
Parallel Contraction Hierarchies Can Be Efficient and
Scalable

Zijin Wan

University of California, Riverside

Riverside, CA, USA

zijin.wan@email.ucr.edu

Xiaojun Dong

University of California, Riverside

Riverside, CA, USA

xdong038@ucr.edu

Letong Wang

University of California, Riverside

Riverside, CA, USA

lwang323@ucr.edu

Enzuo Zhu

University of California, Davis

Davis, CA, USA

ezzhu@ucdavis.edu

Yan Gu

University of California, Riverside

Riverside, CA, USA

ygu@cs.ucr.edu

Yihan Sun

University of California, Riverside

Riverside, CA, USA

yihans@cs.ucr.edu

Abstract
Contraction Hierarchies (CH) (Geisberger et al., 2008) is one

of the most widely used algorithms for shortest-path queries

on road networks. Compared to Dijkstra’s algorithm, CH en-

ables orders of magnitude faster query performance through

a preprocessing phase, which iteratively categorizes vertices

into hierarchies and adds shortcuts. However, constructing

a CH is an expensive task. Existing solutions, including par-

allel ones, may suffer from long construction time. Espe-

cially, in our experiments, we observe that existing parallel

solutions demonstrate unsatisfactory scalability, and have

performance close to sequential algorithms.

We present SPoCH (ScalableParallelization of Contraction
Hierarchies), an efficient and scalable CH construction algo-

rithm in parallel. To address the challenges in previous work,

our improvements focus on both redesigning the algorithm

and leveraging parallel data structures. We compare SPoCH
with the state-of-the-art sequential and parallel implementa-

tions on 16 graphs of various types. Our experiments show

that SPoCH achieves 11–68× speedups over the best sequen-

tial baseline and 3.8–41× speedups over the best parallel

baseline in CH construction, while maintaining competitive

query performance and CH graph size. We released our code

and all datasets used in this paper.

CCS Concepts
• Theory of computation→Graph algorithms analysis;
Shortest paths; Parallel algorithms; Shared memory
algorithms.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1537-2/25/06

https://doi.org/10.1145/3721145.3725744

Keywords
Parallel Algorithms, Graph Algorithms, Contraction Hierar-

chies, Shortest Paths

ACM Reference Format:
ZijinWan, Xiaojun Dong, LetongWang, Enzuo Zhu, Yan Gu, and Yi-

han Sun. 2025. Parallel Contraction Hierarchies Can Be Efficient

and Scalable. In 2025 International Conference on Supercomputing
(ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New York,

NY, USA, 19 pages. https://doi.org/10.1145/3721145.3725744

1 Introduction
Computing shortest distance is one of the most fundamen-

tal graph problems, playing a vital role in various appli-

cations, such as navigation on road networks. To acceler-

ate point-to-point distance queries, many existing solutions

use two-phase approaches, which preprocess the graph and

construct an index—often an auxiliary graph—to facilitate

queries. Among the most notable two-phase solutions is

the Contraction Hierarchies (CH) [41], which is mainly de-

signed for sparse networks such as road networks, and is

widely used in practice, for instance in Google Maps. In addi-

tion to being used on its own, CH is also a vital component

in other approaches for various applications on distance

queries, such as Transit Node Routing [8, 10, 11], Hub-Based

Labeling [2, 3, 28], and some renowned algorithms includ-

ing CHASE [14] and PHAST [26]. We refer the audience to

the excellent surveys [9, 61, 74] for more background of the

state-of-the-art techniques for route planning.

In this paper, we consider a graph𝐺 = (𝑉 , 𝐸) with an edge

weight function 𝑤 : 𝐸 ↦→ R+. Given two vertices 𝑠, 𝑡 ∈ 𝑉 ,
a distance query asks for the shortest distance from 𝑠 to 𝑡 .

The idea of CH, as illustrated in Fig. 1(a), is to “contract”

the graph into a hierarchy, which is an auxiliary graph GCH
that preserves the shortest distances in𝐺 , such that distance

queries on GCH can be much faster. In each iteration, one

vertex 𝑢 and all its edges are moved from the original graph

to an auxiliary graph GCH, forming a level in GCH. Addition-

https://orcid.org/0009-0005-6372-0843
https://orcid.org/0000-0003-4828-7066
https://orcid.org/0000-0002-0420-732X
https://orcid.org/0009-0002-7796-7431
https://orcid.org/0000-0002-4392-4022
https://orcid.org/0000-0002-3212-0934
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3725744
https://doi.org/10.1145/3721145.3725744

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

Algorithms Preprocessing time Query time

Dijkstra [32] - 7.20 s

Δ-stepping∗ [34] - 0.320 s

RoutingKit [25, 31] 2466 s 79.1 𝜇s

PHAST [26, 45] 1341 s 138 𝜇s

CH-Constructor∗ [22] 1527 s 317 𝜇s

OSRM∗ [59, 60] 307s 163 𝜇s

Ours∗ 23.1 s 93.3 𝜇s
Table 1: Preprocessing and point-to-point shortest path query
time on the road network North America [64]. The graph has

87 million vertices and 113 million edges. 1 𝜇s = 10
−6

s. (*) de-

notes parallel implementations; others are sequential. The reported

query time is the average across 1000 randomly selected pairs. Di-

jkstra [32] and Δ-stepping [34] are sequential and parallel SSSP

algorithms for comparison.

ally, extra edges (shortcuts) are added to the original graph,

forming the overlay graph GO, to preserve the pairwise

distances among the remaining vertices. Finally, all vertices

in GCH form the contraction hierarchies (CH). A distance

query requires a bidirectional search on GCH.

Empirically, a distance query on the CH touches far fewer

vertices than in the original graph, thereby resulting in much

faster query speed. As shown in Tab. 1, for the North Ameri-

can roadmap from OpenStreetMap [64], queries can be 10
3
–

10
5
faster than directly using SSSP algorithms, such as Dijk-

stra [32] and Δ-stepping (a parallel SSSP algorithm) [35, 62].

However, this impressive querying speed comes at a cost—

constructing GCH is expensive. Existing sequential solutions
use 22–41 minutes, and the best parallel solutions need more

than 300 seconds. Such long preprocessing time may require

significant computational resources, and limit its adaptability

to large graphs. Such running time is reasonable for a sequen-

tial algorithm—both RoutingKit [31] and PHAST [26] take

100× construction time than Dijkstra, which is acceptable

considering the speedup for queries. However, the existing

parallel CH algorithms are only 4.4× faster than (sequential)

PHAST even on a 96-core machine. The results indicate a

significant gap, suggesting the potential for improvements

in parallelism in CH construction algorithms.

In this paper, we propose SPoCH (Scalable Parallelization
of Contraction Hierarchies), which supports scalable and
efficient contractionhierarchies constructionwithhigh
parallelism without compromising the query performance.

The performance gain is mainly from good parallelism and

algorithmic improvements for sequential performance.

Conceptually, parallelizing CH construction is not hard. In

2009, Vetter [76] pointed out that vertices in an independent

set (i.e., vertices that do not share edges) can be contracted

in parallel, as illustrated in Fig. 1(b). However, despite be-

ing studied in many later papers [22, 52–54, 59, 60], we are

unaware of scalable multicore CH implementations. In fact,

constructing CH is a sophisticated process with intensive

computation. Achieving good performance requires high

parallelism in all steps and careful algorithmic design. We

observe two major challenges. First, identifying the vertices

to contract involves simulating contractions on many (if

not most) vertices, which calculates distances for numerous

vertex pairs. Such a process is expensive, requiring high par-

allelism to enable good performance. The second challenge

is to dynamically maintain the graph in parallel, since the

graph may experience rapid changes, such as the removal

of contracted vertices/edges and the insertion of shortcuts.

Existing solutions may sacrifice parallelism (e.g., using locks)

to support such dynamic updates. Ideally, a scalable solu-

tion would necessitate graph maintenance support with full

parallelism.

Contributions.We propose SPoCH, which consists of a new
algorithmic framework for CH, and a high-performance im-

plementation. Our improvement lies in both algorithm and

data structure design with high parallelism. Algorithmically,

we introduce the new LocalSearch step in construction to

address the high cost of simulated contraction on a large

fraction of vertices. This step gathers all the pairs of vertices

for distance computation, and processes them in a batch in

parallel. Processing them as a batch allows for combining

and eliminating repeated computations, offering high poten-

tial to exploit parallelism, as well as a pruning process to

remove suboptimal shortcuts added in previous rounds. Fi-

nally, SPoCH memoizes the computed distances in this step

to facilitate later computation. We provide more information

in Sec. 3.1. Combining these benefits, the LocalSearch step

improves both the sequential running time and parallelism.

Another key performance improvement in SPoCH comes

from using efficient parallel data structures. As mentioned, to

get a highly parallel solution, we need to efficiently handle

edge updates to the graph in parallel. We use the phase-
concurrent hash table [72] to buffer newly added shortcuts in

each round, which allows for efficient lock-free concurrent

insertions of new edges. However, combining these edges

to the overlay graph in each round requires scanning the

entire hash table array and the edge list of the overlay graph.

This may be inefficient in most rounds where only a small

number of shortcuts are added. Our solution employs a lazy

update scheme to delay the combination of the shortcuts to

the overlay graph, while still making the delayed shortcuts

visible to future computations. We introduce this technique

in Sec. 4. This approach reduces the cost of maintaining the

graph from 39.9% to 19.8% of the overall running time on

average across all tested graphs.

We compare SPoCH with the state-of-the-art sequential

and parallel solutions on various graphs. Even the sequential

running time of SPoCH is as fast as the sequential baselines.

Due to our new design, SPoCH achieves high parallelism and

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA
C

o
n

tr
a
ct

io
n

H
ie

ra
rc

h
ie

s

𝑮
𝑪
𝑯
=
(𝑽
,𝑬

𝑪
𝑯
)

O
ve

rl
ay

 G
ra

p
h

𝑮
𝑶
=
(𝑽

𝑶
,𝑬

𝑶
)

Round 1 Round 2 Round 3 Round 4 Round 5

E

(a) Sequential Construction of CH

C A

D

E

B

C

D

E

B

C

D

E

D

E

C

A

D

E

B

C

A

D

E

B

C

A

D

E

B

C

A

D

E

B

C

A

D

E

B
L1

L2

L3

L4

L5

C
o
n

tr
a
ct

io
n

H
ie

ra
rc

h
ie

s

𝑮
𝑪
𝑯
=
(𝑽
,𝑬

𝑪
𝑯
)

O
ve

rl
ay

 G
ra

p
h

𝑮
𝑶
=
(𝑽

𝑶
,𝑬

𝑶
)

Round 1

C A

D

E

B

Round 2 Round 3

C

A

D

B

E

(b) Parallel Construction of CH

C

D

E

2

C

L1

L2

L3C

A

E

B

D

C

A

E

B

D

Vertex/edges

being contracted

Uncontracted

vertices/edges

Vertices/edges

already contracted

Original edges

Shortcut edges

Figure 1: Illustration of the construction of Contraction Hier-
archies. For simplicity, we assume the input graph has unit weights,

omitting the weight “1” from the graph.

good scalability with large numbers of processors (see Fig. 6).

On North America in Tab. 1, SPoCH is 13.3–107× faster

in construction than the baselines while achieving similar

query performance. On the 16 graphs we tested in Tab. 4,

compared to the fastest baseline on each graph, SPoCH is

3.83–41.0× faster, with an average of 8.85×. We also conduct

in-depth performance studies of the CH algorithms in Sec. 6.

We released our code in [77].

Preliminaries.We focus on the shared-memory setting with

fork-join parallelism. The computation starts with one thread.

A thread can fork two child software threads to work in

parallel. When both children complete, the parent thread

continues. Such a computation can be executed by a random-

ized work-stealing scheduler [7, 18, 21]. We use the atomic

operation compare_and_swap(𝑝, 𝑣old, 𝑣new), which checks if

the memory location pointed to by 𝑝 has the value 𝑣old, and

if so, changes the value to 𝑣new. The function returns true if
it successfully changes the value, and false otherwise. We

also use write_min(𝑝, v), which reads the memory location

pointed to by 𝑝 and writes value 𝑣 to it if 𝑣 is smaller than

the current value.

We consider a weighted graph𝐺 = (𝑉 , 𝐸,𝑤) with 𝑛 = |𝑉 |,
𝑚 = |𝐸 |, and an edge weight function𝑤 : 𝐸 → R+. For 𝑣 ∈ 𝑉 ,

we define 𝑁in (𝑣) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸} as the in-neighbors of 𝑣 ,
and 𝑁out (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸} as the out-neighbors of 𝑣 . We

use 𝑁 (𝑣) = 𝑁in (𝑣) ∪𝑁out (𝑣). For a set of vertices𝑉 ′ ⊂ 𝑉 , we

define 𝑁 (𝑉 ′) as all neighbors of vertices in𝑉 ′. Note that the
main process of the CH construction algorithm is to update

the overlay graph 𝐺𝑂 by removing contracted vertices and

incident edges, and inserting shortcuts. Therefore, when

we use 𝑁in (·), 𝑁out (·), 𝑁 (·) in the algorithm description, we

𝐺 = (𝑉 , 𝐸) : The input graph

GO = (VO, EO) : The overlay graph

𝑤 (𝑢, 𝑣) : Weight for edge (𝑢, 𝑣)
P [𝑣] : The score of vertex 𝑣

𝑁in (𝑣) : In-neighbors of vertex 𝑣

𝑁out (𝑣) : Out-neighbors of vertex 𝑣

𝑁 (𝑣) : In- and out-neighbors of vertex 𝑣

(Unless otherwise specified, we use 𝑁in (𝑣) , 𝑁out (𝑣) and 𝑁 (𝑣) to refer

to the neighbors of 𝑣 on the overlay graph)

Table 2: General notations used for contraction hierarchies.

always refer to the neighborhood of a vertex on the
overlay graph.

2 Contraction Hierarchies
Contraction Hierarchies (CH) was proposed by Geisberger

et al. [41] in 2008, building upon the concept of highway

hierarchies [55, 68]. CH is one of the most widely adopted

techniques in route planning and is used in many systems,

such as Google Maps.

Let 𝐺 = (𝑉 , 𝐸) be the input graph. Its Contraction Hier-
archies GCH = (𝑽, ECH) is an auxiliary graph that preserves

the pairwise distances of 𝐺 . Distance queries on GCH can be

orders of magnitude faster than on 𝐺 itself, particularly for

sparse graphs such as road networks. The CH algorithm iter-

atively contracts the “least important” vertex (determined by

a user-specified score function) from the graph, and adds its

edges to the contraction hierarchy. Additional edges (short-

cuts) are added to the remaining graph (referred to as the

overlay graph GO) to preserve the distances. Each contracted

vertex represents a level in the CH, forming a hierarchy. This

process is illustrated in Fig. 1(a). A distance query from 𝑠

to 𝑡 is performed by running a bidirectional search from

both 𝑠 and 𝑡 on the CH. The query algorithm is presented in

Sec. 5. By contracting vertices and adding shortcuts, the hop

distances between vertices are greatly reduced, allowing for

much faster query performance.

Given its wide range of applications [1, 38, 39, 65, 67], CH

has been extensively studied. In this section, we first review

the algorithm proposed by Geisberger et al. [41] along with

the fundamental concepts. Then in Sec. 2.2, we introduce

existing parallel solutions. Other related studies are discussed

in Sec. 7.

2.1 Sequential Solutions
We present the sequential construction algorithm for CH

in Alg. 1. The algorithm takes a graph 𝐺 = (𝑉 , 𝐸) as the
input, and computes the CH for 𝐺 in GCH = (𝑉 , ECH). As
mentioned, the contraction process requires removing (con-

tracting) vertices, and adding shortcuts to preserve the short-

est distances. To avoid destroying the input graph, an overlay
graph GO = (VO, EO) is used to reflect the changes. A score

array P [·] is also maintained for all uncontracted vertices,

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

Algorithm 1: Contraction Hierarchies Construction [41]

Input: A graph 𝐺 = (𝑉 , 𝐸).
Output: The contraction hierarchy GCH = (𝑉 , ECH).
Maintains :The overlay graph GO = (VO, EO)

The score of each vertex P [·]
1 GO ← 𝐺, ECH ← ∅
2 Compute the score P [·] for all 𝑣 ∈ 𝑉
3 while VO ≠ ∅ do

// Select the vertex 𝑣 with lowest score from VO
4 𝑣 = argmin𝑣′∈VO P [𝑣 ′]
5 for 𝑢1 ∈ 𝑁in (𝑣) do
6 for 𝑢2 ∈ 𝑁out (𝑣) do

// Shortest path distance from 𝑢1 to 𝑢2
7 𝑙 ←WPS(𝑢1, 𝑢2)
8 if 𝑤 (𝑢1, 𝑣) +𝑤 (𝑣,𝑢2) = 𝑙 then
9 EO = EO ∪ {(𝑢1, 𝑢2)}

10 𝑤 (𝑢1, 𝑢2) = 𝑤 (𝑢1, 𝑣) +𝑤 (𝑣,𝑢2)
11 VA ← 𝑁 (𝑣)
12 Remove 𝑣 and all its edges from GO = (VO, EO) and add them

to GCH
13 Update the scores P [𝑢] for all 𝑢 ∈ VA
14 return GCH

representing their “importance” and deciding the contracting

order.

The algorithm starts by computing the initial scores of all

vertices (line 2). Then, it iteratively selects and contracts the

vertex with the lowest score (line 4) until the overlay graph

is empty (line 3). When contracting a vertex 𝑣 , the algorithm

computes the shortest paths (line 7) from each 𝑢1 ∈ 𝑁in (𝑣)
to each 𝑢2 ∈ 𝑁out (𝑣) by running Dijkstra’s algorithm. These

shortest path queries are referred to as the Witness Path
Search (WPS) [41, 52]. If the shortest path length 𝑙 from 𝑢1
to 𝑢2 is the same as𝑤 (𝑢1, 𝑣) +𝑤 (𝑣,𝑢2) (line 8), then 𝑣 can be

on the shortest path from 𝑢1 to 𝑢2. Thus, the shortcut edge

(𝑢1, 𝑢2) with weight 𝑙 is added to EO to preserve the distances

on EO (line 9 and 10). After that, 𝑣 and all its incident edges

are removed from the overlay graph GO = (VO, EO), and are

added to the CH GCH. Contracting 𝑣 may cause the score of

all its neighbors to change, which are updated on line 13.

Finally, the algorithm moves on to contract the next vertex,

until all vertices are contracted.

Vertex Score and Edge Difference. Scoring the vertices is

the most time-consuming part of CH construction and sig-

nificantly impacts the shortest path query performance in

CH. The most widely used score function is the edge differ-
ence [41]. For a vertex 𝑣 , the edge difference is the change in
the number of edges on the overlay graph GO after contract-

ing 𝑣 , i.e., the number of shortcuts added minus the number

of edges incident to 𝑣 . A vertex with a higher edge difference

is considered more important because its contraction has

a larger impact on the graph’s structure. To compute the

number of shortcuts to be added, a simulated contraction
on 𝑣 is required, which virtually generates and counts the

shortcuts. This simulation is very similar to line 5–10 except

it does not add edges or modify edge weights in GO.

In existing work [41, 42], the score function is usually de-

fined as a weighted combination of edge difference and many

other metrics, such as vertex degree, hop distance, and hier-

archy depth. Among them, edge difference has the highest

weight and is usually the most computationally expensive

part. Therefore, for simplicity, our algorithm description uses

edge difference as the score function. Our algorithmic ideas

are independent of the score function.

2.2 Existing Parallel Algorithms
The construction for CH is very costly, so it is natural to con-

sider parallelizing this process by contracting many vertices

in parallel. However, note that we cannot contract arbitrary

vertices in parallel. For instance, if two adjacent vertices 𝑢

and 𝑣 are contracted together, 𝑢 may choose to add a short-

cut incident to 𝑣 . Since 𝑣 is removed from the overlay graph

at the same time, the shortcut may not be added correctly,

resulting in distances not being preserved accurately on the

overlay graph. In 2009, Vetter [76] first observed that ver-

tices that do not share edges (i.e., an independent set) can
be contracted in parallel, and proposed the first parallel CH

construction algorithm. In this case, all added shortcuts will

be connected to uncontracted vertices and are thus safe to

add to the overlay graph.

Almost all later parallel solutions (e.g., [22, 52–54, 59])

followVetter’s high-level idea. In each round, an independent

set (IS) of vertices is identified to be contracted. All these

vertices will be placed on the same level in the CH. After that,

shortcuts will be added normally. This process is repeated

until all vertices have been contracted. As with the sequential

algorithm that first contracts vertices with the lowest score,

the vertices in the IS should also have low scores in general.

In Vetter’s original algorithm, the IS includes all vertices with

the smallest score within its 𝑘-hop neighborhood.OSRM [59,

60] specifically uses 𝑘 = 2. Our implementation also follows

this idea and uses 𝑘 = 1. An existing GPU algorithm [52]

and CH-Constructor [22] find a maximal independent set

(MIS) and include all vertices in this MIS with scores smaller

than a threshold.

Challenges to Achieve High-Performance Implementa-
tions. While Vetter’s work reveals the potential parallelism

in the algorithm, the idea itself is not sufficient to enable

a high-performance solution. Many challenges remain in

other parts of the algorithm. We highlight two components

here. The first part is the process to (re)compute the scores

of vertices. When multiple vertices are contracted together, a

large number of simulated contractions is needed, which all

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

involve running WPSes by Dijkstra’s algorithm. The second

challenge is to update the overlay graph in parallel, since

contracting vertices in parallel results in a bulk of new short-

cut edges that need to be added to the overlay graph. Both

parts (performing WPS and updating the graph) involve ex-

pensive computation, and require careful algorithm design

and parallelization. In our experiments, we test two existing

parallel solutions CH-Constructor [22] and OSRM [59, 60]

based on Vetter’s algorithm. In tests on a 96-core machine

with 16 graphs (Tab. 4), their performance is only up to 7.04×
faster than a highly-optimized sequential implementation,

and can be up to 3.59× slower on some graphs.

In the next section, we present our solution that achieves

a scalable and efficient parallel CH construction algorithm.

3 Our Parallel CH Construction Algorithm

Algorithm2:Our Parallel Algorithm for CHConstruction

Input: A graph 𝐺 = (𝑉 , 𝐸).
Output: A contraction hierarchy GCH = (𝑉 , ECH)
Maintains :The overlay graph GO = (VO, EO). Initially GO = 𝐺 .

The score of each vertex P [·].
1 ECH ← ∅; VA ← 𝑉 ; VW ← 𝑉

2 while VO ≠ ∅ do
// Step 1: Run witness path searches (WPSes) from all vertices
in VW to prepare for score recomputation for all vertices in
VA

3 LocalSearch(VW ,VA,GO)
// Step 2: For each vertex 𝑣 ∈ VA, (re)compute its score P [𝑣]

4 Score(VA,GO)
// Step 3: Select an independent set of vertices VF ⊆ VO to be
contracted based on the score array 𝑃 [·]

5 VF ←Select(GO, 𝑃)
// Step 4: Contract vertices in VF ; update ECH and GO
accordingly; return LSM as the sources of WPSes in the next
iteration

6 VW ←Contract(VF ,GO)
// VA in the next round includes all neighbors of VF

7 VA ← 𝑁 (VF)
8 return Postprocess(𝑉 , ECH) // reindexing

In this section, we present SPoCH for generating contrac-

tion hierarchies GCH = (𝑉 , ECH) efficiently in parallel. As

with other parallel CH algorithms, SPoCH also follows the

high-level idea from Vetter [76] that contracts a batch of ver-

tices in an IS in parallel. To achieve high parallelism without

sacrificing CH quality, SPoCH uses several novel techniques

that will be discussed in this section.

We present the pseudocode of SPoCH in Alg. 2. It takes

a graph 𝐺 = (𝑉 , 𝐸) as the input, and returns the contracted

graph GCH. Note that the vertex set in GCH is the same as in

the input graph, and the algorithm only needs to compute

VF : Vertices to be contracted VF = {𝑣 : P [𝑣] < P [𝑢] ∀𝑢 ∈ 𝑁 (𝑣) }
VA: Vertices that need to VA = 𝑁 (VF) in the previous round

recalculate their scores

E+: Shortcuts to be added

VS : Starting points of shortcuts VS = {𝑣1 : (𝑣1, 𝑣2) ∈ E+}
VW : Set of WPS sources VW = VS ∪ 𝑁in (VS)

Table 3: Additional notations used in our algorithm.

the edges ECH of the contracted graph. Similar to Alg. 1, we

also maintain the overlay graph GO = (VO, EO) to reflect the

changes in the original graph due to contractions.

The main loop of our algorithm (the while-loop on line 2)

repeatedly finds an IS of vertices and contracts them. We

summarize this process in five steps. We will briefly outline

the high-level idea here, and then elaborate on each step.

One of the key insights in SPoCH is the introduction of the

LocalSearch step on line 3. This step is used to reduce redun-

dant WPSes, create more parallel tasks, and overall reduce

computation while improving parallelism. With the details

of this step described in Sec. 3.1, the overall goal of this step

is to preprocess the current overlay graph by runningWPSes

from a set of vertices VW , in order to (re)compute the score

for a set of vertices VA. At the beginning, both VW and VA
are𝑉 . In later rounds, VW will be computed by the Contract
step in the previous round, and VA are the neighbors of ver-

tices contracted in the previous round. In Vetter’s algorithm,

WPSes are directly performed when recomputing scores in

each round. SPoCH separates this part with new designs,

and further utilizes the results for more optimizations.

The next two steps Score and Select will (re-)calculate the
score for vertices in VA, and choose an independent set of

vertices VF to contract. To ensure that selected vertices have

low scores, VF includes all vertices with the lowest score in

their neighborhood. Importantly, the Score step makes use

of the results from the LocalSearch step to avoid redundant

computation.

Finally, the Contract step performs the contraction and

updates the overlay graph, which is another major improve-

ment over existing solutions. In this step, all incident edges

to VF are moved to GCH, and the corresponding shortcuts

are added to GO. All these updates in SPoCH are highly par-

allel. Especially, we use lock-free data structures to update

the graph efficiently. We introduce the algorithmic idea in

Sec. 3.4, and discuss the parallel data structure support in

Sec. 4. In addition, to facilitate the LocalSearch step, the Con-
tract step will generate the set of vertices VW , which are all

vertices from which we will start WPS in the next round.

We summarize the notations in our algorithm in Tab. 3.

Next, we will elaborate on each step in Alg. 2. Later, in Sec. 4,

we discuss using efficient data structures to support this

algorithm.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

Algorithm 3: Parallel Local Search
1 Function LocalSearch(VW ,VA,GO = (VO, EO))
2 ParallelForEach 𝑠 in VW do
3 𝑉𝑛 = ∅ // the set of vertices that need to be settled by 𝑠
4 foreach 𝑢 ∈ 𝑁out (𝑠) ∧ 𝑢 ∈ VA do
5 foreach 𝑣 ∈ 𝑁out (𝑢) : (𝑣 ≠ 𝑠) ∧ ((𝑠, 𝑣) ∉ dist) do
6 𝑉𝑛 .insert (𝑣)
7 [WPS from 𝒔] Run Dijkstra’s algorithm starting from 𝑠 .

Terminate the algorithm either all 𝑣 ∈ 𝑉𝑛 are settled, or

𝜃 nodes are settled. Add the shortest distance𝑤 from 𝑠

to all 𝑣 ∈ 𝑉𝑛 into parallel hashmap dist, so that

dist [(𝑠, 𝑣)] = 𝑤

8 foreach 𝑣 : (𝑠, 𝑣) ∈ EO do
9 if 𝑤 (𝑠, 𝑣) > dist [(𝑠, 𝑣)] then delete edge (𝑠, 𝑣) from

EO

3.1 Step 1: Local Search with Memoization
One improvement of SPoCH lies in the stand-alone Lo-
calSearch step with memoization at the beginning of each

round, presented in Alg. 3. This step runs witness path

searches (WPSes) to prepare the shortest distances needed

during scoring (Sec. 3.2) and contracting (Sec. 3.4). As men-

tioned in Sec. 2.1, to compute the score of a vertex 𝑣 ∈ VA, a

simulated contraction on 𝑣 is needed to determine the short-

cuts that would be added if we contract 𝑣 . For each pair of

vertices (𝑢1, 𝑢2) where 𝑢1 ∈ 𝑁in (𝑣) and 𝑢2 ∈ 𝑁out (𝑣), if 𝑣 is
on the shortest paths from𝑢1 to𝑢2, then a shortcut is needed.

We also use the WPS as described in Sec. 2.1, which runs Di-

jkstra from 𝑢1 until 𝑢2 is settled to find the shortest distance

between them.

Running WPSes is crucial to determine the score of a

vertex. However, it is also expensive—to compute the edge

difference for a vertex 𝑣 , WPSes are needed on all pairs in

𝑁in (𝑣) × 𝑁out (𝑣) (Cartesian product). Fully finishing WPSes

for all pairs may be expensive, especially when there exists

one pair of vertices that are extremely far away. Therefore,

most existing systems (including ours) also limit the size of

eachWPS to be𝜃 , i.e., eachDijkstra’s algorithm only searches

for 𝜃 iterations. In this case, some suboptimal shortcuts may

be added and make the CH (necessarily) larger. To improve

the overall performance, we highlight three key techniques

in our LocalSearch step: batching, memoization, and pruning.

Batching. Our first technique is to collect all WPSes needed

and process them in a batch. In SPoCH, the Contract step
generates a vertex set VW , which serves as sources of WPSes

in the next round. Bymaintaining them in a batch, we process

all WPSes in a batch to avoid redundant computation and

achieve better parallelism. For example, if two simulated

contractions trigger WPSes from the same vertex, they will

be performed only once in the batch. An illustration of all

WPS sources and how batching saves the number ofWPSes is

given in Fig. 2. Executing all WPSes as one batch allows us to

A

D E

H

C B

𝑉𝐹 = {𝐴, 𝐻} Vertices contracted
in the previous round

𝑉𝐴 = 𝑁 𝑉𝐹 = 𝐵, 𝐶, 𝐷, 𝐹 Affected
vertices; score recomputation needed

F G

⇒

𝑉𝑆 = {𝐵, 𝐶, 𝐷, 𝐹}: starting point of shortcuts

𝑉𝑊 = 𝑉𝑆 ∪ 𝑁𝑖𝑛 𝑉𝑆 = {𝐵, 𝐶, 𝐷, 𝐹, 𝐸}: WPS
sources for the next round

WPSes needed for rescoring:
Without batching (9 in total):
 (rescore B) D to E/C, E to C, C to E
 (rescore C) D to B/F, F to B, B to F
 (rescore D) E to B/C/G, F to B/C/G
 (rescore F) C to D
With Batching (5 in total):
 WPS from all vertices in 𝑉𝑊

D E

C B

GF

contract

(a) (b)

(Solid lines are edges in the original graph;
dotted lines are shortcuts)

Figure 2: An illustration of notations and benefit of batching
in SPoCH. The two figures illustrate the vertex sets VA,VF ,VS ,
and VW . A node in both purple and green means it is in both VW
and VS . On the right, we show an illustration of using batching to

save WPSes. To rescore the four vertices in VA, for each 𝑣 ∈ VA,
previous solutions will performWPSes on all pairs 𝑁in (𝑣) ×𝑁out (𝑣).
SPoCH identifies all possible WPS sources in the Contract step in

the previous round and collect them in VW . Therefore, the WPSes

from the same source will be conducted only once. In this example,

SPoCH only need 5 WPSes instead of 9.

optimize them as a whole, and provides greater opportunity

to exploit parallelism.

Memoization. SPoCH uses memoization to avoid computing

the shortest distance on the same vertex pair multiple times.

In SPoCH, a map dist is used to memoize pairwise shortest

distances computed in previous WPSes. If a WPS is required

on the same pair again, we directly use the memoized results

without running another WPS. This information is reused in

pruning (described below) and later steps Score andContract.
Pruning. A byproduct of memoizing the distances in dist is
to prune redundant edges in GO. As the algorithm proceeds,

more pairs of vertices (𝑢, 𝑣) obtain their true shortest dis-

tance 𝑑 (𝑢, 𝑣) by WPSes (using Dijkstra’s algorithm). If there

is an edge between 𝑢 and 𝑣 in the current overlay graph (pos-

sibly a suboptimal shortcut added in previous rounds) with

weight𝑤 > 𝑑 (𝑢, 𝑣), the edge can be deleted since it is redun-

dant. This optimization effectively reduces the size of the

overlay graph, which potentially improves the performance

for both construction and query.

The LocalSearch Step. With the three techniques, we now

describe the LocalSearch step. The step takes VW , VA and

GO as input, and performs WPSes from all vertices in VW to

recompute the scores for all vertices in VA. For each WPS

from 𝑠 , we first identify the set of vertices 𝑉𝑛 that need to

be settled by 𝑠 . On line 4–6 in Alg. 3, for each 𝑢 ∈ 𝑁out (𝑠),
if 𝑢 ∈ VA, this means that 𝑠 is a source of WPS because 𝑠

is an in-neighbor of an affected vertex 𝑢. To compute the

new score for 𝑢, the shortest distances from 𝑠 to each vertex

𝑣 ∈ 𝑁out (𝑢) need to be computed. Therefore, we collect

𝑁out (𝑢), the out-neighbors of 𝑢, to the set𝑉𝑛 . Note that 𝑠 can
correspond to multiple affected vertices 𝑢. In this case, all of

their out-neighbors will be gathered in 𝑉𝑛 , and only incur

one search starting from 𝑠 . Before adding a vertex 𝑣 to 𝑉𝑛 ,

we also check if (𝑠, 𝑣) has already been memoized in dist. If

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

so, 𝑣 will be skipped.

With all target vertices ofWPS originating from 𝑠 gathered

in 𝑉𝑛 , We run Dijkstra’s algorithm from 𝑠 to search for all

vertices in 𝑉𝑛 . During the algorithm, the shortest distances

from 𝑠 to each 𝑣 ∈ 𝑉𝑛 are inserted into dist. As mentioned,

a WPS terminates either when all vertices in 𝑉𝑛 have been

settled, or when 𝜃 vertices have been settled (so that the

overall cost is limited). If the WPS terminates before a vertex

𝑣 ∈ 𝑉𝑛 is settled, the distance between 𝑠 and 𝑣 will be viewed

as∞ and a shortcut between 𝑠 and 𝑣 is always generated.

3.2 Step 2: Score

Algorithm 4: Parallel Node Scoring
1 Function Score(VA,GO = (VO, EO))
2 ParallelForEach 𝑢 in VA do
3 P [𝑢] ← −|𝑁 (𝑢) |
4 foreach 𝑣1 ∈ 𝑁in (𝑢) do
5 foreach 𝑣2 ∈ 𝑁out (𝑢) do
6 if

𝑤 (𝑣1, 𝑢)+𝑤 (𝑢, 𝑣2) = dist⟨𝑣1, 𝑣2⟩∨(𝑣1, 𝑣2) ∉ dist
then P [𝑢] ← P [𝑢] + 1

The second step computes the scores for each vertex 𝑢 ∈
VA, as presented in Alg. 4. In the previous step, we have

memoized the distances in the neighborhood of each 𝑢 ∈ VA
in a map 𝑑𝑖𝑠𝑡 . To recompute the score of 𝑢 ∈ VA, we first

set P [𝑢] to the negative of its number of direct neighbors,

i.e., −|𝑁 (𝑢) |, since |𝑁 (𝑢) | edges can be removed from GO if

𝑢 gets contracted (line 3). Then, we iterate through each pair

of in-neighbors and out-neighbors of 𝑢 and check if their

distance through 𝑢 is equal to or smaller than the shortest

distance stored in dist. If so, we add one to P [𝑢] since one
shortcut needs to be added.

For simplicity, our pseudocode only computes the edge

difference, which is the most important component of the

score for each vertex. In practice, many other components

are considered in existing work. SPoCH uses a similar score

function as in previous work, which is a combination of edge

difference, vertex degree, hop distance, and hierarchy depth.

3.3 Step 3: Select

Algorithm 5: Parallel Node Selection
1 Function Select(GO = (VO, EO))
2 VF ← ∅
3 ParallelForEach 𝑢 in VO do
4 if (∀𝑣 ∈ 𝑁 (𝑢), P [𝑢] < P [𝑣]) then VF .insert(𝑢)
5 return VF

The Select step identifies a subset of vertices VF to con-

tract in parallel, as presented in Alg. 5. We aim to contract

multiple vertices in an independent set (i.e., do not share

edges) simultaneously while prioritizing those with lower

scores. To do this, we select all vertices that have the min-

imum score in its neighborhood. As shown in line 3–4 in

Alg. 5, we process each vertex 𝑢 in VO. If 𝑢 has the lowest

score among its neighbors, we insert 𝑢 into a set VF . To han-

dle equal scores, we use the label of each vertex to break ties.

This approach can find an independent set so that vertices

with lower scores are contracted before those with higher

scores. Fig. 1(b) presents an example of contracting a graph

in parallel. In each round, multiple independent vertices can

be contracted together, and the levels can be determined

accordingly. The final graph preserves the shortest distance

between any two vertices.

Selecting an IS of vertices ensures that shortcuts are al-

ways established between non-contracted vertices. The pro-

cess is also reasonably fast for contraction. In our experi-

ments, we observe that usually within 10–20 rounds, more

than 99% of vertices are contracted, indicating high potential

of parallelism in this algorithm.

3.4 Step 4: Contract

Algorithm 6: Parallel Node Contraction
1 Function Contract(VF ,GO = (VO, EO))
2 VS ← ∅
3 ParallelForEach 𝑢 in VF do
4 Remove 𝑢 from VO
5 foreach 𝑣 ∈ 𝑁in (𝑢) do ECH↓ .insert (⟨𝑣,𝑢,𝑤 (𝑣,𝑢)⟩);
6 foreach 𝑣 ∈ 𝑁out (𝑢) do ECH↑ .insert (⟨𝑢, 𝑣,𝑤 (𝑢, 𝑣)⟩);
7 for 𝑣1 ∈ 𝑁in (𝑢) do
8 for 𝑣2 ∈ 𝑁out (𝑢) do
9 if 𝑤 (𝑣1, 𝑢) +𝑤 (𝑢, 𝑣2) =

dist [(𝑣1, 𝑣2)] ∨ (𝑣1, 𝑣2) ∉ dist then
10 VS .insert (𝑣1)
11 E+ .insert (⟨𝑣1, 𝑣2,𝑤 (𝑣1, 𝑢) +𝑤 (𝑢, 𝑣2)⟩)
12 Remove the incident edges of 𝑢 from EO
13 EO = EO

⋃
E+

14 VW ← ∅
15 ParallelForEach 𝑢 in VS do
16 VW .insert(𝑢)
17 ParallelForEach 𝑣 ∈ 𝑁in (𝑢) do VW .insert(𝑣) ;
18 return VW

With the independent set VF computed in the previous

round, the last stepContract performs the actual contraction,

as given in Alg. 6. This step moves all vertices in VF from VO
to the CH, adds incident edges to ECH, computes and adds

the relevant shortcuts to EO, and finally generates the set VW
as the sources for running WPSes in the next round, which

will be used in the next LocalSearch step.

In Alg. 6, we process each vertex 𝑢 ∈ VF in parallel. We

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

A

D E

H

C B
𝑉𝐹 = {𝐴, 𝐸, 𝐻} Vertices

contracted in the previous round

𝑉𝐴 = 𝑁 𝑉𝐹 = 𝐵, 𝐶, 𝐷, 𝐹, 𝐺

Affected vertices

F G

⇒

Targets of new shortcuts: {𝐵, 𝐹, 𝐺}

Source of new shortcuts: {𝐷}

D

C B

GF

contract

(a) (b)

(Solid lines are edges in the original graph;
dotted lines are shortcuts)

Figure 3: An illustration of concurrent shortcut insertions in
SPoCH. During the Contract step, for every feasible candidate 𝑢 ∈
VF , a dedicated thread inserts shortcuts between each pair (𝑣1, 𝑣2)
with 𝑣1 ∈ 𝑁in (𝑢) and 𝑣2 ∈ 𝑁out (𝑢). In the example, three threads

simultaneously attempt to insert edges (𝐷, 𝐵), (𝐷, 𝐹), (𝐷,𝐺), which
share the same source 𝐷 , potentially creating a race condition.

first remove each vertex 𝑢 ∈ VF from the overlay vertex set

VO in line 4. Next, as shown in line 5–6 in Alg. 6, we move the

incident edges of 𝑢 to ECH, which contains two subsets: ECH↓

and ECH↑. When moving a vertex 𝑢 to the CH, its incoming

edges are stored in ECH↓, and outgoing edges are stored in

ECH↑. This separation is necessary because during the short-

est path queries, the search from the target only proceeds

“backward” by following incoming edges in ECH↓, while the
search from the source only moves “forward” by following

outgoing edges in ECH↑. Both searches move “upward” in the

CH.

Finally, as shown in line 7–11 in Alg. 6, for each vertex𝑢 to

be contracted, we enumerate each in-neighbor 𝑣1 ∈ 𝑁in (𝑢)
and out-neighbor 𝑣2 ∈ 𝑁out (𝑢). We establish a shortcut be-

tween 𝑣1 and 𝑣2 if necessary. This is performed by comparing

𝑤 (𝑣1, 𝑢) +𝑤 (𝑢, 𝑣2) with the shortest distance stored in dist.
Recall that dist is a map generated in the LocalSearch step,

which buffers shortest distances for relevant vertex pairs. If

𝑤 (𝑣1, 𝑢) +𝑤 (𝑢, 𝑣2) = dist [(𝑣1, 𝑣2)], then the shortest path be-

tween 𝑣1 and 𝑣2 can be via 𝑢. A special case is when (𝑣1, 𝑣2)
is not in dist, which means that the shortest distance be-

tween them was not computed in the LocalSearch step. In

both cases, before contracting 𝑢, a shortcut needs to be es-

tablished between 𝑣1 and 𝑣2 with weight𝑤 (𝑣1, 𝑢) +𝑤 (𝑢, 𝑣2)
(line 9).

However, a write–write race condition may occur when

multiple shortcuts that share the same source or target node

are inserted in parallel. An example of this issue is shown

in Fig. 3. Vertex𝐷 has three out-neighbors that are being con-

tracted, each introduces a new out-neighbor to 𝐷 . Since the

contractions of these three original out-neighbors, {𝐴, 𝐸, 𝐻 },
run concurrently, the insertions of 𝐷’s new out-neighbors,

{𝐵, 𝐹,𝐺}, also happen in parallel. Therefore, we need a par-

allel data structure that supports frequent and concurrent

insertions, while providing fast query performance. In our

implementation, we use the parallel hash map E+ in Sec. 4.1

to buffer all shortcuts added in this round and later combine

it with EO on line 13. In Sec. 4.2 we will describe other opti-

mizations to reduce the cost to combine E+ and EO. Finally,
we can also remove all edges incident on 𝑢 ∈ VF from EO

after adding shortcuts. This is because these edges no longer

contribute to the reduction of distances to any vertices that

remain uncontracted.

During the contraction step, we also generate the set VW
that contains all sources for the WPSes in the next step.

When contracting a vertex 𝑢, we check all 𝑣1 ∈ 𝑁in (𝑢) and
𝑣2 ∈ 𝑁out (𝑢) to see whether a shortcut from 𝑣1 to 𝑣2 needs to

be established. If so, the scores for both 𝑣1 and 𝑣2 are affected,

since both have their neighborhoods changed. To reconsider

the score of 𝑣2, WPSes are needed from 𝑣1 (to find the distance

from the new in-neighbor 𝑣1 to all 𝑁out (𝑣2)). To reconsider
the score of 𝑣1, WPSes are needed from all in-neighbors of 𝑣1
(to find their distances to the new out-neighbor 𝑣2). Hence,

we first use a set VS to buffer all vertices 𝑣1. At the end of this

step, we construct the set VW , which includes all vertices in

VS and all in-neighbors of them. This set will be used as the

sources for the WPSes in the LocalSearch step in the next

round. An illustration of the vertex sets VS and VW is shown

in Fig. 2.

3.5 Postprocessing
After contracting all vertices, we re-index and sort the ver-

tices [19, 33] by their levels and scores to improve query

performance. In the sequential CH algorithm [41], vertices

are reordered by the order in which they are contracted. In

PHAST [45], vertices are grouped by levels to perform SSSP

queries on the CH, where lower level vertices have a lower

rank than those in higher levels. We combine the two re-

indexing methods and use vertex scores to approximate the

contraction order. For any two vertices, if they are at the

same level, they are sorted by score from the lowest to the

highest. Otherwise, they are sorted by level from the lowest

to the highest.

This re-indexing ensures that the vertices are efficiently

organized for query processing, where paths are traversed

based on the contraction rank. Once the vertices are re-

indexed, we generate the final CH from ECH↑ and ECH↓.

4 Parallel Data Structures
In Sec. 3, we presented the algorithmic idea of SPoCH. We

note that, however, to support high performance in prac-

tice, the implementation relies on efficient data structures

to support the algorithm, especially in handling dynamic

updates of the overlay graph. Note that the (overlay) graph is

highly dynamic—as the contraction proceeds, the graph con-

sistently undergoes vertex removals (removing contracted

vertices), edge removals (removing edges incident on con-

tracted vertices), and edge insertions (adding shortcuts). Each

of these operations require high parallelism to enable good

performance for the overall CH algorithm. This section pro-

vides an overview of the parallel data structures used in our

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

implementation.

Especially, to facilitate graph traversal, the overlay graph

is usually maintained by an array-based structure (e.g., the

CSR introduced below), which maintains the neighbors of

the same vertex in a consecutive chunk in thememory.When

multiple vertices are contracted in parallel, shortcuts are also

generated by multiple threads. Inserting them into the over-

lay graph in a concurrent manner is therefore challenging. In

existing implementation, OSRM avoids such complications

by only contracting vertices with the minimum score in its

2-hop neighborhood. In this case, for a vertex 𝑣 in the overlay

graph, only one contracted vertex may update the neighbor

list of 𝑣 , and this will be performed sequentially. However,

by restricting all contracted vertices to be at least two hops

away, OSRM can choose far fewer vertices in the indepen-

dent set in each round. In our experiments, we observe that

such restriction greatly increase the number of rounds and

degraded the performance. In CH-Constructor, a lock-based
data structure is used, which also limits parallelism. In this

section, we introduce the parallel data structures used in

SPoCH, such that they support updating the overlay graph

in an efficient and flexible way.

4.1 Background of Existing Data Structures
SPoCH mainly uses two data structures to maintain graphs:

Compressed Sparse Row (CSR) [75] and phase-concurrent

hash table [72]. In this section, we introduce the background

of these data structures and their interface. Then in Sec. 4.2,

we describe how they are used to support our algorithm.

Compressed Sparse Row (CSR) [75]. CSR is a widely used

array-based adjacency list representation in graph algorithms [29,

30, 34–36, 58, 78, 80], consisting of an edge array of size |𝐸 |
and an offset array of size |𝑉 |. The edge array is a con-

catenation of neighbor lists (along with the corresponding

edge weights) for all vertices. The neighbor list for each ver-

tex is always contiguous. The offset array stores the start

position of each vertex’s neighborhood in the edge array.

CSR provides fast lookups with good cache locality due to its

contiguous memory layout. However, it does not support

insertion or deletion without rebuilding the entire edge and

offset arrays. Our input graph is given in the CSR format.

Phase-Concurrent Hash Table [72]. The phase-concurrent
hash table is an array-based structure that supports efficient

operations for an unordered set, including insertions, dele-

tions, and lookups. We use it to support multiple variables

in SPoCH.
Unlike traditional concurrent hash tables that allow arbi-

trary operations of any type to run concurrently, the phase-

concurrent hash table only permits operations of the same

type to proceed simultaneously. This design ensures both

serialization and determinism (w.r.t. execution order). To in-

sert a key-value pair (𝑘, 𝑣) into the hash table 𝐻 , the key 𝑘 is

first hashed to a random index in 𝐻 . If this index is occupied,

linear probing is performed to find the next available slot.

Once an empty index is found, it swaps in the new record us-

ing an atomic operation compare_and_swap. When multiple

threads attempt to modify the same memory location, the

atomic operation guarantees that only one thread succeeds.

All other threads will fail in the operation and continue lin-

ear probing. A special case for insertion is to update the

value for the 𝑘 if it already exists in the hash table. In our

implementation where the value can refer to the weight of a

given edge, we update the value if the newly inserted value

is smaller than the current value stored in the hash table.

In particular, when inserting (𝑘, 𝑣), if we find that 𝑘 is al-

ready in the table during linear probing, we use an atomic

operation write_min to update the value and keep the lower
one. The atomicity of this operation guarantees that only

the minimum value among all concurrent modifications is

retained.

Similarly, to look up a record with key 𝑘 , the hash table

hashes𝑘 to an initial index 𝑖 . Then, three cases are considered:

1) If 𝐻 [𝑖] is empty, then 𝑘 does not exist in the hash table. 2)

If the key at 𝐻 [𝑖] is 𝑘 , then the record with key 𝑘 has been

found. 3) If the key at 𝐻 [𝑖] is not 𝑘 , the algorithm uses linear

probing to continue searching for the key in subsequent

indices, until 𝑘 is found or an empty slot is encountered. To

delete a record with key 𝑘 , the algorithm first locates 𝑘 in

𝐻 . If 𝑘 is present, the corresponding index is marked as a

tombstone, which is not treated as empty but will not match

any existing keys. If 𝑘 is not found in 𝐻 , no further action is

needed.

For simplicity, we will refer to the phase-concurrent hash

table as the hash table in the following part of this section.

4.2 Using Parallel Data Structures in SPoCH
Maintaining the Overlay Graph Dynamically. To facil-
itate graph traversal, the overlay graph GO = (VO, EO) is
maintained using a CSR, such that getting the neighbor list

for each vertex is always efficient. The challenge is then to

efficiently reflect edge insertions in the static CSR structure.

To efficiently support these updates in the overlay graph,

we use an auxiliary edge set E+ to tentatively maintain the

newly added edges. Recall that when a node 𝑢 is contracted,

pairwise edges from 𝑣1 ∈ 𝑁in (𝑢) to 𝑣2 ∈ 𝑁out (𝑢) need to be

added to the overlay graph if the shortest path from 𝑣1 to

𝑣2 passes through 𝑢. Instead of adding them directly to the

CSR of the overlay graph, we first use E+ to buffer them.

Once a shortcut is generated (line 11 in Alg. 6), we directly

add the new edge to E+. However, adding these edges to

E+ in parallel is challenging due to contention—although

contracting two adjacent vertices is avoided by selecting

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

an IS, it is possible for multiple vertices to be contracted

share the same neighbor. In this case, new edges will be

concurrently added to this neighbor. Moreover, edges with

the same endpoints (𝑢, 𝑣) could be added to the overlay graph
by two different contracted vertices 𝑐1 and 𝑐2 (i.e., via𝑢–𝑐1–𝑣

and 𝑢–𝑐2–𝑣). Among all the same edges, only the one with

the smallest weight should be kept.

To support these updates in the overlay graph, we use a

parallel hash table to maintain EO. Once a shortcut (𝑣1, 𝑣2)
with weight𝑤 is generated, we insert the triple (𝑣1, 𝑣2,𝑤) to
the hash table. To insert an edge (𝑣1, 𝑣2,𝑤), we first check
whether the edge (𝑣1, 𝑣2) exists in the hash table. If so, we use
write_min to update the weight atomically if 𝑤 is smaller

than the stored weight. Otherwise, we insert (𝑣1, 𝑣2,𝑤) to
the hash table. Here we use 𝑣1 as the key, and we will explain

the design choice later in this section.

Note that even if we first collect shortcuts in E+ and com-

bine them with EO to avoid frequently updating the CSR, it

can still be expensive to do so every round. Especially in

later rounds, only a few vertices are contracted, generating

a small number of shortcuts. In this case, updating the CSR

to add a few edges is inefficient. To handle this issue, we

combine the two sets in a lazy manner. In particular, we do

not clear and combine E+ with EO until E+ gets overloaded
(i.e., a constant fraction of slots are taken). We set the hash

table size to the number of edges in the initial CSR. This

guarantees that when updating the CSR, there must be a

comparable number of edge insertions, and thus the cost can

be amortized.

However, the belated combination of E+ and EO also re-

quires all edges in E+ to be visible to later graph traversal

operations. To do this, when inserting an edge (𝑣1, 𝑣2,𝑤), we
use 𝑣1 as the key and (𝑣2,𝑤) as the value. Using only the first
endpoint as the key allows us to look up the neighbors of

a given vertex by linear probing, and also has better cache

locality. When traversing all neighbors of 𝑢 in the overlay

graph, we first process all neighbors of 𝑢 in the CSR EO. We

then further look up𝑢 in the hash table for E+, and use linear
probing to get all edges incident on 𝑢. These provide the

additional neighbors of 𝑢 w.r.t. shortcuts associated with 𝑢

that have not yet been incorporated into EO.
To identify when the hash table is overloaded, at the end

of each round, we use random sampling to estimate the size

of the hash table. If the hash table is filled up by a constant

fraction, a merge of E+ with EO is triggered. During this

process, we also remove all edges incident to the vertices

that have been contracted. In other words, the edge removals

in line 12 of Alg. 6 are also performed lazily until the next

update on EO. Finally, we clear the hash table.

The final edges in the CH, ECH↑ and ECH↓ are also main-

tained by the phase-concurrent hash tables. For both of them,

only the insertion operation is needed, which can be per-

formed concurrently using atomic operations.

Maintaining the Distance Mapping dist. Another impor-

tant data structure used in our algorithm is dist, which mem-

oizes shortest distances for certain pairs of vertices discov-

ered in WPSes. In our implementation, we also use a phase-

concurrent hash table. When a shortest distance between 𝑢

and 𝑣 is computed as 𝑤 , we add (𝑢, 𝑣,𝑤) to the hash table,

where (𝑢, 𝑣) is the key and𝑤 is the value. By setting up the

mapping in the LocalSearch step, later Score and Contract
steps can directly look up the distance instead of performing

another simulated contraction.

Similar to the shortcut set E+, the number of elements in

the dist map can also change dramatically in different rounds.

When most slots in the hash table are empty, clearing the

map becomes expensive. To address this issue, similar to how

we maintain E+, we clear the hash table for dist lazily. At
the end of the round, we use sampling to estimate the load

factor of the hash table. Only when a constant fraction of

the hash table is full do we clear the hash table.

5 Query on Contraction Hierarchies
In this section, we describe the standard query algorithm

on the CH. After constructing the CH, we re-index and

sort all vertices by their level and score. In Geisberger’s se-

quential CH algorithm [41], vertices are reordered based

on the order to contract them. 𝜋 (𝑣) is the order to con-

tract 𝑣 . In PHAST [26], vertices are re-grouped by levels

to perform SSSP queries on CH, where vertices in lower

levels always have a lower rank than those in higher lev-

els. In the query phase, all the edges in ECH are divided into

two parts and forming two graphs: the out-edges from 𝑢

to higher-ranked vertices are referred to as the upward
edges: ECH↑ ← {(𝑢, 𝑣) | 𝜋 [𝑢] < 𝜋 [𝑣]}, while the in-edges
from higher-ranked vertices to 𝑢 as the downward edges:
ECH↓ ← {(𝑣,𝑢) | 𝜋 [𝑢] < 𝜋 [𝑣]}. For each edge connecting

two vertices, only the endpoint of the lower rank stores this

edge in GCH.

CH boost up the efficiency of point to point query (𝑠-𝑡

query) significantly. During a point-to-point query from 𝑠

to 𝑡 , a forward search from 𝑠 is performed on ECH↑ and a

backward search from 𝑡 is performed on ECH↓, meaning that

only edges leading to higher rank vertices are considered.

For each vertex 𝑣 , the distance from 𝑠 to 𝑣 and the distance

from 𝑣 to 𝑡 is maintained as𝑑𝑠 (𝑣) and𝑑𝑡 (𝑣) and the estimated

distance from 𝑠 to 𝑡 through 𝑣 is dist𝑠 (𝑣) + dist𝑡 (𝑣). Once the
tentative shortest distance 𝜇 from 𝑠 to 𝑣 is not larger than

the minimum value of the priority queue, the search result

is settled to 𝜇.

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Graph Road Synthetic 𝑘-NN
CA AO AF NA AS EU TRCE BUB CHN7 CHN8 HT5 CH2 CH5 GL2 GL5 GL10

vertices 3.34M 6.22M 33.5M 87.0M 95.7M 131M 16.0M 21.2M 10.0M 100M 929K 4.21M 4.21M 24.9M 24.9M 24.9M

edges 4.20M 8.24M 44.8M 113M 123M 169M 48.0M 63.6M 10.0M 100M 4.64M 8.42M 21.0M 49.8M 124M 249M

B
ui
ld

(s
)

Ours* 1.00 2.25 7.32 23.1 23.5 32.9 25.2 34.7 1.77 14.9 0.68 0.87 115 2.95 9.78 41.6
OSRM* 4.60 26.8 60.0 307 286 521 218 292 6.77 71.2 2.95 4.38 28028 30.7 103 391

CC* 19.0 32.9 334 1527 1548 2121 1218 1680 19.0 218 11.4 11.0 4737 83.3 453 2627

RK 22.1 94.7 466 2466 2619 3783 1765 2509 38.7 848 11.2 15.5 14048 108 716 4175

PHAST 15.5 66.2 287 1341 1421 1865 1470 2053 23.5 285 8.79 9.20 11361 46.0 373 2388

Ours-seq 29.3 89.6 383 1411 1347 1823 1816 2620 65.4 751 18.9 26.1 7454 125 545 2676

OSRM-seq 33.1 183 503 3246 2839 4101 3817 5273 34.4 390 28.4 18.3 >30000 82.4 1062 12082

CC-seq 29.2 119 553 2907 2604 3574 3658 5002 35.1 423 23.7 20.5 17268 133 812 6855

Q
ue

ry
(𝜇
s)

*Ours 7.99 27.9 17.2 93.3 60.4 137 376 452 5.59 7.74 6.16 3.55 244 1.93 10.2 33.9

OSRM* 13.6 43.8 28.7 163 97.6 223 454 512 7.94 9.74 6.37 3.84 325 2.20 12.5 39.0

CC* 22.1 96.4 48.1 317 190 424 910 1010 7.60 9.07 6.73 3.33 783 2.11 17.2 85.2

RK 6.65 24.0 13.6 79.1 47.9 102 292 337 4.93 6.33 4.63 2.69 176 1.52 6.25 19.0
PHAST 12.6 39.2 26.7 138 84.4 169 430 482 7.73 9.23 6.98 4.09 278 2.37 11.8 33.5

Table 4: Comparison of build time (in seconds) and query time (in microseconds) for all tested implementations across all
graphs. “Ours” = our algorithm. “OSRM” = Open Source Routing Machine [59]. “CC” = CH-Constructor [22]. “RK” = RoutingKit [31].

“PHAST” = PHAST [26]. Implementations with asterisks (*) are parallel, and their sequential running times (with suffices “-seq”) are also

included in the table. We report the parallel running time of CC using eight threads, as this configuration yields the best performance due to

its limited scalability. For each graph, the best build time and best query time are bolded and underlined.

6 Experiments
6.1 Experimental Setup
Environment.We run our experiments on a machine ma-

chine with four Intel Xeon Gold 6252 CPUs (96 cores and 192

hyperthreads) and 1.5TB of main memory. We use numactl
-i all for parallel tests to interleave the memory pages

across CPUs in a round-robin fashion.

We implement our algorithms in C++ using ParlayLib [16]

for fork-join parallelism and parallel primitives, which is re-

cently used in many papers on parallel algorithms [15, 17, 46,

71]. ParlayLib is an algorithmic library with parallel building

blocks, and also include a scheduler for support fork-join

parallelism. SPoCH uses some of them such as sorting from

ParlayLib, and uses the ParlayLib scheduler by default, which

gives good performance in general. ParlayLib infrastructure

also supports alternative schedulers (e.g., TBB [51] and Open-

Cilk [63]). A comparison of different schedulers for SPoCH
is presented in Sec. 6.4.

Benchmark Dataset. To evaluate the performance of CH

construction algorithms, we use 16 directed graphs. This

dataset includes six road graphs, four synthetic graphs and

six 𝑘-NN graphs.

• Road graphs are the primary use application domain

for CH algorithms. Here we use Central America (CA),

Australia Oceania (AO), Europe (EU), North America (NA),

Asia (AS), and Africa (AF) from OpenStreetMap [64]. The

edge weights are natural weights from the source data,

which are up to 2
25
.

• Synthetic graphswith relatively low average degrees and

high diameters are selected because these characteristics

are ideal for testing the performance of CH algorithms.

Here we use hugebubbles-0020 (BUB) and hugetrace-0020

(TRCE) from [69], which feature 2D adaptively refined

triangular meshes. We assign random weights for BUB

and TRCE from 0 to 10
5
. Chain graphs have 10

7
(CHN7)

and 10
8
(CHN8) vertices with randomweights from 1 to 32.

Whenever a vertex is contracted in the chain, exactly one

shortcut is added. Therefore, chain graphs are primarily

used to test the cost related to non-scoring steps.

• 𝒌-NN graphs are used to evaluate the performance among

different average degrees. In 𝑘-NN graphs, each vertex has

𝑘 out-going edges pointing to its 𝑘-nearest neighbors, ex-

cluding itself. As 𝑘 increases, the complexity of the scoring

process in CH construction also increases. We use Humid-

ity and Temperature with 𝑘 = 5 (HT5) [50], Chemical with

𝑘 = 2, 5 (CH2, CH5) [37, 79], and GeoLife with 𝑘 = 2, 5, 10

(GL2, GL5, GL10) [79, 85]. Edge weights are randomly as-

signed from 1 to 32.

When we compare the average performance across all

graphs, we always report the geometric mean values across

all graphs.

Baseline Competitors.We call all existing algorithms that

we compare to as baselines. We compare SPoCH to two of

themostwell-received sequential implementations (RoutingKit
and PHAST) and two state-of-the-art parallel open-source

implementations (CH-Constructor and OSRM), described as

follows.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

CA AO AF NA AS EU
TR

CE
BUB

CHN7
CHN8

HT5 CH2
CH5

GL2 GL5
GL10

1

10

100

No
rm

al
ize

d
Ti

m
e

(L
og

 sc
al

e) Build Time

CA AO AF NA AS EU
TR

CE
BUB

CHN7
CHN8

HT5 CH2
CH5

GL2 GL5
GL10

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

No
rm

al
ize

d
Ti

m
e

Query Time
Ours = 1 OSRM CC RK PHAST

Figure 4: Build time and query time of all tested baselines, normalized to our algorithm. Lower is better. Since all running times are

normalized to our algorithm, “Ours” is always equal to one, represented by the horizontal red dotted line.

• OSRM [59, 60]: A parallel routing engine designed to

calculate the fastest routes between locations in the Open-

StreetMap [64].

• CH-Constructor (CC) [22]: A parallel CH construction

implementation. As shown in Fig. 7, CC always achieves

the best performance with around 8 threads. Hence, the

reported construction time for CC is on 8 threads instead

of 192 threads.

• RoutingKit (RK) [25, 31]: An efficient sequential C++

library that applies the CH for fast route planning.

• PHAST [26, 45]: A widely used algorithm for parallel

single-source shortest paths (SSSP) using CH. Its imple-

mentation includes a sequential process for constructing

the CH, and a parallel process for running SSSP. In our

experiment, we only compare to their construction time,

which is sequential.

The basic frameworks of both parallel baselines (CC and

OSRM) are based on Vetter [76], which supports node scor-

ing and contracting in parallel. Each time they score a vertex,

both algorithms always performwitness searches on all of its

neighbors, and they do not record any distance information

from these searches. This means that if scoring two vertices

involves performing WPSes on the same vertex, both imple-

mentations will perform this search twice, greatly increasing

the total computation.

Since ourmain focus is on the performance of constructing

CH, we obtain the CH generated from all baselines, and

always use the same query algorithm on these CH structures

to enable a fair comparison of the CH quality. We choose to

use the query algorithm in RK since we observe that it has

the best performance in general.

6.2 Overall Performance
Setup. We conducted experiments to compare performance

in terms of construction time and query time with estab-

lished baselines. Lower time consumption in both indicates

better algorithm quality. Tab. 4 presents a comparison among

SPoCH and all baselines. In Fig. 4, we normalize the per-

formance of all baselines to that of SPoCH (with SPoCH’s
numbers always set to 1). For construction, we also include

the sequential running times of all parallel implementations

in Tab. 4 to reflect the total work. For queries, for each graph,

we randomly select 1000 pairs of vertices, run these queries

sequentially, and report the average time and the average

number of vertices processed in the queries. As mentioned,

we apply the same query algorithm to all baselines.

Note that different construction algorithms may generate

different CHs on the same input graph. In particular, a se-

quential algorithm always chooses the best node to contract

in each iteration, while a parallel algorithm may choose to

contract multiple vertices together. Conceptually, this means

that many of the vertices are contracted earlier than they

should be. Therefore, the quality of the CH may be sacrificed

due to parallel construction. To measure the quality of the

CHs generated by different algorithms, we use the query

time as an indicator. More precisely, since all algorithms are

using the same query algorithm, a lower query time indicates

that the CH structure itself has higher quality.

Construction Time Evaluation. Fig. 4 and Tab. 4 show

that our approach achieves significantly better construction

performance than all baselines, while maintaining high CH

graph quality. Even our sequential construction time is com-

petitive to the highly-optimized sequential baselines, which

is within 1.7× slower than RK and 2.9× than PHAST, and

can also be faster than them by up to 2.1×. This indicates
that our algorithm incurs very small overhead in work to en-

able parallelism. When running in parallel, the construction

time of our algorithm is significantly faster than all base-

lines. Compared to the best parallel baseline OSRM, SPoCH
is 3.8–243× faster in construction, with an average of 9.9×
faster. CC suffers from scalability issue in the Reset step in

each round (we will discuss more in Sec. 6.3 and Sec. 6.4).

As a result, it achieves the best running time with 8 threads,

which is close to the performance on sequential algorithms.

In general, SPoCH is 10.7–66.1× faster than CC, with an

average of 31.5× faster. As shown in Fig. 7, even only con-

sidering the time for scoring and contracting, CC is still

not competitive to OSRM and is much slower than SPoCH.

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

OSRM CC RK PHAST
CA
AO
AF
NA
AS
EU

TRCE
BUB

CHN7
CHN8

HT5
CH2
CH5
GL2
GL5

GL10

Da
ta

se
ts

0.93 1.02 1.01 1.02
0.94 1.02 1.01 1.01
0.94 1.02 1.01 1.00
0.94 1.02 1.01 1.01
0.94 1.02 1.01 1.00
0.94 1.02 1.01 1.01
0.91 0.99 0.99 0.94
0.90 0.99 0.99 0.94
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
0.91 1.04 0.95 0.93
0.92 1.00 0.99 1.01
0.81 1.15 0.86 0.84
0.94 1.02 1.01 1.08
0.92 1.02 0.97 0.95
0.88 1.05 0.91 0.91

CH Edges
OSRM CC RK PHAST
1.68 2.73 0.82 1.55
1.56 3.43 0.85 1.40
1.59 2.67 0.76 1.48
1.61 3.14 0.78 1.37
1.57 3.05 0.77 1.35
1.30 2.47 0.59 0.98
1.20 2.40 0.77 1.13
1.11 2.18 0.73 1.04
1.38 1.32 0.86 1.34
1.28 1.20 0.84 1.22
0.98 1.03 0.71 1.07
1.07 0.93 0.75 1.14
1.39 3.36 0.76 1.19
1.16 1.12 0.80 1.25
1.18 1.62 0.59 1.11
1.15 2.51 0.56 0.99

Query Time
OSRM CC RK PHAST
1.16 2.16 1.00 0.98
1.17 2.41 0.96 0.97
1.16 2.03 0.99 1.00
1.16 2.02 0.92 1.01
1.13 2.01 0.96 0.93
0.89 1.54 0.70 0.72
0.97 1.62 0.93 0.93
0.94 1.60 0.91 0.91
1.00 1.00 0.98 1.08
1.00 0.99 0.99 1.05
1.17 1.23 0.96 1.27
1.18 1.04 1.02 1.31
1.26 2.27 0.95 1.08
1.07 1.02 0.99 1.12
1.08 1.63 0.96 1.03
1.04 2.36 0.90 0.89

Query Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5: Heatmap of number of CH edges, query time, and
query iteration. All numbers are normalized to ours. Bluer or

smaller is better.

In general, SPoCH is at least 3.8× faster than all baselines

on all graphs. On average across all graphs, SPoCH is 9.9×
faster than OSRM, 31.5× faster than CC, 32.4× faster than
(sequential) PHAST, and 53.8× than (sequential) RK.

We then analyze the query performance. As mentioned,

the quality for a CH generated by a parallel algorithm is

generally expected to be lower than those generated sequen-

tially. The results indicate that our algorithm still achieves

competitive quality to the best sequential implementation.

In general, RK achieves the best query performance in both

time and number of vertices visited. SPoCH is competitive

to RK, with query times in 1.17–1.79×, and is better than all

other baselines in query time, even including the sequen-

tial algorithm PHAST. On average, our query time is 1.31×
slower than RK, but is 1.25× faster than PHAST, 1.35× faster

than OSRM, and 2.07× faster than CC. This indicates the
CH generated by our parallel algorithm has close quality to

a highly-optimized sequential algorithm, and is better than

other parallel versions.

Number of CH Edges, Query Time, and Query Iterations.
To compare the number of CH edges, query time, and query

iterations of our algorithm against the baselines (OSRM [59],

CC [22],RK [31], PHAST [26]), we present a heatmap in Fig. 5.

Here “query iterations” refers to the average number of ver-

tices visited in an 𝑠-𝑡 query, which is machine-independent

and roughly indicates the query cost. The numbers in the

heatmap are normalized to those of our algorithm. For CH

edges, the differences between the baselines and our algo-

rithm are all within 20%, indicating that the space required to

store the output CH is similar. For query time and iterations,

RK and PHAST, being sequential and following a stricter

contraction order, perform slightly better than the parallel

implementations. In the worst case, our algorithm is only

about twice as slow as the fastest query time. However, since

queries finish in microseconds (10
−6

seconds), this twofold

slowdown is negligible. Among all parallel implementations,

1 2 4 8 16 24 48 96 96
h

Cores

2

8

32

Se
lf-

Sp
ee

fu
p

RoadMap

CA
AO

AF
NA

AS
EU

1 2 4 8 16 24 48 96 96
h

Cores

2

8

32

Synthetic

TRCE
BUB

CHN7
CHN8

1 2 4 8 16 24 48 96 96
h

Cores

2

8

32

k-NN

HT5
CH2

CH5
GL2

GL5
GL10

Figure 6: Self-relative speedups of our algorithm on the three
graph categories. Higher is better.

our algorithm achieves the best average query time and iter-

ations. In summary, our algorithm offers significantly faster

construction performance while maintaining competitive

output graph size and query time.

6.3 Scalability
Self-Relative Speedup.Wefirst show the self-relative speedup

of our algorithms on all the graphs in Fig. 6. We vary the

number of processors from 1 to 96h (192 hyperthreads). Our

self-relative speedup is 29.1–61.7× on road graphs, 37.9–

70.8× on synthetic graphs and 27.9–67.1× on 𝑘-NN graphs.

This shows that our algorithm achieves high parallelism on

all tested graphs.

Scalability Breakdown. To validate our claims of improving

parallelism in CH preprocessing and to illustrate the limita-

tions of existing state-of-the-art parallel implementations, we

test the running times of three parallel algorithms—SPoCH,
CC, and OSRM—with cores varying from 1 to 96h (192 hy-

perthreads) in Fig. 7. We select three graphs: AF, CHN7, and

GL5, each from a different category. As mentioned, all paral-

lel implementations roughly follow Vetter’s algorithm, so we

split the total time into three parts: Score (running WPSes

and recomputing vertex scores), Contracting (finding an in-

dependent set, contracting them and adding shortcuts), and

Others.
CC does not achieve satisfactory scalability, and achieves

its best performance with 8 threads. The major issue lies in a

Reset step that clears arrays at the beginning of each round.

This cost increases drastically with the number of threads. To

clarify the breakdown between Score and Contract, we also
draw a figure for CC without the Others part, referred to as

CC′. The sequential running time for the three algorithms

are close. However, the running time for both CC andOSRM
flattens after 16 threads. Especially for CC, even without

considering the resetting time in the Others part, its time

in Contract remains the same or even increases when more

than 16 threads are used. This is mainly due to the use of

a lock-based structure when adding shortcuts, since using

more threads may result in higher contention and further

degrade the performance. Our solution using parallel hash

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

0

200

400

7.
19

AF

0

25

50

1.
71

CHN7

Score Contract Others

0

200

400

9.
91

GL5

0

200

400

60
.2

0

20

6.
79

0

500

1000

10
1

0

2000

33
3

0

50

100
19

.3

0

1000

2000

44
9

1 2 4 8 16 24 48 9696
h

Number of Cores

0

200

400

18
7

1 2 4 8 16 24 48 9696
h

Number of Cores

0

20 14
.2

1 2 4 8 16 24 48 9696
h

Number of Cores

0

500 29
5

Ru
nn

in
g

Ti
m

e
(s

ec
)

O
ur

s
O
SR

M
CC

CC
'

Figure 7: Running time of SPoCH (Ours), OSRM and CH-
Constructor (CC) across different core counts. Lower is better.
The fastest running time across all core counts is given above its

bar. “96h”: 96 cores with hyper-threads. As the “Others” cost in

CC dominates in most cases, we also report a version of CC that

excludes this time, referred to as CC’.

table effectively avoids this issue, and remains scalable until

using all 192 (hyper)threads.

OSRM has reasonable scalability up to 16 threads, and

its running time remains the same when more threads are

used. One possible reason lies in the parallel granularity for

computing WPS—OSRM employs parallelism on the level of

all vertices in VA (vertices that require score recomputing).

In particular, all vertices in VA are parallelized, but each ver-

tex 𝑣 ∈ VA itself is processed sequentially, which includes

a total of 𝑁in (𝑣) executions of Dijkstra’s algorithm. In later

rounds when most vertices have been contracted, there are

only a few vertices in VA, but their degree may have become

large, causing a huge amount of work executed sequentially.

Therefore, its poor performance is due to insufficient paral-

lelism in later rounds. This issue is also reflected in Fig. 8,

which we discuss in Sec. 6.4. In this case, the WPSes are close

to a sequential execution, and do not benefit from having

more threads. Our solution that batches all WPS sources and

parallelizes them as a whole effectively avoids this issue, and

can efficiently utilize more threads.

On the three tested graphs, SPoCH shows high scalability

up to 96h, and always has better performance with more

threads. The self-relative speedup is 53.3× on AF, 37.9× on

CHN7, and 56.3× on GL5. All techniques in SPoCH are care-

fully optimized for high parallelism, such as using lock-free

data structures and batching WPSes to run in parallel. There-

fore, with a reasonable sequential cost, the good scalability

guarantees low parallel running time.

6.4 In-Depth Study for Parallel Algorithms
Recall that parallel CH construction algorithms select an

independent set in each round, contract them all in parallel,

and repeat until the graph becomes empty. Therefore, the

performance and statistics of each round may help to better

understand the process of parallel algorithms. In this section,

we present an in-depth study for the performance break-

down in each round, for all parallel implementations SPoCH,
CC and OSRM. We present the results on four graphs in

Fig. 8, which includes the number of vertices processed and

accumulated running time up to each round.

Number of Vertices Processed. In Fig. 8, we present the

accumulated numbers of vertices left in the overlay graph

(|VO |), the number of vertices contracted (VF), as well as the

number of WPSes (i.e., the number of executions of Dijk-

stra’s algorithm). We first note thatOSRM incurs much more

rounds than SPoCH and CC—up to 4× more rounds than

SPoCH. The larger number of rounds for OSRM is caused by

how the independent set is selected. OSRM selects a vertex

when it has the minimum score in its 2-hop neighborhood,

while SPoCH uses 1-hop neighborhood. The goal of using 2-

hop neighborhood is to avoid using complicated concurrent

data structure to deal with shortcut insertion, but it results

in a much slower contraction process than SPoCH. On the

contrary, SPoCH uses the efficient data structure introduced

in Sec. 4, which allows contracting all vertices with mini-

mum score in their 1-hop neighborhood, leading to fewer

rounds.

For all three algorithms, the size of the overlay graph

decreases quickly. On CHN8, the trend of |VO | decreases
linearly on the log scale. Indeed on a chain, since almost

all vertices have the same edge difference, the contraction

is mostly determined by the random priority. In this case,

a constant fraction of vertices can be selected in expecta-

tion [73]. On other graphs, the size of the overlay graph

decreases rapidly in the first few rounds, and then slows

down. In general, for all implementations, the overlay graph

size decreases by more than 99% in the first 10–20 rounds.

This implies great potential of parallelism in the construction

of CH.

We then compare the number of WPSes executed for each

algorithm. As mentioned, one of our efforts is to reduce

the number of WPSes performed to optimize the overall

performance. SPoCH incurs significantly fewerWitness Path

Searches (WPSes) compared toCC andOSRM. In each round,

especially in later rounds, SPoCH requires far fewer WPSes

than the total number of vertices in the overlay graph. This

reduction in the number of WPS demonstrates the efficiency

of our approach in limiting unnecessary searches.

Performance Breakdown.We now analyze the accumulated

running time across rounds. In the first 10% of the rounds,

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

100

103

106

Ve

rti
ce

s

AF-Ours

100

103

106

AF-OSRM

100

103

106

AF-CC

100

103

106

NA-Ours

100

103

106

NA-OSRM

100

103

106

NA-CC

0 100
Round

2.5

5.0

Ti
m

e
(s

)

0 200 400
Round

15

30

0 100 200 300
Round

150

300

0 200 400
Round

8

16

0 500 1000
Round

80

160

0 200 400
Round

600

1200

Contract Vertices # WPS # Overlay Vertices Local Search Score Contract Others

100

104

108

Ve

rti
ce

s

CHN8-Ours

100

104

108 CHN8-OSRM

100

104

108 CHN8-CC

100

103

106

GL5-Ours

100

103

106

GL5-OSRM

100

103

106

GL5-CC

0 25 50
Round

0

5

10

Ti
m

e
(s

)

0 50
Round

0

20

40

0 20
Round

0

100

200

0 100 200
Round

3

6

0 500
Round

0

20

40

0 100 200
Round

0

200

400

Figure 8: Per-round breakdown of SPoCH (Ours), OSRM and CH-Constructor (CC) on four graphs. The x-axis shows the round
number. The top row shows the number of contracted vertices (blue circles), the number of WPSes (orange squares), and the number of

remaining overlay vertices (green diamonds) in each round. The bottom row shows the accumulated time for local search (dark blue), scoring

(light blue), contracting (coral), and others (red).

the running time for both algorithms grows quickly. As men-

tioned, more than 99% of the vertices may be contracted just

in the first 10–20 rounds. As the algorithm proceeds, the

overlay graph becomes much smaller. On the four graphs,

all algorithms reach a small overlay graph with 10
5
within

30 rounds, after which very little computation is required.

Indeed, our algorithm spends the majority of its time in the

first several rounds. As the size of the overlay graph de-

creases, the running time for the last 90% of rounds is small.

Indeed, all the steps become cheap after a few rounds. This

indicates the effectiveness of our solution to maintain the

overlay graph—when the overlay graph becomes small, the

maintenance cost also shrinks proportionally. This benefit

comes from our technique of maintaining the overlay graph

in a lazy manner. In later rounds where only a few shortcuts

are generated in each round, SPoCH delays the process of

combining them into the CSR until it collects a sufficient

number of shortcuts. Thus, after 10–20 rounds, there are

likely only one or two global merges incurred, leading to

SPoCH’s high overall performance.

In contrast, the running time for OSRM grows steadily

across all rounds. This indicates that even processing a small

overlay graph,OSRMmay spend a noticeable amount of time.

As we discussed in Sec. 6.3, this is likely due to insufficient

parallelism in later rounds. For CC, as mentioned, the use of

AF NA AS EU
TR

CE BU
B

CH
N8 GL

2
GL

5
GL

10

0
50

Ru
nn

in
g

Ti
m

e
(s

)

Local Search Score Contract Others

Figure 9: Running time with and without the Lazy Combi-
nation Optimization. For each graph, the left bar corresponds

to the cost breakdown without lazy combination, while the right

bar represent the breakdown with the optimization. The cost of

combination is counted in the Contract step.

inefficient data structures to maintain shortcuts dramatically

increases its running time in the Contract step, leading to

overall unsatisfactory performance.

In summary, our design allows for contracting a large

fraction of vertices in each round, leading to a very fast

contraction process. Our new design for the LocalSearch
step also reduces the number for WPSes performed. Our

data structure also avoids a high cost to maintain a small

overlay graph. As a result, SPoCH outperforms both parallel

baselines due to new designs in both algorithm.

Evaluating the Lazy Combination of Shortcut Edges. As

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

Graph
Road Synthetic 𝑘-NN

CA AO AF NA AS EU TRCE BUB CHN7 CHN8 HT5 CH2 CH5 GL2 GL5 GL10

B
ui
ld

ParlayLib [16] 1.00 2.25 7.32 23.1 23.5 32.9 25.2 34.7 1.77 14.9 0.68 0.87 115 2.95 9.78 41.6

OpenCilk [63] 0.97 2.21 7.37 23.1 23.7 32.5 24.9 32.4 1.82 15.4 0.67 0.86 111 2.96 9.71 41.2
TBB [51] 1.03 2.33 7.66 23.5 24.0 32.8 25.1 34.3 1.93 15.9 0.50 0.96 114 3.30 10.3 42.3

Q
ue

ry ParlayLib 7.99 27.9 17.2 93.3 60.4 137 376 452 5.59 7.74 6.16 3.55 244 1.93 10.2 33.9

OpenCilk 7.91 27.8 17.1 93.3 60.7 141 379 454 5.56 7.78 6.24 3.53 239 1.93 10.4 32.8

TBB 7.90 27.9 17.3 94.4 57.6 136 377 452 5.64 7.76 6.27 3.54 242 1.92 10.3 32.5
Table 5: Comparison of build time (in seconds) and query time (in microseconds) for all tested schedulers across all graphs.
Smaller is better. For each graph, the best build time and best query time are bolded and underlined.

mentioned, one of our optimizations is to combine the short-

cuts E+ lazily with the edges of the overlay graph EO. This is
to reduce and amortize the cost of updating the CSR for EO.
Fig. 9 shows the running timewith andwithout this optimiza-

tion. For each graph, the left bar represents the breakdown

that combines in each round (without lazy combination),

while the right bar represents that with the optimization.

The cost is counted in the Contract step. By combining the

shortcuts lazily instead of doing it every round, the cost

of the Contract step is reduced from 39.9% to 19.8% of the

overall time on average. Across all graphs, this optimization

improves the performance by 1.1–2.7× for the total running

time.

Impact of Different Schedulers. To evaluate the impact of

different schedulers to the performance of SPoCH, we con-
duct an experiment comparing ParlayLib [16], OpenCilk [63],

and TBB [51]. Our algorithmic framework remains the same

across all tests, ensuring that any observed performance

differences stem primarily from the underlying scheduler

rather than the core algorithm itself. Across all schedulers,

the average build time is within 10% of the fastest result,

and the average query time is within 2%. Hence, the choice

of scheduler has a negligible effect on the performance of

SPoCH. We present detailed running times in Tab. 5.

7 Related Work
Computing the shortest paths on a graph is one of the most

well-studied problems in computer science. We refer the au-

dience to the excellent surveys on this topic, including those

by Bast et al. [9], Madkoure et al. [61], and Sommer [74].

These surveys all discuss contraction hierarchies (CH) in

detail. Meanwhile, we note that the main applications of the

CH are on sparse networks such as roadmaps (transition net-

works). We acknowledge that many interesting algorithms

have been proposed for relevant but different problems, such

as on social networks, queries among all pairs or between a

batch of sources and destinations, on dynamic graphs, and

time-dependant queries. A brief list of recent work on com-

puting shortest paths includes [44, 49, 56, 57, 66, 81–84].

The idea of CH was proposed by Geisberger et al. [41],

based on simplifying highway hierarchies [55, 68] and high-

way node routing [70]. CH has achieved notable success in

practical applications, and fostered numerous later studies

on relevant problems. Examples include the time-dependent

versions [12, 13], parallel and distributed versions [54, 76],

on dynamic graphs [65], and more algorithmic optimiza-

tions [27, 42, 48]. CH is also used to parallelize SSSP queries,

such as in PHAST [26, 45]. Another stream of research is to

derive theoretical guarantees for CH [4, 20, 24, 31, 40, 47].

These analyses are mostly parameterized, based on some

graph invariants such as tree depths, tree widths, and diam-

eters.

There have been many studies on parallelizing CH con-

struction and relevant techniques. Vetter’s work [76] is the

earliest and inspired many of the later studies [22, 23, 52–

54, 59, 60]. We reviewed Vetter’s approach in Sec. 2.2. OSRM
by Luxen and Vetter [59, 60] implements Vetter’s approach,

and it is considered the SOTA parallel CH construction.

CH-Constructor [22] is another open-source software for
parallel CH construction. We compared to OSRM and CH-
Constructor since they have open-source code available. The
others focus on different settings, such as distributed [54],

GPU [52, 53], and on edge contraction [23]. Among them, an

existing GPU algorithm [53] also prune unnecessary short-

cuts. SPoCH has the same motivation for pruning, but uses a

different methodology by leveraging memoization to further

reduce the cost. We believe that some of our algorithmic tech-

niques, such as LocalSearchwithmemoization, are applicable

to other settings such as GPUs. However, we acknowledge

that part of the implementation, such as the parallel data

structures, will require careful redesign, which we leave as

future work.

We note that there are other shortest-path algorithms that

can provide different construction-query trade-offs or are

designed for other graph types. Some of these algorithms

include transit node routing [11], hub labeling [2, 3], pruned

landmark labeling [6], highway labeling [5], and ALT [43].

Indeed, many of these approaches [2, 3, 8, 10, 11, 14, 26,

28] use CH as a subroutine. We believe that the faster CH

construction presented in this paper can improve such trade-

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

offs, and we leave it as future work.

8 Conclusions and Future Work
In this paper, we propose SPoCH (Scalable Parallelization

of Contraction Hierarchies), a parallel algorithm for con-

structing contraction hierarchies. Our key insights include

algorithm redesign to introduce the LocalSearch step, which

allows for batching, memoization and pruning, as well as

leveraging parallel data structures. In this way, SPoCH ef-

fectively reduces the total work and enhances parallelism.

Across 16 graphs of varying sizes and average degrees (in-

cluding road networks, synthetic graphs, and 𝑘-NN graphs),

SPoCH consistently outperforms four other SOTA sequential

and parallel baselines by 3.83–243×, while maintaining com-

petitive query performance. On a 96-core machine, SPoCH
delivers self-relative speedups of 27.9–70.8×. We conduct

in-depth experiments to analyze the improvements of our

techniques.

An open question remains as to whether parallel CHs

can handle graphs with high degrees (e.g., social networks).

Some interesting future directions include applying our new

CH construction algorithm to other distance queries, such

as single-source shortest paths, all-pairs shortest paths, or

distance oracles.

Acknowledgments
This work is supported by NSF grants CCF-2103483, IIS-

2227669, and TI-2346223, NSF CAREER Awards CCF-2238358

and CCF-2339310, the UCR Regents Faculty Development

Award, and the Google Research Scholar Program. We thank

the anonymous reviewers for their useful comments.

References
[1] Tenindra Abeywickrama, Muhammad Aamir Cheema, and David

Taniar. 2016. k-Nearest Neighbors on Road Networks: A Journey

in Experimentation and In-Memory Implementation. Proceedings of
the VLDB Endowment (PVLDB) 9, 6 (2016).

[2] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F

Werneck. 2011. A hub-based labeling algorithm for shortest paths in

road networks. In International Symposium on Experimental Algorithms
(SEA). Springer, 230–241.

[3] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Wer-

neck. 2012. Hierarchical hub labelings for shortest paths. In European
Symposium on Algorithms (ESA). Springer, 24–35.

[4] Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck.

2010. Highway dimension, shortest paths, and provably efficient al-

gorithms. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 782–793.

[5] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata.

2014. Fast shortest-path distance queries on road networks by pruned

highway labeling. InAlgorithm Engineering and Experiments (ALENEX).
SIAM, 147–154.

[6] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact

shortest-path distance queries on large networks by pruned landmark

labeling. In ACM SIGMOD International Conference on Management of
Data (SIGMOD). 349–360.

[7] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 2001. Thread

scheduling for multiprogrammed multiprocessors. Theory of Comput-
ing Systems (TOCS) 34, 2 (2001), 115–144.

[8] Julian Arz, Dennis Luxen, and Peter Sanders. 2013. Transit node

routing reconsidered. In International symposium on experimental al-
gorithms. Springer, 55–66.

[9] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Mü ller

Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and

Renato F Werneck. 2016. Route planning in transportation networks.

Algorithm engineering: Selected results and surveys (2016), 19–80.
[10] Hannah Bast, Stefan Funke, and Domagoj Matijevic. 2006. Ultrafast

Shortest-Path Queries via Transit Nodes. The Shortest Path Problem 74

(2006), 175–192.

[11] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. 2007.

Fast routing in road networks with transit nodes. Science 316, 5824
(2007), 566–566.

[12] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter

Sanders. 2010. Time-dependent contraction hierarchies and approxi-

mation. In International Symposium on Experimental Algorithms (SEA).
Springer, 166–177.

[13] G Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter.

2013. Minimum time-dependent travel times with contraction hierar-

chies. Journal of Experimental Algorithmics (JEA) 18 (2013), 1–1.
[14] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,

Dominik Schultes, and Dorothea Wagner. 2010. Combining hierar-

chical and goal-directed speed-up techniques for dijkstra’s algorithm.

Journal of Experimental Algorithmics (JEA) 15 (2010), 2–1.
[15] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B.

Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. 2016. Parallel

Algorithms for Asymmetric Read-Write Costs. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[16] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-

layLib — a toolkit for parallel algorithms on shared-memory multicore

machines. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA). 507–509.

[17] Guy E Blelloch andMagdalenDobson. 2022. Parallel Nearest Neighbors

in Low Dimensions with Batch Updates. In Algorithm Engineering and
Experiments (ALENEX). SIAM, 195–208.

[18] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.

Optimal parallel algorithms in the binary-forking model. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 89–
102.

[19] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri.

2010. Low depth cache-oblivious algorithms. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[20] Johannes Blum, Stefan Funke, and Sabine Storandt. 2021. Sublinear

search spaces for shortest path planning in grid and road networks.

Journal of Combinatorial Optimization 42, 2 (2021), 231–257.

[21] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multi-

threaded computations by work stealing. J. ACM 46, 5 (1999), 720–748.

[22] Stefan Bühler and André Nusser. 2024. Contraction Hierarchies Con-

structor. https://doi.org/10.5281/zenodo.14008202

[23] Zi Chen, Xinyu Ji, Long Yuan, Xuemin Lin, Wenjie Zhang, and Shan

Huang. 2024. Parallel Contraction Hierarchies Construction on Road

Networks. IEEE Transactions on Knowledge and Data Engineering
(2024).

[24] Tobias Columbus and Reinhard Bauer. 2009. On the complexity of con-

traction hierarchies. Student Thesis, Karlsruhe Inst. Technol., Karlsruhe,
Germany (2009).

[25] RoutingKit contributors. 2024. RoutingKit. https://github.com/

RoutingKit/RoutingKit.

https://doi.org/10.5281/zenodo.14008202
https://github.com/RoutingKit/RoutingKit
https://github.com/RoutingKit/RoutingKit

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and Yihan Sun

[26] Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Renato F

Werneck. 2013. PHAST: Hardware-accelerated shortest path trees. J.
Parallel and Distrib. Comput. 73, 7 (2013), 940–952.

[27] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F

Werneck. 2017. Customizable route planning in road networks. Trans-
portation Science 51, 2 (2017), 566–591.

[28] Daniel Delling, Andrew V Goldberg, and Renato F Werneck. 2013.

Hub label compression. In International symposium on experimental
algorithms. Springer, 18–29.

[29] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoreti-

cally efficient parallel graph algorithms can be fast and scalable. ACM
Transactions on Parallel Computing (TOPC) 8, 1 (2021), 1–70.

[30] Laxman Dhulipala, Xiaojun Dong, Kishen Gowda, and Yan Gu. 2024.

Optimal Parallel Algorithms for Dendrogram Computation and Single-

Linkage Clustering. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

[31] Julian Dibbelt, Ben Strasser, and DorotheaWagner. 2016. Customizable

contraction hierarchies. J. Experimental Algorithmics 21 (2016), 1–49.
[32] Edsger W. Dijkstra. 1959. A note on two problems in connexion with

graphs. Numerische mathematik 1, 1 (1959).

[33] Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2024. Paral-

lel Integer Sort: Theory and Practice. In ACM Symposium on Principles
and Practice of Parallel Programming (PPOPP).

[34] Xiaojun Dong, Yan Gu, Yihan Sun, and Letong Wang. 2024. Brief An-

nouncement: PASGAL: Parallel And Scalable Graph Algorithm Library.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[35] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient

Stepping Algorithms and Implementations for Parallel Shortest Paths.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 184–197.

[36] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably

Fast and Space-Efficient Parallel Biconnectivity. In ACM Symposium
on Principles and Practice of Parallel Programming (PPOPP). 52–65.

[37] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco.

2015. Reservoir computing compensates slow response of chemosen-

sor arrays exposed to fast varying gas concentrations in continuous

monitoring. Sensors and Actuators B: Chemical 215 (2015), 618–629.
[38] Stefan Funke, André Nusser, and Sabine Storandt. 2015. Placement of

loading stations for electric vehicles: No detours necessary! Journal of
Artificial Intelligence Research 53 (2015), 633–658.

[39] Stefan Funke, Tobias Rupp, André Nusser, and Sabine Storandt. 2019.

PATHFINDER: storage and indexing of massive trajectory sets. In Pro-
ceedings of the 16th International Symposium on Spatial and Temporal
Databases. 90–99.

[40] Stefan Funke and Sabine Storandt. 2015. Provable efficiency of con-

traction hierarchies with randomized preprocessing. In International
Symposium on Algorithms and Computation. Springer, 479–490.

[41] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel

Delling. 2008. Contraction hierarchies: Faster and simpler hierarchical

routing in road networks. In International Workshop on Experimental
Algorithms (WEA). Springer, 319–333.

[42] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian

Vetter. 2012. Exact routing in large road networks using contraction

hierarchies. Transportation Science 46, 3 (2012), 388–404.
[43] Andrew V Goldberg and Chris Harrelson. 2005. Computing the short-

est path: A search meets graph theory. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), Vol. 5. 156–165.

[44] Zengyang Gong, Yuxiang Zeng, and Lei Chen. 2024. Querying shortest

path on large time-dependent road networks with shortcuts. In IEEE
International Conference on Data Engineering (ICDE). IEEE, 4532–4544.

[45] KIT ITI Algorithmics Group. 2024. PHAST. https://github.com/kit-

algo/ULTRA-PHAST.

[46] Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023.

Parallel Longest Increasing Subsequence and van Emde Boas Trees.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[47] Michael Hamann and Ben Strasser. 2018. Graph bisection with pareto

optimization. J. Experimental Algorithmics 23 (2018), 1–34.
[48] Demian Hespe and Peter Sanders. 2019. More Hierarchy in Route Plan-

ning Using Edge Hierarchies. In Symposium on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS).

[49] Shuai Huang, Yong Wang, Tianyu Zhao, and Guoliang Li. 2021. A

learning-based method for computing shortest path distances on road

networks. In IEEE International Conference on Data Engineering (ICDE).
IEEE, 360–371.

[50] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa, Nikolai F Rulkov,

and Irene Rodriguez-Lujan. 2016. Online decorrelation of humidity and

temperature in chemical sensors for continuous monitoring. Chemo-
metrics and Intelligent Laboratory Systems 157 (2016), 169–176.

[51] Intel Threading Building Blocks [n. d.]. Intel Threading Building Blocks

(TBB). https://www.threadingbuildingblocks.org.

[52] Roozbeh Karimi, David M Koppelman, and Chris J Michael. 2019. GPU

road network graph contraction and SSSP query. In Proceedings of the
ACM International Conference on Supercomputing. 250–260.

[53] Roozbeh Karimi, David M Koppelman, and Chris J Michael. 2020. Fast

GPU Graph Contraction by Combining Efficient Shallow Searches

and Post-Culling. In IEEE Conference on High Performance Extreme
Computing (HPEC). IEEE, 1–7.

[54] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. 2010.

Distributed time-dependent contraction hierarchies. In International
Symposium on Experimental Algorithms (SEA). Springer, 83–93.

[55] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and

Dorothea Wagner. 2007. Computing many-to-many shortest paths

using highway hierarchies. In Algorithm Engineering and Experiments
(ALENEX). SIAM, 36–45.

[56] Lingxiao Li, Muhammad Aamir Cheema, Mohammed Eunus Ali, Hua

Lu, and David Taniar. 2020. Continuously monitoring alternative short-

est paths on road networks. In Proceedings of the VLDB Endowment
(PVLDB). Association for Computing Machinery, 2243–2255.

[57] Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2020. Fast

query decomposition for batch shortest path processing in road net-

works. In IEEE International Conference on Data Engineering (ICDE).
IEEE, 1189–1200.

[58] Youzhe Liu, Xiaojun Dong, Yan Gu, and Yihan Sun. 2025. Parallel 𝑘-

Core Decomposition: Theory and Practice. ACM SIGMOD International
Conference on Management of Data (SIGMOD) 3, 3 (2025).

[59] Dennis Luxen and Christian Vetter. 2011. Real-time routing with Open-

StreetMap data. In SIGSPATIAL international conference on advances in
geographic information systems. 513–516.

[60] Dennis Luxen and Christian Vetter. 2024. Open Source Routing Ma-

chine. https://github.com/Project-OSRM/osrm-backend.

[61] Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Ab-

dur Rahman, and Saleh Basalamah. 2017. A survey of shortest-path

algorithms. arXiv preprint:1705.02044 (2017).
[62] Ulrich Meyer and Peter Sanders. 2003. Δ-stepping: a parallelizable

shortest path algorithm. Journal of Algorithms 49, 1 (2003), 114–152.
[63] OpenCilk 2020. OpenCilk. https://www.opencilk.org/.

[64] OpenStreetMap contributors. 2010. OpenStreetMap. https://www.

openstreetmap.org/.

[65] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and

Xuemin Lin. 2020. Efficient shortest path index maintenance on dy-

namic road networks with theoretical guarantees. Proceedings of the
VLDB Endowment (PVLDB) 13, 5 (2020), 602–615.

https://github.com/kit-algo/ULTRA-PHAST
https://github.com/kit-algo/ULTRA-PHAST
https://www.threadingbuildingblocks.org
https://github.com/Project-OSRM/osrm-backend
https://www.opencilk.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/

Parallel Contraction Hierarchies Can Be Efficient and Scalable ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[66] Yu-Xuan Qiu, DongWen, Lu Qin,Wentao Li, Rong-Hua Li, Zhang Ying,

et al. 2022. Efficient shortest path counting on large road networks.

Proceedings of the VLDB Endowment (PVLDB) (2022).
[67] Naroa Coretti Sanchez, Iñigo Martinez, Luis Alonso Pastor, and Kent

Larson. 2022. On the simulation of shared autonomous micro-mobility.

Communications in Transportation Research 2 (2022), 100065.

[68] Peter Sanders and Dominik Schultes. 2006. Engineering highway

hierarchies. In European Symposium on Algorithms. Springer, 804–816.
[69] Peter Sanders, Christian Schulz, and Dorothea Wagner. 2014. Bench-

marking for graph clustering and partitioning. Encyclopedia of social
network analysis and mining Springer (2014).

[70] Dominik Schultes and Peter Sanders. 2007. Dynamic highway-node

routing. In Workshop on Experimental and Efficient Algorithms (WEA).
Springer, 66–79.

[71] Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequen-

tial Iterative Algorithms Can Be Parallel and (Nearly) Work-efficient.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[72] Julian Shun and Guy E Blelloch. 2014. Phase-concurrent hash tables

for determinism. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 96–107.

[73] Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B

Gibbons. 2015. Sequential random permutation, list contraction and

tree contraction are highly parallel. In ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). 431–448.

[74] Christian Sommer. 2014. Shortest-path queries in static networks.

ACM Computing Surveys (CSUR) 46, 4 (2014), 1–31.
[75] William F Tinney and John WWalker. 1967. Direct solutions of sparse

network equations by optimally ordered triangular factorization. Proc.
IEEE 55, 11 (1967), 1801–1809.

[76] Christian Vetter. 2009. Parallel time-dependent contraction hierarchies.

Student Research Project (2009), 134.

[77] Zijin Wan, Xiaojun Dong, Letong Wang, Enzuo Zhu, Yan Gu, and

Yihan Sun. 2024. Implementations for Parallel Contraction Hierarchies.

https://github.com/ucrparlay/Parallel-Contraction-Hierarchy.

[78] Letong Wang, Xiaojun Dong, Yan Gu, and Yihan Sun. 2023. Parallel

Strong Connectivity Based on Faster Reachability. ACM SIGMOD
International Conference on Management of Data (SIGMOD) 1, 2 (2023),
1–29.

[79] Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun.

2021. GeoGraph: A Framework for Graph Processing on Geometric

Data. ACM SIGOPS Operating Systems Review 55, 1 (2021), 38–46.

[80] BrianWheatman, Xiaojun Dong, Zheqi Shen, Laxman Dhulipala, Jakub

Łącki, Prashant Pandey, and Helen Xu. 2024. BYO: A Unified Frame-

work for Benchmarking Large-Scale Graph Containers. In Proceedings
of the VLDB Endowment (PVLDB).

[81] Ziqiang Yu, Xiaohui Yu, Nick Koudas, Yang Liu, Yifan Li, Yueting Chen,

and Dingyu Yang. 2020. Distributed processing of k shortest path

queries over dynamic road networks. In ACM SIGMOD International
Conference on Management of Data (SIGMOD). 665–679.

[82] Junhua Zhang, Wentao Li, Long Yuan, Lu Qin, Ying Zhang, and Lijun

Chang. 2022. Shortest-path queries on complex networks: experiments,

analyses, and improvement. Proceedings of the VLDB Endowment
(PVLDB) 15, 11 (2022), 2640–2652.

[83] U Zhang, Long Yuan, Wentao Li, Lu Qin, and Ying Zhang. 2021. Ef-

ficient label-constrained shortest path queries on road networks: A

tree decomposition approach. Proceedings of the VLDB Endowment
(PVLDB) (2021).

[84] Yikai Zhang and Jeffrey Xu Yu. 2020. Hub labeling for shortest path

counting. In ACM SIGMOD International Conference on Management
of Data (SIGMOD). 1813–1828.

[85] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning

transportation mode from raw gps data for geographic applications

on the web. In International World Wide Web Conference (WWW).
247–256.

https://github.com/ucrparlay/Parallel-Contraction-Hierarchy

	Abstract
	1 Introduction
	2 Contraction Hierarchies
	2.1 Sequential Solutions
	2.2 Existing Parallel Algorithms

	3 Our Parallel CH Construction Algorithm
	3.1 Step 1: Local Search with Memoization
	3.2 Step 2: Score
	3.3 Step 3: Select
	3.4 Step 4: Contract
	3.5 Postprocessing

	4 Parallel Data Structures
	4.1 Background of Existing Data Structures
	4.2 Using Parallel Data Structures in SPoCH

	5 Query on Contraction Hierarchies
	6 Experiments
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 Scalability
	6.4 In-Depth Study for Parallel Algorithms

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

