
SmartNIC-GPU-CPU Heterogeneous System for Large
Machine Learning Model with Software-Hardware

Codesign
Anqi Guo

Department of Electrical &
Computer Engineering

Boston University
Boston, Massachusetts, USA

anqiguo@bu.edu

Yuchen Hao
Meta Platforms

Menlo Park, California, USA
haoyc@meta.com

Xiteng Yao
Department of Electrical &
Computer Engineering

Boston University
Boston, Massachusetts, USA

xtyao@bu.edu

Shining Yang
Boston University

Boston, Massachusetts, USA
shiningy@bu.edu

Jianyu Huang
Meta Platforms

Menlo Park, California, USA
jianyuhuang@meta.com

Tony (Tong) Geng
Department of Electrical and

Computer Engineering
University of Rochester

Rochester, New York, USA
tong.geng@rochester.edu

Martin Herbordt
Department of Electrical &
Computer Engineering

Boston University
Boston, Massachusetts, USA

herbordt@bu.edu

Abstract
The rapid growth of large machine learning models, from
billions to trillions of parameters, has led to powerful AI
capabilities that increasingly impact everyday life. However,
this expansion in model size has surpassed the capacity of
GPU memory. As a result, GPU clusters—built by aggregat-
ing multiple GPUs—have scaled up significantly to accom-
modate these models. To address this scalability challenge,
and to make large-model training more widely accessible,
researchers have proposed heterogeneous systems. These
systems leverage CPUs and secondary memory to offload
storage and computation onto these devices, thereby reduc-
ing the total number of GPUs required for training. Despite
their promise, such heterogeneous systems have so far faced
challenges in achieving high efficiency and performance.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3729514

In response, we address this problem with SmartNIC-
GPU-CPU (SGC), a heterogeneous system, enhanced with
SmartNICs, for training large machine learning models with
software-hardware codesign. SGC increases system perfor-
mance and efficiency while simultaneously reducing power
consumption and overall costs.
In SGC, SmartNICs serve as an intermediate layer that

seamlessly connects the heterogeneous components. By im-
plementing optimization techniques such as prefetching,
buffering, and dynamic scheduling and control, SmartNICs
streamline the data pipeline, minimizing idle times and over-
lapping communication with computation. In addition, sys-
tem configuration software optimizes the system and model
settings for maximal efficiency, given different system spec-
ifications. Experiments demonstrate that the SGC system
achieves an improvement of over 1.6× in training through-
put over the baseline for a 100B parameter model.

CCS Concepts
• Hardware→ Networking hardware; • Computer sys-
tems organization → Heterogeneous (hybrid) systems;
• Computing methodologies →Machine learning.

https://orcid.org/0000-0001-5872-4464
https://orcid.org/0009-0005-8513-9566
https://orcid.org/0009-0006-9373-6755
https://orcid.org/0009-0001-5968-5476
https://orcid.org/0000-0001-7595-5539
https://orcid.org/0000-0002-3644-2922
https://orcid.org/0000-0002-3443-9113
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3729514


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

Keywords
Heterogeneous System, SmartNIC, Machine learning

ACM Reference Format:
Anqi Guo, Yuchen Hao, Xiteng Yao, Shining Yang, Jianyu Huang,
Tony (Tong) Geng, and Martin Herbordt. 2025. SmartNIC-GPU-
CPU Heterogeneous System for Large Machine Learning Model
with Software-Hardware Codesign. In 2025 International Conference
on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3721145.3729514

1 Introduction
In recent years, large-scale deep learning (DL) has advanced
rapidly and come to dominate the AI application landscape.
Large models provide significantly better sample efficiency
and performance [24]. With the rise of attention-based deep
learning models, model size has grown exponentially. For
instance, large language models like Meta’s LlaMA [51, 52],
OpenAI’s ChatGPT [35], and Google’s LaMDA [50] have
enabled impressive AI capabilities that are transforming our
daily lives. The functionality of these powerful models is
largely attributable to their immense size: 70 billion parame-
ters for LlaMA 2, 175 billion for GPT-3, 540 billion for PaLM,
and 1.8 trillion for GPT-4. This trend of ever-increasingmodel
size (see Figure 1) is expected to continue for some time [24].

These large deep-learning models far exceed the memory
capacity of a single GPU. Even with GPU clusters, training
systems still face fundamental limitations in fitting models
with billions to trillions of parameters into the GPUs’ aggre-
gate memory. To address this constraint, memory-efficient
optimizations such as the Zero RedundancyOptimizer (ZeRO)
[39] and Pytorch Fully Sharded Data Parallel (FSDP) [61]
have been introduced, trading extra communication for mem-
ory utilization. These approaches allow model size to scale
proportionally with the number of devices, making it feasible
to train large models on a cluster of GPUs.

Although ZeRO enables the training of large-scale models,
the memory wall still poses a significant challenge. Today’s
models demand hundreds of gigabytes to multiple terabytes
of GPU memory just to hold their parameters. Yet, GPU
memory capacity is not keeping pace with the exponen-
tial growth in model size (as shown in Figure 1). One way
to handle these massive models is to keep scaling up the
number of GPUs; however, this approach quickly becomes
impractical. First, performance does not scale linearly with
the number of GPUs due to diminishing returns and com-
munication overhead. Second, as cluster size grows, system
overhead and communication demands become major bot-
tlenecks. Third, expanding hardware capacity proportionally
increases power consumption, which is already considerable.
Lastly, although technologies like NVLink can improve the

530 Billion

1 Trillion

80GB40GB24GB

175 Billion

11 Billion

Figure 1: GPU memory wall. The memory require-
ments of ML models have increased exponentially, sig-
nificantly outpacing the growth of GPU memories.

throughput of GPU clusters [26], the cost of the technology
is high. All these reasons combined make such GPU clus-
ters impractical and, for individuals and small companies,
potentially out of reach.
To reduce the required scale of GPU clusters and miti-

gate the GPU memory wall, heterogeneous training of deep
learning has emerged. These systems leverage CPUs and
NVMe memory for offloading model states and parameters.
Building on the foundation of Zero Redundancy Optimizer
(ZeRO) [39], ZeRO-Offload [42] and ZeRO-Infinity [40] fa-
cilitate large model training on small-scale GPU clusters
by offloading data and computations to CPUs using mem-
ory optimization techniques. These heterogeneous systems,
however, suffer from low efficiency and modest performance.
This is due mainly to two limitations:

(1) Limited System Data Exchange Efficiency (Figure
2a): The architecture of a heterogeneous GPU system, with
the CPU serving as an offload engine, is illustrated in Fig-
ure 2a(i). The CPU stores model parameters, gradients, and
optimizer states. The GPU serves as the primary computation
device for forward and backward propagation. Because ZeRO
partitions the model across devices, parameters residing on
the CPU frequently need to be exchanged among multiple
GPUs, creating potential bottlenecks. Each partition stage
triggers additional data exchanges between heterogeneous
system components, leading to communication barriers and
reduced data exchange efficiency.
(2) Limited System Node Computation and Control

Efficiency (Figure 2b): In heterogeneous GPU systems with
offload engines, the delayed parameter update (DPU) tech-
nique [42] allows the CPU’s data path for parameter updates
to be decoupled from the GPUs’ forward/backward propa-
gation computation (Figure 4). However, because the CPU
and GPU have different computational power and resource

https://doi.org/10.1145/3721145.3729514
https://doi.org/10.1145/3721145.3729514


SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(ii) Our System

(i) Baseline System

P2
G0 
G1 
G2

P1
G0 
G1 
G2

P0
G0 
G1 
G2

CPU

Network

NIC NIC NIC

Network

SmartNIC

GPU

P0 
Parameter
Partition 0

G0 
Gradients
Partition 0

Parameter 
All-Gather

P0
G0 
G1 
G2

Gradients 
Reduce-Scatter

P0 
P1 
P2

G0

SmartNIC

P1
G0 
G1 
G2

P0 
P1 
P2

G1

SmartNIC

P2
G0 
G1 
G2

P0 
P1 
P2

G2

GPU CPU GPU CPU GPU CPU

G0
P0 
P1 
P2

G2
P0 
P1 
P2

P0 
P1 
P2

G1

(a) System Data Exchange Efficiency

SmartNIC
Comm

SmartNIC
Runtime

GPU
Comm

CPU
Ctrl

GPU
Comp

CPU
Comp

(i) GPU Pipeline Idle (Baseline System)

GPU Idle

(ii) No System Device Idle (Our System)

System 
Configuration 

Software

GPU 
Communication Ctrl 

to SmartNIC

CPU Control
to SmartNIC 

1

2

3

3 2 2 2 2 2 2 2 1 3

2

3 2 2 2 2 2 2 3

(b) System Node Computation and Control Efficiency

Figure 2: System Comparison. (a) Addition of SmartNICs as an intermediate layer. (b) SmartNICs provide dynamic
scheduling and control.

needs, their execution latencies often mismatch, causing one
to be idle while waiting for the other. Moreover, the GPU’s
communication operator requires significant memory, com-
putation resources, and control overhead. Collectively, these
factors contribute to the diminishing of the system node’s
computation and control efficiency.

Advanced network interface cards, known as SmartNICs,
combine communication, control, and computation and are
useful in numerous domains [3, 17, 22, 44, 58]. Given their
capabilities and their network-facing placement within the

node, SmartNICs are well-suited to address the system effi-
ciency challenges just described. SmartNICs enhance stan-
dard NICs, which typically lack application-level control be-
yond basic networking functions, leaving system control to
the CPU. This reliance increases overhead and inefficiencies
in coordinating the CPU offload engine, GPU, and network.
Simply adding SmartNICS, however, addresses only point-
to-point communication latency. Currently, no distributed
system design leverages SmartNICs to overcome the broader
limitations in heterogeneous GPU systems.

We propose a SmartNIC-GPU-CPU (SGC) system for large
machine learning models that, together with system configu-
ration software, breaks the boundaries between the various



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

(i) Same GPU number, Same Model Size
→ Higher Performance and Efficiency

GPU GPU-CPUoffload SGC System

Throughput High Low High

Latency Low High Low

Power 
Consumption

High Medium Low

(ii) Same Model Size
→ Fewer GPU needed, High Performance and Efficiency

GPU GPU-CPUoffload SGC System

System Scale 
Required

Large Small Small

Performance High Low High

Power 
Consumption

High Medium Low

(iii) Same GPU Number
→ Larger Model Supported, With Comparable Performance

GPU GPU-CPUoffload SGC System

Model Size Small Large Large

Performance High Low Comparable Good 

Table 1: System Goals

device types and aims to provide: (i) Higher system perfor-
mance and efficiency with lower system cost and power
consumption (Table 1i); (ii) High performance with fewer
of GPUs (Table 1ii); and (iii) Support of larger models while
retaining good performance. (Table 1iii).

Several design techniques and optimizations are proposed.
To improve system data exchange efficiency (Figure
2a(ii)): (1) SmartNICs act as an intermediate layer that
breaks the boundary between distributed heterogeneous
components in the system and facilitates seamless connec-
tivity between GPUs and CPU offload engines; (2) A Smart-
NIC prefetch mechanism that proactively initiates commu-
nication before parameters are needed by the GPU or CPU,
compacting the pipeline with less data waiting and largely
mitigating communication bottlenecks via overlap of com-
putation and communication; and (3) A SmartNIC buffering
technique that stores duplicated communication data, reduc-
ing overall system communication workload. To improve
system device computation and control efficiency (Fig-
ure 2b(ii)): (1) SmartNICs provide dynamic scheduling and
control, allowing both GPUs and CPUs to concentrate on
computation with reduced interruptions and overhead; and
(2) System configuration software that optimizes system and
model settings for maximal efficiency (minimizing device
idle time) given different system specifications.

To summarize, the key contributions of this work include:

• A heterogeneous system where the SmartNICs facili-
tate seamless integration of CPU, GPU, and communi-
cation; specifically, in training large machine learning
models including LLMs and DLRMs;

• A SmartNIC design that supports dynamic workload
and communication scheduling and control of the com-
pute components;

• System configuration software that optimizes system
and model setup based on resources and hardware
specifications.

Results show that the SGC system benefits training through-
put and scalability with an improvement of over 1.6× in
throughput over the baseline (without SmartNIC) for a 100B
parameters model.

2 Background and Motivation
2.1 Zero Redundancy Optimizer (ZeRO)
Zero Redundancy Optimizer (ZeRO) is a memory optimiza-
tion strategy that eliminates memory redundancies across
data parallel processes by partitioning model states. By intro-
ducing reasonable additional communications, these strate-
gies can efficiently scale the model size in proportion to the
number of devices. ZeRO distributes the training batch across
multiple GPUs in a way similar to data parallel training. In-
stead of duplicating models, however, ZeRO partitions model
states across all GPUs and uses communication collectives
to gather parameters as needed during the various training
phases. It offers a more general solution that does not re-
quire users to modify the model extensively, thus providing
improved compute efficiency and scalability.
ZeRO operates in three stages corresponding to three

model states. Figure 3 shows an example of the workflow
with 3 nodes. In this example, the model is partitioned into
three parts and distributed among three data parallel pro-
cesses. Zero has 3 stages that represent how the model is
partitioned among nodes. In ZeRO-1, the optimizer states are
partitioned on top of data parallelism, with each process own-
ing a partition of the entire optimizer. Consequently, each
optimizer partition updates only the corresponding parame-
ter partition, following an All-Gather operation to update all
processes’ parameters. ZeRO-2, the second stage, partitions
both optimizer states and gradients. Each process owns a
partition of the gradients, requiring a Gradients Gather op-
eration to collect all computed gradients across processes.
After gathering, the corresponding optimizer works on the
parameter update for its partition. In the final stage, ZeRO-3,
layer parameters are partitioned and owned by data parallel
processes. Broadcast communication collectives are initiated
by the parameter partition owner prior to each forward and
backward pass to share parameters with other data parallel
processes. This process repeats until the completion of all



SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Gradients Reduce-ScatterForward Pass
Parameter Broadcast

Update
1st Partition 
Parameter

Update
2nd Partition 
Parameter

Update
3rd Partition 
Parameter

3rd Partition

Optimizer States 1st Partition

Gradients 1st Partition

P3
FP

C
L

P3
BP

Gradient
Gather
3rd Par

GG
2nd Par

2nd Partition
2nd Partition

P3
FP

C
L

P3
BP

3rd Partition

P3
FP

C
L

P3
BP

DP
Process 1

DP
Process 2

DP
Process 3

1th 
Optimizer

Runs

Parameter 1st Partition

2nd 
Optimizer

Runs

2nd Partition

3rd 
Optimizer

Runs

3rd Partition

P2
BP

P2
BP

P2
BP

P1
BP

P1
BP

P1
BP

GG
1st Par

Parameter
Broadcast

1st Partition

P1
FP

P1
FP

P1
FP

P2
FP

P2
FP

P2
FP

PB
2nd Par

PB
1st Par

PB
2nd Par

PB
3rd Par

PB
3rd Par

Backward Pass
Parameter Broadcast

Figure 3: ZeRO Overview with No Bandwidth Aggregation for a three node system. P1FP: Forward Propagation of
Partition 1. CL: Compute Loss. P3BP: Backward Propagation of Partition 3

forward pass operations. After each process completes its
loss computation, a parameter Broadcast is issued before
each backward pass partition.

Further work has been done with heterogeneous systems
that leverage CPU or NVMe memory to augment the sys-
tem’s memory capacity. Such systems enable the training
of significantly larger models on a limited number of GPUs.
ZeRO-Offload [42] presents a heterogeneous training ap-
proach with the CPU as an offload engine; it is based on a
ZeRO-2 foundation to offload optimizer states, gradients, and
the computation of parameter updates on the CPU. Figure
5 illustrates the ZeRO-Offload workflow. This method ad-
dresses the constraints of limited GPU memory, alleviating
the challenge of requiring a large number of GPUs to store
optimizer states and gradients.

In ZeRO-Infinity [40], parameters are partitioned across all
data parallel processes, using All-Gather instead of Broadcast
to gather parameters for each process. The aggregated PCIe
bandwidth across all nodes transfers its partition of parame-
ters from the CPU to the GPU in parallel for the All-Gather
operation. This aggregated bandwidth effectively mitigates
the PCIe bottleneck, addressing the challenges associated
with having a single PCIe link.

2.2 Delayed Parameter Update
The computation on the offload engine for parameter updates
follows the forward and backward propagation on the GPU.
However, this offload engine computation can potentially
become a bottleneck during training. To address this issue
and to hide the offload engine computation, ZeRO-Offload

No Delayed Parameter Update

Fwd i-1 Bwd i-1 Optm
i-1

Step i-1

Fwd i Bwd i Optm
i

Fwd i-1 Bwd i-1

Optm
i-1

Fwd i Bwd i Fwd i+1 Bwd i+1

Optm
i

Step i

Step i-1 Step i Step i+1

L
i-1

L
i

G
i-1

G
i

PU
i

PU
i-1

L
i-1

L
i

L
i-1

PU
i-1

PU
i

G
i

Delayed Parameter Update

Figure 4: Delayed Parameter Update (DPU). (PU: Pa-
rameter Update, G: Gradients, L: Compute Loss)

employs a one-step delayed parameter update (DPU), as
shown in Figure 4.

With no DPU, after the backward pass, gradients are gen-
erated, and the optimizer updates the parameters for the next
iteration. The computation of the optimizer states depends
on the output from the backward pass. With the introduction
of DPU, the pipeline is divided into two independent data
paths; optimizer state computation and parameter updates
no longer depend on forward and backward propagation. At
step 𝑖 + 1, parameter updates use gradients from step 𝑖 , while
the forward and backward passes use parameters updated at
step 𝑖 − 1. From this step onward, the model at the (𝑖 + 1)th
step is trained using parameters updated at the (𝑖 − 1)th step.
The two data paths run in parallel with no dependency.

2.3 Limitations of the Existing Systems
Although existing heterogeneous systems that use CPU of-
fload engines can enable large-scale model training, they
have certain performance and efficiency constraints.



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

Limited system data exchange efficiency. During for-
ward and backward pass computations, parameter data ex-
changes are required at each node to collect partitioned pa-
rameters from all the other CPUs. The parameter data ex-
changes involve the transfer from the CPU offload engine
of each node to the GPU of every other node, with the GPU
managing the control of its CPU offload engine, the data
copy, and the initiation of communication.
After each partial backward propagation, gradients are

produced in partitions for each process. A Reduce-Scatter
distributes the gradients to their destination data parallel
processes from each GPU to every other node’s CPU offload
engine. The data movement occurs from each node’s GPU to
every other node’s CPU, with the GPU handling the Reduce-
Scatter operator and data copy to the CPU offload engine.
Even though the GPU does not participate in the parameter
update computation using generated gradients, it still needs
to initiate communication. Also, data flows through the GPU,
which forwards it to the offload engine.

As seen in Figure 2a(i), such barriers between the system’s
heterogeneous components limit the system data exchange
efficiency in two cases: (1) Data movement of parameter
partitions from the offload engine to the GPU for forward and
backward propagation computation. The movement starts
from each node’s CPU offload engine, passes through each
node’s GPU, and ends at every other node’s GPU. (2) Data
movement of generated gradients from GPU to CPU offload
engine for parameter updates computation. The movement
starts from each node’s GPU, passes through every other
node’s GPU, and ends at every other node’s CPU.

Limited system device computation and control effi-
ciency. Delayed parameter update is used to maintain com-
putational efficiency. This approach allows the CPU offload
engine’s parameter update computation data path to be de-
tached from the GPU’s data path, as illustrated in the upper
part of Figure 6. Although these two data paths are indepen-
dent computation paths, the CPU data path is still under the
GPU’s control. This control dependency reduces computa-
tional efficiency and increases overhead on both sides.
Also, variations in computational power and complexity

between the GPU and CPU computation paths, along with
different model configurations, batch sizes, and hardware
specifications, can result in divergent execution latencies
and lengthy idle times. In certain system and model configu-
rations, the GPU datapath may finish faster than the CPU,
leading to the training performance being consistently bot-
tlenecked by the CPU, regardless of the GPU’s power and
the utilization of optimization techniques. This idle device
time becomes a bottleneck, limiting system performance.
Additionally, the GPUs initiate communication operators

CPU
GPU

P1
FP

P2
FP

P3
FP

Parameter
Update

C
L

P3
BP

Optimizer
States

P2
BP

P1
BP Gradients

Parameters

Figure 5: ZeRO Offload with CPU as Offload Engine.

GPU to 
Network
Gradients

Network to 
GPU

Reduce-Scatter
Gradients

GPU to 
CPU

Gradients

CPU to 
GPU

Parameter

GPU to 
Network
Parameter

Network to 
GPU

All-Gather
Parameter

(i) GPU System with Delayed Parameter Update

GPU to 
SmartNIC(Network)

Gradients

SmartNIC(Network) 
to CPU
Gradients

CPU to 
SmartNIC(Network)

Parameter

SmartNIC(Network) 
to GPU
Parameter

(ii) SGC System with Delayed Parameter Update

Step i Step i+1

GPU

CPU

GPU

CPU

Figure 6: System Comparison with DPU

for data exchange, necessitating memory allocation for ex-
changed data and computation resources for data manage-
ment. Together, these factors diminish system computation
and control efficiency.

3 SmartNIC-GPU-CPU System
This section gives an overview of the SmartNIC-GPU-CPU
(SGC) heterogeneous system.

3.1 Breaking System Boundaries
During the training of large machine learning models using
the ZeRO-Offload strategy, there is a substantial and frequent
exchange of data among system components. In a GPU sys-
tem without SmartNICs, all data exchanges must be initiated
and facilitated by GPUs as illustrated in the upper part of
Figure 6, when the current CPU sends offloaded parame-
ters to remote GPUs (for the next iteration’s forward and
backward propagations), the offloaded parameters need to be
retrieved by the current GPU that initiates the communica-
tion process to deliver the data to the other GPUs. A similar
scenario occurs when gradients are generated by the current
GPU and transmitted to other CPUs for parameter updates.
The gradients are sent by the current GPU through the net-
work, received by the destination GPU, and passed to the
CPU. Such cross-device routing, combined with the limited
interface between heterogeneous components, significantly
reduces data exchange efficiency.

By contrast, SGC introduces SmartNICs as an intermediate
layer to break the boundaries between GPUs and CPUs (Fig-
ure 2aii). Ourmodel is very similar to ZeRO-offload. However,



SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

our communication from the CPU is no longer dependent
on the GPU and can be efficiently handled by the SmartNIC.
This decoupling allows the communication sender and re-
ceiver to be different types of devices, with the SmartNIC
managing the communication process. Moreover, with the
implementation of delayed parameter update (shown in Fig-
ure 4), the GPU and CPU data paths no longer depend on
each other. Offloading control tasks from the GPU to the
SmartNIC not only boost the computational efficiency of
both devices but also reduces overhead and hardware uti-
lization. As illustrated in the bottom part of Figure 6, GPUs
and CPUs can initiate data transfers through the SmartNIC,
further compacting the overall system pipeline by reducing
stages and overhead.

3.1.1 Data exchange between system components. As illus-
trated in Figure 7, parameter gathering communication is
required before each partition of forward propagation. The
GPU fetches data from the CPU offload engine (FC) and
initiates the communication operator. Once the communi-
cation is complete, the computation stream is ready for the
first partition’s forward propagation. In the SGC system, the
GPU retrieves data from the SmartNIC instead of fetching
it from the CPU. Upon receiving the fetch signal from the
GPU, the SmartNIC initiates the corresponding communi-
cation operator, fetching data from the CPU and initiating
the parameter gather communication. Once the destination
node’s SmartNIC receives the parameters, the data is sent
directly to the GPU. Once all parameters are received, the
Fetch SmartNIC stage on the GPU is complete and ready for
the first partition’s forward propagation.

Another parameter-gathering communication is required
for each partition’s backward propagation, following the
same data exchange operations for backward propagation.
After the backward propagation generates the gradients,
the GPU forwards the gradients to the SmartNIC. After the
Reduce-Scatter operator, the destination node’s SmartNIC re-
ceives the results and sends them to the current CPU offload
engine for the next iteration’s parameter update.

3.1.2 Offload parameters for free. In a GPU system with a
CPU offload engine, parameter offloading introduces over-
head due to the additional PCIe data transactions. During
the parameter gather communication operator, parameters
are stored in CPU memory, and the GPU fetches the data
through PCIe. Another PCIe transaction is then required to
transfer the data from the GPU to the NIC, creating a de-
pendency between the two PCIe data transfers. However,
with the introduction of a SmartNIC, these two PCIe data ex-
changes can overlap. The SmartNIC fetches parameters from
CPU memory simultaneously with the GPU fetch from the
CPU. Even if the offload engine is not used, the parameter-
gathering communication operator still involves a PCIe data

exchange between the GPU and the NIC. With the support of
a SmartNIC, the PCIe data exchange path becomes equivalent
to a GPU system without an offload engine. This means that,
with the assistance of a SmartNIC, we can achieve efficient
parameter offloading essentially for free.

3.2 Collective Communication Support
Several collective communication operations are used dur-
ing training, including parameter Broadcast, parameter All-
Gather, and gradient Reduce-Scatter. In the system without
SmartNIC, these operations are handled by the GPU, with
data gathering and communication initiation. In the SGC
architecture, we offload the collective communication opera-
tors to the SmartNIC.
Parameter broadcast and parameter All-Gather.We

introduce the Fetch Parameter operator for GPU. When the
GPU requires gathering parameters from the system, the
GPU sends a Fetch Parameter signal to the SmartNIC with
metadata indicating the current GPU stage and requesting
data information. The SmartNIC fetches parameter data from
the CPU offload engine and manages the parameter gather
communication operator, distributing partitioned parameters
to other system nodes. Once the SmartNIC receives all the
gathered parameters, the result is forwarded to the GPU.
Gradient reduce-scatter. After backward propagation,

gradients are generated and require a Reduce-Scatter oper-
ator to collect the full gradients for each partition. As the
GPU generates gradients, they are sent to the SmartNIC to
handle the reduce-scatter operator. The SmartNICs send and
receive gradients with a gradient reduction computation.
The gradient reduction computation kernel computes the
final gradients, forwarding them to the local CPU in the
Write CPU (WC) stage. Once the CPU receives all the gradi-
ents, it possesses all the necessary data for the subsequent
iteration’s parameter update.

4 SGC Optimizations
In this section, we present optimization techniques that in-
crease the SGC system efficiency.

4.1 SmartNIC Prefetch
In the previous section, we discussed how the GPU fetches
from the SmartNIC instead of the CPU offload engine during
parameter gathering. Each node’s SmartNIC fetches parti-
tioned parameters from the CPU and initiates the parameter
gather communication operator. Consequently, the Smart-
NIC possesses awareness of both the application and system
status. Operating as a network-facing device, the SmartNIC
knows about the completion status of the ongoing commu-
nication operator. SmartNIC prefetch enables the SmartNIC



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

F
C

AG Pi
1st

FPi
1st

F
C

AG Pi
2nd

FPi
2nd

F
C

AG Pi
3rd

FPi
3rd

L
C

F
C

AG Pi
3rd

BPi
3rd

RS Gi
3rd

W
C

F
C

AG Pi
2nd

BPi
2nd

RS Gi
2nd

W
C

F
C

AG Pi
1st

BPi
1st

RS Gi
1st

W
C

GPU Comm 
Stream

Read 
Gi-1 Optimizer Gi-1 Update Pi-1

Step i
GPU Comp 

Stream

CPU Comp 
Stream

Figure 7: GPU with CPU offload engine system pipeline with three partitions. (FC: Fetch from CPU. WC: Write to
CPU. AG: All-Gather. RS: Reduce scatter. FP: Forward propagation. LC: Computing loss. BP: Backpropagation.)

SmartNIC Prefetch

SmartNIC Gradient Reduce Scatter

SmartNIC AG Pi
3rd

Pi
3rd

Pi
2nd

Pi
1st

Buffer on Local CPU

FPi
1st

FPi
2nd

FPi
3rd

L
C

BPi
3rd

BPi
2nd

BPi
1st

GPU Comp 
Stream

F
C

AG Pi
1st

F
C

AG Pi
2nd

F
C

AG Pi
3rd

AG Pi
2nd

AG Pi
1st

RS Gi
3rd

RS Gi
2nd

RS Gi
1st

W
C

W
C

W
C

Read 
Gi-1 Optimizer Gi-1 Update Pi-1

CPU Buffer

CPU Comp
Stream

Saved Duplicated Comm

FS

SmartNIC
Buffering

Fetch from
local CPU

Figure 8: SGC Heterogeneous System Pipeline. (FS: Fetch from SmartNIC. FC: Fetch from CPU. WC: Write to CPU.
AG: All-Gather. RS: Reduce scatter. FP: Forward propagation. LC: Computing loss. BP: Backpropagation.)

to pre-initiate the parameter gather communication immedi-
ately after the completion of the preceding communication.

The SmartNIC control pipeline aligns with the GPU’s dat-
apath, improving communication and computation overlap.
As shown in Figure 8, the GPU pipeline initiates during
forward propagation with the Fetch SmartNIC (FS) signal,
signifying the initiation of a new GPU stage. This triggers
the SmartNIC to execute the Fetch CPU (FC) operation, fetch-
ing the local CPU’s offloaded parameter partition. With the
acquired data, the All-Gather communication operator is ac-
tivated to gather parameters across system nodes. Note that
in this example, we employ bandwidth aggregation, utilizing
All-Gather instead of Broadcast to gather the parameters.

The SmartNIC pipeline keeps track of the current stage,
ensuring seamless progression. On completion of the All-
Gather, the SmartNIC initiates the gather for the second
partition’s parameters. This SmartNIC capability of param-
eter prefetching eliminates the need to wait for the GPU
to complete the forward propagation of the first partition
before initiating the All-Gather for the second partition.

Once the prefetched parameters have been gathered, they
are temporarily buffered on the SmartNIC, waiting for the
GPU to initiate the FS stage signal for the second parti-
tion. Subsequently, the data is forwarded to the GPU for
the next stage of the forward pass. As the data is transmitted
to the GPU, the SmartNIC can execute the next pipeline stage,

prefetching the parameters for the next partition. This sce-
nario assumes that the forward propagation stage is longer
than the communication stage, allowing the SmartNIC to en-
sure that the GPU has initiated the next stage and received all
data before proceeding to the subsequent SmartNIC pipeline
stage. However, there may also be cases where the commu-
nication stage takes longer than the GPU computation stage.
In such instances, the GPU is ready for the next partition’s
forward propagation computation, but the gathered data
is not yet available. Consequently, the GPU will remain in
the FS stage until the SmartNIC has all the necessary data
prepared for forwarding.
During backward propagation, a duplicated parameter

gathering operation is necessary before initiating backward
propagation (Figure 3). This is because, to conserve GPU
memory, the gathered parameters are deleted after the com-
pletion of forward propagation. Consequently, an additional
duplicated parameter gather operation is essential for each
backward propagation step. Following the SmartNIC pipeline,
the parameter gathering for backward propagation is started
once the SmartNIC concludes the parameter gathering com-
munication for the last partition. The SmartNIC will wait
until the GPU fetches the parameters.



SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

4.2 SmartNIC Buffering Technique
As shown in Figure 3, forward and backward propagation
involve two duplicate parameter-gathering processes. Due
to GPU memory management considerations, the gathered
parameters are deleted after each partition’s forward prop-
agation computation. Consequently, another duplicate pa-
rameter gathered is essential for conducting backward prop-
agation. With increased model size and system scale, com-
munication constitutes a significant portion of the latency.
This duplication in communication may impede the system’s
FLOPs throughput, with GPUs waiting for data to arrive.
Even when using the SmartNIC design, where parameter
All-Gather and gradients Reduce-Scatter overlap, parameter
gathering still consumes a substantial share of the network
bandwidth, potentially compromising the performance of
both communication operators. To address this redundancy,
we introduce the SmartNIC buffering technique.

As illustrated in Figure 8, in the forward propagation
phase, the All-Gather parameter operator is completed by the
SmartNIC, which retains the first partition of the gathered
parameters. The SmartNIC then concurrently forwards these
parameters to the GPU for the first partition’s forward prop-
agation and to the CPU’s allocated memory to temporarily
store the first partition parameters. This process is repeated
until all partition forward propagations are completed.When
the GPU starts backward propagation, the FS stage signals
the SmartNIC to request the required data for backward pass
computation. As the parameters are already buffered locally
on the CPU, the SmartNIC signals the CPU to transfer the
third partition’s parameter data from CPU memory to the
corresponding GPU memory. This process continues until
the backward propagations are all complete. Upon the CPU
sending the parameters to the GPU, the parameter copy is
deleted for reuse in the next iteration. This approach avoids
initiating a new round of communication during backward
propagation, allowing the GPU to fetch parameter data from
the local CPU directly.

5 System Configuration Software
5.1 System Metrics
The large-scale heterogeneous system consists of hardware
components with varying capabilities and power; the con-
necting technologies between these components also differ.
Numerous system configurations may present diverse bot-
tlenecks that restrict overall performance based on different
machine-learning model setups.
To address this, we propose a system configuration soft-

ware. This software, tailored to different system configura-
tions, identifies potential bottlenecks in system components
or connections. It then suggests system and model config-
uration adjustments to minimize bottlenecks and enhance

overall system efficiency. The software utilizes several met-
rics to evaluate system performance, including:
(i) Model Size, (ii) Batch Size, (iii) Data Parallel Process

Number (Model Partition Number), (iv) GPU Computation
Power, (v) CPU Computation Power, (vi) Heterogeneous
Components Connection Configuration.

5.2 Configuration Metrics
Computation Datapath. There is a computational power
and complexity disparity between the GPU and CPU data
paths in heterogeneous training systems. This misaligned
factor can lead to idle periods on the GPU or CPU, wast-
ing computational resources and reducing efficiency. The
GPU computation complexity is O(BΨ), where B is batch size
and Ψ is model parameters. The CPU complexity is O(Ψ)/P,
where P is the number of model partitions. The GPU work-
load increases as the batch size grows, but CPU computation
decreases proportionally with more partitions. In a configu-
ration with a small batch size and few partitions, the CPU
path can have much higher latency, causing the GPU to idle
as the next step cannot start until both paths finish. This
leads to a wastage of valuable GPU computational power.
Configuration software can identify such bottlenecks, offer-
ing recommended configuration thresholds based on various
metrics to eliminate GPU idle time.
Data exchange bandwidth trade-off. Our current sys-

tem configuration assumes a PCIe bandwidth larger than
the network bandwidth. However, design choices and trade-
offs arise when employing advanced network configurations
or different system device connections. In the previous sec-
tion, we introduced the SmartNIC buffer technique to buffer
parameters that require duplicated parameter gather com-
munication. These buffered parameters reside on the local
CPU, and when the GPU requires them, they are transferred
via PCIe. This approach proves advantageous when PCIe
bandwidth surpasses the network bandwidth.

In scenarios where the system utilizes advanced network
connections, such as NVLink, offering a greater bandwidth
than the PCIe setup, the SmartNIC buffer technique may im-
pact system performance and become a bottleneck. Fetching
the same amount of data from the local CPU could incur
higher latency than initiating the network communication
parameter All-Gather. Therefore, the configuration software
can adjust the pipeline to swap the SmartNIC buffer with
the parameter gather communication operation.
Advancements in device connection technologies intro-

duce high-bandwidth connections like NVLink [33] for data
exchange between heterogeneous components such as GPU
and CPU. This benefits the SmartNIC buffer technique, ensur-
ing that data exchange between GPU and CPU does not com-
promise overall system performance. The SmartNIC buffer



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

also saves network bandwidth during backward propagation
when the parameter All-Gather and gradients Reduce-Scatter
occur simultaneously. This technique removes parameter
gathering communication by utilizing local GPU-CPU data
transactions, thereby preserving more network bandwidth
for gradients Reduce-Scatter.
System scale and offload engine. The partition num-

ber could largely affect the system performance, depending
on the given training model size. With a small data paral-
lel process number, the size of offloaded partitioned model
states increases, stored on the offload engine. This results in
a larger volume of PCIe data exchange between the offload
engine and the communication device during the parameter
gathering phase, involving fetching partitioned parameters
from the CPU. The potential bottleneck in the communica-
tion phase arises from the latency in PCIe data exchange.
However, as mentioned earlier, advanced device connection
techniques between the GPU and CPU can enhance the data
exchange efficiency between the GPU and offload engine.
Therefore, a small system scale with more parameters of-
floaded onto the offload engine can still provide comparable
performance.

6 Evaluation
This section evaluates the SGC system and demonstrates
that it achieves excellent training efficiency and scalability
for large-scale machine learning model training.

6.1 Experimental Methodology and Setup
The baseline GPU system is built on PyTorch FSDP with CPU
offload engines (ZeRO-Offload), utilizing ZeRO as the data
parallel strategy [61]. The large transformer-based model
follows Meta LLaMA [51]. The recommendation model is
based on the Deep Learning RecommendationModel (DLRM)
[31].
A standard problem in computer architecture research,

especially with respect to large-scale systems, is the lim-
ited access to the target systems under study, in this case,
heterogeneous CPU-GPU-SmartNIC systems with at least
hundreds of nodes. We ensure evaluation accuracy by inte-
grating real-world performance benchmarked parameters
obtained from commercial CPUs, GPUs, and FPGAs- the lat-
ter for prototyping SmartNIC devices- into a cycle-accurate
simulator.

Our experimental methodology consists of the following
steps. First, we profile the ML modeling workflow with the
workload of interest. We measure the timing for each model
phase using a GPU cluster running PyTorch FSDP with open-
source models. The large transformer-based model is based
on Meta LLaMA [29]; the recommendation model follows

DLRM [6]. Next, we decompose the heterogeneous SGC sys-
tem into its homogeneous components—-CPU, GPU, Smart-
NIC, and network—-analyzing their respective tasks and
workloads. We benchmark each component using real-world
hardware under various workload sizes to derive, for each
type of device, its roofline model and latency distribution. For
CPUs we use the Intel(R) Xeon(R) Gold 6226R CPU; for GPUs
the NVIDIA Tesla V100 Tensor Core GPU. For SmartNIC pro-
totyping, we use the AMD Alveo U280 FPGA, configured via
High-Level Synthesis (Vitis HLS). The FPGA is configured
as a SmartNIC utilizing the XUP Vitis Network Example
(VNx) as the network kernel[57]. To benchmark network
performance, we utilize the Open Cloud Testbed (OCT) [34],
which consists of 24 AMD Alveo U280 FPGAs connected via
100 GbE data center switches using QSFP28 passive DAC
cables. We execute collective communication benchmarks
across various data sizes and communication patterns. The
SmartNIC design is implemented using Vitis HLS, leveraging
the user logic integrated within XUP.
Finally, after obtaining real-world performance parame-

ters, we integrate these hardware roofline model benchmarks
(GPU, CPU, smartNIC, network) into our cycle-accurate sim-
ulator. This simulator models large-scale systems by incorpo-
rating ML model phases, workload data sizes, and computa-
tion dependency flows. Each system component is connected
via FIFOs, simulating bandwidth, latency, and contention of
hardware connections. These include bidirectional 32 GBps
PCIe links, GPU kernel launch overhead, software runtime
overhead, microarchitecture-level cycle latency on smart-
NICs, contention for hardware resources and the network
contention, collective communication packet chunking, and
bandwidth and latency for collectives.

To validate the simulator, we conducted experiments with
real heterogeneous (CPU-GPU-FPGA) clusters, ranging in
size from one to eight nodes. Workloads were validated at
multiple levels from single kernel to complete application.
This ensures an accurate correlation between the simulator
and real-world cluster performance.

The GPU system with CPU offload (ordinary NICs) serves
as the baseline. The evaluation figures use the following
abbreviations:
pcie-agg = PCIe bandwidth aggregation enabled
CO = CPU offloading enabled
SN = SmartNIC enabled
SNopti = SmartNIC enabled with optimization techniques.

6.2 Performance
6.2.1 Performance with same system size. Figure 10 illus-
trates the speedup in training latency for a 10 billion pa-
rameter transformer-based model. When the system size
is less than 16 nodes, the model is too large to fit into the



SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

1

2

3

4

5

6

7

0 50 100 150 200 250

Th
ro

ug
hp

ut
 P

FL
O

Ps

Node Number
GPU CO GPU CO pcie-agg

GPU CO SN pcie-agg GPU CO SNopti pcie-agg

(a) 10B Model Throughput (PFLOPs)

0
1
2
3
4

5
6
7
8

9

0 50 100 150 200 250

Th
ro

ug
hp

ut
 P

FL
O

Ps

Node Number
GPU CO GPU CO pcie-agg

GPU CO SN pcie-agg GPU CO SNopti pcie-agg

(b) 100B Model Throughput (PFLOPs)

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

Q
PS

Node Number
GPU CO GPU CO SN GPU CO SNopti

(c) DLRM Kaggle Sample/GPU/Second (QPS)

Figure 9: Training Throughput

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

2 4 8 16 32 64 128 256

Sp
ee

du
p

Node Number
GPU GPU pcie-agg GPU CO

GPU CO pcie-agg GPU CO SN pcie-agg GPU CO SNopti pcie-agg

OOM OOM OOM

Figure 10: 10B Model Training Latency Speedup

GPU-only system, as indicated by the OOM label. At this
point, the performance across systems is nearly identical
because the CPU computation data path becomes the bot-
tleneck. With a smaller system size, each CPU data path
handles a heavier workload. As the system scales beyond
16 nodes, the GPU-only system shows improved training
latency compared to the GPU system with an offload engine.
The latter experiences overhead from PCIe data exchange
and inefficiencies due to the boundary between GPUs and
offload engines. By leveraging PCIe bandwidth aggregation,
the speedup increases as the system utilizes every node’s
PCIe bandwidth instead of just one. Also, the parameter All-
Gather communication operator used by pcie-agg requires
less network bandwidth than the parameter Broadcast.
The SGC system, incorporating SmartNIC optimization,

outperforms both the baseline and the GPU-based system.
This improvement becomes more pronounced as the sys-
tem scales up to 256 nodes, achieving a 1.4 × speedup over
the baseline. This improvement is primarily due to higher
SGC system efficiency. The SmartNIC prefetch optimizes
system pipelines by enhancing computation and communi-
cation overlap. Additionally, the SmartNIC buffer reduces
duplicated communication through local PCIe data exchange,
thereby minimizing GPU data waiting time.

Figure 11 presents the training latency speedup for amodel
with 100 billion parameters. With a system size of fewer than

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2 4 8 16 32 64 128 256

Sp
ee

du
p

Node Number
GPU CO GPU CO pcie-agg GPU CO SN pcie-agg GPU CO SNopti pcie-agg

Figure 11: 100B Model Training Latency Speedup

0

10

20

30

40

50

60

70

80

1B 10B 50B 100B 500B 1T

Th
ro

ug
hp

ut
 (

TF
LO

Ps
/G

PU
)

Model Size (Trillion)

GPU GPU CO pcie-agg GPU CO SN pcie-agg GPU CO SNopti pcie-agg

OOM OOM OOM OOM

Figure 12: 16 Node System Training Throughput

16 nodes, the CPU computation data path constrains the
system’s performance. However, as the system scales from 16
to 256 nodes, the SGC system achieves a notable speedup over
the baseline, reaching a 1.6 × speedup. With larger model
sizes, communication and PCIe latency become significant
factors in overall training latency. The SGC system improves
the overlapping of communication and computation stages,
contributing to its enhanced performance.

6.2.2 High Performance with Fewer GPUs. Figure 12 illus-
trates the system’s support for various model sizes with 16
nodes. The GPU-based system is constrained to fitting the
model sizes of less than 10 billion parameters. In contrast,
the SGC system demonstrates the capability to train models
with up to 1 trillion parameters using the same 16-node sys-
tem. Achieving the same capability with a GPU-only system



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

0 0.2 0.4 0.6 0.8 1

10B 4 Node

10B 16 Node

100B 4 Node

100B 16 Node

Communication and PCIe Computation and Other Comm-Comp Overlap

Figure 13: GPU with Offload Engine Latency Break-
down

would necessitate 320 GPUs just to fit the model for training.
With increasing model sizes, the SGC system achieves higher
training throughput over the baseline, and the GPU-only sys-
tem requires more GPUs to fit the large models.

6.2.3 Support larger model Size with comparable perfor-
mance. Figure 12 indicates that an SGC system with 16 nodes
could support model sizes up to trillions of parameters. As
the model size increases, the SGC system achieves higher
training throughput over the baseline. Also, the SGC system
can train large models with throughput almost equivalent to
that of the GPU-only system. The 16-node GPU-only system
could train up to 10 10-billion size models, but the 16-node
SGC system achieves comparable throughput with a train-
ing model size of 100 billion. This improvement is largely
due to the more efficient pipeline stage overlap and reduced
communication latency.

6.2.4 System Scalability. Figure 13 shows the breakdown
in training latency for the GPU with a CPU offload engine
system. The PyTorch FSDP supports GPU data prefetching,
indicated by comm-comp overlap. For both 10 billion and 100
billion models, as the system scales from 4 nodes to 16 nodes,
there is an increased latency fraction due to communica-
tion and PCIe data exchange. With larger model sizes, data
exchange constitutes a larger portion of the overall execu-
tion time, making it challenging to achieve efficient overlap
between computation and communication.

Figure 9 presents the evaluation of system scalability. The
SGC system exhibits better scalability for both 10-billion and
100-billion model sizes. As the model size increases, SGC
maintains nearly linear training throughput even as the sys-
tem scales up. Notably, for the 100 billion model, the speedup
is even more pronounced, given that communication latency
constitutes a substantial portion of the overall training la-
tency. This aligns with the latency breakdown, highlighting
that SGC achieves better overlapping of communication with
computation and so minimizes system overhead.

For DLRM, the all-to-all communication is used by the em-
bedding layer, which is the system performance bottleneck.
The SGC system maintains the training throughput as the

Figure 14: System Configuration Software with 10B
Model

system scales up and displays a higher throughput than the
baseline system.

6.3 System Software Configuration
As shown in the previous sections, When the CPU computa-
tion path constrains the system’s performance, the benefits of
the SGC system may be limited, as the GPU data path cannot
start the next training iteration until the CPU is completed.
The upper part of Figure 14 illustrates the normalized GPU
data path latency over CPU data path latency. A value less
than 1 indicates that the CPU data path dominates. Both sys-
tem and batch size influence this ratio. As the system scales
up, the CPU data path has a reduced workload. Increasing
the batch size results in a higher computation workload for
the GPU data path. To avoid a CPU computation bottleneck,
we select a system computation configuration with a ratio
greater than 1, allowing the SGC system to provide more
benefits for training performance.

Despite the system’s performance being less constrained
by the CPU data path, as we configure the system on a larger
scale, communication latency increases as additional nodes
are incorporated into the system. The bottom part of Fig-
ure 14 illustrates the ratio of communication latency (in-
cluding the overlapped communication latency) to overall
latency. By combining these two figures, the configuration
software can recommend configurations based on system
and model metrics to achieve higher efficiency and improved
performance.



SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

100

200

300

400

500

0 50 100 150 200 250
Node Number

GPU GPU pcie-agg GPU CO

GPU CO pcie-agg GPU CO SN pcie-agg GPU CO SNopti pcie-agg

Figure 15: Normalized Power Consumption

6.4 Power Consumption
Figure 15 compares the normalized power consumption across
various systems. As the system scales, the SGC system ex-
hibits lower power consumption. The SmartNIC optimiza-
tion in SGC contributes to power savings, particularly due
to the SmartNIC buffering technique, which replaces net-
work communication with local PCIe data fetch, thereby
reducing network communication workloads. This advan-
tage becomes more pronounced as the system scales up, as
larger sizes increase energy consumption for network data
exchange. Also, the SmartNIC prefetch helps compact the
system pipeline by reducing device data waiting time and
system bubbles, further contributing to power efficiency.

The SGC system introduces higher processing power onto
the smartNIC, potentially increasing its power consumption
and cost. However, as the SGC system improves system effi-
ciency and reduces overall ML workload latency, this design
choice could in fact lower total power consumption. Also, the
current focus for the SGC system is on ML training and infer-
ence without sharing with other tasks. With more flexibility
come interesting issues with network resource contention.

7 Related Work
Parallel strategies are used to train large models at scale
[15, 19, 25, 46–48, 54]. To scale up model training, work
in [4] saves memory from activation by recomputing from
saved checkpoints. Mixed precision [30] has been proposed
to compress models to reduce memory requirements. CPU
memory-based training approaches [7, 16, 18, 23, 37, 41, 43,
53], such as L2L [38], enable multi-billion parameter training
by managing memory usage in the GPU layer by layer. ZeRO-
Offload [42] and ZeRO-Infinity [40] are state-of-the-art for
large model training based on the ZeRO [39] parallel training
strategy. The PyTorch FSDP [61] advanced DDP [28] model
wrapper enables training of large models using PyTorch [36]

SmartNICs have evolved with various powerful comput-
ing resources. Nvidia has introduced DPUs [32] for data
center AI and networking workloads. Broadcom provides
the Stingray SmartNIC [2] with an 8-core ARM CPU and
P4 packet processing engine. Many commercial FPGA-based
SmartNICs have been released [1, 45]. For example, Xilinx

has introduced the Alveo U25 [55] SN1000 [56] SmartNICs
with FPGA programmable logic and ARM core. Intel released
FPGA-based Intel Infrastructure Processing Unit (Intel IPU)
[20] and Intel FPGA SmartNIC [21]. Commercial and re-
search systems have deployed SmartNICs as computation
resources to offload applications [3, 9–11, 17, 22, 44, 59] and
system functions [8, 27, 60]. Related approaches to comput-
ing in the network augment the switch [5, 12–14, 49].

8 Conclusion
We propose a SmartNIC-GPU-CPU heterogeneous system
for large machine learning models training with software-
hardware codesign. The SmartNICs act as an intermediate
layer that seamlessly connects the GPU and CPU. A set of
optimization techniques compacts the system pipeline with
less data waiting and largely overlapping communication
and computation. Additionally, system configuration soft-
ware optimizes the system and model settings with maximal
system efficiency. Evaluation results show that the SGC sys-
tem achieves better training throughput and scalability over
the baseline system.
While our proposed system demonstrates considerable

gains in training large models using a modest GPU cluster,
it is primarily tailored to settings where GPU resources are
limited (e.g., 8–128 nodes). In these scenarios, the SmartNIC-
based design effectively addresses the memory bottleneck
and communication overhead that arise in smaller-scale de-
ployments. However, this approach is not intended to com-
pete with large-scale GPU clusters connected by high-speed
interconnects such as NVLink. Consequently, the primary
contribution of our work is to enable data scientists and or-
ganizations with limited GPU resources to train models that
exceed the capacity of GPU high-bandwidth memory, rather
than to provide a one-size-fits-all solution for ultra-large-
scale high-performance clusters.

Acknowledgments
We are most grateful to the anonymous reviewers for their
help in guiding the revision of the manuscript. This work
was supported, in part, by the National Science Founda-
tion through awards CCF-1919130, CCF-2151021, and CCF-
2326494; by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, in sup-
port of the MEERCAT Microelectronics Science Research
Center, under Contract DE-AC05-76RL01830; and by AMD
and Intel both through donated FPGAs, tools, and IP.

References
[1] C. Bobda, J. Mandebi, P. Chow, M. Ewais, N. Tarafdar, J.C. Vega, K.

Eguro, D. Koch, S. Handagala, M. Leeser, M.C. Herbordt, H. Shahzad,
P. Hofstee, B. Ringlein, J. Szefer, A. Sanaullah, and R. Tessier. 2022.
The Future of FPGA Acceleration in Datacenters and the Cloud. ACM



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

Transactions on Reconfigurable Technology and Systems 15, 3 (2022),
1–42. doi:10.1145/3506713

[2] Broadcom. 2019. Stingray PS250 2x50-Gb High-Performance Data
Center SmartNIC. https://docs.broadcom.com/doc/PS250-PB.

[3] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. 2016. A cloud-scale acceleration architecture.
In The 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (Taipei, Taiwan) (MICRO-49). IEEE Press, Article 7, 13 pages.
doi:10.1109/MICRO.2016.7783710

[4] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training Deep Nets with Sublinear Memory Cost. CoRR abs/1604.06174
(2016). arXiv:1604.06174 http://arxiv.org/abs/1604.06174

[5] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang
Li, and Torsten Hoefler. 2021. Flare: flexible in-network allreduce.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 1–16. doi:10.1145/
3458817.3476178

[6] Facebook Research. 2019. DLRM: Deep Learning Recommendation
Model. https://github.com/facebookresearch/dlrm

[7] Jiarui Fang, Zilin Zhu, Shenggui Li, Hui Su, Yang Yu, Jie Zhou, and
Yang You. 2023. Parallel Training of Pre-Trained Models via Chunk-
Based Dynamic Memory Management. IEEE Transactions on Parallel
and Distributed Systems 34, 1 (Jan. 2023), 304–315. doi:10.1109/tpds.
2022.3219819

[8] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51–66. https:
//www.usenix.org/conference/nsdi18/presentation/firestone

[9] Anqi Guo, Tong Geng, Yongan Zhang, Pouya Haghi, Chunshu Wu,
Cheng Tan, Yingyan Lin, Ang Li, and Martin Herbordt. 2022. FCsN: A
FPGA-Centric SmartNIC Framework for Neural Networks. In 2022 IEEE
30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE Press, 1–2. doi:10.1109/FCCM53951.
2022.9786193

[10] Anqi Guo, Tong Geng, Yongan Zhang, Pouya Haghi, Chunshu Wu,
Cheng Tan, Yingyan Lin, Ang Li, and Martin Herbordt. 2022. A Frame-
work for Neural Network Inference on FPGA-Centric SmartNICs. In
2022 32nd International Conference on Field-Programmable Logic and
Applications (FPL). 01–08. doi:10.1109/FPL57034.2022.00071

[11] Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan,
Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng. 2023.
Software-Hardware Co-design of Heterogeneous SmartNIC System
for Recommendation Models Inference and Training. In Proceedings of
the 37th ACM International Conference on Supercomputing (Orlando,
FL, USA) (ICS ’23). Association for Computing Machinery, New York,
NY, USA, 336–347. doi:10.1145/3577193.3593724

[12] Pouya Haghi, Anqi Guo, Qingqing Xiong, Chen Yang, Tong Geng,
Justin T. Broaddus, Ryan Marshall, Derek Schafer, Anthony Skjel-
lum, and Martin C. Herbordt. 2022. Reconfigurable switches for high
performance and flexible MPI collectives. Concurrency and Computa-
tion: Practice and Experience 34, 6 (2022), e6769. doi:10.1002/cpe.6769

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6769
[13] Pouya Haghi, William Krska, Cheng Tan, Tong Geng, Po Hao Chen,

Connor Greenwood, Anqi Guo, Thomas Hines, Chunshu Wu, Ang
Li, Anthony Skjellum, and Martin Herbordt. 2023. FLASH: FPGA-
Accelerated Smart Switches with GCN Case Study. In Proceedings of
the 37th ACM International Conference on Supercomputing (Orlando,
FL, USA) (ICS ’23). Association for Computing Machinery, New York,
NY, USA, 450–462. doi:10.1145/3577193.3593739

[14] Pouya Haghi, Cheng Tan, Anqi Guo, Chunshu Wu, Dongfang Liu,
Ang Li, Anthony Skjellum, Tong Geng, and Martin Herbordt. 2024.
SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Col-
lectives in HPC Applications. In Proceedings of the 38th ACM Inter-
national Conference on Supercomputing (Kyoto, Japan) (ICS ’24). As-
sociation for Computing Machinery, New York, NY, USA, 413–425.
doi:10.1145/3650200.3656616

[15] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, and Phillip B. Gibbons. 2018.
PipeDream: Fast and Efficient Pipeline Parallel DNN Training. ArXiv
(2018). https://api.semanticscholar.org/CorpusID:47016772

[16] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and
Venkatesh Akella. 2020. AutoTM: Automatic Tensor Movement in
Heterogeneous Memory Systems using Integer Linear Programming.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Ma-
chinery, New York, NY, USA, 875–890. doi:10.1145/3373376.3378465

[17] Torsten Hoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan E.
Grant, and Ron Brightwell. 2017. sPIN: High-performance streaming
Processing In the Network. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’17). Association for Computing Machinery,
New York, NY, USA, Article 59, 16 pages. doi:10.1145/3126908.3126970

[18] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Push-
ingDeep Learning Beyond the GPUMemory Limit via Smart Swapping.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Ma-
chinery, New York, NY, USA, 1341–1355. doi:10.1145/3373376.3378530

[19] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. 2019. GPipe: efficient training of
giant neural networks using pipeline parallelism. In Proceedings of
the 33rd International Conference on Neural Information Processing Sys-
tems. Curran Associates Inc., Red Hook, NY, USA, Article 10, 10 pages.
doi:10.5555/3454287.3454297

[20] Intel. 2021. Intel® Infrastructure Processing Unit (Intel®
IPU). https://www.intel.com/content/www/us/en/products/network-
io/smartnic.html.

[21] Intel. 2022. Intel FPGA SmartNIC. https://www.intel.com/content/
www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-
platform.html.

[22] Ranjesh G. Jaganathan, Keith D. Underwood, and Ron Sass. 2003. A
Configurable Network Protocol for Cluster Based Communications
using Modular Hardware Primitives on an Intelligent NIC. In Proceed-
ings of the 2003 ACM/IEEE Conference on Supercomputing (Phoenix,
AZ, USA) (SC ’03). Association for Computing Machinery, New York,
NY, USA, 22. doi:10.1145/1048935.1050173

[23] Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He,
and Shaofeng Zhao. 2018. Layer-Centric Memory Reuse and Data Mi-
gration for Extreme-Scale Deep Learning on Many-Core Architectures.
ACM Trans. Archit. Code Optim. 15, 3, Article 37 (Sept. 2018), 26 pages.
doi:10.1145/3243904

https://doi.org/10.1145/3506713
https://docs.broadcom.com/doc/PS250-PB
https://doi.org/10.1109/MICRO.2016.7783710
https://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://doi.org/10.1145/3458817.3476178
https://doi.org/10.1145/3458817.3476178
https://github.com/facebookresearch/dlrm
https://doi.org/10.1109/tpds.2022.3219819
https://doi.org/10.1109/tpds.2022.3219819
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/FCCM53951.2022.9786193
https://doi.org/10.1109/FCCM53951.2022.9786193
https://doi.org/10.1109/FPL57034.2022.00071
https://doi.org/10.1145/3577193.3593724
https://doi.org/10.1002/cpe.6769
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6769
https://doi.org/10.1145/3577193.3593739
https://doi.org/10.1145/3650200.3656616
https://api.semanticscholar.org/CorpusID:47016772
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3126908.3126970
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.5555/3454287.3454297
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
https://doi.org/10.1145/1048935.1050173
https://doi.org/10.1145/3243904


SmartNIC-GPU-CPU Heterogeneous System for Large Machine Learning Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeff Wu, and
Dario Amodei. 2020. Scaling Laws for Neural Language Models.
https://api.semanticscholar.org/CorpusID:210861095

[25] Zhiquan Lai, Shengwei Li, Xudong Tang, Keshi Ge, Weijie Liu, Yabo
Duan, Linbo Qiao, and Dongsheng Li. 2023. Merak: An Efficient Dis-
tributed DNN Training FrameworkWith Automated 3D Parallelism for
Giant Foundation Models. IEEE Transactions on Parallel and Distributed
Systems 34, 5 (2023), 1466–1478. doi:10.1109/TPDS.2023.3247001

[26] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R.
Tallent, and Kevin J. Barker. 2020. Evaluating Modern GPU Inter-
connect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect. IEEE
Transactions on Parallel and Distributed Systems 31, 1 (2020), 94–110.
doi:10.1109/TPDS.2019.2928289

[27] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016.
ClickNP: Highly Flexible and High Performance Network Processing
with Reconfigurable Hardware. In Proceedings of the 2016 ACM SIG-
COMM Conference (Florianopolis, Brazil) (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 1–14. doi:10.1145/
2934872.2934897

[28] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
and Soumith Chintala. 2020. PyTorch Distributed: Experiences on
Accelerating Data Parallel Training. Proc. VLDB Endow. 13, 12 (2020),
3005–3018. doi:10.14778/3415478.3415530

[29] Meta. 2025. LLaMA Github. https://github.com/meta-llama/llama
[30] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos,

Erich Elsen, David García, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018. Mixed Precision
Training. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net. https://openreview.net/forum?
id=r1gs9JgRZ

[31] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems. arXiv:1906.00091 [cs.IR]
https://arxiv.org/abs/1906.00091

[32] Nvidia. 2021. NVIDIA BLUEFIELD-2 DPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/documents/datasheet-
nvidia-bluefield-2-dpu.pdf.

[33] NVIDIA. 2023. What Is NVLink. https://blogs.nvidia.com/blog/2023/
03/06/what-is-nvidia-nvlink/.

[34] OCT-FPGA. 2025. OCT Tutorials. https://github.com/OCT-FPGA/
OCT-Tutorials

[35] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila,
and et al. Igor Babuschkin. 2024. GPT-4 Technical Report.
arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library.
arXiv:1912.01703 [cs.LG] https://arxiv.org/abs/1912.01703

[37] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based GPU Mem-
ory Management for Deep Learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery, New York, NY, USA, 891–905.
doi:10.1145/3373376.3378505

[38] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Su-
jeeth Bharadwaj. 2020. Training Large Neural Networks with Constant
Memory using a New Execution Algorithm. arXiv:2002.05645 [cs.LG]
https://arxiv.org/abs/2002.05645

[39] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. ZeRO: memory optimizations toward training trillion parameter
models. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC ’20). IEEE Press, Article 20, 16 pages. doi:10.5555/3433701.3433727

[40] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and
Yuxiong He. 2021. ZeRO-infinity: breaking the GPU memory wall
for extreme scale deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (St. Louis, Missouri) (SC ’21). Association for Computing
Machinery, New York, NY, USA, Article 59, 14 pages. doi:10.1145/
3458817.3476205

[41] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li.
2021. Sentinel: Efficient Tensor Migration and Allocation on Heteroge-
neous Memory Systems for Deep Learning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 598–
611. doi:10.1109/HPCA51647.2021.00057

[42] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training.
arXiv:2101.06840 [cs.DC] https://arxiv.org/abs/2101.06840

[43] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar,
and Stephen W. Keckler. 2016. vDNN: virtualized deep neural net-
works for scalable, memory-efficient neural network design. In The
49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (Taipei, Taiwan) (MICRO-49). IEEE Press, Article 18, 13 pages.
doi:10.5555/3195638.3195660

[44] Whit Schonbein, Ryan E. Grant, Matthew G. F. Dosanjh, and Dorian C.
Arnold. 2019. INCA: In-Network Compute Assistance. SC19: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (2019), 1–13. https://api.semanticscholar.org/CorpusID:
207940021

[45] Hafsah Shahzad, Ahmed Sanaullah, and Martin Herbordt. 2021. Survey
and Future Trends for FPGA Cloud Architectures. In 2021 IEEE High
Performance Extreme Computing Conference (HPEC). 1–10. doi:10.1109/
HPEC49654.2021.9622807

[46] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake Hechtman.
2018. Mesh-TensorFlow: Deep Learning for Supercomputers. In Ad-
vances in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf

[47] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGres-
ley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Train-
ing Multi-Billion Parameter Language Models Using Model Paral-
lelism. ArXiv abs/1909.08053 (2019). https://api.semanticscholar.org/
CorpusID:202660670

[48] Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun Jang, Hyung-Jin
Kim, Youngsok Kim, and Jinho Lee. 2023. Optimus-CC: Efficient

https://api.semanticscholar.org/CorpusID:210861095
https://doi.org/10.1109/TPDS.2023.3247001
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1145/2934872.2934897
https://doi.org/10.1145/2934872.2934897
https://doi.org/10.14778/3415478.3415530
https://github.com/meta-llama/llama
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://blogs.nvidia.com/blog/2023/03/06/what-is-nvidia-nvlink/
https://blogs.nvidia.com/blog/2023/03/06/what-is-nvidia-nvlink/
https://github.com/OCT-FPGA/OCT-Tutorials
https://github.com/OCT-FPGA/OCT-Tutorials
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3373376.3378505
https://arxiv.org/abs/2002.05645
https://arxiv.org/abs/2002.05645
https://doi.org/10.5555/3433701.3433727
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1109/HPCA51647.2021.00057
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2101.06840
https://doi.org/10.5555/3195638.3195660
https://api.semanticscholar.org/CorpusID:207940021
https://api.semanticscholar.org/CorpusID:207940021
https://doi.org/10.1109/HPEC49654.2021.9622807
https://doi.org/10.1109/HPEC49654.2021.9622807
https://proceedings.neurips.cc/paper_files/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://api.semanticscholar.org/CorpusID:202660670
https://api.semanticscholar.org/CorpusID:202660670


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Guo, Hao, Yao, Yang, Huang, Geng, and Herbordt

Large NLP Model Training with 3D Parallelism Aware Communi-
cation Compression. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 560–573.
doi:10.1145/3575693.3575712

[49] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. 2022. Taurus: a data plane architecture for
per-packet ML. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Associa-
tion for Computing Machinery, New York, NY, USA, 1099–1114.
doi:10.1145/3503222.3507726

[50] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv
Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu
Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri,
Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, and et al. Dehao Chen. 2022. LaMDA: Language Models
for Dialog Applications. arXiv:2201.08239 [cs.CL] https://arxiv.org/
abs/2201.08239

[51] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient
Foundation Language Models. arXiv:2302.13971 [cs.CL] https://arxiv.
org/abs/2302.13971

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fer-
nandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui
Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, and
Isabel Kloumann et al. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models. arXiv:2307.09288 [cs.CL] https://arxiv.org/abs/
2307.09288

[53] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons:
dynamic GPUmemorymanagement for training deep neural networks.
SIGPLAN Not. 53, 1 (Feb. 2018), 41–53. doi:10.1145/3200691.3178491

[54] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting
Very Large Models using Automatic Dataflow Graph Partitioning.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 26, 17 pages. doi:10.1145/3302424.3303953

[55] Xilinx. 2020. Alveo U25 SmartNIC Accelerator Card. https://www.
xilinx.com/products/boards-and-kits/alveo/u25.html.

[56] Xilinx. 2021. ALVEO™ SN1000 SmartNICs. https://www.xilinx.com/
content/dam/xilinx/publications/product-briefs/xilinx-alveo-sn1000-
product-brief.pdf.

[57] Xilinx. 2025. XUP Vitis Network Example. https://github.com/Xilinx/
xup_vitis_network_example Accessed: 2025-03-16.

[58] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa,
Omer Shabtai, Yonatan Piasetzky, Matty Kadosh, Arvind Krishna-
murthy, T. S. Eugene Ng, and Ang Chen. 2023. Unleashing SmartNIC
Packet Processing Performance in P4. In Proceedings of the ACM SIG-
COMM 2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23).
Association for Computing Machinery, New York, NY, USA, 1028–1042.
doi:10.1145/3603269.3604882

[59] Qingqing Xiong, Rushi Patel, Chen Yang, Tong Geng, Anthony Skjel-
lum, and Martin C. Herbordt. 2019. GhostSZ: A Transparent FPGA-
Accelerated Lossy Compression Framework. In 2019 IEEE 27th Annual

International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 258–266. doi:10.1109/FCCM.2019.00042

[60] Qingqing Xiong, Anthony Skjellum, and Martin C. Herbordt. 2018. Ac-
celerating MPI Message Matching through FPGA Offload. In 2018 28th
International Conference on Field Programmable Logic and Applications
(FPL). 191–1914. doi:10.1109/FPL.2018.00039

[61] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer,
Alban Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen,
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. 2023. Py-
Torch FSDP: Experiences on Scaling Fully Sharded Data Parallel.
arXiv:2304.11277 [cs.DC] https://arxiv.org/abs/2304.11277

https://doi.org/10.1145/3575693.3575712
https://doi.org/10.1145/3503222.3507726
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3200691.3178491
https://doi.org/10.1145/3302424.3303953
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-alveo-sn1000-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-alveo-sn1000-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-alveo-sn1000-product-brief.pdf
https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example
https://doi.org/10.1145/3603269.3604882
https://doi.org/10.1109/FCCM.2019.00042
https://doi.org/10.1109/FPL.2018.00039
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Zero Redundancy Optimizer (ZeRO)
	2.2 Delayed Parameter Update
	2.3 Limitations of the Existing Systems

	3 SmartNIC-GPU-CPU System
	3.1 Breaking System Boundaries
	3.2 Collective Communication Support

	4 SGC Optimizations
	4.1 SmartNIC Prefetch
	4.2 SmartNIC Buffering Technique

	5 System Configuration Software
	5.1 System Metrics
	5.2 Configuration Metrics

	6 Evaluation
	6.1 Experimental Methodology and Setup
	6.2 Performance
	6.3 System Software Configuration
	6.4 Power Consumption

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

