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Abstract
Modern supercomputers increasingly use node-local storage
as burst buffers (BB) to address I/O bottlenecks. However,
current BBs do not naturally support workflows, a common
workload in HPC consisting of many interconnected sub-
tasks. Workflow I/O can be divided into three types: intra-
task I/O, inter-task I/O, and stage-in/out I/O. While BBs can
accelerate intra-task I/O, they often overlook the other two.
Inter-task I/O relies on migrating data through the Paral-
lel File System (PFS), which can slow down overall perfor-
mance. Although allocating more resources to create larger
BBs could help, it increases costs. Additionally, temporary
BBs lack permanent storage, requiring data migration be-
tween the PFS and BB for stage-in and stage-out I/O. This
process often involves multiple data copies and reduces I/O
efficiency. Even for intra-task I/O, unbalanced data distribu-
tion can cause bottlenecks on heavily loaded nodes.

To improve workflow acceleration in BB systems, it is im-
portant to address the needs of all the above-mentioned three
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types of I/O. This paper presents CodepFS, a new collabora-
tive and adaptive burst buffer. CodepFS uses a file pattern-
aware data distribution strategy to improve data balance and
boost intra-task I/O efficiency. It integrates smoothly with
PFS, allowing fast stage-in/out I/O without extra data copies.
For inter-task I/O, CodepFS introduces a technique called
Inheritance-Fusion Namespace (IFN), which merges separate
burst buffer instances into a unified system, thereby avoiding
large-scale data migration during task coordination. Exten-
sive evaluations show that CodepFS outperforms existing
shared burst buffer technologies like UnifyFS and GekkoFS.
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1 Introduction
Despite the slowdown of Moore’s Law, the performance im-
provement of high-performance computing (HPC) systems
has far outpaced that of storage systems, driven by advances
in heterogeneous architectures and multi-chip packaging
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Figure 1: workflow with the existing BBs.

technologies [23]. In the face of today’s exascale supercom-
puters with node counts reaching tens of thousands, tradi-
tional Parallel File Systems (PFS) struggle to scale, exacerbat-
ing performance bottlenecks. Burst buffer technology[17, 22]
utilizes SSD or NVRAM resources located on computing
nodes or at I/O forwarding nodes[5, 34] to handle bursty I/O
and enhance I/O performance.

However, as one of the key workloads in HPC, workflow
applications currently lack adequate support fromBBs.Work-
flows consist of numerous subtasks that have data depen-
dencies, which can be represented as directed acyclic graphs
(DAG). These subtasks follow a specific execution order dic-
tated by their dependencies, necessitating data sharing not
just within the nodes of a single task, but also across different
tasks within the workflow. Typically, the tasks in workflows
are I/O-sensitive. To illustrate the limitations of the current
BBs, we have classified the workflow I/O into three distinct
stages (as shown in Figure 1): intra-task I/O, inter-task I/O,
and stage-in/out I/O. Figure 1(a) shows how the PFS-based
workflow works, which is the most common way. We used
two metrics for workflow, execution time (represented by T )
and billing (represented by area S, i.e. resources multiplied by
time). We use this running pattern in Figure 1(a) as a baseline
to show how current BB performs in workflow tasks.

Global BBs like DataWarp [18, 19], which is built on dedi-
cated storage servers, typically exhibit strong data sharing
capabilities but suffer from poor performance, particularly
under significant competition effects. Existing BB systems
deployed on computing nodes can be classified into node-
local BB and shared BB, depending on the establishment

of a unified namespace. Local BBs restrict node storage us-
age to the node itself, posing challenges in supporting file
sharing among computing nodes. Conversely, shared BBs
aggregate storage resources from multiple nodes to offer a
unified namespace. That being said, existing shared BB re-
search focuses on utilizing techniques like local writes and
client-side caching to accelerate I/O performance. Recent
studies have extensively explored various shared BBs, such as
GekkoFS[29, 30], UnifyFS[8], DAOS[15, 21], and HadaFS[12].
These systems aim to provide a scalable and unified approach
to BB management. However, despite the potential benefits
and extensive explorations for shared BB systems, they just
focus on accelerating intra-task I/O, but ignore the inter-task
I/O and stage-in/out I/O. Drawing from our extensive expe-
rience in operating Tianhe supercomputers, we find that for
different I/O types of workflow, three fundamental concerns
are so far overlooked by current BBs.
First, existing BBs cannot provide inter-task I/O di-

rectly. Due to the lack of data sharing capabilities between
different BB instances, users are compelled to manually mi-
grate data among these instances through PFS to achieve
inter-task I/O (Figure 1(b)). This is an undesirable burden for
users. The substantial overhead of data migration overshad-
ows the benefits of high-speed I/O offered by BBs. To avoid
data migration between tasks, users tend to over-allocate
resources, running the entire workflow within a single large
BB instance (Figure 1(c)). However, this approach leads to
excessive resource costs and over-billing. In Figure 1, we vi-
sually compare the expenses of users (represented by area S)
of existing BB technologies in workflow scenarios, while also
demonstrating how CodepFS effectively reduces the total
charge and execution time (Figure 1(d)).

Second, BBs often ignore efficient stage-in/out I/O in
collaboration with PFS. BBs, as a temporary file system,
do not have persistent storage capacity, necessitating data
stage-in I/O from PFS before tasks and data stage-out I/O to
PFS after tasks. Existing shared BB systems, like GekkoFS,
often neglect parallel data migration. Moreover, using the
BB client’s I/O path for data migration (e.g., UnifyFS) intro-
duces overhead, such as metadata maintenance and multiple
memory copies. Existing shared BBs are lack of coordinated
design with the underlying PFS. Therefore, data stage-in/out
I/O often introduces non-trivial overheads, which may ob-
scure the I/O acceleration benefits of BBs.
Third, BBs’ inflexible and unbalanced data layout

limits intra-task I/O performance. Hash-based data dis-
tribution is the most widely used data distribution schema
for existing shared BBs, such as GekkoFS and MadFS. Unfor-
tunately, the hashing shows an imbalance, which causes I/O
performance to suffer from a bottleneck on the most heavily
loaded nodes.
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To address the challenges mentioned above, this paper pro-
poses CodepFS, a shared burst buffer system that utilizes the
node-local storage resources of computing nodes. CodepFS
seamlessly integrates with workflow applications, enabling
file view merging across multiple BB instances employed
in different workflow stages, thereby achieving inter-task
I/O without extensive data movement. Meanwhile, CodepFS
collaborates with PFS, achieving highly parallel data stage-
in/out I/O, circumventing data transfer bottlenecks across
storage hierarchies. Additionally, CodepFS introduces an
adaptive file-pattern-aware data distribution mechanism to
eliminate load unbalance caused by non-uniform hashing.
This mechanism not only accelerates intra-task I/O perfor-
mance, but also enhances BB’s scalability.
The core innovation of CodepFS lies in its enhancement

and expansion of shared BB’s support for three I/O types
of HPC workflows, effectively addressing the limitations
and shortcomings of existing BBs. To the best of our knowl-
edge, CodepFS is the first work on shared BB that natively
supports workflow in the production system. CodepFS has
been deployed on the Tianhe Exascale Prototype Upgrade
System[31]. Contributions in this paper are as follows:

• This paper, to the best of our knowledge, is the first
to point out the different I/O types according to the
stages in the HPC workflow. We then highlight the
shortcomings of existing shared BB designs for these
I/O types.

• This paper proposes CodepFS, a shared burst buffer
that achieves enhanced support for HPC workflows
and minimizes both running time and user costs. This
paper delves into the design and implementation of
CodepFS.

• Experimental results demonstrate that CodepFS out-
performs the state-of-the-art shared BBs under differ-
ent workloads, in terms of intra-task I/O, inter-task
I/O and stage-in/out I/O.

The rest of the paper is organized as follows. Section 2
presents the motivation. We introduce the design and imple-
mentation of CodepFS in Section 3. Section 4 presents the
evaluation methodology and results. Section 5 discusses the
related work. Conclusions are provided in Section 6.

2 Motivations
This paper focuses on using shared BBs that utilize node-
local storage resources to support workflows, and delves into
three key factors that hinder the practical implementation
of shared BBs. These include: (1) Lack of data sharing mech-
anism between different tasks within prevalent workflow
application models. (2) Inefficient data migration between
shared BBs and global PFS. (3) The load unbalance caused
by uneven data distribution.

2.1 Data sharing in workflow models
Current temporary BBs lack native support for data sharing
between workflow tasks, forcing manual data migration to
achieve inter-task I/O, which introduces a significant bottle-
neck. HPC workflows, vital in fields like materials science
and biomedicine, often involve a lot of interdependent tasks
generating and transferring large datasets. These workflows
typically take the form of directed acyclic graphs (DAG),
where the nodes represent tasks, and the edges represent
dependencies [9].
While different workflow tasks might run on separate

groups of nodes, they can all access data stored in the PFS.
However, existing BBs struggle to support workflows due
to the challenge of sharing data across them. Since each BB
serves a single task on a specific set of nodes, directly ac-
cessing data between dependent tasks becomes impossible.
Consequently, workflows rely on costly intermediate data
transfers through the PFS. This inefficiency becomes par-
ticularly problematic for large intermediate data commonly
found in workflows. To address this, shared BBs should sup-
port direct data sharing among different tasks within the
workflow to massively accelerate overall I/O efficiency.

2.2 Data stage-in/out
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Figure 2: Data staging between current temporary BBs
and PFS.

Temporary BBs achieve persistent storage via PFS like
Lustre [25, 33]. Efficient data movement is crucial, involving
pre-loading task data (stage-in I/O) and returning results
(stage-out I/O). However, achieving efficient data staging
is non-trivial. Effective data staging goes beyond simply
copying data in parallel to the BB system. Figure 2 illustrates
threemethods for staging-in/out data between the temporary
BBs and the PFS.

Figure 2(a) depicts a data migration approach where a sin-
gle client maintains full connectivity to all daemons. While
this method is straightforward, it suffers from a performance
bottleneck due to its reliance on a single client, and it necessi-
tates data redistribution between the client and the daemons.
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The data redistribution process involves transferring a sub-
stantial number of remote procedure calls (RPCs) and discrete
data blocks, which significantly hampers the efficiency of
the migration. Notable examples of this approach include
GekkoFS and typical DataWarp.
In Figure 2(b), the number of clients is increased to im-

prove performance; however, it still introduces the challenge
of data redistribution between clients and daemons. Typi-
cal examples include our GekkoFS parallel copy tool (Sec-
tion 4.2) and DataWarp which employs methods such as
mpiFileUtils[20].
Figure 2(c) presents a stage-in approach that can bypass

the client and eliminate the need for data redistribution. Nev-
ertheless, this approach often overlooks a critical aspect. The
ultimate goal of data stage-in is to serve subsequent data
read requests. Consider UnifyFS and HadaFS as an example:
importing data directly without prior knowledge of future ac-
cess patterns would trigger cross-node read requests, which
are already detrimental to performance.
Efficient data staging solutions should be closely inte-

grated with the underlying PFS to reduce unnecessary data
copying and mitigate the adverse impact of inconsistent data
distribution on subsequent read performance.

2.3 Data layout

Figure 3: Unbalanced data distribution of GekkoFS
with 128 nodes. The average number of chunks per
node is 1024.

BBs can be categorized as stateful or stateless based on
data placement strategy. Stateful BBs like BeeOND[13] offer
configuration options but introduce scalability bottlenecks
and user complexity due to reliance on a central service. State-
less approaches used in systems like GekkoFS and HadaFS
leverage hash mapping, but this can lead to unbalanced data
distribution and long-tail latency for frequently accessed
data. To illustrate this data imbalance, we evaluated the dis-
tribution of GekkoFS chunks across nodes. As shown in
Figure 3, this distribution exhibits variations of up to 17.9%
between nodes. Additionally, all BBs require Remote Proce-
dure Call (RPC) requests and Remote Direct Memory Access

(RDMA) operations to access data [16], which can introduce
significant overhead for small files, negating the benefits of a
distributed system. Conversely, BurstFS[32] and UnifyFS pri-
oritize write performance by enabling direct local writes, but
this approach can exacerbate capacity and load imbalances.
In summary, current BB data layout lacks flexibility to

accelerate intra-task I/O. Although stateless approaches of-
fer better scalability, they can lead to an unbalanced data
distribution. This paper proposes a new approach that rec-
ognizes the differing needs of large and small files. Large
files should be strategically placed to ensure balanced ac-
cess across nodes. In contrast, smaller file access should be
optimized for speed, minimizing request overhead.

3 Design and Implementation
3.1 Overview of CodepFS
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Figure 4: Architecture of CodepFS. Consider an exam-
ple of temporarily aggregating two computing nodes.

CodepFS employs a client-server architecture that features
a service process on each computing node. These service
processes act as servers, while tasks running on the nodes
become access the BB service through a dynamic link library
(DLL). The service process aggregates the available storage
capacity of the local file system on its node, presenting a
unified view to the client. Metadata, which describe files, are
distributed between nodes using RocksDB, a proven LSM-
tree-based key-value store[10]. The CodepFS client inter-
cepts system calls related to file operations initiated by tasks.
Based on the mount point, the client dynamically decides
whether to redirect the call to the CodepFS server. Data stor-
age locations within CodepFS are determined by applying a
hash function to the file’s absolute path.
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To accelerate intra-task I/O, CodepFS introduces a dy-
namic adaptive data distribution strategy. This strategy lever-
ages a hybrid approach for large files, combining hashing
together with contiguous placement to optimize access. For
small files, a straightforward hashing approach suffices. This
method transparently achieves efficient storage for all file
sizes.
CodepFS streamlines data movement between itself and

the underlying PFS via a dedicated data migration interface
to optimize stage-in/out I/O. Leveraging the predefined data
distribution strategy, each CodepFS daemon process inde-
pendently retrieves its designated data blocks, eliminating
the need for BB client intervention. Furthermore, CodepFS
implements transparent directory mapping. This feature al-
lows users to interact with data directly through existing PFS
paths, concealing the underlying CodepFS infrastructure.
A concept called Inheritance-Fusion Namespace (IFN) is

introduced in CodepFS to enhance data collaboration within
workflows. These intelligent namespaces analyze the data
dependencies between tasks and allow CodepFS to merge
namespaces seamlessly, granting tasks direct access to previ-
ously generated data of its dependent tasks. By eliminating
data transfer and duplication, IFN ensures effortless data
sharing (inter-task I/O) across tasks.

3.2 Adaptive data layout
The commonly used data placement strategy in BB systems
based on node-local storage involves partitioning files into
multiple chunks. This approach is widely employed in sys-
tems such as GekkoFS, MadFS, and HadaFS. However, such
systems tend to uniformly divide files of different sizes into
chunks. Due to the inherent randomness in data distribution,
hashing algorithms exhibit an inevitable imbalance. There-
fore, data partition approaches of existing BBs struggle to
achieve a truly balanced distribution of data. This not only
leads to uneven storage capacity usage among nodes but
also results in increased latency for I/O requests, thereby
impacting the availability and performance of the system.
While small files (fitting within a single block) avoid the

imbalance issues associated with hashing, they introduce
higher transmission costs. Reading andwriting files in shared
BBs generally involves a client request to the target node’s
daemon followed by RDMA data transfer. However, for small
file access, the dominant time factor becomes the round-trip
time (RTT) per Remote Procedure Call (RPC) rather than
the actual data transmission. This is because the data size is
minimal compared to the overhead associated with the RPC
call itself.
To address the above challenges, CodepFS employs a dif-

ferentiated data placement strategy. Files are categorized
as "small" (fitting one block) or "fat" (exceeding one block).

File metadata includes a boolean fat_file flag to determine
access methods based on file size efficiently.
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... ...
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Target(i) = ( hash(File1_path) + i ) mod k

Figure 5: Data layout of fat files.

3.2.1 fat file. For "fat files" (larger than one block), CodepFS
employs a data placement strategy that prioritizes balanced
storage across computing nodes. As shown in Figure 5, the
absolute file path is hashed to determine a starting node
for data block placement. Subsequent blocks are then dis-
tributed sequentially across participating nodes following
a hash ring scheme. It means that CodepFS only computes
the hash value of the absolute file path as the location of the
first data block, rather than hashing each data block inde-
pendently. This approach guarantees a uniform distribution
of the fat file across all nodes, maintaining a maximum load
difference of only one data block among them. If the number
of data blocks is exactly an integer multiple of the number of
nodes, then perfect load balancing will be achieved. In other
cases, there is only a load difference of one data block among
all nodes within the CodepFS instance. This data distribu-
tion effectively avoids the huge load imbalance in Figure 3,
thereby optimizing file-level I/O concurrency and enhancing
overall application I/O performance.

While the first block placement might vary for individual
files, the sequential nature balances storage across nodes
for multiple files. This minimizes load imbalance in storage
utilization and mitigates potential long-tail delays that could
impact parallel computing efficiency.

Reading and writing fat files in CodepFS leverages a two-
step approach to optimize efficiency. First, the client calcu-
lates target nodes and data blocks based on file path, offset,
and data size. In a CodepFS instance, all nodes are organized
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into a ring structure of data blocks. The starting point of
each file’s data blocks on this ring is determined by the hash
value of the file path. As illustrated in Figure 5, a CodepFS
instance consists of a total of k computing nodes (denoted
as cn in Figure 5). For instance, File 1 is composed of m data
blocks. The location of each data block is computed using the
hash value of the file path combined with the block number,
followed by taking the remainder when divided by k. The
block number for a data block can be calculated based on the
offset and the block size.
The design of the fat file layout not only achieves a well-

balanced data distribution but also reduces computational
overhead within the I/O stack. In the existing BB, The block
number and file path are used together as input to the hash
function to compute the storage target (such as GekkoFS),
and the number of hash operations is equal to the number of
accessed data blocks. In contrast, CodepFS only needs one
hash operation to determine the location of the data block,
that is, only the hash value of the absolute path of the file is
calculated. In other words, CodepFS reduces a large number
of hash operations to one, which will effectively reduce the
amount of computation on the I/O stack, especially for large
file accesses.

Crucially, CodepFS combines multiple block requests des-
tined for the same node into a single Remote Procedure Call
(RPC), minimizing Round-Trip Time (RTT) overhead. Once
the target node receives the combined RPC, it utilizes RDMA
(Remote Direct Memory Access) for efficient data transfer,
bypassing the software stack. This combined approach sig-
nificantly reduces communication overhead compared to
per-block requests, improving overall performance for large
file access.

3.2.2 small file. CodepFS optimizes storage and access for
small files by co-locating their object data and metadata
within RocksDB. Each file’s metadata resides as a single
record, containing a fat_file flag set to false to indicate a
small file. The actual object data is stored in the obj_data
field. This co-location strategy simplifies access by requir-
ing only one RPC for both reading and writing, minimizing
communication overhead compared to separate data and
metadata retrieval.
CodepFS optimizes small file access through co-located

storage of object data and metadata in RocksDB. This ap-
proach minimizes communication overhead. For writes, the
client combines updated metadata and object data into a
single RPC request sent directly to the target node. The re-
ceiving daemon then updates the corresponding record in
RocksDB. Reads are even faster: upon receiving an open re-
quest, the target node returns the entire record, including
both metadata and object data, to the client. The client asso-
ciates the file descriptor with a memory pointer storing the

received data. Subsequent read system calls can directly ac-
cess this local memory, eliminating the need for further RPCs,
RDMA, or network transfers. By utilizing co-location and
the inherent need to access metadata before data, CodepFS
significantly accelerates small file access.

3.2.3 file volume boundaries crossing. CodepFS caters to var-
ious file sizes by employing distinct storage strategies for
small and large files. To ensure efficient handling of file size
boundaries, CodepFS utilizes the same hashing strategy on
the absolute file path for both the metadata and the first
data block of "fat files" (larger than one block). This ensures
the first block resides on the same node as the metadata.
Similarly, for small files co-located with their metadata in
RocksDB, their data can be considered the "first block," again
simplifying boundary handling. By leveraging these differ-
entiated storage strategies, CodepFS effectively manages file
size spans, enhancing its overall usability across diverse file
size scenarios.
Small file→ fat file: CodepFS efficiently handles small

file growth into "fat files" by utilizing co-located storage of
metadata and data. When a small file requires more space, it
simply transfers the existing object data from the metadata’s
obj_data field to the designated first data block on the same
node and flip the fat_file flag. Since all these operations oc-
cur within a single node, no data transfer across the network
is needed, simplifying the process and minimizing overhead.
Fat file→ small file: CodepFS efficiently handles both

file growth and shrinkage. Shrinking a fat file involves stor-
ing the reduced data directly in the metadata and flipping
the fat_file flag , eliminating the need for separate data
blocks. Likewise, truncating large files only requires localized
data movement within the first block. These optimizations
minimize network overhead for file size changes.

3.3 Global Management Server and
directory mapping

Parallel File System
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Application
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Figure 6: Global Management Server for parallel stage-
in/out and directory mapping.
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Figure 7: Inheritance-Fusion Namespace for workflow tasks.

BBs primarily serve as temporary file storage, necessitat-
ing data staging in/out from/to PFS before/after computa-
tional tasks. CodepFS simplifies data movement between PFS
and itself with a user-friendly codep-cp command, mirror-
ing the familiar cp. This tool enables efficient data staging
from PFS to CodepFS before jobs and result transfer back
to PFS after completion. Behind the scenes, a global data
management service on the login node orchestrates these
migrations. Users specify source and destination locations,
and the service directs CodepFS daemons to migrate data
block-by-block based on file paths. This eliminates complex
data movement for users and optimizes performance.
While existing systems like HadaFS and UnifyFS offer

data migration between PFS and other file systems, they of-
ten require manual user intervention for each task. What’s
worse, using the BB client’s I/O path for data migration (e.g.,
UnifyFS) introduce overhead for metadata maintenance and
memory copies. Through the codep-cp command, we achieve
ad-hoc data movement and transparent directory mapping.
By configuring directory mappings (PFS_dir:CodepFS_dir)
during startup, users can access PFS data migrated to
CodepFS_dir seamlessly, eliminating the need for manual
data movement commands altogether. This focus on user ex-
perience reduces the burden of data management compared
to existing solutions.
CodepFS’s directory mapping simplifies data movement

between PFS and itself.When data resides in a pre-configured
PFS directory (PFS_dir), the system automatically migrates
it to the corresponding CodepFS location upon job launch,
using the global management service. This ensures efficient
data access through CodepFS. Similarly, writes destined for
PFS_dir are first staged in CodepFS_dir. A "stage bit" in the
metadata tracks files slated for migration. Upon CodepFS
shutdown, the system checks this bit andmigrates any flagged
data back to PFS_dir. This automation eliminates the need

for manual data movement or path modifications in applica-
tion code or job parameters. Users simply define directory
mapping to seamlessly leverage CodepFS’s high-speed data
access while maintaining data consistency with PFS.

Note that the CodepFS daemon leverages the hybrid hash
and sequential layout algorithm to efficiently determine and
fetch required data blocks, consolidating them into a sin-
gle RDMA transfer. This approach aligns data staging with
how clients will subsequently access the data, avoiding the
need for additional data redistribution while simply adopting
parallel data copying. CodepFS circumvents the BB client
by enabling direct data retrieval from PFS by the file sys-
tem daemons. This approach facilitates fully parallel data
staging, maximizing the utilization of PFS bandwidth and
minimizing BB-related data migration overhead. Overall, the
CodepFS daemon simplifies data management by automating
the process, reducing errors, and optimizing data transfer
for efficient data access.

3.4 Inheritance-Fusion Namespace
In modern High Performance Computing (HPC) systems,
workflow jobs are a crucial component. These jobs consist of
multiple interconnected tasks, often relying on large datasets.
However, current shared BB file systems, particularly those
aggregating node-local storage, are not optimized for direct
workflow job support. This necessitates manual data move-
ment between BBs or between BBs and the PFS, leading to a
significant burden on users and hindering overall efficiency.

CodepFS supports workflow applications with Inheritance-
Fusion Namespace (IFN) that grant tasks access to other BB
instance namespaces. This capability effectively merges file
views across multiple BB instances.

CodepFS manages data access through namespaces, one
per BB instance. Clients within a namespace can access all
data managed by that instance’s daemon. The "namespace"
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element in the metadata store tracks the relevant namespace.
By default, it points to the local namespace. Workflow tasks
efficiently access data using IFN. Tasks primarily scan their
own and directly dependent tasks’ namespaces (Figure 7).
When a task needs data not in its local namespace, it queries
the dependent task’s namespace. If found, the metadata is
cached locally for future access, streamlining data retrieval
for dependent tasks.

For tasks in the presence of indirect dependencies, such as
task C and task A. When task C accesses file f1, the metadata
cannot be found in the local namespace, and then it looks
up in the namespace of the directly related preorder task
B. Since the metadata of f1 is stored in namespace of task
B, and the namespace entry in it points to task A. Task C
stores this metadata into the local namespace and accesses
f1’s object data in the namespace of the task A.

CodepFS supports data sharing among tasks within work-
flows, with temporary file systems being removed after work-
flow completion. IFN ensures optimal storage efficiency by
storing object data of files once, reducing space costs. Meta-
data is stored in separate namespaces to enhance access per-
formance without significant space overhead. For efficient
metadata querying, IFN only need to query a maximum of
N target nodes based on the number of dependencies, with
concurrent querying. Additionally, CodepFS employs Bloom
filters [27] on daemons to swiftly identify file locations, by-
passing irrelevant namespaces and accelerating the process.
CodepFS collaborates with the resource manager to op-

timize resource allocation. Even while serving I/O requests
for subsequent tasks, the computing nodes from completed
tasks can be repurposed for non-BB-accessing tasks, such as
compute-intensive tasks and PFS-only tasks. The resource
manager divides nodes into compute-idle nodes (still provid-
ing CodepFS I/O with only 1 daemon occupying 1 core) and
entire-idle nodes. This maximizes node utilization without
compromising data security. CodepFS and the resource man-
ager meticulously manage file system permissions to ensure
only authorized tasks have access to data.

4 Evaluation
We carried out the evaluation on the Tianhe Exascale Proto-
type Upgrade System,whichwas ranked first in theGraph500
SSSP [1] and Green Graph500[2] in June 2021. In our evalu-
ation, a total of 512 computing nodes were used. The high-
performance interconnection network of the Tianhe HPC
system is TH-Express [24]. All computing nodes have access
to the same shared storage using the Lustre file system.
We compare the performance of CodepFS with GekkoFS,

BeeOND, UnifyFS, HadaFS-style and PFS (Lustre). For the
fairness of the evaluation, We simply modified BeeOND and
UnifyFS to make them better adapted to TH-express. Since

HadaFS is closed source, to evaluate CodepFS performance
relative to HadaFS, we implemented modifications inspired
by HadaFS logic within CodepFS. This allowed us to simulate
an HadaFS-like environment for our benchmarks. GekkoFS,
BeeOND, UnifyFS and HadaFS-style use the same number of
daemons and clients as CodepFS in each test. Experiments are
designed to verify the effectiveness of CodepFS’s design. We
used IOR[26] benchmark to compare the I/O bandwidth. The
ability of data migration is also tested. Finally, experiments
are designed to highlight the powerful support of CodepFS
for workflow. To reduce the chance error of the experiment,
all results reported in this section represent the average of
10 experiment repetitions.

4.1 Data performance evaluation
The adaptive data layout strategy of CodepFS is treated differ-
ently for large and small files. Whenwe tested the data access
performance of CodepFS, we also tested the performance of
regular files (fat files) and small files separately.
We employed the IOR benchmark to evaluate the band-

width of CodepFS for large files (fat files). We compared its
performance against GekkoFS using various transfer sizes:
8KB, 64KB, 1MB, and 32MB. Additionally, we tested both
random and sequential ordering within the files.To elim-
inate the influence of client-side caching, we utilized the
-C parameter of IOR to control task ordering during read-
back. Furthermore, the -F parameter ensured each process
accessed a single file. Each process read a total of 2GB of
data.The evaluation spanned various cluster sizes, ranging
from 1 to 512 nodes. Each node executed eight IOR processes
concurrently.

Figure 8 presents the test results for IOR write bandwidth.
CodepFS and GekkoFS perform similarly when transferSize
is 8KB and 64KB. This is because a small transfer size intro-
duces a large number of RPCs, the actual data transfer time
takes a small proportion, and the advantage of load balanc-
ing is weakened. As the transfer size increases, as shown in
Figure 8(c) and Figure 8(d), the advantage of CodepFS high-
lights. At this time, the data transmission time has become
dominant, and the balanced data distribution of CodepFS
effectively avoids the long-tail delay problem in parallel pro-
grams.
Our experiments reveal that CodepFS exhibits superior

performance as the number of computing nodes increases.
And, in this trend, the increase of CodepFS’s performance is
almost linear. This demonstrates the excellent performance
and scalability of CodepFS. This advantage likely stems from
potential storage imbalances within GekkoFS at larger scales.
Nodes holding more data experience heavier access pressure,
creating a bottleneck for the entire computation. CodepFS,
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(a) transferSize: 8KB (b) transferSize: 64KB (c) transferSize: 1MB (d) transferSize: 32MB

Figure 8: IOR write bandwidth for each process operating on its own file.

(a) transferSize: 8KB (b) transferSize: 64KB (c) transferSize: 1MB (d) transferSize: 32MB

Figure 9: IOR read bandwidth for each process operating on its own file. Tasks are reordered for readback to avoid
client cache.

on the other hand, achieves a balanced distribution of stor-
age pressure across all nodes, effectively mitigating long-tail
latency in data access. This is evident in the 512-node test
with a 32MB transfer size, where CodepFS delivers band-
width 1.2× faster than GekkoFS. Figure 9 presents the read
bandwidth test results of IOR. The overall trend is consistent
with the write bandwidth.

We also compared the performance of CodepFSwith BeeOND.
The transfer size was set to 1MB, and random and sequen-
tial reads and writes were tested using different node scales.
CodepFS and BeeOND used the same number of daemons
and clients at each scale.

Figure 10 shows that CodepFS performances better under
all settings. The speedup of CodepFS is more pronounced
as the node size increases. The acceleration ratio of random
reads and writes is higher than that of sequential reads and
writes. Especially in the test of 512 nodes, CodepFS’s sequen-
tial write performance is 1.21×, and sequential read is 1.19×
of BeeOND. CodepFS’s random write performance is 1.26×,
and random read is 1.21× of BeeOND. Due to the stateless
design, CodepFS is significantly more scalable than BeeOND.

(a) write bandwidth (b) read bandwidth

Figure 10: IOR bandwidth for each process operating
on its own file compared with BeeGFS’s BeeOND.

UnifyFS and HadaFS significantly reduce I/O overhead
and latency for improved write performance by direct local
writes. However, the read performance of the process on the
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(a) write bandwidth (b) read bandwidth

Figure 11: Bandwidth of reordered IOR tasks for single
shared file compared with UnifyFS and HadaFS-style.

other nodes is hurt inevitably. In this case, we compare the
performance of CodepFS with UnifyFS and HadaFS-style.

Figure 11 shows the test results. UnifyFS and HadaFS-like
configurations demonstrate a clear advantage in write per-
formance as local writes bypass network overhead. However,
CodepFS outperforms them significantly in reordered reads,
which are common in many parallel applications, such as
sparse matrix computations and graph algorithms. In the 128-
node test, CodepFS delivers read performance 1.9 times faster
than UnifyFS and 2.2 times faster than HadaFS-like. The huge
read-write performance difference makes the application sce-
narios of UnifyFS and HadaFS very limited. In contrast, the
balanced data distribution mechanism of CodepFS ensures
scalability for both read and write operations, thereby facili-
tating the effective handling of a wide range of applications.

(a) write throughput (b) read throughput

Figure 12: Small files throughput.

For the read and write performance test of small files, we
designed different small file sizes of 4KB and 1MB. We use
parallel programs to read and write small files. Each node
runs eight processes. Each process writes or reads 10,000
small files. During the test, all files are written, and then all
files are read using offset reading. The offset is 8 processes.
This avoids the performance benefits of caching.

Figure 12(a) gives the throughput of small file writes. The
ordinate is the number of files written per second. Experi-
mental results show that CodepFS is significantly better than
GekkoFS in small file write performance. For small 4KB files,
the throughput of CodepFS is 5.3× of GekkoFS. For small
files of 1MB, CodepFS has 3.3× the throughput of GekkoFS.
The smaller the file size, the more obvious the speedup effect
of CodepFS. Figure 12(b) presents the throughput test results
for small file reads. For small 4KB files, the throughput of
CodepFS is 10.3× of GekkoFS. The throughput of CodepFS
is 5.8× that of GekkoFS for small files of 1MB. Obviously,
the performance benefit of CodepFS is more significant for
small file reads, because there is only one RPC during the
read, which is the open file. The write process requires two
RPC, one for the open file and one for the write. For both
reading and writing small files, CodepFS shows near-linear
scalability.

These results of the data performance evaluation indicate
that CodepFS’s adaptive data layout is capable of accommo-
dating a wide variety of file access patterns: sequential or
random read and write, large or small files, a single shared
file or a separate file accessed by each process, which almost
covers the mainstream file access patterns in HPC.

4.2 Data migration evaluation
In this section, we tested the performance of migrating data
into the BB. UnifyFS provides specialized tools to import
data. CodepFS imports data using a special command called
codep-cp. GekkoFS does not provide a tool for data import.
We designed a parallel copy tool and loaded the intercept
library of GekkoFS to realize parallel data stage-in. For a fair
comparison, the number of concurrent processes of the tool
is the same as the number of daemons in CodepFS.

Typically, the imported data will be read by tasks shortly
after. In the process of data migration to BB, it is not possible
to predict the I/O behavior of subsequent tasks. In contrast to
UnifyFS, where read performance is sensitive to data place-
ment, CodepFS can improve performance with adaptive data
layout. So we tested the read performance after the data was
imported. A total of 128 nodes were used for the test, and
the amount of data migrated ranged from 128MB to 4TB.
Figure 13 shows the results of the test. The experimental

results show that CodepFS has a massive advantage over
GekkoFS and UnifyFS regarding datamigration ability.When
the data volume is 4TB, CodepFS is 6.2× faster than GekkoFS
while 24.7× faster than UnifyFS.

For the read performance test after importing the data,
CodepFS showed the best performance. UnifyFS has the low-
est read bandwidth. Since UnifyFS imports data blindly and
cannot predict the I/O mode of tasks, it has a natural dis-
advantage for read performance. When the data volume is
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Figure 13: Stage-in and Read (afterwards) bandwidth.

4TB, the read-afterward bandwidth of CodepFS is 1.2× that
of GekkoFS and 1.9× that of UnifyFS. In summary, CodepFS
achieves the best performance in terms of both data migra-
tion and read-afterward performance.

4.3 Workflow evaluation

Table 1: Data migration in the PE workflow

FS TaskA TaskB, TaskC TaskD
stage-out stage-in stage-out stage-in stage-out

CodepFS
+ dir_map - - - - -

CodepFS
+ IFN - - C_data - D_data

GekkoFS
+ local-FS A_data A_data B_data

C_data B_data D_data

GekkoFS
+ PFS A_data A_data B_data

C_data B_data D_data

PFS - - - - -

A
B

C

Workflow task dependency

D
task running

A B D

A B D

A B D

A B D

A B D

C

C

C

C

C

time45.50

PFS

GekkoFS+PFS

GekkoFS+local-FS

CodepFS+IFN

CodepFS+dir_map

stage-out
stage-in

auto stage-out

-12.09%

3.52%

23.08%

23.03%

Figure 14: PE workfolw test with different BB/FS.

CodepFS supports data sharing among workflow tasks
through IFN, which effectively avoids the overhead of data
movement. Directory mapping allows users to use CodepFS
to run workflows as if they were using PFS. To test the ef-
ficient support of CodepFS for workflows, we tested four
different workflows separately.
First, we conducted tests using a typical petroleum ex-

ploitation (PE) simulation program running on the Tianhe
HPC system. The workflow of the PE is shown at the top
in Figure 14. PE only has four tasks A, B, C, and D. Task A
generates data but does not read it. Tasks B, C, and D both
read and generate data. Task A is responsible for generating
geological information, which will generate more data and
save it in file A_data. These data will be continued to be used
by subsequent tasks. Task B analyzes the data generated by
task A, extracts and calculates according to the data char-
acteristics, and generates data such as oil distribution and
probability B_data. Task C reads the data generated by task
A, initially draws the information map C_data, and restores
the geological scene in the field to achieve the purpose of
visualization. Task D visualizes the data from task B, anno-
tates the information such as oil distribution and probability,
and saves it to the file D_data. The final data C_data and
D_data need to be persisted. Each task uses 128 nodes with
eight processes on each node.

Table 1 shows the various approaches to supporting work-
flows. The PFS-based approach is the most straightforward
choice for users today. All tasks read and write data directly
from/to PFS. It is difficult for GekkoFS to share data between
tasks directly, and it must be relayed through an intermedi-
ate medium, so we choose PFS and node-local storage as the
relay medium for testing.

CodepFS is designed to interact efficiently with PFS while
providing full transparency through directory mapping to
reduce the users’ burden. Users do not need to perform ex-
plicit data migration between PFS and CodepFS to gain the
I/O acceleration capabilities of CodepFS. In our workflow
tests, we tested the benefits of CodepFS directory mapping.
The CodepFS+IFN approach represents that the directory
mapping is unused. In this case, the user needs to manu-
ally migrate the data that needs to be persisted to PFS via
codep-cp.

The timeline in Figure 14 records the test results for the dif-
ferent file systems in this test workflow. The white rectangles
represent when the task was running, the blue rectangles
represent when the data was migrated to PFS, and the green
rectangles represent when the data was migrated to BB. The
blue and green rectangles need to be migrated manually by
the user. The experimental results show that users do not
need to perform any additional operations when running
the workflow in PFS. However, the running time is longer.
We use this time as the baseline. The total running time of
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Table 2: workflow test of different I/O density

workflow I/O density #tasks #edges total nodes total process #shared_file shared size(GB) total time(s) and charge

W1 low 60 191 960 7680 191 382.12
PFS 371.13 speedup charge

CodepFS 366.36 1.29% -1.42%

W2 medium 80 1082 2560 20480 1509 17,602.42
PFS 2012.23 speedup charge

CodepFS 1691.7 15.93% -18.48%

W3 high 80 1082 2560 20480 1509 105,614.71
PFS 4117.54 speedup charge

CodepFS 2681.48 34.88% -41.16%

the whole workflow for GekkoFS using PFS as the staging
medium increases by 12.09% due to the large amount of data
migration required. GekkoFS, which uses node-local storage,
is even better, with a 3.52% reduction in runtime for the en-
tire workflow. However, both approaches require users to
manually migrate data before and after the task runs.
CodepFS with IFN effectively eliminates the need to mi-

grate data between workflow tasks. Users only need to mi-
grate the output files to PFS, reducing the time spent on the
entire workflow by 23.08%. With directory mapping, the user
does not need to do any migration work, and the data is
automatically migrated to PFS after the task is completed.
The time required to complete the workflow in this way is al-
most the same as that of CodepFS+IFN. However, it is worth
noting that this way greatly reduces the burden on the user.

We designed three additional workflows (shown in Table
2) for more comprehensive testing. Unlike the PE workflow,
these three workflows are composed of many tasks, and the
dependencies (count of edges in the DAG) are complex, mak-
ing it difficult for users to manually migrate data between
different BBs (such as GekkoFS). So, we only tested these
three workflows running on PFS and CodepFS.

Figure 15: IFN overhead test.

The three workflows are low, medium, and high in I/O in-
tensity, and the amount of shared data is also vastly different.
Results show that CodepFS can support workflow efficiently.
Directory mapping dramatically reduces the user’s burden.
The speedup effect of CodepFS increases as the I/O inten-
sity rises. For the most I/O intensive workflow W3, CodepFS
can achieve a 34.88% speedup of the total running time and
reduce user cost by 41.16%.

We also tested the overhead of IFN. Using nodes that are
free of compute resources but still provide CodepFS I/O,
we run the compute-intensive benchmark NPB to test the
compute overhead and IOR to test the overhead of PFS band-
width. As shown in the Figure 15, IFN introduces a negligible
overhead.

4.4 Evaluation with real-world applications
We compare CodepFS with Lustre using three real-world ap-
plications. HACC is an IO-performace benchmark. It uses a
n-body simmulation to simulate collisionless fluids in space.
HPIO[7] is a benchmark that tests reads, and writes to and
from noncontiguous data layouts. S3aSim is a sequence simi-
larity search algorithm framework for testing and evaluating
various I/O strategies using MPI-IO. We run HACC on 128
computing nodes, each of which runs four processes. HPIO
and S3aSim each occupy 64 computing nodes, with four pro-
cesses on each node.

Figure 16: Evaluation with three applications.

The experimental results are shown in Fig 16. Where the
HACC and HPIO metrics are bandwidth, corresponding to
the left vertical axis in the figure. The metric of S3asim is
the running time, which corresponds to the vertical axis
on the right. The experimental results show that the write
bandwidth of HACC using CodepFS is 18.2× that of PFS, and
the read bandwidth is 8.8× that of PFS. The bandwidth of
HPIO is increased by 20.3× by CodepFS.
CodepFS significantly optimizes S3aSim’s running time.

By reducing I/O time by 94.9%, CodepFS brings down the
I/O time ratio from 66.0% to 8.9% of the total runtime. This
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reduction in I/O overhead translates to a substantial 62.3%
improvement in S3aSim’s overall running time.

5 Related work and Discussion
Burst Buffer file system is a high-speed acceleration layer
between the global PFS and applications. According to the
shared ability of data, it can be divided into shared BB and
node-local BB. Node-local BBs use the node-local storage as a
cache, and its data cannot be accessed by other nodes. Shared
BBs typically use dedicated storage or forwarding nodes
for caching. In recent years, some studies have aggregated
node-local storage to serve as shared BBs, such as BeeOND,
GekkoFS, UnifyFS.
Both GekkoFS and MadFS adopt a path-based hash strat-

egy for data storage. Although MadFS uses LSM-tree to opti-
mize the creation of small files, they are not friendly to small
files. CodepFS can improve the access performance of small
files by centralizing the object data and metadata of small
files, prefetching object data, and reducing the number of
RPC. For large files, the central service of BeeOND presents
a scalability bottleneck. The hash mapping of file blocks em-
ployed by GekkoFS and HadaFS may lead to I/O intensity
imbalances among nodes within the BB instance, adversely
affecting its scalability. In contrast, CodepFS sustains a bal-
anced data distribution among nodes by utilizing an adaptive
file data layout. At file granularity, the maximum difference
in load among all nodes is only one data block. As the node
scale increases, the benefits of this data distribution become
even more pronounced, which leads to better scalability.

HadaFS bridges the two BB and enhances filesystem scal-
ability with Localized Triage Architecture (LTA). However,
LTA introduces additional RTT overhead. CHFS [28] is a tem-
porary file system for node-local persistent memory devices
such as Intel Optane, which is similar to DAOS, but CHFS re-
quires the user to manually modify the code, which imposes
a burden on the user. Common problems with these BB file
systems also include no support for workflows, as they are
difficult to share data between two BBs. CodepFS introduces
a data view fusion technique for workflow applications. Di-
rectory mappings allow users to use CodepFS transparently.
However, despite the potential benefits and extensive explo-
rations for shared BBs, their use remains minimal among
leading TOP500 systems [3, 4, 6, 11, 14].

Datamigration to and from PFS is an essential requirement
for BB. UnifyFS provides a migration tool, but it does not
match the application’s I/O pattern, resulting in limited read
performance. GekkoFS does not provide a dedicated tool, and
it needs to redirect data between client and daemon through
parallel copy, which seriously affects migration efficiency.
CodepFS seamlessly integrates with PFS, enabling rapid data
stage in/out without additional copies.

6 Conclusion
This paper proposes CodepFS, a novel collaborative and adap-
tive burst buffer to address the limitations of current shared
BBs for HPC workflows. CodepFS makes a significant effort
for shared BB on data layout strategies, data interaction with
PFS, and data sharing among workflow tasks. CodepFS is
user-friendly and includes efficient data migration tools and
transparent PFS directory mapping, allowing users to reap
the benefits of CodepFS’s I/O acceleration without additional
burdens. Experimental results on the Tianhe Exascale Proto-
type Upgrade system demonstrate that CodepFS outperforms
the state-of-the-art shared burst buffer systems.
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