, hetero-
geneous architectures, symmetric matrices

ACM Reference Format:
Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue. 2025.
An Efficient 2D Fusion Method for High-Performance Two-Stage
Eigensolvers on Modern Heterogeneous Architectures. In 2025 In-
ternational Conference on Supercomputing (ICS ’25), June 08–11,
2025, Salt Lake City, UT, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3721145.3730411

1 Introduction
Eigenvalue decomposition (EVD) is a fundamental problem
in linear algebra and plays a crucial role in various fields,
including scientific computing [32], data analysis [16], and
engineering [26]. Among standard eigenproblems, solving
a large fraction of eigensystems for dense symmetric ma-
trices is one of the most typical scenarios [4, 28], which
is also a core functionality of LAPACK [2]. However, the
eigensystem calculation of large-scale matrices is often a

https://orcid.org/0000-0003-0064-4327
https://orcid.org/0000-0001-7179-6593
https://orcid.org/0000-0003-2358-3395
https://orcid.org/0009-0005-6824-5535
https://orcid.org/0000-0001-9740-6581
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3730411
https://doi.org/10.1145/3721145.3730411

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

performance bottleneck in applications due to its high com-
plexity of 𝑂 (𝑁 3) [20]. For instance, it can account for over
90% of the total time in the LS3DF algorithm for 8,000 silicon
atoms in electronic structure calculations [46]. Therefore,
developing a high-performance eigensolver is essential to
meet the growing computational demands.

Methods for solving symmetric eigenproblems can be cat-
egorized into four types: subspace iteration methods [38], Ja-
cobimethods [6], the one-stage tridiagonalizationmethod [17],
and the two-stage tridiagonalization method [9]. Subspace it-
eration methods are inefficient when computing a large num-
ber of eigenvectors, as they primarily rely on BLAS-2 matrix-
vector multiplications rather than BLAS-3 operations [12].
Meanwhile, Jacobi methods are impractical for large matrices
due to their prohibitively high computational cost [16]. The
two-stage tridiagonalization method [9] has been proven
more effective for large matrices by alleviating the memory
bottleneck of the one-stage tridiagonalization method [2].
Currently, this two-stage method is implemented in well-
established libraries such as SBR [11] and PLASMA [45] for
CPU platforms, and MAGMA [42] and ELPA [32, 49] for
heterogeneous architectures.

The tridiagonal-to-band back transformation for eigen-
vectors (st2sb) has historically been the performance bottle-
neck in solving eigensystems of large-scale matrices with the
two-stage tridiagonalization method due to its limited oper-
ational intensity (OI [47]) [20]. st2sb can account for over
40% of the total runtime in eigenvalue decomposition of
a matrix of size 130,000 on the K computer [20]. Existing
two-stage eigensolvers [11, 32, 42, 45, 49] improve the OI of
st2sb through 1D Fusion. They fuse multiple Householder
reflectors into a blocked Householder transformation [18]
and update the eigenvectors via BLAS-3 matrix-matrix mul-
tiplications (GEMM) instead of BLAS-2 kernels.
However, 1D fusion enhances the OI of st2sb at the cost

of a linear increase in computational workload. As analyzed
in Section 2.1, the best time lower bound of st2sb is achieved
when its OI matches the machine balance (defined as the
ratio of peak computational speed to peak memory band-
width [47]), and the GEMM performance reaches the theoreti-
cal peak. As illustrated in Figure 1, the corresponding compu-
tational cost can substantially exceed 4𝑁 3 for low-precision
computations on modern heterogeneous architectures, due
to the increase in machine balance from 𝑂 (10) to 𝑂 (100)
driven by the emergence of powerful computing units such
as Tensor Cores [36] on Nvidia GPUs and Matrix Cores [1]
on AMD GPUs. This high computational cost makes st2sb
the primary performance bottleneck in two-stage EVD. As
the gap between computational throughput and memory
bandwidth continues to widen by approximately 50% per
year [39], a similar situation is expected for FP32 and FP64
computations, as suggested by the extrapolated trend in the

0 50 100 150 200 250 300
Operational Intensity [FLOP/Byte]

2N3

4N3

6N3

8N3

10N3

12N3

14N3

16N3

Co
m

pu
ta

tio
na

l C
os

t [
FL

OP
s]

1D Fusion
(FP64)

1D Fusion
(TF32/FP32)

Our 2D Fusion
(All precisions)

SW26010-Pro (2016)
Nvidia A100 (2020)
AMD MI250X (2021)

AMD MI300X (2023)
Nvidia H100 (2023)
Nvidia B200 (2024)

Figure 1: Computational cost comparison of the
tridiagonal-to-band back transformation to achieve
the same operational intensity as the machine balance:
1D Fusion (scatter points) vs. our 2D Fusion (the red
horizontal line). The matrix bandwidth is 256 for all
architectures except SW26010-Pro [21], where it is 96
due to the limited size of Local Data Memory. Further
details are provided in Section 2.1.

lower-left region of Figure 1. Moreover, even when the OI
matches the machine balance, the actual GEMM performance
still exhibits a substantial gap from the theoretical peak for all
precisions due to overheads in BLAS implementations [12],
such as packing costs, pipeline stalls, memory access ineffi-
ciencies, and the cost of parallelization. However, achieving
both high OI and low computational cost in the st2sb step
of two-stage eigensolvers remains an open challenge in the
community, which is the most critical issue for improving
EVD performance [16, 20].
To address this challenge, we propose the following con-

tributions:

• We propose a 2D Fusion method that decouples the
OI from the computational cost of st2sb by further
introducing the new fusion of blocked Householder
transformations in 1D Fusion. We demonstrate that
the OI of st2sb with 2D Fusion is unbounded, and by
tuning the fusion factor, the computational cost can
be limited to approximately 4𝑁 3. It highlights the su-
periority of 2D Fusion over 1D Fusion in developing
high-performance eigensolvers on modern heteroge-
neous architectures.

• We propose a skipping strategy to reduce the in-
trinsic cost of 2D Fusion for large fusion factors by
bypassing unnecessary matrix computations. Exper-
imental results show that this strategy reduces the
overhead of 2D Fusion by an average of 49.0% in FP32
and 59.8% in FP64 across various matrix sizes.

An Efficient 2D Fusion Method for High-Performance Two-Stage Eigensolvers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

• We integrate our 2D Fusion method into both MAGMA
and LAPACK. Tests with various problem sizes show
that, on the Nvidia A100 GPU, 2D Fusion accelerates
st2sb in MAGMA by an average speedup of 1.21×
for matrices larger than 24k×24k in FP64, resulting in
an average EVD speedup of 1.06×. Additionally, we
employ a simple TF32+FP32 mixed-precision scheme
to further evaluate the effectiveness of our 2D Fusion.
On the SW26010-Pro [21], 2D Fusion accelerates st2sb
of the two-stage eigensolver tuned on LAPACK with
an average speedup of 1.94×, leading to a 1.19× EVD
speedup in both FP32 and FP64.

2 The Two-stage Tridiagonalization Method
Bischof et al. [9] proposed the two-stage tridiagonalization
method to address the memory bottleneck of the one-stage
tridiagonalization method [17] by splitting the tridiagonal-
ization into two stages. However, this approach incurs an
additional overhead of the tridiagonal-to-band back trans-
formation for eigenvectors, which often becomes the perfor-
mance bottleneck due to its limited OI.

w

sy2sb sb2st

GPU
+CPU

CPU

Symmetric
Matrix

Symmetric
Band

Matrix

Symmetric
Tridiagonal

Matrix

sb2sy st2sb
GPU GPU

Eigenvectors of
Symmetric Matrix

Eigenvectors of
Symmetric

Band Matrix

Eigenvectors of
Symmetric

Tridiagonal Matrix

Tridiagonal EVD
GPU+CPU Eigenvalues

19% 9%

12%

38%22%

Figure 2: The workflow of current two-stage eigen-
solvers on CPU-GPU heterogeneous platforms. The
percentages indicate the time breakdown in the EVD
solving process for amatrix of size 40,960 on the Nvidia
A100 GPU, with st2sb being the performance bottle-
neck.

As illustrated in Figure 2, the solving process of the two-
stage EVD method consists of the following five steps:

❶ Symmetric-to-Band Reduction (sy2sb). In each step
of sy2sb, QR factorization is first applied to a blocked panel
of the original matrix. Then, the trailing matrix is efficiently
updated using symmetric matrix multiplication (SYMM) and
symmetric rank-2k updates (SYR2K), with a total computa-
tional cost of 4

3𝑁
3.

❷ Band-to-Tridiagonal Reduction (sb2st). The ob-
tained band matrix is further reduced to a tridiagonal form
through𝑁−2 sweeps of Householder transformations, known

as "bulge chasing". To achieve high performance, thismemory-
bound step requires a sufficiently small matrix bandwidth
to fit the band matrix blocks into high-speed cache (e.g., the
CPU’s L2 data cache) [24].

❸ Solution of the tridiagonal eigenproblem (solution).
This step typically accounts for only a small fraction of the
total solution time. The commonly used methods include the
Divide-and-Conquer method [23], the Bisection and Inverse
Iteration method [33], and the Multiple Relatively Robust
Representations (MR3) method [15].

❹ Tridiagonal-to-Band Back Transformation (st2sb).
The 𝑁 2/2𝑤 Householder transformations generated during
sb2st must be applied to the eigenvectors of the tridiagonal
matrix to recover the eigenvectors of the band matrix, where
𝑤 is the matrix bandwidth. Each transformation affects 𝑤
rows of eigenvectors with corresponding offsets, and the
transformations must follow a specific order of dependencies
that aligns with sb2st. Directly applying these Householder
transformations for eigenvector recovery using BLAS-2 oper-
ations requires 𝑂 (𝑁 3) memory accesses, which is obviously
inefficient and becomes a performance bottleneck [20].

❺ Band-to-Symmetric Back Transformation (sb2sy).
The sequence of orthogonal transformations from the sy2sb
step are applied in reverse order to recover the eigenvec-
tors of the original matrix. This is achieved using high-
performance GEMM operations at a computational cost of 2𝑁 3.
Table 1 summarizes the kernel types and computational

costs of these solution steps.

2.1 Limitations of 1D Fusion for
Tridiagonal-to-Band Back
Transformation

Currently, the two-stage tridiagonalization method has been
implemented in SBR [11], PLASMA [45], MAGMA [26], and
ELPA [32, 49], as summarized in Table 2. All these imple-
mentations employ a 1D Fusion strategy to enhance the OI
of st2sb, allowing the tridiagonal-to-band back transforma-
tion to be performed using BLAS-3 GEMM operations instead
of the inefficient BLAS-2 operations. Specifically, multiple
Householder reflectors are first zero-padded along the sweep
direction and then fused into a blocked Householder transfor-
mation 𝑄 . The compact WY representation [41] of 𝑄 , given
by𝑄 = 𝐼 +𝑊𝑇𝑊𝑇 , is then utilized to update the correspond-
ing rows of eigenvectors via BLAS-3 GEMM operations.

The primary challenge of the current 1D Fusion strategy lies
in balancing OI and overall computational cost to accel-
erate st2sb. Since the size of matrix bandwidth is constrained
by the performance of sb2st, the only way to enhance the OI
of st2sb is to increase the block size of 1D Fusion. However,
a larger block size also leads to a higher computational cost
due to increased overlapping row updates of the eigenvectors.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

Table 1: Kernel types and computational costs of the two-stage tridiagonalization method (without 1D Fusion).
sy2sb and sb2st denote the symmetric-to-band and band-to-tridiagonal reductions, respectively, while st2sb and
sb2sy are the corresponding back-transformations for eigenvectors.𝑤 is the matrix bandwidth, and 𝑏 is the block
size. For BLAS-2 kernels, only memory operations are considered, whereas for BLAS-3 kernels, floating-point
operations are measured.

Steps Description BLAS-2 kernels Total Mem. ops. BLAS-3 kernels Total FP ops.

sy2sb
Panel QR factorization GEMV, GER 3

4𝑁
2𝑤 / /

Compute compact WY representation [41] GEMV 1
2𝑁

2𝑤 / /
Update trailing matrix / / SYMM, SYR2K 4

3𝑁
3

sb2st
One-sided updates in multiple sweeps GEMV, GER 3𝑁 2𝑤 / /
Two-sided updates in multiple sweeps SYMV, SYR2 3

4𝑁
2𝑤 / /

solution Tridiagonal EVD with eigenvectors (Divide-and-Conquer [23])𝑄 MISC / GEMM 4
3𝑁

3

st2sb Update𝑄 using the Householder reflectors generated during the sb2st GEMV, GER 3
2𝑁

3 / /
sb2sy Update𝑄 with blocked Householder transformations from sy2sb TRMV, GEMV / TRMM, GEMM 2𝑁 3

Table 2: Summary of existing two-stage eigensolvers.

Libraries Eigenvalues Eigenvectors st2sb Fusion Platform

LAPACK [2] ✓ × / CPU
SBR [11] ✓ ✓ 1D CPU

PLASMA [25] ✓ ✓ 1D CPU
ELPA [32, 49] ✓ ✓ 1D CPU+GPU
MAGMA [26] ✓ ✓ 1D CPU+GPU

Ours ✓ ✓ 2D CPU+GPU, SW

This trade-off makes it challenging for 1D Fusion to further
accelerate st2sb, particularly on modern heterogeneous ar-
chitectures with high machine balance, as demonstrated in
the following analysis.

Figure 3 illustrates how the eigenvectors are updated dur-
ing st2sb with 1D Fusion with the matrix size 𝑁 , the matrix
bandwidth 𝑤 , and the block size 𝑏. Vectors of length 𝑤 in
each column correspond to the Householder transformations
applied during the same sweep of sb2st. These Householder
reflectors are fused into 1D blocks along the sweep direction
with the block size 𝑏, as shown by the six black-bordered
blocks of Householder reflectors in Figure 3. Each 1D block is
then zero-padded into a matrix𝑊 ∈ R(𝑤+𝑏−1)×𝑏 , after which
its compactWY representation,𝑄 = 𝐼 +𝑊𝑇𝑊𝑇 , can be gener-
ated. Since computing the compact WY representations has
relatively low computational cost, it is omitted in the follow-
ing performance analysis. Subsequently, the corresponding
rows of eigenvectors, 𝐸rows ∈ R(𝑤+𝑏−1)×𝑁 , are updated as
𝑄𝐸rows = (𝐼 +𝑊𝑇𝑊𝑇)𝐸rows in three GEMM operations:

𝑋1 =𝑊𝑇𝐸rows, (1)

𝑋2 =𝑊𝑇, (2)

𝐸rows = 𝐸rows + 𝑋2𝑋1. (3)

Here, 𝑋1 ∈ R𝑏×𝑁 and 𝑋2 ∈ R(𝑤+𝑏−1)×𝑏 are intermediate ma-
trices. Since 𝑁 ≫ 𝑏 and 𝑁 ≫ 𝑤 for large-scale matrices,

the primary costs of updating eigenvectors lie in the opera-
tions (1) and (3), and the operation (2) can be neglected in
the following analysis.

EigenvectorsHouseholder Reflectors

b

b

w

w

w

w

1D Fusion along the Sweep Direction

Overlapping Row Updates

Figure 3: 1D Fusion for tridiagonal-to-band back trans-
formation with the matrix size 𝑁 = 17, the matrix
bandwidth𝑤 = 4, and the block size 𝑏 = 8. Householder
reflectors generated during the band-to-tridiagonal re-
duction are fused into six 1D blocks along the sweep
direction. The overlapping shadow represents the over-
lapping row updates of eigenvectors between the blue
and yellow 1D blocks. The computational cost in-
creases with 𝑏 due to more overlapping row updates
of eigenvectors. The gray arrows indicate the update
dependencies of 1D blocks.

Number of Floating-Point Operations. The sizes of
the GEMM in operations (1) and (3) are 𝑏 × (𝑤 + 𝑏 − 1) ×
𝑁 and (𝑤 + 𝑏 − 1) × 𝑏 × 𝑁 , respectively. The number of
floating point operations for operation (1) is 2𝑏 (𝑤 + 𝑏)𝑁 ,
and the same applies for operation (3). Considering there
are approximately 𝑁 2

2𝑤𝑏 1D blocks, the overall computational
cost can be estimated as

𝐶𝑜𝑚𝑝 (𝑏) = 4𝑏 (𝑤 + 𝑏)𝑁 × 𝑁 2

2𝑤𝑏
= 2

(
1 + 𝑏

𝑤

)
𝑁 3, (4)

which is consistent with previous work [16].

An Efficient 2D Fusion Method for High-Performance Two-Stage Eigensolvers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Memory Traffic. The rows of the eigenvector 𝐸rows and
the matrix 𝑋1 in operations (1) and (3) need to be read from
or written to memory (e.g., global memory on the GPU)
because the GEMM sizes are too large to fit into the cache.
For operation (1), it is necessary to read 𝐸rows and write 𝑋1,
so the memory traffic is 𝑠 (𝑤 + 2𝑏)𝑁 , where 𝑠 is the size of
the data type in bytes. For operation (3), it is necessary to
read 𝑋1, and read and write 𝐸rows, so the memory traffic is
𝑠 (2𝑤 +3𝑏)𝑁 . The memory access for𝑋2 is negligible because
it does not involve 𝑁 . Additionally, operations (1) and (3)
are performed sequentially by independent GEMM operations,
which means no date reuse between kernels. Therefore, the
overall memory traffic of st2sb with 1D Fusion in bytes is:

𝑀𝑒𝑚(𝑏) = 𝑠 (3𝑤 + 5𝑏)𝑁 × 𝑁 2

2𝑤𝑏
= 𝑠

(
3
2𝑏

+ 5
2𝑤

)
𝑁 3, (5)

where 𝑠 is the size of the data type in bytes.
Operational Intensity. Considering the number of floating-

point operations and the memory traffic, st2sb’s OI with 1D
Fusion is:

𝑂𝐼 (𝑏) = 𝐶𝑜𝑚𝑝 (𝑏)
𝑀𝑒𝑚(𝑏) =

4(𝑤 + 𝑏)𝑏
𝑠 (3𝑤 + 5𝑏) . (6)

Given 𝑤 , it can be shown that the derivative of OI with
respect to 𝑏 is positive. Therefore, 𝑂𝐼 (𝑏) increases monoton-
ically with 𝑏.

Performance Model. The roofline model [47] can be used
to estimate the lower bound of st2sb’s execution time with
1D Fusion:

𝑇𝐿𝐵 (𝑏) =

𝑠 (3

2𝑏 +
5
2𝑤)𝑁 3

𝐵𝑝𝑒𝑎𝑘
, if 𝑂𝐼 (𝑏) < 𝑃𝑝𝑒𝑎𝑘/𝐵𝑝𝑒𝑎𝑘 ,

2(1+ 𝑏
𝑤)𝑁 3

𝑃𝑝𝑒𝑎𝑘
, else

(7)

where 𝐵𝑝𝑒𝑎𝑘 and 𝑃𝑝𝑒𝑎𝑘 represent the peak memory band-
width and peak performance of the platform, respectively.

This time lower bound depends on both the matrix band-
width𝑤 and the block size𝑏. Generally, increasing𝑤 tightens
the time lower bound of st2sb. However, an excessively large
𝑤 can prevent data from fitting into the cache during sb2st,
significantly degrading overall EVD performance. The op-
timal𝑤 to minimize the end-to-end EVD solution time can
be regarded as a small constant (e.g., 256) limited by the size
of the private cache, such as the L2 cache on CPUs or the
Local Data Memory (LDM) on the SW26010-Pro. Thus, for
st2sb with 1D Fusion, we primarily focus on the impact of
the block size 𝑏 on a given platform.

When𝑂𝐼 (𝑏) is smaller than themachine balance 𝑃𝑝𝑒𝑎𝑘/𝐵𝑝𝑒𝑎𝑘 ,
st2sb with 1D Fusion is memory-bound. And increasing the
block size 𝑏 reduces memory access volume as indicated by
Eq. (5), thereby reducing 𝑇𝐿𝐵 (𝑏) in Eq. (7). However, once

𝑂𝐼 (𝑏) reaches the machine balance, further increasing 𝑏 be-
comes futile, as it only increases the computational workload,
while the performance has already reached its peak. There-
fore, the optimal block size 𝑏∗ that achieves the best time
lower bound satisfies:

𝑂𝐼 (𝑏∗) = 4(𝑤 + 𝑏∗)𝑏∗
𝑠 (3𝑤 + 5𝑏∗) = 𝑃𝑝𝑒𝑎𝑘/𝐵𝑝𝑒𝑎𝑘 . (8)

And the best time lower bound is:

𝑇𝐵𝐿𝐵 =

2
(
1 + 𝑏∗

𝑤

)
𝑁 3

𝑃𝑝𝑒𝑎𝑘
. (9)

Dongarra et al. [16] proposed an empirical recommenda-
tion of 𝑏 < 0.25𝑤 to optimize the execution time of st2sb
with 1D Fusion. Nonetheless, we found this recommendation
no longer suitable for modern heterogeneous architectures,
where the optimal block size 𝑏∗ can significantly exceed𝑤
due to the increasing machine balance. This also implies that
when the OI of st2sb matches the machine balance required
for optimal performance, the corresponding computational
cost 𝐶𝑜𝑚𝑝 (𝑏∗) in Eq. (4) may substantially exceed 4𝑁 3 on
modern platforms, as illustrated in Figure 1 in Section 1. This
trade-off between OI and computational cost makes st2sb a
critical performance bottleneck in two-stage EVD. To further
reduce the execution time of st2sb, it is therefore crucial to
develop a new approach that achieves both high OI and low
computational cost in st2sb on modern heterogeneous archi-
tectures. This motivates us to go beyond merely increasing
the block size and to propose the 2D Fusion scheme, which
decouples the OI from the computational cost of st2sb.

3 The 2D Fusion Scheme for Tridiagonal-
to-Band Back Transformation

EigenvectorsHouseholder Reflectors

b

b

2D
 F

us
io

n
al

on
g

th
e

B
an

dw
id

th
 D

ir
ec

tio
n

w

w

w

w

2D Fusion along the Sweep Direction

Figure 4: 2D Fusion for tridiagonal-to-band back trans-
formation for the same example in Figure 3 with the
fusion factor 𝑙 = 2. 2D Fusion fuse every 𝑙 1D blocks in
the bandwidth direction into one 2D block. The gray
arrows indicate the update dependencies of three 2D
blocks. The red filled 2D block is fused by the blue and
yellow 1D blocks in Figure 3.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

As shown in Figure 4, we observe that 1D blocks can be
further fused along the bandwidth direction into 2D blocks
for updating eigenvectors, while still respecting the update
dependencies. We refer to this new fusion strategy as 2D
Fusion. Compared to st2sb with 1D Fusion, this approach
significantly increases the "effective" matrix bandwidth from
𝑤 to 𝑙𝑤 , thereby further enhancing the OI of st2sb.

The remaining challenge is to effectively control the over-
all computational cost of st2sbwith 2D Fusion. The key lies in
how to utilize 2D blocks for updating eigenvectors. Suppose
the rank of the blocked Householder matrix of a 2D block
(the 2D-fused Householder matrix) is 𝑟 , 𝑏 ≤ 𝑟 ≤ 𝑙𝑏. The com-
pact WY form of the 2D-fused Householder matrix becomes
𝐻2𝐷 = 𝐼 +𝑊𝑇𝑊𝑇 , where𝑊 ∈ R(𝑙𝑤+𝑏−1)×𝑟 . And the overall
computational cost of st2sb is given by 2

(
𝑟
𝑏
+ 𝑟
𝑙𝑤

)
𝑁 3 with

the same eigenvector update strategy as in 1D Fusion. Un-
fortunately, the rank 𝑟 is often 𝑙𝑏, resulting in a prohibitively
high computational cost 2(𝑙 + 𝑏

𝑤
)𝑁 3 for large 𝑙 . However, we

find that the computational cost of st2sb with 2D Fusion is man-
ageable when explicitly constructing the 2D-fused House-
holder matrices for updating eigenvectors, as described in
the following algorithm.

3.1 2D Fusion Algorithm

Algorithm 1 2D Fusion Back Transformation
1: Input: Eigenvectors of the tridiagonal matrix 𝑄 of size 𝑛 × 𝑛, zeroed buffers
𝐻𝑖 , 𝐻𝑓 1, 𝐻𝑓 2 of size (𝑙𝑤 + 𝑏 − 1) × (𝑙𝑤 + 𝑏 − 1) , the 2D Fusion factor 𝑙 , the
block size 𝑏, and the matrix bandwidth 𝑤.

2: Output: The updated eigenvectors𝑄
3: 𝑊,𝑇 = PLARFT()

⊲ Compute the compact WY representations of 1D blocks in parallel.
4: for each 2D block 𝐵𝑘 in the update order (starting at the 𝑗 -th row) do
5: LASET(𝐻𝑓 1 , 𝐼)
6: LASET(𝐻𝑓 2 , 𝐼)
7: 𝐻𝑓 1 [0 : 𝑤 + 𝑏 − 1, 0 : 𝑤 + 𝑏 − 1] = LARFB(𝑊𝑘,0 ,𝑇𝑘,0)
8: for 𝑖 = 1 to 𝑙 − 1 do
9: 𝑚1 = 𝑖𝑤,𝑚2 = 𝑏 − 1,𝑚3 = 𝑤
10: 𝑚𝑓 =𝑚1 +𝑚2 +𝑚3
11: LASET(𝐻𝑖 [0 :𝑚𝑓 , 0 :𝑚𝑓]) , 𝐼)
12: 𝐻𝑖 [𝑚1 :𝑚𝑓 ,𝑚1 :𝑚𝑓] = LARFB(𝑊𝑘,𝑖 ,𝑇𝑘,𝑖)

⊲ Explicitly generate the Householder matrix
13: 𝐻𝑓 2 [0 :𝑚𝑓 , 0 :𝑚𝑓] = 𝐻𝑖 × 𝐻𝑓 1

⊲ Directly multiply 𝐻𝑖 and 𝐻𝑓 1
14: swap 𝐻𝑓 1 and 𝐻𝑓 2
15: end for
16: LACPY(𝑄 [𝑗 : 𝑗 + 𝑙𝑤 + 𝑏 − 1, 0 : 𝑛],𝑄𝑐𝑜𝑝𝑦)

⊲ Copy rows of eigenvectors to a buffer
17: 𝑄 [𝑗 : 𝑗 + 𝑙𝑤 + 𝑏 − 1, 0 : 𝑛] = 𝐻𝑓 1 × 𝑄𝑐𝑜𝑝𝑦

⊲ Update eigenvectors using GEMM
18: end for

The 2D Fusion algorithm for st2sb consists of the following
three fundamental building blocks:
1. Compute WY. The compact𝑊𝑌 representations of

1D-fused Householder matrices are computed in parallel, as
shown in line 3 of Algorithm 1.

2. 2D Fusion. To explicitly construct the 2D-fused House-
holder matrices, we first explicitly generate the 1D-fused

Householder matrices and then fuse them with the correct
offsets in the bandwidth direction by GEMM. To be specific,
consider the 𝑖-th 1D block 𝐵𝑘,𝑖 of the 𝑘-th 2D block 𝐵𝑘
in the update order. The 1D-fused Householder matrix of
𝐵𝑘,𝑖 is constructed on-the-fly using LARFB, which calculates
𝑊𝑘,𝑖𝑇𝑘,𝑖𝑊

𝑇
𝑘,𝑖

∈ R(𝑤+𝑏−1)×(𝑤+𝑏−1) in two GEMM operations and
performs amatrix addition 𝐼+𝑊𝑘,𝑖𝑇𝑘,𝑖𝑊

𝑇
𝑘,𝑖
. Due to the varying

starting rows of 1D blocks, the buffer 𝐻𝑖 is set to an iden-
tity matrix by LASET in advance, and then the constructed
1D-fused Householder matrix 𝐼 +𝑊𝑘,𝑖𝑇𝑘,𝑖𝑊

𝑇
𝑘,𝑖

is placed as a
diagonal submatrix of 𝐻𝑖 with an offset matching the start-
ing row of 𝐵𝑘,𝑖 , as shown in lines 11 and 12 of Algorithm 1.
Finally, the matrix product 𝐻𝑖 ×𝐻𝑓 1 is computed to fuse 𝐵𝑘,𝑖 ,
where 𝐻𝑓 1 is the 2D-fused Householder matrix from the first
𝑖−1 1D blocks, as shown in line 13 of Algorithm 1. After 𝑙 − 1
such iterations, the 2D-fused Householder matrix of 𝐵𝑘 is
stored in 𝐻𝑓 1.

3. Row updates of Eigenvectors. To update the relevant
rows of the eigenvectors𝑄 for each 2D block, additional row
copies of the eigenvectors (LACPY) are required due to the
lack of in-place support for GEMM operations. Then the copied
rows of eigenvectors 𝑄𝑐𝑜𝑝𝑦 are multiplied by the 2D-fused
Householder matrix 𝐻𝑓 1 from the left and stored back to
eigenvectors 𝑄 .

3.2 Analytical Performance Model
To demonstrate the superiority of 2D Fusion over the con-
ventional 1D Fusion, we present an analytical performance
model in this section. The model captures the cost of updat-
ing eigenvectors using the LACPY and GEMM kernels, and also
analyzes the intrinsic overhead of explicitly constructing
2D-fused Householder matrices.

❶ GEMM for updating eigenvectors. The GEMM size in
line 17 of Algorithm 1 is (𝑙𝑤 + 𝑏 − 1) × (𝑙𝑤 + 𝑏 − 1) × 𝑁 .
Since there are approximately 𝑁 2

2𝑙𝑤𝑏 2D blocks, the overall
computational cost can be estimated as

2(𝑙𝑤 + 𝑏)2𝑁 × 𝑁 2

2𝑙𝑤𝑏
=

(
2 + 𝑏

𝑙𝑤
+ 𝑙𝑤

𝑏

)
𝑁 3. (10)

For each GEMM operation, the input matrix 𝑄𝑐𝑜𝑝𝑦 is read,
and the matrix product 𝐻𝑓 1 × 𝑄𝑐𝑜𝑝𝑦 is written back to the
corresponding (𝑙𝑤 +𝑏 − 1) rows of the eigenvectors𝑄 . Since
the memory access for 𝐻𝑓 1 is negligible when 𝑙𝑤 + 𝑏 ≪
𝑁 , the total memory traffic of GEMM operations in bytes is
approximated as

2𝑠 (𝑙𝑤 + 𝑏)𝑁 × 𝑁 2

2𝑙𝑤𝑏
= 𝑠

(
1
𝑏
+ 1
𝑙𝑤

)
𝑁 3, (11)

where 𝑠 denotes the size of the data type in bytes. So the OI
of GEMM for updating eigenvectors is:

𝑂𝐼 (𝑙, 𝑏) = 𝑙𝑤 + 𝑏
𝑠

. (12)

An Efficient 2D Fusion Method for High-Performance Two-Stage Eigensolvers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

❷ LACPY for row copies of eigenvectors. For each 2D
block, the row copies of eigenvectors in line 16 of Algorithm 1
read (𝑙𝑤 + 𝑏 − 1) rows of the eigenvectors 𝑄 and store them
in the buffer 𝑄𝑐𝑜𝑝𝑦 . The corresponding memory traffic is:

2𝑠 (𝑙𝑤 + 𝑏)𝑁 × 𝑁 2

2𝑙𝑤𝑏
= 𝑠

(
1
𝑏
+ 1
𝑙𝑤

)
𝑁 3, (13)

❸ Intrinsic cost of 2D Fusion. The 2D Fusion cost con-
sists of two main parts:
(1) Cost of explicitly generating the 1D-fused Householder

matrices by the LARFB kernel. It primarily involves two GEMM
operations of size (𝑤+𝑏−1)×𝑏×𝑏 and (𝑤+𝑏−1)×𝑏×(𝑤+𝑏−1),
respectively. The total number of floating-point operations
required to construct the 𝑁 2

2𝑤𝑏 1D-fusedHouseholdermatrices
is listed in Table 3.

(2) Cost of calculating the 2D-fused Householdermatrices.As
shown in Table 3, the memory write overhead is introduced
by LASET, which initializes the buffer 𝐻𝑖 as an identity ma-
trix. The floating-point computational overhead arises from
using GEMM operations to fuse the 1D-fused Householder ma-
trices. After each fusion step, the size of the intermediate
2D-fused Householder matrices increases by 𝑤 , leading to
the summation form in Table 3.

Table 3: Overhead of 2D Fusion.𝑤 denotes the matrix
bandwidth, 𝑏 represents the block size of 2D Fusion,
𝑙 is the fusion factor, and 𝐻𝑖 is the 1D-fused House-
holder matrix. GEMM accounts for floating-point oper-
ations, while the matrix initialization LASET accounts
for memory operations.

Operation Total Mem./FP ops. Kernel

Explicit 𝐻𝑖 generation 𝑁 2 (𝑤+𝑏) (𝑤+2𝑏)
𝑤

LARFB(GEMM)

2D Fusion of 𝐻𝑖

𝑁 2
∑𝑙
𝑘=2 (𝑘𝑤+𝑏)2

2𝑙𝑤𝑏
LASET

𝑁 2
∑𝑙
𝑘=2 (𝑘𝑤+𝑏)3

𝑙𝑤𝑏
GEMM

Performance Model. The lower bound of the execution
time of st2sb with 2D Fusion can be estimated as

𝑇𝐿𝐵 (𝑙, 𝑏) = 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 (𝑙, 𝑏) +𝐶 (14)
=𝑇𝐺𝐸𝑀𝑀 (𝑙, 𝑏) +𝑇𝐿𝐴𝐶𝑃𝑌 (𝑙, 𝑏) +𝐶 (15)

=

(
2 + 𝑏

𝑙𝑤
+ 𝑙𝑤

𝑏

)
𝑁 3

𝑃𝑝𝑒𝑎𝑘
+
𝑠
(1
𝑏
+ 1
𝑙𝑤

)
𝑁 3

𝐵𝑝𝑒𝑎𝑘
+𝐶. (16)

where 𝐶 is the cost of 2D Fusion, and 𝑃𝑝𝑒𝑎𝑘 and 𝐵𝑝𝑒𝑎𝑘 de-
note the peak computational performance and peak memory
bandwidth of the platform, respectively.

By maintaining 𝑙𝑤 ≈ 𝑏, the computational cost of Eq. (10)
can be controlled to approach its minimum value of 4𝑁 3.
Furthermore, by proportionally increasing both 𝑙𝑤 and 𝑏,

we can flexibly improve the size and OI of GEMM until its
performance saturates near 𝑃𝑝𝑒𝑎𝑘 , as shown in Eq. (12). At
the same time, the memory traffic of LACPY is proportionally
reduced. Moreover, LACPY can easily reach a bandwidth close
to 𝐵peak, since it only consists of memory copy operations,
such as device-to-device transfers on a GPU. Consequently,
st2sb with 2D Fusion can outperform its 1D Fusion counter-
part on architectures with high machine balance, provided
that 𝐶 is well controlled. We observe that when the fusion
factor 𝑙 becomes large, the 2D Fusion cost 𝐶 can offset the
benefits of 2D Fusion in terms of both reduced computation
and increased OI over 1D Fusion for updating eigenvectors.
To mitigate this issue, we introduce a skipping strategy to
control the overhead of 2D Fusion for large fusion factors in
the next section.

3.3 2D Fusion Algorithm with Skipping
We identify that when the fusion factor 𝑙 is large, the substan-
tial overhead of 2D Fusion in Table 3 stems from unnecessary
operations involving the identity matrix in the upper-left
corner of 𝐻𝑖 when computing 𝐻𝑖 × 𝐻𝑓 1. As 2D Fusion pro-
gresses, the dimension of this identity matrix, denoted as
𝑚1 in Algorithm 1, increases by 𝑤 in each fusion step. As
the fusion factor 𝑙 becomes large, the number of fusion steps
increases proportionally, resulting in growing unnecessary
computations that substantially raise the cost of 2D Fusion
and should thus be avoided.

LACPY

LACPY

Figure 5: Computing the intermediate 2D-fused House-
holder matrix𝐻𝑓 2 with the skipping strategy. The com-
putations with identity matrices can be skipped. 𝑚1
increases progressively by𝑤 during the 2D Fusion pro-
cess, while𝑚2 = 𝑏 − 1 and𝑚3 = 𝑤 .

To address this issue, we propose a skipping strategy, as
illustrated in Figure 5. Our skipping strategy employs block
matrix multiplications to compute the lower-left part of
the intermediate 2D-fused Householder matrix 𝐻𝑓 2 without
involving operations with identity matrices, which signifi-
cantly reduces the computational cost of 2D Fusion for large
fusion factors. The original multiplications with identity
matrices are replaced with memory copies to construct the
remaining parts of 𝐻𝑓 2, which can be efficiently performed
using LACPY. Compared to the original 2D Fusion algorithm,
the need to explicitly initialize buffers as identity matrices by
LASET is also eliminated, as our skipping strategy does not

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

require access to identity matrices. The detailed procedure
of the 2D Fusion algorithm with skipping is presented in
Algorithm 2, with the optimized 2D Fusion cost summarized
in Table 4.

Algorithm 2 2D Fusion Back Transformation with Skipping
1: Input: Eigenvectors of the tridiagonal matrix 𝑄 of size 𝑛 × 𝑛, zeroed buffers
𝐻𝑖 , 𝐻𝑓 1, 𝐻𝑓 2 of size (𝑙𝑤 + 𝑏 − 1) × (𝑙𝑤 + 𝑏 − 1) , the 2D Fusion factor 𝑙 , the
block size 𝑏, and the matrix bandwidth 𝑤.

2: Output: The updated eigenvectors𝑄
3: 𝑊,𝑇 = PLARFT()

⊲ Compute the compact WY representations of 1D blocks in parallel.
4: for each 2D block 𝐵𝑘 in the update order (starting at the 𝑗 -th row) do
5: 𝐻𝑓 1 [0 : 𝑤 + 𝑏 − 1, 0 : 𝑤 + 𝑏 − 1] = LARFB(𝑊𝑘,0 ,𝑇𝑘,0)
6: for 𝑖 = 1 to 𝑙 − 1 do
7: 𝑚1 = 𝑖𝑤,𝑚2 = 𝑏 − 1,𝑚3 = 𝑤
8: 𝑚𝑓 =𝑚1 +𝑚2 +𝑚3
9: 𝐻𝑖 [𝑚1 :𝑚𝑓 ,𝑚1 :𝑚𝑓] = LARFB(𝑊𝑘,𝑖 ,𝑇𝑘,𝑖)

⊲ Explicitly generate the Householder matrix
10: copy the𝑚1 × (𝑚1 +𝑚2) submatrix of 𝐻𝑓 1 to 𝐻𝑓 2
11: copy the (𝑚2 +𝑚3) ×𝑚3 submatrix of 𝐻𝑖 to 𝐻𝑓 2
12: update 𝐻𝑓 2 using 𝐵𝐿𝑂𝐶𝐾_𝐺𝐸𝑀𝑀 (𝐻𝑖 , 𝐻𝑓 1)
13: swap 𝐻𝑓 1 and 𝐻𝑓 2
14: end for
15: LACPY(𝑄 [𝑗 : 𝑗 + 𝑙𝑤 + 𝑏 − 1, 0 : 𝑛],𝑄𝑐𝑜𝑝𝑦)

⊲ Copy rows of eigenvectors to a buffer
16: 𝑄 [𝑗 : 𝑗 + 𝑙𝑤 + 𝑏 − 1, 0 : 𝑛] = 𝐻𝑓 1 × 𝑄𝑐𝑜𝑝𝑦

⊲ Update eigenvectors using GEMM
17: end for

Table 4: Overhead of 2D Fusion with skipping. 𝑤 de-
notes thematrix bandwidth, 𝑏 represents the block size
of 2D Fusion, 𝑙 is the fusion factor, and 𝐻𝑖 is the 1D-
fused Householder matrix. GEMM accounts for floating-
point operations, while the matrix copying LACPY ac-
counts for memory operations.

Operation Total Mem./FP ops. Kernel

Explicit 𝐻𝑖 generation 𝑁 2 (𝑤+𝑏) (𝑤+2𝑏)
𝑤

LARFB(GEMM)

2D Fusion of 𝐻𝑖 with skipping
𝑁 2 ((𝑙23 + 1) 𝑤

𝑏
+ 𝑙

2) LACPY

𝑁 2 𝑙 (𝑤+𝑏) (𝑙𝑤+2𝑏)
2(𝑙−1)𝑤 GEMM

3.4 Platform-Specific Optimizations
We implemented our 2D Fusion method in a library called
Eigen2D, based on existing two-stage eigensolvers inMAGMA
and LAPACK, targeting bothNVIDIAGPUs and the SW26010-
Pro processor. Due to the differences in computational and
memory access characteristics across these platforms, we
additionally introduced the following platform-specific opti-
mizations for 2D Fusion.

Memory Alignment for SGEMMwith TF32 on NVIDIA
GPUs. We observed that memory alignment significantly im-
pacts the performance of TF32-accelerated SGEMM on NVIDIA
GPUs, with the best performance achieved when the align-
ment is 256-bit. To optimize the row updates of eigenvectors,

we align both 𝐻𝑓 1 and 𝑄copy to 256-bit. To ensure proper
alignment of the starting rows of eigenvectors 𝑄 for every
2D-fused Householder matrix, the following three conditions
must be satisfied: (1) 𝑄 + 1 must be 256-bit aligned to ensure
that the starting row of eigenvectors corresponding to the
upper-left 2D block is 256-bit aligned; (2) The block size 𝑏
should be a multiple of 8 to ensure that the starting row of
eigenvectors for the first 2D block in each column remains
256-bit aligned if condition (1) is satisfied; (3) 𝑙𝑤 should be
a multiple of 8 to guarantee that the starting row of eigen-
vectors corresponding to subsequent 2D blocks in the same
column remains 256-bit aligned, provided that condition (2)
is satisfied. Furthermore, the size of 𝐻𝑓 1 is padded to the
nearest power of 2 to enhance GEMM performance.
Optimizations for Memory Access on the SW26010-

Pro. Due to the constraints of memory bandwidth and LDM
size on the SW26010-Pro, we propose the following two
strategies to optimize memory access for st2sb with 2D Fu-
sion: (1) To reduce the number of memory accesses required
for computing the compactWY representation, we developed
a compact version of the PLARFT function by eliminating un-
necessary GEMV operations during the computation of matrix
𝑇 . On CPU-GPU heterogeneous architectures, the benefits of
this compact version are negligible due to their significantly
higher memory bandwidth and more efficient cache utiliza-
tion compared to the SW26010-Pro; (2) To further enhance
the performance of the LACPY function in xMath 2.0 [30],
the SOTA mathematical library on the SW26010-Pro, we im-
plemented an optimized LACPY version using DMA, which
is specifically designed for efficient transfer of large data
blocks.

4 Evaluation
4.1 Experimental Setup
Platforms. We selected two platforms to evaluate the perfor-
mance of Eigen2D on modern heterogeneous architectures.
The first is a CPU-GPU heterogeneous system equipped with
NVIDIA A100 GPUs, which have a machine balance close
to 100 under TensorFloat-32 (TF32) precision [37]. We re-
fer to this platform as System A100. The second platform
is the next-generation Sunway supercomputer, equipped
with SW26010-Pro processors with a machine balance of ap-
proximately 50 for both double-precision (FP64) and single-
precision (FP32) computations. The hardware and software
configurations of these two platforms are summarized in
Table 5.

Baselines. We use the two-stage eigensolvers with 1D
Fusion from the latest release of MAGMA v2.8.0 [44], ma
gma_dsyevdx_2stage and magma_ssyevdx_2stage, as our
baselines on System A100. These solvers are optimized for
heterogeneous platforms with multi-core CPUs and NVIDIA

An Efficient 2D Fusion Method for High-Performance Two-Stage Eigensolvers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 5: Hardware and software configurations

Platform System A100 Next-generation Sunway

Processor CPU: 2×AMD EPYC 7742
GPU: 8×NVIDIA A100-PCIE

SW26010-Pro
6 Core Groups (CGs)
1 MPE + 64 CPEs per CG

Memory CPU: 512 GB DDR4
GPU: 40 GB HBM2 16 GB per CG

Peak Memory
Bandwidth GPU: 1.56 TB/s 51.2 GB/s per CG

Cache CPU: 32 KB L1d cache
512 KB L2 cache 256 KB LDM per CPE

Peak
Performance

FP64 19.5 TFLOP/s
FP32 19.5 TFLOP/s
TF32 155.9 TFLOP/s

FP64 2.3 TFLOP/s per CG
FP32 2.3 TFLOP/s per CG

Libraries

Intel MKL 2021.4.0
CUDA 12.4.1
cuSOLVER 11.6.1
cuBLAS 12.4.5

xMath 2.0
for BLAS and LAPACK

Compilers Intel icpx 2021.4.0
NVIDIA nvcc 12.4.131

swgcc 7.1.0

GPUs. As a naive mixed-precision scheme, we addition-
ally configured the compute type of cublasGemmEx to C
UBLAS_COMPUTE_32F_FAST_TF32 to support TF32 during
st2sb, while all other EVD routines were performed in FP32.
On the next-generation Sunway supercomputer, we ported
dsyevd_2stage and ssyevd_2stage from the latestLAPACK
3.12.0 [2] to the SW26010-Pro by implementing and tuning
both sb2st and st2sb with 1D Fusion on CPEs, which serve as
our baselines. Our Eigen2D with 2D Fusion is based on
two-stage eigensolvers in MAGMA and LAPACK, incor-
porating the same optimizations for all EVD routines
except st2sb.
Design of Experiments. We demonstrate that Eigen2D

outperforms the SOTA eigensolvers with 1D Fusion in st2sb
through a detailed analysis of execution time. Additionally,
we validate the effectiveness of our skipping strategy and
platform-specific optimizations. In the end-to-end perfor-
mance evaluation, we also introduce SOTA one-stage eigen-
solvers as additional baselines: (1) cusolverDnXsyevd from
cuSOLVER [35] on System A100 (matrices larger than 28k
are not supported due to a cusolverDnXsyevd_bufferSize
error); and (2) dsyevd and ssyevd from xMath 2.0 [30], the
SOTA mathematical library on the SW26010-Pro. The ex-
perimental results highlight the superiority of Eigen2D over
other eigensolvers for large-scale matrices.

On System A100, we conducted experiments with a single
GPU and a single CPU. The matrix sizes range from 4096 to
40960. On the SW26010-Pro, all tests were conducted using
a single core group (1 MPE + 64 CPEs), with matrix sizes
varying from 1024 to 10240. The test matrices for perfor-
mance evaluation on both platforms were randomly gener-
ated symmetric matrices, as the eigenvalue distribution has
minimal impact on the performance of direct eigensolvers
based on tridiagonalization. And all eigenvalue/vector pairs
are solved.

Both 1D Fusion and 2D Fusion require parameter tuning
for minimize the end-to-end EVD runtime. So we performed
an extensive parameter search for two-stage eigensolvers
using the largest matrix size in our performance test. On
System A100, we explored matrix bandwidths 𝑤 ranging
from 64 to 512 with an increment of 32. For 1D Fusion, the
block size 𝑏 is varied from𝑤/4 to 2𝑤 in increments of𝑤/4,
covering the parameter space suggested in existing two-stage
solvers [16, 26, 45]. For 2D Fusion, we used the same range of
𝑤 with 𝑙 = 1, 2, 3, 4 and 𝑏 = 𝑙𝑤 . On SW26010-Pro,𝑤 ranged
from 64 to 256 in increments of 32. We tuned𝑤 + 𝑏 − 1 for
1D Fusion and 𝑙𝑤 + 𝑏 − 1 for 2D Fusion from 128 to 2048,
ensuring that it remained a power of two to optimize GEMM
performance on the SW26010-Pro. The optimal parameters
are summarized in Table 6.

Table 6: The searched optimal parameters for two-stage
eigensolvers with 1D Fusion and 2D Fusion. "Comp"
and "OI" represent the computational cost and opera-
tional intensity of st2sb, respectively.

Platform Precision Fusion 𝑤 𝑏 𝑙 Comp OI

System A100

FP64 1D 128 64 - 3.0𝑁 3 8.7
2D 128 256 2 4.0𝑁 3 32.0

FP32 1D 128 64 - 3.0𝑁 3 17.5
2D 128 256 2 4.0𝑁 3 64.0

TF32 1D 256 256 - 4.0𝑁 3 64.0
2D 128 384 3 4.0𝑁 3 96.0

Next-generation
Sunway

FP64 1D 96 417 - 10.7𝑁 3 45.0
2D 96 353 7 4.4𝑁 3 64.1

FP32 1D 128 385 - 8.0𝑁 3 85.5
2D 96 353 7 4.4𝑁 3 128.1

Accuracy Evaluation. We generated test matrices of
size 2048 for accuracy evaluation by the standard LATMS rou-
tine [3], consistent with LAPACK, PLASMA, and MAGMA.
These matrices were constructed as𝐴 = 𝑄0Σ0𝑄

𝑇
0 with condi-

tion numbers ranging from 102 to 1020, where the eigenvec-
tors 𝑄0 are random orthogonal matrices, and Σ0 represents
the generated eigenvalues. The eigenvalue distributions in-
clude "Arithmetic" and "Geometric". Definitions of these dis-
tributions can be found in [16]. To evaluate the accuracy
of eigensolvers, the error | |𝐴−𝑄Σ𝑄𝑇 | |1

𝜖𝑁 | |𝐴 | |1 is computed using the
SYT21 routine from LAPACK [3], where Σ and 𝑄 are the
computed eigenvalues and eigenvectors, respectively, and
| | · | |1 denotes the 1-norm.

4.2 Performance of Tridiagonal-to-Band
Back Transformation

Figure 6 compares the execution time of st2sb in Eigen2D
with SOTA two-stage eigensolvers using 1D Fusion. On Sys-
tem A100, for matrix sizes smaller than 24k, the performance
of Eigen2D is constrained by the overhead introduced by
2D Fusion and the computation of the compact WY repre-
sentation with a larger block size 𝑏 compared to MAGMA.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

4k 8k 12
k

16
k

20
k

24
k

28
k

32
k

36
k

40
k

Matrix Size N

0

10

20

30

st
2s

b
Ti

m
e

[s
]

System A100 (FP64)
MAGMA
Eigen2D

4k 8k 12
k

16
k

20
k

24
k

28
k

32
k

36
k

40
k

Matrix Size N

0

2

4

6

8
System A100 (TF32)

MAGMA
Eigen2D

4k 5k 6k 7k 8k 9k 10k
Matrix Size N

0

5

10

15

20

25

SW26010-Pro (FP64)
LAPACK
Eigen2D

4k 5k 6k 7k 8k 9k 10k
Matrix Size N

0
3
6
9

12
15
18

SW26010-Pro (FP32)
LAPACK
Eigen2D

Figure 6: Time comparison of the tridiagonal-to-band back transformation st2sb. Eigen2D employs 2D Fusion,
whereas MAGMA and LAPACK utilize 1D Fusion. The FP32 results on System A100 are explained in Section 4.2.

4k 8k 12k 16k 20k 24k 28k 32k 36k 40k
Matrix Size N

0

2

4

6

8

Ti
m

e
[s

]

System A100 (TF32)

4k 5k 6k 7k 8k 9k 10k
Matrix Size N

0

5

10

15

20

SW26010-Pro (FP64)

4k 5k 6k 7k 8k 9k 10k
Matrix Size N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

SW26010-Pro (FP32)

Eigen2D without Optimization Eigen2DEigen2D without Optimization Eigen2D Update Eigenvectors 2D Fusion Cost Compute WY

Figure 7: Optimization effects of skipping and platform-specific optimizations for st2sb in Eigen2D.

As the matrix size increases, the performance advantage of
Eigen2D becomes more pronounced, achieving an average
of 1.21× and 1.25× speedups over MAGMA for matrix sizes
larger than 24k in FP64 and TF32, respectively. Take the
TF32 version as an example, the speedup of Eigen2D over
MAGMA primarily stems from a 3.06× average speedup in
GEMM performance, benefiting from enhanced OI and our op-
timizations of memory alignment for SGEMM with TF32 on
the Nvidia A100 GPU. The overhead of the LACPY kernel is
negligible, as it achieves over 70% of the theoretical memory
bandwidth of the NVIDIA A100 GPU for large matrices, with
only 𝑁 3/48memory traffic. For FP32 precision (omitted from
Figure 6), Eigen2D performs comparably to MAGMA. Due
to the low machine balance in FP32, st2sb with 1D Fusion
in MAGMA already achieves near-saturated performance
under the configuration in Table 6. In this case, the benefit
of further improving OI by 2D Fusion cannot offset the 25%
increase in computations and the additional 2D Fusion cost.

On the SW26010-Pro, Eigen2D significantly outperforms
the two-stage eigensolvers of LAPACK, achieving an average
speedup of 1.97× in FP32 and 1.91× in FP64. This perfor-
mance gain is driven by two factors. First, Eigen2D exhibits
higher OI and superior GEMM performance compared to LA-
PACK’s two-stage eigensolvers. Second, the computational
cost of st2sb is significantly reduced by a factor of 1.82×
in FP32 and 2.43× in FP64 in Eigen2D as shown in Table 6.
Compared to System A100, Eigen2D performs better on the

SW26010-Pro primarily due to its higher machine balance
(50 for FP64/FP32) versus that of Nvidia A100 GPUs (12.5
for FP64/FP32). Moreover, the Sunway architecture suffers
from coarse-grained memory access, which prevents GEMM
performance from reaching the roofline. This limitation fur-
ther amplifies the advantage of 2D Fusion in improving OI
on the SW26010-Pro.

Figure 7 illustrates the effectiveness of the skipping strat-
egy and platform-specific optimizations in Eigen2D. On Sys-
tem A100, the effect of skipping under the simple mixed-
precision scheme is limited due to the small fusion factor
in Eigen2D, where the primary fusion overhead arises from
explicitly generating Householder matrices rather than from
the GEMM operations for 2D Fusion. A similar phenomenon is
also observed in both FP32 and FP64 precision. In contrast,
memory alignment for SGEMM with TF32 plays a crucial role
in enhancing the performance of eigenvector updates, lead-
ing to an average of 1.63× speedup. On the SW26010-Pro,
the skipping strategy proves to be highly effective, reduc-
ing fusion overhead by 49.0% in FP32 and 59.8% in FP64.
Additionally, the compact version of PLARFT mitigates re-
dundant memory access, shortening execution time to 50.2%
and 62.6% of the original in single and double precision, re-
spectively. Furthermore, the optimized LACPY significantly
accelerates the eigenvector copying process, achieving 8.01×
and 6.80× higher memory bandwidth compared to LACPY
in xMath 2.0 for single and double precision, respectively.

An Efficient 2D Fusion Method for High-Performance Two-Stage Eigensolvers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

4k 8k 12
k

16
k

20
k

24
k

28
k

32
k

36
k

40
k

Matrix Size N

0

20

40

60

80
Ti

m
e

[s
]

System A100 (FP64)
cuSOLVER
MAGMA
Eigen2D

4k 8k 12
k

16
k

20
k

24
k

28
k

32
k

36
k

40
k

Matrix Size N

0

10

20

30

40

System A100 (TF32+FP32)
cuSOLVER
MAGMA
Eigen2D

4k 5k 6k 7k 8k 9k 10k
Matrix Size N

20

40

60

SW26010-Pro (FP64)
xMath2.0
LAPACK
Eigen2D

4k 5k 6k 7k 8k 9k 10k
Matrix Size N

10

20

30

40

50

SW26010-Pro (FP32)
xMath2.0
LAPACK
Eigen2D

Figure 8: End-to-end eigenvalue decomposition time on System A100 and SW26010-Pro.

These results highlight the effectiveness of our 2D Fusion op-
timizations in enhancing kernel performance and reducing
both computational cost and memory access overhead.

4.3 End-to-End Performance
Figure 8 presents the end-to-end solution time for eigenvalue
decomposition. For FP64 on System A100, Eigen2D achieves
an average speedup of 1.06× over MAGMA for matrix sizes
larger than 24k, while the acceleration is minimal for smaller
matrices due to the intrinsic cost of 2D Fusion. In our simple
TF32+FP32 mixed-precision scheme, Eigen2D achieves up to
a 1.30× speedup and an average speedup of 1.17× compared
to MAGMA. Note that the 32k case is excluded from this
average, as the performance of sb2sy degrades significantly
due to the anomalously poor efficiency of Intel MKL when
computing the compact WY representation on the CPU. The
performance of Eigen2D is further enhanced by its use of
a smaller matrix bandwidth 𝑤 than MAGMA as shown in
Table 6, which reduces memory accesses and improves data
locality in sb2st. The overall EVD performance of Eigen2D
in FP32 is comparable to MAGMA (not included in Figure 8).

On SW26010-Pro, Eigen2D consistently outperforms other
eigensolvers across all matrix sizes, primarily due to its sig-
nificantly improved GEMM performance in st2sb. Compared
to the two-stage eigensolvers in LAPACK, it achieves an av-
erage speedup of 1.19× in FP32 and 1.18× in FP64. Overall,
2D Fusion proves to be an encouraging approach for solving
eigensystems of large-scale symmetric matrices on modern
heterogeneous architectures.

4.4 Accuracy
As illustrated in Figure 9, the errors of two-stage eigensolvers
with 1D and 2D fusion are nearly identical in both FP64 and
FP32, ranging from 10−2 to 10−1. These results are compa-
rable to those of one-stage eigensolvers and align with the
expectations in [3]. In our simple TF32+FP32mixed-precision
scheme, both 1D Fusion and 2D Fusion exhibit a three-order-
of-magnitude increase in error compared to the FP32 eigen-
solvers, primarily due to mantissa truncation during back
transformation of eigenvectors in st2sb. This issue could

potentially be mitigated using techniques such as iterative
refinement [43]. Nevertheless, 2D Fusion still achieves higher
accuracy than 1D Fusion in the TF32+FP32 case, benefiting
from the use of FP32 for constructing 2D-fused Householder
matrices instead of TF32. Although a thorough investigation
of mixed-precision EVD with iterative refinement is beyond
the scope of this paper, we believe that the performance ad-
vantage of 2D Fusion over 1D Fusion would still hold in such
cases.

102 108 1014 1020

10−1

100

101

Arithmetic

102 108 1014 1020

Geometric

Condition Number

Er
ro

r

2stage+1D Fusion (FP64)
2stage+1D Fusion (FP32)
2stage+1D Fusion (TF32+FP32)

2stage+2D Fusion (FP64)
2stage+2D Fusion (FP32)
2stage+2D Fusion (TF32+FP32)

1stage (FP64)
1stage (FP32)

Figure 9: EVD Errors | |𝐴−𝑄Σ𝑄𝑇 | |1
𝜖𝑁 | |𝐴 | |1 for matrices of size

2048 using one-stage and two-stage eigensolvers with
FP64, FP32, and TF32+FP32. "Arithmetic" and "Geomet-
ric" refer to the eigenvalue distributions.

5 Related Work
The calculation of eigenvalues and eigenvectors remains a
cornerstone in both numerical linear algebra and real-world
applications [4, 16, 26, 28, 32, 49]. Methods for solving eigen-
systems of symmetric matrices include subspace iteration
methods [29, 40], Jacobi methods [5, 7], the one-stage tridiag-
onalization method [2] and the two-stage tridiagonalization
method [10].
Subspace iteration methods, such as the Power Itera-

tion [13], the Lanczos [38] method, and the Jacobi-Davidson
method [40], compute eigenvalues and eigenvectors by it-
eratively refining an initial solution in a low-dimensional
subspace (e.g., Krylov subspaces [29]). These methods are
efficient for finding extreme eigenvalues in large-scale sparse

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

or structured matrices. However, they are not suitable when
a large portion of the eigensystem is required, as they rely on
memory-bound matrix-vector multiplications using BLAS-2
kernels [12], which can limit performance.

Jacobi methods [14] are simple, accurate, and highly par-
allelizable. They compute the eigenvalues and correspond-
ing eigenvectors by transforming the matrix into a diagonal
form through a series of sweeps of Givens rotations [8]. To
improve OI, the Block Jacobi method [7] can be used. And
preconditioning and parallel orderings are employed to ac-
celerate convergence [5, 6, 19, 34]. However, for matrices of
size larger than 1024, Jacobi methods are generally impracti-
cal due to their high computational complexity of 𝑂 (𝑆𝑁 3),
where 𝑆 , the number of sweeps required for convergence, is
typically greater than 10.
The one-stage tridiagonalization method directly re-

duces the original matrix to a tridiagonal form using blocked
Householder transformations. However, the one-stage re-
duction is memory-bound because half of the computational
workload is performed by BLAS-2 SYMV operations. This be-
comes the primary performance bottleneck that prevents the
one-stage eigensolvers from achieving satisfactory efficiency
for large-scale matrices, such as dsyevd in LAPACK [2] and
Intel MKL [27], and cusolverDnSsyevd in CuSOLVER [35].
Recently, EigenExa [20] advanced one-stage eigensolvers
for petascale applications with a novel approach: a narrow-
band reduction followed by a band divide-and-conquer [23]
method, which still requires further optimization to enhance
performance and scalability.
The two-stage tridiagonalization method was pro-

posed by Bischof et al. [9] as a solution to the memory bottle-
neck of the one-stage tridiagonalization, by introducing an
additional band reduction step. As the scale of eigenproblems
continues to grow, this approach has been widely adopted
in high performance eigensolvers, including:
The SBR toolbox on CPUs [11]. To improve the efficiency

of the tridiagonal-to-band back transformation, it employs
a 1D Fusion strategy, which groups multiple Householder
reflectors into a single blocked transformation. However, 1D
Fusion faces a trade-off between OI and the computational
cost, making the tridiagonal-to-band back transformation a
performance bottleneck.
PLASMA on multi-core architectures [45]. Luszczek et al.

designed an asynchronous algorithm of band-to-tridiagonal
reduction for multi-core CPUs in PLASMA [31, 48]. Haidar et
al. [24] expanded the PLASMA library with support for eigen-
vector computations through back transformation. However,
PLASMA still uses the 1D Fusion strategy during tridiagonal-
to-band back transformation thus inheriting the same issue
as SBR.
MAGMA on CPU-GPU heterogeneous architectures [42].

MAGMA extended the two-stage eigensolvers of PLASMA

to heterogeneous platforms. To handle large-scale eigen-
value problems, multi-GPU implementation is also supported.
However, back transformation using 1D fusion still remains
a significant performance bottleneck in MAGMA for large-
scale EVD.
ELPA on distributed heterogeneous platforms [49]. Marek

et al. [32] developed the ELPA library to solve large-scale
eigenproblems of dense symmetric and Hermitian matrices
across computing nodes. They employed a non-WY method
to improve the scalability of back transformation, which
directly applys Householder transformations using BLAS-2
kernels.
As the machine balance of modern heterogeneous archi-

tectures continues to increase, the SOTA two-stage EVD
algorithm with 1D Fusion faces growing challenges due to
the dilemma between limited OI and excessive computational
cost. Our 2D Fusion method provides an effective solution by
decoupling the OI and the computational cost of st2sb. It also
has the potential to support multi-GPU implementations and
cluster computing by column-wise partitioning of eigenvec-
tors, and can be extended to a broad range of current and
emerging heterogeneous architectures.

6 Conclusion and Future Work
In this work, we introduce a flexible 2D Fusionmethod by fur-
ther fusing the blocked Householder transformations from
1D Fusion. It achieves both high OI and low computational
cost in the tridiagonal-to-band back transformation for eigen-
vectors, which is often the performance bottleneck of the
two-stage tridiagonalization EVD method. To further accel-
erate EVD with 2D Fusion at large fusion factors, we propose
a skipping strategy that reduces the intrinsic cost of 2D Fu-
sion by avoiding unnecessarymatrix computations involving
identity matrices. We then integrate 2D Fusion into SOTA
two-stage eigensolvers in MAGMA and LAPACK to demon-
state the effectiveness of our approach. Experimental results
show that 2D Fusion significantly accelerates these SOTA
two-stage eigensolvers on CPU-GPU heterogeneous archi-
tectures and the next-generation Sunway supercomputer. In
future work, we plan to extend our 2D Fusion method into
a mixed-precision eigensolver with iterative refinement for
accuracy recovery [22, 43] to fully leverage both the OI and
accuracy advantages of 2D Fusion over 1D Fusion on modern
heterogeneous architectures.

Acknowledgments
This work was primarily supported by the National Key R&D
Program of China (2023YFB3001900), and was also partially
supported by the National Natural Science Foundation of
China (No. U2242210). The corresponding author of this
work is Prof. Wei Xue (xuewei@mail.tsinghua.edu.cn).

An Efficient 2D Fusion Method for High-Performance Two-Stage Eigensolvers ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

References
[1] Advanced Micro Devices, Inc. 2024. AMD matrix cores.

https://rocm.blogs.amd.com/software-tools-optimization/matrix-
cores/README.html Accessed: 2024-11-25.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen. 1999. LAPACK Users’ Guide (third ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA.

[3] Edward Anderson, Jack J. Dongarra, and Susan Ostrouchov. 1992.
LAPACK Working Note 41: Installation Guide for LAPACK. https:
//api.semanticscholar.org/CorpusID:16481322

[4] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L.
Krämer, B. Lang, H. Lederer, and P.R. Willems. 2011. Parallel Solution
of Partial Symmetric Eigenvalue Problems from Electronic Structure
Calculations. 37, 12 (2011), 783–794. doi:10.1016/j.parco.2011.05.002

[5] M Bečka, G Okša, and M Vajteršic. 2002. Dynamic Ordering for a
Parallel Block-Jacobi SVD Algorithm. Parallel Comput. 28, 2 (Feb.
2002), 243–262. doi:10.1016/S0167-8191(01)00138-7

[6] Martin Bečka, Gabriel Okša, and Marián Vajteršic. 2015. New dynamic
orderings for the parallel one–sided block-Jacobi SVD algorithm. Par-
allel Processing Letters 25, 02 (2015), 1550003.

[7] MARTIN BEČKA and Marián Vajteršic. 1999. Block-Jacobi SVD al-
gorithms for distributed memory systems I: Hypercubes and rings.
Parallel Algorithms and Application 13, 3 (1999), 265–287.

[8] David Bindel, James Demmel, William Kahan, and Osni Marques. 2002.
On computing Givens rotations reliably and efficiently. ACM Transac-
tions on Mathematical Software (TOMS) 28, 2 (2002), 206–238.

[9] C. Bischof, Xiaobai Sun, and B. Lang. 1994. Parallel tridiagonalization
through two-step band reduction. In Proceedings of IEEE Scalable High
Performance Computing Conference. 23–27. doi:10.1109/SHPCC.1994.
296622

[10] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. 2000. Algorithm
807: The SBR Toolbox—Software for Successive Band Reduction. 26, 4
(2000), 602–616. doi:10.1145/365723.365736

[11] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. 2000. Algorithm
807: The SBR Toolbox—Software for Successive Band Reduction. ACM
Trans. Math. Software 26, 4 (Dec. 2000), 602–616. doi:10.1145/365723.
365736

[12] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, et al. 2002. An updated set of basic linear algebra
subprograms (BLAS). ACM Trans. Math. Software 28, 2 (2002), 135–151.

[13] Thomas E Booth. 2006. Power iteration method for the several largest
eigenvalues and eigenfunctions. Nuclear science and engineering 154,
1 (2006), 48–62.

[14] James Demmel and Krešimir Veselić. 1992. Jacobi’s method is more
accurate than QR. SIAM journal on matrix analysis and applications
13, 4 (1992), 1204–1245.

[15] Inderjit S Dhillon and Beresford N Parlett. 2004. Multiple representa-
tions to compute orthogonal eigenvectors of symmetric tridiagonal
matrices. Linear Algebra Appl. 387 (2004), 1–28.

[16] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr
Luszczek, Stanimire Tomov, and Ichitaro Yamazaki. 2018. The sin-
gular value decomposition: Anatomy of optimizing an algorithm for
extreme scale. SIAM review 60, 4 (2018), 808–865.

[17] Jack J Dongarra, Danny C Sorensen, and Sven J Hammarling. 1989.
Block reduction of matrices to condensed forms for eigenvalue com-
putations. J. Comput. Appl. Math. 27, 1-2 (1989), 215–227.

[18] Augustin A Dubrulle. 2000. Householder transformations revisited.
SIAM J. Matrix Anal. Appl. 22, 1 (2000), 33–40.

[19] Patricia J. Eberlein and Haesun Park. 1990. Efficient implementation of
Jacobi algorithms and Jacobi sets on distributed memory architectures.
J. Parallel and Distrib. Comput. 8, 4 (1990), 358–366.

[20] Takeshi Fukaya and Toshiyuki Imamura. 2015. EigenExa. In 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop.
IEEE, 960–969. doi:10.1109/IPDPSW.2015.128

[21] Jiangang Gao, Fang Zheng, Fengbin Qi, Yajun Ding, Hongliang Li,
Hongsheng Lu, Wangquan He, Hongmei Wei, Lifeng Jin, Xin Liu,
et al. 2021. Sunway supercomputer architecture towards exascale
computing: analysis and practice. Science China Information Sciences
64, 4 (2021), 141101.

[22] Weiguo Gao, Yuxin Ma, and Meiyue Shao. 2022. A mixed precision
Jacobi SVD algorithm. arXiv preprint arXiv:2209.04626 (2022).

[23] Ming Gu and Stanley C Eisenstat. 1995. A divide-and-conquer algo-
rithm for the bidiagonal SVD. SIAM J. Matrix Anal. Appl. 16, 1 (1995),
79–92.

[24] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. 2013. An Improved
Parallel Singular Value Algorithm and Its Implementation for Multi-
core Hardware. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (2013-11-17).
ACM, 1–12. doi:10.1145/2503210.2503292

[25] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. 2013. An Improved
Parallel Singular Value Algorithm and Its Implementation for Multi-
core Hardware. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM, 1–12.
doi:10.1145/2503210.2503292

[26] A Haidar, S Tomov, I Yamazaki, R Solca, T Schulthess, T Dong, and
J Dongarra. 2008. Magma: A breakthrough in solvers for eigenvalue
problems.

[27] Intel Corporation. 2024. Intel MKL Library. http://software.intel.com/
en-us/articles/intel-mkl/ Accessed: 2024-11-25.

[28] Yiyuan Li, Xiting Ju, Yi Xiao, Qilong Jia, Yongxiao Zhou, Simeng Qian,
Rongfen Lin, Bin Yang, Shupeng Shi, Xin Liu, et al. 2023. Rapid simula-
tions of atmospheric data assimilation of hourly-scale phenomena with
modern neural networks. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
1–13.

[29] Jörg Liesen and Zdenek Strakos. 2013. Krylov subspace methods: prin-
ciples and analysis. Numerical Mathematics and Scie.

[30] Fangfang Liu, Wenjing Ma, Yuwen Zhao, Daokun Chen, Yi Hu, Qinglin
Lu, WanWang Yin, Xinhui Yuan, Lijuan Jiang, Hao Yan, et al. 2023.
xmath2. 0: a high-performance extended math library for sw26010-pro
many-core processor. CCF Transactions on High Performance Comput-
ing 5, 1 (2023), 56–71.

[31] Piotr Luszczek, Hatem Ltaief, and Jack Dongarra. 2011. Two-Stage
Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Al-
gorithms on Multicore Architectures. In 2011 IEEE International Par-
allel & Distributed Processing Symposium (2011-05). IEEE, 944–955.
doi:10.1109/IPDPS.2011.91

[32] Andreas Marek, Volker Blum, Rainer Johanni, Ville Havu, Bruno Lang,
Thomas Auckenthaler, Alexander Heinecke, Hans-Joachim Bungartz,
and Hermann Lederer. 2014. The ELPA library: scalable parallel eigen-
value solutions for electronic structure theory and computational
science. Journal of Physics: Condensed Matter 26, 21 (2014), 213201.

[33] Osni Marques and Paulo B Vasconcelos. 2017. Computing the bidi-
agonal SVD through an associated tridiagonal eigenproblem. In High
Performance Computing for Computational Science–VECPAR 2016: 12th
International Conference, Porto, Portugal, June 28-30, 2016, Revised Se-
lected Papers 12. Springer, 64–74.

[34] Per-Gunnar Martinsson, Gregorio Quintana OrtÍ, Nathan Heavner, and
Robert Van De Geijn. 2017. Householder QR factorization with ran-
domization for column pivoting (HQRRP). SIAM Journal on Scientific

https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html
https://api.semanticscholar.org/CorpusID:16481322
https://api.semanticscholar.org/CorpusID:16481322
https://doi.org/10.1016/j.parco.2011.05.002
https://doi.org/10.1016/S0167-8191(01)00138-7
https://doi.org/10.1109/SHPCC.1994.296622
https://doi.org/10.1109/SHPCC.1994.296622
https://doi.org/10.1145/365723.365736
https://doi.org/10.1145/365723.365736
https://doi.org/10.1145/365723.365736
https://doi.org/10.1109/IPDPSW.2015.128
https://doi.org/10.1145/2503210.2503292
https://doi.org/10.1145/2503210.2503292
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
https://doi.org/10.1109/IPDPS.2011.91

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yongxiao Zhou, Yi Zong, Yuyang Jin, Heng Li, and Wei Xue

Computing 39, 2 (2017), C96–C115.
[35] NVIDIA Corporation. 2024. cuSOLVER. https://docs.nvidia.com/cuda/

cusolver/index.html/ Accessed: 2024-11-25.
[36] NVIDIA Corporation. 2024. NVIDIA Tensor Cores. https://www.

nvidia.com/en-us/data-center/tensor-cores/ Accessed: 2024-11-25.
[37] NVIDIA Corporation. 2024. TensorFloat-32 in the A100 GPU Accel-

erates AI Training, HPC up to 20x. https://blogs.nvidia.com/blog/
tensorfloat-32-precision-format/ Accessed: 2024-11-25.

[38] Beresford N Parlett and David S Scott. 1979. The Lanczos algorithm
with selective orthogonalization. Mathematics of computation 33, 145
(1979), 217–238.

[39] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-
ine Yelick. 1997. A case for intelligent RAM. IEEE micro 17, 2 (1997),
34–44.

[40] Melven Röhrig-Zöllner, Jonas Thies, Moritz Kreutzer, Andreas Alver-
mann, Andreas Pieper, Achim Basermann, Georg Hager, Gerhard
Wellein, and Holger Fehske. 2015. Increasing the performance of
the Jacobi–Davidson method by blocking. SIAM Journal on Scientific
Computing 37, 6 (2015), C697–C722.

[41] Robert Schreiber and Charles Van Loan. 1989. A storage-efficient WY
representation for products of Householder transformations. SIAM J.
Sci. Statist. Comput. 10, 1 (1989), 53–57.

[42] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. 2010. Towards
dense linear algebra for hybrid GPU accelerated manycore systems.
Parallel Comput. 36, 5-6 (June 2010), 232–240. doi:10.1016/j.parco.2009.
12.005

[43] Yaohung M Tsai, Piotr Luszczek, and Jack Dongarra. 2022. Mixed-
precision algorithm for finding selected eigenvalues and eigenvectors
of symmetric and Hermitian matrices. In 2022 IEEE/ACM Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous
Systems (ScalAH). IEEE, 43–50.

[44] University of Tennessee (US). 2024. Matrix Algebra on GPU and Multi-
core Architectures. https://icl.utk.edu/magma/ Accessed: 2024-11-25.

[45] University of Tennessee (US), University of Manchester (UK). 2024.
Parallel Linear Algebra Software for Multicore Architectures. https:
//github.com/icl-utk-edu/plasma/ Accessed: 2024-11-25.

[46] Lin-Wang Wang, Byounghak Lee, Hongzhang Shan, Zhengji Zhao,
JuanMeza, Erich Strohmaier, andDavidHBailey. 2008. Linearly scaling
3D fragmentmethod for large-scale electronic structure calculations. In
SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
IEEE, 1–10.

[47] Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: an insightful visual performance model for multicore ar-
chitectures. Commun. ACM 52, 4 (2009), 65–76.

[48] Asim YarKhan, Jakub Kurzak, and Jack Dongarra. 2011. QUARK Users’
Guide: Queuing And Runtime for Kernels, Version 1.0. technical re-
port UT-ICL-11-02. University of Tennessee Innovative Computing
Laboratory, Knoxville, Tennessee 37996.

[49] Victor Wen-zhe Yu, Jonathan Moussa, Pavel Kůs, Andreas Marek,
Peter Messmer, Mina Yoon, Hermann Lederer, and Volker Blum. 2021.
GPU-Acceleration of the ELPA2 Distributed Eigensolver for Dense
Symmetric and Hermitian Eigenproblems. 262 (2021), 107808. doi:10.
1016/j.cpc.2020.107808 arXiv:2002.10991 [physics]

https://docs.nvidia.com/cuda/cusolver/index.html/
https://docs.nvidia.com/cuda/cusolver/index.html/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1016/j.parco.2009.12.005
https://icl.utk.edu/magma/
https://github.com/icl-utk-edu/plasma/
https://github.com/icl-utk-edu/plasma/
https://doi.org/10.1016/j.cpc.2020.107808
https://doi.org/10.1016/j.cpc.2020.107808
https://arxiv.org/abs/2002.10991

	Abstract
	1 Introduction
	2 The Two-stage Tridiagonalization Method
	2.1 Limitations of 1D Fusion for Tridiagonal-to-Band Back Transformation

	3 The 2D Fusion Scheme for Tridiagonal- to-Band Back Transformation
	3.1 2D Fusion Algorithm
	3.2 Analytical Performance Model
	3.3 2D Fusion Algorithm with Skipping
	3.4 Platform-Specific Optimizations

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance of Tridiagonal-to-Band Back Transformation
	4.3 End-to-End Performance
	4.4 Accuracy

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

