A Cost-Effective Dueling Framework for
Set-Associative Cache Indexing

Kevin Weston
Texas A&M University
College Station, USA
kevin.weston@tamu.edu

Avery Johnson
Texas A&M University
College Station, USA
averyjohnson@tamu.edu

Abstract

Pathological program behavior may cause a non-uniform
access distribution in set associative caches, leading to an
increase in conflict misses. To address this challenge, prior
works profile the program patterns and propose different
index functions to avoid these conflict misses [11, 18]. How-
ever, as we analyze the prior work on set-associative cache
indexing, we identify two major issues. First, there is no
single index function that is guaranteed to perform well
for every application. Second, advanced indexing schemes
typically have sophisticated implementation and prohibi-
tively long computation latency. In this paper, we propose
DuELHASH, a dynamic N-way indexing framework for set
associative caches, which provides an effective dueling mech-
anism for multiple index functions at runtime with a simple
and efficient hardware implementation. At runtime, the per-
formance of the index functions are evaluated periodically,
and the best performer is applied to the cache.

To evaluate the performance of DUELHASH, we conduct a
case study on a 16-way set-associative LLC using a diverse
set of benchmarks, including SPEC 2006, SPEC 2017, PARSEC
3.0, CVP and GAP. Our empirical results show that without
prefetching, DueLHASH provides an IPC speed up of 2.8%
(with the highest being 23%) over the conventional power-
of-two modulo (DEFAULT) index, compared to a 1.6% speed
up of a commercialized indexing scheme (XorHASH). When
pattern-based prefetchers are turned on in the L1 data and
L2 caches, DUELHASH can provide up to 5.8% single-core
speedup over DEFAULT. DUELHASH also provides a 6.2% MPKI

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ICS °25, Salt Lake City, UT, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3729513

Vahid Janfaza
Texas A&M University
College Station, USA
vahidjanfaza@tamu.edu

Abdullah Muzahid
Texas A&M University
College Station, USA
abdullah.muzahid@tamu.edu

reduction over DEFAULT for non-uniform applications, the
highest among all schemes tested in the study. The reduced
LLC miss rate results in an uncore energy saving of 4.9%
(without prefetching) or 4.1% (with prefetching). Compared
to the state-of-the-art cache indexing scheme, DUELHASH
offers a comparable performance in most applications while
using 93% less power.

Keywords

last level cache, index hashing, index dueling

ACM Reference Format:

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muza-
hid. 2025. A Cost-Effective Dueling Framework for Set-Associative
Cache Indexing. In 2025 International Conference on Supercomputing
(ICS ’25), June 0811, 2025, Salt Lake City, UT, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3721145.3729513

1 Introduction

The cache memory has a great impact on the overall system
performance. To keep up with the ever growing demand
of modern applications, the cache memory is being consis-
tently expanded in size. Conversely, such an approach may
not always be effective due to the increasing latency and
manufacturing cost. As a result, it is crucial to improve the
cache performance through microarchitectural innovations.

Conflict misses are a well-known performance bottleneck
in cache memory. This is because the DEFAULT index function
is susceptible to cache conflicts when facing pathological pro-
gram behaviors [18]. Figure 1 shows an example of this issue.
The DEFAULT index function causes an uneven cache access
distribution in streamcluster, as some of the cache sets receive
more than twice as many accesses as other sets (Figure 1a).
A more advanced indexing scheme, such as XorRHASH, can
provide a more even distribution (Figure 1b), significantly
reducing the conflict misses. In this example of streamcluster,
XoruasH reduces the misses-per-kilo-instructions (MPKI)

https://orcid.org/0000-0002-1746-6355
https://orcid.org/0000-0002-8656-4848
https://orcid.org/0009-0009-3657-7139
https://orcid.org/0000-0001-8145-815X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3729513
https://doi.org/10.1145/3721145.3729513

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

by 7.22%, leading to an IPC increase of 2.91%. That said, as we
analyze the prior work on set-associative cache indexing, we
identify two important challenges. Firstly, finding a single,
high-performance cache index function for all applications
is an extremely difficult task. This is because, similar to other
fields, there is not a perfect hash function that is guaranteed
to work for all types of input patterns. Secondly, since the
set index computation lies in the critical path, it is crucial
for the index function to have minimal latency [39]. There
are advanced hash functions [6, 18] that offer near-optimal
results in theory, but the latency of their computations erases
all of the performance benefits [39].

S
N
®
S
IS]
S

Num Accesses Per Se

Set Indices
(a) Power-of-two Modulo (DEFAULT)

Num Accesses Per Set

Set Indices
(b) XORHASH

Figure 1: Per-set access distribution of a 2MB 16-way
Last Level Cache (LLC) between the DEFAULT index
function baseline and XoRHASH in streamcluster.

To address these challenges, we propose an adaptive index-
ing framework called DUELHASH for set-associative caches.
At its core, DUELHASH maintains a set of N hash functions,
each of which is associated with a Conflict Tracking Counter
to keep track of the number of hashing conflicts in the cache
at runtime. These counters are updated with every access to
the cache, and during program execution, DUELHASH periodi-
cally evaluates these counters and applies the index function
with the lowest number of conflicts. As such, DUELHASH is
effectively an N-way dueling indexing scheme, in which the
best index function is selected for the cache dynamically
at runtime based on their performance, measured by the
number of conflicts generated. We should note that there are
other competition-based adaptive mechanisms in microar-
chitectural research, one of which is set-dueling [17, 24]. Set-
dueling is intended to dynamically compare multiple cache
policies. Set-dueling uses the set index to determine whether
a cache request would go to the dedicated or follower sets.
As we have N index functions in DUELHASH, there would be
cases in which a cache request belongs to multiple dedicated

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

sets, or follower sets at the same time. As a result, set-dueling
is inapplicable in cache indexing studies. Hence, we propose
DuUELHASH, a novel N-way dueling framework specifically
designed for cache indexing. To the best of our knowledge,
this is the first work on dynamic cache indexing using a
simple and cost-effective dueling mechanism.

We conduct a case study on a shared 16-way set-associative
LLC to illustrate the performance of our proposed framework
compared to different indexing solutions. In the study, we
gather a set of five XOR-based lightweight index functions,
as well as the DEFAULT index function to set up a 6-way du-
eling indexing scheme for the LLC. Simulation results show
that DUELHASH outperforms PRIME and XoRHASH in both
prefetching and no-prefetching scenarios. By using multi-
ple hash functions, we give the cache indexing scheme an
opportunity to dynamically adapt to different program pat-
terns. Moreover, DUELHASH is the only indexing scheme that
does not degrade the single-core performance of any testing
application over DEFAULT, both with and without hardware
prefetching. This is because DUELHASH keeps the DEFAULT
index function as one of its dueling functions. Hence, DUEL-
HasH will fall back to the DEFAULT index function if it detects
that switching to a more sophisticated hash function would
not yield any better performance.

DutLHASH also reduces the LLC MPKI by 6.2% in both
with and without prefetching scenarios, outperforming all
other indexing schemes. This amount of LLC MPKI reduc-
tion translates into an uncore energy saving of 4.9% (with-
out prefetching) or 4.1% (with prefetching). Compared to
ENTROPYINDEX [39], the state-of-the-art dynamic indexing
scheme, DUELHASH provides a comparable performance in
most applications while consuming 93% less power. DUEL-
HASH also works seamlessly with single and multiprogram
workloads. Additionally, DUELHASH has a surprisingly effi-
cient hardware implementation based on a single 8:1 multi-
plexer and some rewiring,.

In summary, we make the following contributions:

e We propose DUELHASH, the first dueling-based adap-
tive indexing framework for set-associative caches that
shows substantial performance gain while being ex-
tremely hardware-efficient.

e We provide a detailed and efficient hardware imple-
mentation of DUELHASH.

e We conduct a case study on a shared 16-way set associa-
tive LLC using a diverse set of benchmarks including
SPEC 2006/2017, PARSEC, CVP and GAP to evaluate
the performance of DuELHASH. Without prefetching,
DuEeLHASsH delivers an IPC speed up of 2.8% (with the
highest being 23%) over DEFAULT. When pattern-based
prefetchers are turned on in the L1 data and L2 caches,
DUELHASH can provide up to 5.8% single-core speedup

A Cost-Effective Dueling Framework for Set-Associative Cache Indexing

over DEFAULT. For non-uniform applications, DUEL-
HASH gives an MPKI reduction of 6.2%, outperforming
all other indexing schemes in the study. Compared to
the state-of-the-art adaptive cache indexing scheme,
DuELHASH provides a comparable performance in most
applications while consuming 93% less power.

2 Background and Related Work

When it comes to cache index hashing, previous studies focus
on two directions: improving the indexing scheme for set-
associative caches [11, 18], or proposing alternative cache
organizations [1, 2, 5, 27, 41]. In this work, we focus on the
set-associative cache and its index function as it remains the
most commonly used cache organization in processors [12].

2.1 Index Function for Set Associative
Caches

Power-of-two modulo (DEFAULT) is the simplest hash function
used for cache indexing. In this technique, some bits of the
cache block address are used to directly identify the index
(Figure 2a). For shared LLCs, more advanced hash functions
are proposed to evenly distribute the cache accesses [14].

Tag

Address a I | M, | Offset |

log (num_set)

(a) Conventional power-of-two (DEFAULT) index

Tag

A
a
log fnum_set)

a

Address a | | Offset |

log (num_set)
D

Figure 2: Example of a commonly used XorRHASH com-
pared to the DEFAaULT index function [39].

(b) XorHAsH index

XOR-based index hashing (XoruAsH) has been proposed
for skewed caches [5], conflict reduction [36], and multi-
banked caches [26]. The main idea of XORHASH is that the
XOR operation should increase the randomness of the set
index, which could potentially lower the number of conflicts.
Figure 2b shows one prominent example of XORHASH. in-
stead of being just M, as in DEFAULT, the set index of an
address in XORHASH is computed as T, ® M,, with M, being
the original index in DEFAuULT, and T, being a sequence of
log, (num_set) bits from the tag part. XorHASH has been
reported to be used in commercial processors [14, 21, 22].
ENTROPYINDEX [39] leverages the same idea as XORHASH,
looking to maximize the randomness in the set index compu-
tation to improve performance. Particularly, ENTROPYINDEX
proposes a light-weight strategy to approximate the random-
ness of each address bits during program execution. The

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

XOR-based index function is then constructed using the ad-
dress bits with the highest randomness and is used in the
following execution interval.

PrIME[18] uses the function: set index = (address) mod
(prime) with prime being the prime number that is lower
and closest to the number of cache sets. PRIME has long been
considered to be the lowest-conflict index function since it
has the smallest number of divisors [9]. PRIME shows im-
provements to the balance in the cache access distribution,
leading to performance gain. However, the real challenge is to
find a timing-wise practical implementation of PRIME. Arbi-
trary Modulus Indexing [9] addresses this issue by proposing
efficient methods based on the binary reciprocal array multi-
plication mechanism to compute indices for non power-of-2
modulo indexing schemes, including PRIME. In our experi-
ments, we include a zero-delay PRIME-IDEAL configuration
as a comparison work to evaluate the full potential of PRIME
indexing without latency.

2.2 Alternative Cache Organizations

The hash-rehash method [1] addresses this problem by using
two sequential hash functions, where when a miss occurs, a
second hash function is used, which allows the direct mapped
cache to mimic two-way associative behavior. One problem
with this approach is that the use of two simultaneous hash-
ing functions will increase hit time, potentially negating
any IPC improvement. Similar to the hash-rehash method,
column-associative caches [2] attempt to address this issue
by using a separate hashing function in the event of a miss
to place the cache block at a separate index. Additionally, a
‘rehashed’ bit is added to the cache lines to indicate whether
or not a given entry is using the alternative hashing func-
tion. Due to the use of additional hashing functions in a
direct-mapped structure, column-associative cache will, like
hash-rehash, have an increased hit time.

In the reverse of the hash-rehash and column-associative
caches, skewed-associative caches [5, 29] attempt to exhibit
direct-mapped behavior in higher associative caches. The
skewed-associative cache has a separate hash function for
each cache way, providing the increased conflict avoidance
of higher associativity caches combined with the increased
distribution of cache entries with multiple hashing functions.
Z-cache [27] takes the basic idea behind skewed-associative
cache, that being separate hashing functions for each way,
and extends it by expanding the number of replacement
candidates in the event of a conflict. When a miss occurs, the
first-level replacement candidates are the blocks located at
conflicting indexes to the incoming data. The second-level
candidates are the blocks located at conflicting indexes to the
first-level candidates. Of all of these blocks, the least recently
used is evicted, and the remaining candidates are relocated to
accommodate the incoming block. The number of candidate

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

levels can be expanded to include all of the blocks in the
cache at the cost of an increased miss penalty.

Instead of using multiple hashing functions to increase
cache distribution, B-Cache [41] attempts to address the
conflict miss problem in direct-mapped caches by using a
programmable decoder which can dynamically change the
indexing of the cache rows when a conflict occurs. This
is done by taking two index fields from the address, one
corresponding to the standard cache index, and the second
corresponding to the programmable decoder, which will, in
the event of a conflict miss, find the index of an unused cache
space, and allocate that to the cache block.

3 Main Idea: DUELHASH

In this section, we first explain how DUELHASH works (Sec-
tion 3.1). Next, we describe how DUELHASH handles the tran-
sition from one index function to the next (Section 3.2). Fi-
nally, we explain how DUELHASH minimizes the cost of the
index function transition process (Section 3.3).

3.1 The Efficient Index Function Dueling
Mechanism for Cache

Assume the set of dueling index function is H, consisting
of N index functions. DUELHASH is equipped with an array
of N Conflict Tracking Counters (CTC array). Each counter
tracks the number of conflicts of an index function h; in H.
DueLHAsH updates these CTCs upon every access to the
cache. Algorithm 1 describes the CTC update process.

Algorithm 1: How the CTC array is updated at runtime.

1 Variables:

2 addrpeyy: the incoming address to the cache;

3 H: set of N dueling index functions of DUELHASH;

4 CTC: array of N Conflict Tracking Counters (CTC);

/* Iteratively update the CTC of each hash function %/
if addrnew # addrpre, then
for every hash function h; in H do
L if h;(addrnew) == hi(addrprey) then
| CTCli]++

[I

When a program begins its execution, DUELHASH starts
out with the DEFAULT index function. This prevents any in-
dex function to have any initial advantage. After every access
to the cache, DUELHASH compares the new address addry.,
with the address addr,,., of the most recent access to the
cache. For each index function h; in H, if the new address
addrye,, # addrpre,, but hi(addrye,,) == h;(addrp,e,), the
corresponding counter of h; in the CTC array is incremented.
The idea behind this policy is that if the hash function A; pro-
duces the same output for two distinct inputs addrye,, and
addrpreo, it means that there is a hashing conflict, therefore
we need to increment the corresponding CTC of h;.

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

Figure 3 demonstrates the general workflow of DUELHASH.
After every execution interval of I cache accesses, DUELHASH
examines the CTC array and finds the index function with the
lowest conflict counter. If this index function is better than
the current index function by a certain amount (more detail
on Section 3.3), the index function change is justified and the
new index function will be applied to the cache in the next
interval. This process takes very little time and can easily be
completed between two LLC accesses, or during a cache miss.
Thus, the lowest-conflict index function can be applied to
the cache in the next interval. This is different from previous
studies on microarchitectural reconfiguration [35, 40], in
which the predicted configuration is applied in the interval
after the next, as the prediction models could take a long time
to compute a prediction.

Initialization

Application Update the CTCs for Execute for /
starts every cache access accesses

Identify the index function
h,in H that has the
lowest CTC value

Is the new index
function better enough than
the current one
to justify the change?

No

Initiate gradual
cache remapping

Change to the new
index function

Figure 3: Overall workflow of DUELHASH. [is the in-
terval size, measured in number of cache accesses.

3.2 Cache Remapping Strategy

When we apply a new index function to the cache, it is es-
sential to relocate current valid cache lines to match the new
function, ensuring the consistency of the cache. This tran-
sition requires careful management to prevent unnecessary
data traffic, including extra cache reads, writes, and evictions.
We opt to use the gradual cache remapping scheme proposed
in CEASER [25]. Figure 4 shows an example of the gradual
remapping scheme at work.

We use an Access Counter (AC) to keep track of the total
number of accesses to the cache, and a Set Pointer (SP) to
keep track of the next set to remap. After every cache ac-
cess, AC is incremented. The predefined parameter R is the
remapping rate of the system. Whenever the AC reaches R,
the remapping process is triggered and the set pointed at by
SP is remapped. During this process, we move every cache
block in the set pointed by SP to its new index, computed by
the new index function. If the destination set is full at that
time, we trigger the cache replacement policy to find a vic-
tim. If this victim is dirty and the remapping cache block is
clean, we evict the remapping block (similar to the example

A Cost-Effective Dueling Framework for Set-Associative Cache Indexing

in Figure 4). This policy helps minimize the number of extra
writebacks. In all other cases, we replace the victim block by
the remapping block.

Move A MoveB SkipA Move C Next

interval

AC=3000 ° AC=4000

AC=2000
Interval 0 Interval 0 Interval 0 Interval 0 Interval 1

AC=1000 AC = 5000

Figure 4: Example of the gradual cache remapping.
Blocks marked with a prime notation are dirty. To re-
duce writebacks, if the source block is clean but the
destination block is dirty, we remove the source block
(example: BO and C’0) [39].

The system maintains two index functions at all times: the
new index function of the current interval and the last index
function from the last interval. When there is an incoming
cache request, we compute two set indices: the new index
using the new index function and the last index using the
last index function. If the last index is greater or equal to the
SP, it indicates that the set has not been remapped yet, and
so cache request is served using the last index. Otherwise,
the new index is used.

If I is the interval size, S is the total number of cache sets,
then R can be set anywhere between 1 and I/S. R should
not be set too low, since there is a risk of the cache being
overwhelmed by a sudden surge of read and write requests at
the beginning of an interval, potentially stalling other cache
demand accesses.

3.3 Minimizing The Cache Index Function
Transition Cost

During the remapping process, some cache blocks might be
evicted due to conflict when the destination set is full. The
miss rate increase due to this behavior can be estimated by
the ratio W/R (%), with R being the remapping rate and W
being the cache associativity [25]. For example, with a 2MB
16-way LLC, if R = 1000, then the potential extra miss rate
caused by the remapping process is 16/1000 = 1.6%.

To compensate for this performance loss, the new index
function must manage to reduce the miss rate by the same
amount in the next interval. As a result, an index function
change is justified only if the miss rate reduction rate of the
new index function is higher than the extra miss rate caused
by the transition process. We adopt the optimization strategy
in ENTROPYINDEX [39]. Specifically, DUELHASH only switches
to the new index function when P > W/R, with P being the
potential miss rate reduction of the new index function. As it
is non-trivial to determine P for each index function, we will
use the difference between the CTCs of two index functions

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

to estimate P. Particularly, assume f; and f;,; are the index
functions of interval i and i + 1, then DueLHAsH will take
the switch from f; to fiy; if and only if:

CTC;=CTCiu
cTe, > W/R

In our study, we use a remapping rate R = 80, therefore
W/R = 16/80 = 20%. Thus, we only switch to the new index
function if the CTC of the new index function is at least 20%
lower than the CTC of the current index function.

4 Case Study: 16-way Set-Associative LLC

We conducted a case study on a 16-way set-associative cache
to illustrate the performance of our proposed indexing scheme.
In this section, we first describe how the index functions for
DuELHASH (Section 4.1) were selected. Next, we provide the
hardware implementation and a cost analysis of DUELHASH
for the cache configuration in this case study (Section 4.2).
Finally, we explain the evaluation methodology (Section 4.3)
and then present the experimental results (Section 4.4).

4.1 Selecting Index Functions for
DUELHASH

DuEeLHASH offers a cost-effective N-way dueling framework
for caches. However, if N is excessively large, the hardware
implementation cost will become prohibitively expensive,
regardless of the efficiency of the dueling mechanism. Un-
fortunately, the search space for cache index functions is
infinite. Hence, at design time, we need to identify a man-
ageable set of top-performance index functions. Then, at
runtime, DUELHASH will dynamically choose and apply the
highest-performing function from this set.

One simple strategy is through pre-training. For this case
study, to determine which index functions to include in DUEL-
HASH, at design time, we gather a set of training applications
from five benchmark suites: SPEC 2006/2017, PARSEC 3.0,
GAP, and XSBench. The index functions will be tested against
this set of training applications. The highest-performing in-
dex function for each benchmark suite is selected for Du-
ELHASH. This training strategy is not perfect. However, it is
simple and practical. In Section 4.3.2, we will discuss in more
detail about how we split the benchmarks into the training
set and testing set. The goal is to avoid having the same
application in both training and testing sets.

For the index functions, we investigate a family of XOR
hash functions generated by the Perfect Shuffle operation [33].
Perfect shuffle functions have been shown to carry decent
hashing properties that potentially help them achieve a low
conflict rate [5]. They are also extremely hardware efficient,
consisting of just the re-wiring of the input bits.

Let us call the sub-sequences formed by the tag field as T;
(Figure 5), the modulo index bits of an address as M, and the
perfect shuffle operation as ¢. For each sub-sequence T;, the
perfect shuffle functions are formed as follows:

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

index

RNARRNEERNRRENRRAER

offset —»

[[

AddressAl ‘ | H

|

[N

[

:l. TD .
— T

' 2 [

— T, —™

Figure 5: Example of how we form the sub-sequences
T; for the perfect shuffle functions. Assume a 2MB 16-
way set-associative cache with 64B block size.

. hf) =T,&eM

° hll =o(Tl)) oM

o hi=c*(T) ® M

e hi=0c*(T) &M

e hi=c*(T)®M

ehi=0(T)®M

For each sub-sequence T;, we can generate 6 perfect shuffle

functions. As we use 4 sub-sequences from Tj to T3, we end
up with 24 hash functions in total. We include all of them to
the initial set of index functions H. We then evaluate each
index function against all the applications in the training
set, picking the overall best for each benchmark suite, using
the IPC improvement over the DEFAULT index function as
the metric. We end up with five highest performance index
functions, as shown in Table 1.

H Benchmark Groups ‘ Best Index Function H

SPEC 2006 2
SPEC 2017 h;
PARSEC 3.0 m
GAP h
XSBench B

Table 1: Overall best index function per suite found
with the training set. These functions will be imple-
mented in DUELHASH and tested on the testing set.

We notice that some applications do not benefit from in-
dex hashing. For these applications, using any kind of hash
functions may even degrade the performance compared to
DEerAULT. Hence, we add the DErFAULT index function to the
mix, making it 6 index functions in total for DUELHASH.

4.2 Implementation

The hardware design of DUELHASH consists of three sepa-
rate components: the Set Index Resolution Logic (SIR), the
Conflict Tracking Module (CTM) and the CEASER-based cache
remapping. The CTM is implemented as a separate circuit
and is responsible for updating the conflict counters as well
as determining the optimal index function for the upcoming
interval. The SIR is part of the LLC circuitry and is responsi-
ble for computing the set index for every incoming address to
the cache. In the following sections, we provide the hardware
budget for each components for the LLC setup we investigate
in our case study. We use 6 hash functions for DUELHASH.

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

4.2.1 Conflict Tracking Module (CTM). The CTM consists
of an array of 6 CTCs (one per index function), one regis-
ter to store the previous address to the cache, and another
set of 6 registers to store the previous indices computed by
these functions. Whenever a new access comes in, the CTM
compares the new address with the previous address, and
the new set of indices with the previous set of indices to
determine which function has a conflict, then updates the
corresponding CTC in the CTC array. When we reach the
end of an interval, the CTM reads the values of the CTC
array, returns the index of the lowest counter, and stores it
in the Index Selection Register (ISR). This is the index of the
hash function in H that will be used in the next interval.

4.2.2 Set Index Resolution Logic (SIR). Figure 6 demonstrates
the hardware implementation of the SIR logic. The tag field
is passed through the 6 hash functions in parallel. Each of
the hash functions A; is just a fixed re-wiring of the tag bits.
The output of the hash functions is the same size of the index
field of the address. An 8:1 multiplexer then selects the ap-
propriate hash output based on the index selection decision
stored in the Index Selection Register (ISR). The selected hash
output is then XORed with index field from the address to
form the final set index. The address and the 6 hash function
outputs are put together to form a new history entry. This
new entry is sent to the CTM to update the CTC array.

1

addr | Tag I Modulo Index I Offset

| ————

re-wiring

I P F 1

17 1 1 1 1 1 1

Conflict Tracking
Module (CTM)

Index Selection
Register (ISR)

©

Figure 6: Hardware implementation of the SIR logic
for a 2MB 16-way set-associative cache.

4.2.3 Hardware Cost. For the CTM, we need 7 registers to
store the previous address and previous indices. we also need
6 registers for the CTCs. The CEASER-based cache remap-
ping requires 24 bytes of storage [25]. So the total hardware
budget is 128 bytes, assuming we use 64-bit registers.

The latency of DUELHASH comes from the latency of the
SIR and CTM. Fortunately, the CTM computations are not
in the critical path, thus do not propagate any extra delay to
the cache access latency. As such, the perceivable latency of
DuEtLHASH is the delay of the SIR circuit, which is the sum
of the wire delay of the index hashing function, and the gate
delay of the 8:1 multiplexer. In Table 2, we provide a detailed

A Cost-Effective Dueling Framework for Set-Associative Cache Indexing

analysis of the resource usage, area, and power consumption
of DUELHASH compared to PRIME using Synopsys Design
Compiler NXT [34]. For PRIME, we implemented the Poly-
nomial Method proposed in the original work as it offers
greater performance and hardware efficiency. We use the
28nm technology in our synthesis.

DuEeLHASH also has no impact on the cache cycle time,
since the SIR logic can run at 4.15GHz, higher than the fre-
quency of 3.0GHz for the cache. The CTM runs at slower
speed, but it is implemented in a separate circuit, thereby
not increasing the cache cycle time.

Method Max Latency at | Latency at | Total | Area
Frequency | Max Freq. | 3.0 GHz | Power | (um?)

(GHz) (cycles) (cycles) (mW)
PrIME 1.25 2 5 0.602 877
DUELHASH 4.15 1 less than 1 | 0.071 153

Table 2: DueLHASH hardware cost breakdown. The
cache system is set to run at 3.0 GHz.

In terms of power usage, DUELHASH consumes a total of
0.071mW. This is 88% lower than PRIME, which uses 0.602mW.
For the same cache configuration, the power usage of EN-
TROPYINDEX is 1.064mW, as mentioned in the original paper
[39]. Thus, DUELHASH uses 93% less power than ENTROPY-
INDEX. Both DuELHASH and ENTROPYINDEX use the similar
CEASER-based cache remapping strategy, which increases
overall system power by approximately 0.2% [25].

4.3 Evaluation Methodology

4.3.1 Simulator. We evaluate DUELHASH using the Champ-
Sim simulator [7]. ChampSim has been widely used in cache
memory research, including replacement [15, 20, 28, 30, 31],
prefetching [4, 16, 32, 38], indexing [25, 39, 40], as well as
other cache-related competitions [7, 10]. Parameters of the
simulated hardware are shown in Table 3.

H Parameter ‘ Value H
1 and 4-core @ 3.0 GHz, FetchWidth=6,
DecodeWidth=6, ExecWidth=6, RetireWidth=4,
352-entry ROB, 128-entry LQ, 72-entry SQ.

L1 cache (I/D) | 32KB (per-core), 2-way, 2-cycle latency

Processor

L2 cache 128KB (per-core), 4-way, 8-cycle latency
LLC (shared) | 2MB and 8MB, 16-way, 32-cycle latency
Prefetchers L1D: Berti Prefetcher [23]

L2: Signature-Path Prefetching [19]
Replacement | Least Recently Used (LRU)
DRAM tRP=tRCD=tCAS=24

Table 3: Simulated hardware parameters. LLC latency
number is obtained from CACTI 7.0 [13].

4.3.2 Benchmarks. We use a diverse set of memory inten-
sive applications from SPEC 2006, SPEC 2017, PARSEC 3.0,
GAP [3] and XSBench [37] in our evaluation. For SPEC 2006
and 2017, we use the traces from the CRC-2 and DPC-3
competitions [7, 10]. For PARSEC 3.0, we profile the applica-
tions in single-threaded mode using the profiling tool that

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

comes with ChampSim. For all benchmark suites, we define
memory intensive applications as those that have the LLC
misses-per-kilo-instruction (MPKI) greater than 1. This is
similar to [15, 28, 31, 32].

We also evaluate our solution against the set of bench-
marks provided by Qualcomm for the CVP1 Championship [8].
Since there are more than 1000 total applications in this
benchmark suite, we use the top 10 most non-uniform ap-
plications with MPKI greater than 1 from each compute-fp
and compute-int suite. For each application, we warm up the
cache for 500 million instructions, then collect the simulation
results of the next 1 billion instructions. For DUELHASH, we
use a remapping rate R = 80 for both single and multipro-
gram scenarios.

With R = 80 (remapping one cache set per 80 LLC ac-
cesses), it takes 80 * 2048 = 163840 accesses to completely
remap all cache sets in a 16-way 2MB LLC. As such, the
interval size has to be at least that same amount to allow the
system to finish the cache remapping process before going
to the next interval. We conducted a sensitivity test to in-
vestigate the impact of interval sizes to the performance of
DueLHASH. The result is shown in Figure 7. Generally, the
overall performance increases with the interval size. This is
because as the interval size increases, there are less noise,
leading to better index function selections. Larger interval
size also results in less frequent index function change, re-
ducing the cache remapping cost. We use the interval size of
1 million LLC accesses for the singleprogram experiments,
and 4 million LLC accesses for the 4-core experiments.

'-_——-.—__._’_"O_fl

N

O s N O W
T T T T

o

200K 250K 300K 500K 750K 1.0M
Inteval Sizes (measured in number of LLC accesses)

IPC Speedup over Default (%)

Figure 7: The impact of the interval size to the perfor-
mance of DUELHASH.

In the proposed design, DUELHASH only compares the cur-
rent cache address to one preceding address to check for
conflict and update the CTC array. Figure 8 shows the per-
formance of DUELHASH when we increase this comparison
window from 1 to 96 LLC accesses (6X the LLC associativity).
The performance gain barely changes as we vary the history
size. We observe that for each application, there is an index
function that has a significantly lower conflicts compared to
others, so even when the comparison window changes, that
same function is still eventually selected.

We split the benchmarks in to two groups: training set
and testing set. The training set consists of one third of
applications from each of these suites: SPEC 2006, SPEC

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

2017, PARSEC and GAP. For XSBench, as we only have six
applications in this suite, we decide to use all of them for
training, since using a third of them (two applications) would
be insufficient to represent the suite in the training set. As a
result, the training set contains 24 applications from SPEC
2006, SPEC 2017, PARSEC, GAP and XSBench. The testing
set has 27 applications from SPEC 2006, SPEC 2017, PARSEC,
GAP as well as 20 applications from the CVP compute-int
and compute-fp benchmark suites, making it 47 applications
in total. No training application appears in the testing set,
avoiding the overfitting issue.

351
3';\”.\./.\./;'
25F 1
oL 1
15[
1k
0.5F
1 16 32 48 64 80 96
Comparison Window Sizes (measured in number of LLC accesses)

IPC Speedup over Default (%)

Figure 8: DUELHASH performance when we vary the
number of previous addresses to which we compare
the current address.

4.3.3 Multiprogram Setup. We evaluate the performance
of our solution when 4 different workloads are simultane-
ously run on 4 different cores. We randomly generate 100
mixes of 4 workloads from the testing applications. For each
mix, we warm up the cache until each application has been
run for at least 200 million instructions. We then run the
mix until each application has been executed for at least
250 million instructions. If an application finishes early, the
corresponding core repeats the simulation of that trace until
every other benchmarks in the mix has been executed for
250 million instructions. This methodology is similar to prior
work [15, 28, 31, 39].

4.3.4 Baseline and Comparison Indexing Schemes. The base-
line is the power-of-two modulo function (DEFAULT). We com-
pare DUELHASH to CEASER, PRIME, XORHASH, ENTROPYINDEX,
and SKEWEDCACHE. All indexing schemes are applied on a
2MB 16-way LLC, with Berti prefetcher in L1 data cache and
SPP prefetcher in L2 cache.

For CEASER, we implement the 4-stage Feistel Network
cipher with gradual remapping scheme proposed in the orig-
inal paper. We also include in our simulation the 2-cycle
extra latency mentioned in the original work. For PRIME, we
compare our scheme against both the theoretical ideal case
(PRIME-IDEAL) in which the extra latency is zero, and the
realistic case (PRIME-REAL), where the latency is 5 cycles, as
discussed in Section 4.2.

We also conduct a direct performance comparison be-
tween a 16-way set-associative cache with DUELHASH and
a 16-way skewed-associative cache (SKEWEDCACHE). In the

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

base case, a 16-way SKEWEDCACHE would have one index
function for each cache way, therefore having a total of 16
functions. For better evaluation, we also test with different
number of skewing functions, varied from 2 to 16 (a 16-way
SKEWEDCACHE with 2 skewing functions means each func-
tion is used for 8 cache ways, etc.) We use the perfect shuffle
operation to generate these functions, as proposed in the
original paper [5].

P

S : : : A : :
=
S 4t
84
a
5 2|
& ol -l]j
o
=y
o]
-
G-4t ! ! ! ! ! - !
O spec06 specl? gap parsec cvp-fp cvp-int overall
o ceaser HEEEE prime-ideal I entropy C—
prime-real xorhash 0 duelhash .
(a) No prefetching.
8
2 ol .-:CI
a>) ‘I L
3 -
o-2F
3
Q31
2 -at
8 spec06 specl? gap parsec cvp-fp cvp-int overall
a

ceaser HEEEE prime-ideal HEEE entropy 1
prime-real xorhash duelhash ==

(b) With prefetching.
Figure 9: Geometric mean single-core performance
gain of DUELHASH compared to other schemes in all ap-
plications in this study, grouped by benchmark suites.

4.4 Evaluation Results

4.4.1 Overall Single-Core. Figure 9 shows the IPC speedup
of DUELHASH and the other indexing schemes with respect
to the DEFAULT index function for single-core workloads.
Without prefetching, DUELHASH improves the performance
by 2.8%, outperforming both XoruAsH and PRIME-IDEAL. The
highest IPC improvement is 23%, achieved in 649.fotonik3d_s.
In the presence of hardware prefetching, DUELHASH im-
proves the performance over DEFAULT by 1.0%, compared
to a 0.4% improvement of XorHASH and 0.5% improvement
of PRIME-IDEAL. With prefetching, the highest performance
gain of DUELHASH is 5.8%, achieved in cvp-fp75.

PRIME index provides a positive improvement of 1.8% (no
prefetching) and 0.5% (with prefetching) in the ideal case
(PrRIME-IDEAL), but a negative performance of —0.7% (no
prefetching) and —1.7% (with prefetching) in the realistic
case (PRIME-REAL). This result indicates the importance of
hardware efficiency in designing a cache index hashing func-
tion. A complex hash function may even degrade the sys-
tem performance even though it has improvement on paper.

A Cost-Effective Dueling Framework for Set-Associative Cache Indexing

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

5 6f 1
©
5l j
Q 2r i
) r I f l rjl F I - F
o Of im .III] 1
=}
g -2k I II m -
ol I a® o 2® aRR? P P
4 o 6 O @ \L A % ‘6 5 of B N N 1o o
[N 60 g gl 66 @& _F 1° 0™ 191”4 P S %1 Q»Q o e?
g o a“ e 9’“’ Al arCase o g B 9"“ 09“& A geO‘“
ceaser HEEEE prime-real N prlme ideal xorhash entropy duelhash =
(a) No prefetching.
g 6 (ﬁb"’@q’
3
@ 4l i
a
& 2 |
3 ol i | |
Q
2.l l”cllmlmlm'J ‘rf Iﬂflcil'a i N .
@
O 2 53) o¥ oV
o & & ¥ o
7]
O
o

\

bfb'b 606 o P 66“&‘(30* a(\(\ea 0\3
o S\

(&

prime-real B prime-ideal

1‘5 b@
&9 QC@

ceaser N

"
@6 9‘2’ 0»06%

xorhash 3

) bfa > o1 oS a“
,\ﬁ\‘ RGN USRI S <€
o W@ QQ o 09’° Q“OQ Q geo

entropy C— duelhash =

(b) With prefetching.

Figure 10: Performance of DUELHASH compared to other schemes for non-uniform applications.

CEASER shows negative performance gain in almost all ap-
plications, with an average of —2.0% (no prefetching) and
—2.5% (with prefetching). This is because CEASER changes
the index functions randomly, without any consideration
on performance. The Feistel cipher algorithm also incurs 2
extra cycles delay in the critical path, therefore degrading
the overall performance.

DuEtLHASH also provides a comparable performance to
ENTROPYINDEX on most benchmarks. Without prefetching,
DuteLHASH outperforms ENTROPYINDEX in all benchmark
suites except from PARSEC. With prefetching, DUELHASH
loses to ENTROPYINDEX in PARSEC and cvp-fp applications,
while presenting comparable performance in all other bench-
mark suites. DUELHASH achieves all these numbers while
using 93% less power than ENTROPYINDEX.

4.4.2 Non-uniform Applications. Non-uniform applications
are those that exhibit an uneven distribution of accesses
among cache sets. Previous studies show that this type of
applications benefits the most from sophisticated indexing
schemes [18, 39, 40]. The balance of cache access distribution
is qualitatively measured by the ratio: stdev/mean of the
cache accesses [18, 39, 40]. If this ratio is high, that means
the cache access distribution is uneven, since the standard
deviation is being far from the mean. In this work, we define
non-uniform applications as those with stdev/mean > 0.20.
With this definition, there are 20 out of 47 applications in the
testing set are classified as non-uniform. Figure 10 shows the
performance of our solution on the subset of non-uniform
applications within our testing set.

The simulation results show that DUELHASH outperforms
PriME and XorHAsH for these applications, either with or
without prefetching. In the no prefetching scenario, Du-
ELHASH provides an IPC improvement of 2.7%, compared
to a 1.2% improvement of XoRHASH, a 1.7% improvement
of PRIME-IDEAL, and a —3.0% degradation of CEASER. With
prefetching, the mean speedup of DUELHASH is 1.3%, com-
pared to a speed up of 0.3% of XoRHASH, 0.8% of PRIME-IDEAL,
and a —2.5% of CEASER. As oppose to prior findings, we gener-
ally do not see a clear benefit of using sophisticated indexing
schemes for non-uniform applications in our experiments.

Compared to ENTROPYINDEX, DUELHASH presents a more
consistent performance across different benchmarks, despite
having a lower overall result. There are a few cases where EN-
TROPYINDEX significantly outperforms DUELHASH, skewing
the overall result. In these applications, the functions formed
by ENTROPYINDEX are completely different from the set of
index functions in DUELHASH, highlighting the advantage of
ENTROPYINDEX. ENTROPYINDEX has the full flexibility to pick
individual address bits in both sequences of its XOR-based
index function, theoretically resulting in better tailored in-
dex function for every applications. That said, DUELHASH
has the power efficiency advantage. It performs comparably
to ENTROPYINDEX in most of the applications while using
93% less power. Additionally, ENTROPYINDEX results in nega-
tive performance in a few cases. DUELHASH does not have
any single-core performance degradation in all applications
both with or without prefetching. This is because DUELHASH
keeps the DEFAULT in the set of dueling index functions and

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

lets it compete normally with the others. As aresult, for those
applications that do not work well with advanced indexing
schemes, DEFAULT would show better hashing conflict rate
and get selected by DuELHASH, therefore avoid IPC degrada-
tion as well as unnecessary remapping traffic (Figure 14).

® ™
s &

— T T T T — T T T T T T T T T T T T

= a NN

A S S S S S S S

05
!
|
=
|
|
—
1
i
=
o
=
=
3
-

|
N

MPKI Reduction over Default (%)

& o »©
D DO QO D M» N D F DO AN DA DO S
P EF IR IEECI LSS ES
N QS S 8 9
<& :@,b@ c}\Q (}\Q & éQdQ S 0&? & G\Q C\Q G\Q OAQ 4
prime-ideal @ xorhash entropy C—1 duelhash =
(a) No prefetching. o
%
20 .
151 .
10F .

1
2
|
=
4
g
b
|
|
—
-
.
=
-
b

MPKI Reduction over Default (%)

prime-ideal xorhash N

(b) With prefetching.

entropy C— duelhash S

Figure 11: DUELHASH has the highest MPKI reduction
for non-uniform applications.

o2

\ RN
o o mo g
.

Energy Reduction over Default (%)

prime-ideal I xorhash entropy C—1 duelhash =

(a) No prefetching.

-5 A S T N N N N S SN S S

D o (D
s
AQ(,*Q/

Energy Reduction over Default (%)
=
|
-——=
—
q
2 g
E
|
=
==
"
=
=
=

prime-ideal EE— xorhash EEm entropy C—3J duelhash I

(b) With prefetching.

Figure 12: Uncore energy saving of DUELHASH com-
pared to other schemes for non-uniform applications.

10

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

Figure 11 presents the MPKI reduction of different index-
ing schemes for non-uniform applications. DUELHASH gives
the highest MPKI reduction at around 6.2% in both with and
without prefetching scenario. DUELHASH numbers are on par
to ENTROPYINDEX, and signifcantly higher than XorHASH
and PRIME. These results show the huge potential of the
dynamic indexing strategies compared to the conventional
static indexing schemes for set-associative caches.

A lower MPKI in LLC also has a positive impact on the
uncore energy consumption, since it reduces the DRAM
traffic, as shown in Figure 12. On average, DUELHASH reduces
uncore energy consumption by 4.9% (no prefetching) and
4.1% (with prefetching). These numbers are on the same
level as ENTROPYINDEX. For XorHASH and PRIME, the energy
savings are less than 1%. To measure the energy impact,
we estimate each LLC access consumes 1 unit of energy
and each DRAM access consumes 25 unit of energy. This
approximation strategy has been used in prior work on cache
replacement and indexing [30, 39].

<18 -
3 . xorhash
£150% prime-ideal *
& [duelhashe * |
8 12 entropy *
g9 1
3
o 6 . 1
3
23 .o . ° e
o o .. .
8 0 . @, e TITIISey LR T :
a3 hd L
4-core mixes

(a) No prefetching.
<12 -
X xorhash ¢
= of prime-ideal ¢ |
% duelhash ¢
a N N entrogy. °
o 1
8 .
o 1
3
° .
Q .
$ P . 4
(% . o0 l.. P T * 2;
g LI B

4-core mixes

(b) With prefetching.
Figure 13: Performance comparison of different index-
ing schemes in the multiprogram workloads.

4.4.3 Overall Multi-Core. Figure 13 shows the performance
of different indexing schemes in the 4-core setup. When there
is no prefetching, DUELHASH improves the performance over
the DEFAULT by 1.9% overall, while ENTROPYINDEX, XORHASH
and PRIME-IDEAL improvements are 1.4%, 1.1% and 1.1%, re-
spectively. With prefetching, the overall performance gains
of DUELHASH is 0.9%, which is similar to ENTROPYINDEX.
Meanwhile, the overall speed up of XorHAsH and PRIME-
IDEAL is 0.5%. ENTROPYINDEX has more control of selecting
the bits, thus it usually finds a high performing index func-
tion for the mix. The highest speed up for ENTROPYINDEX
is 42%, compared to 25% of DueLHASH. However, since the
access stream in more complicate in a multi-program sce-
nario, there is a higher risk of false positive. In some mixes,

A Cost-Effective Dueling Framework for Set-Associative Cache Indexing

ENTROPYINDEX still finds the highest randomness index func-
tion, but the performance is significantly degraded, with the
lowest being —28%, compared to —3.3% of DUELHASH. Being
less robust turns out to be an advantage for DUELHASH in
this scenario.

- 10

normal-traffic C——1

-traffic I
105} remap-traffic |

100+
95

90

85

Total LLC Traffic Breakdown (%,

(a) No prefetching.
10

normal-traffic C——

-traffic —
105} remap-traffic |

100+

90

85

Total LLC Traffic Breakdown (%)
©
a1

0. ..
S IR YN
& I IR R SIS IS

&

(b) With prefetching.

Figure 14: Extra LLC traffic cost due to cache remapping
(%). LLC traffic is the sum of all LLC accesses of all types
(demand/prefetch/writeback).

4.44 Remapping Cost. Figure 14 shows the impact of cache
gradual remapping on the LLC traffic. We measure the ex-
tra cache reads and writebacks caused by DUELHASH and
divide by the total number of LLC accesses. On average,
DuEtLHASH only generates 0.5% extra traffic to the cache in
the no prefetching scenario. When hardware prefetching is
turned on, the total LLC traffic increases significantly be-
cause of the prefetcher’s requests. Hence, the extra traffic
due to remapping accounts for just 0.2% of the LLC normal
traffic. The highest remapping cost is 3.3%, seen in cvp-int96.
For some applications, this cost is zero because DUELHASH
does not change the index function for the entire execution.
Setting the sensitivity threshold %gc”l > 20% helps
reducing the number of unnecessary index function changes,
therefore bringing down the total cost of remapping.

4.4.5 Compared with SKEWEDCACHE. Figure 15 show the
performance of DUELHASH against SKEWEDCACHE for all ap-
plications in this study. Varying the number of skewing func-
tions does not have a big impact. The 8-skewing-function
SKEWEDCACHE (skewed8) performs better than other skew-
ing setups. SKEWEDCACHE is also unstable across different
applications, particularly with hardware prefetcher. In the no

11

ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

g 30 'bg’?%'b“sz’?*’%@
= 25t ‘ ‘ skewed?2 HEEEE |
& skewed/ =
3 20f skewed8 T 1
= 151 skewed16 T3 A
2 ol duelhash mm— |
(@]
5 M.
=}
g ol ML Y
g -5
D ol I | . ‘ L I i
O -
a spec06 specl7 gap parsec cvp-fp cvp-int overall
(a) No prefetching.

g 6 S20p°
3 " skewed? wm—
SO 4t skewed4 I |
8 skewed8 I3
5 2t skewed16 T |
5 duelhash =
>
3
g 2[‘ ‘ ‘ ‘ ‘
n RO
O > 070 %S .
a spec06 specl7 gap parsec cvp-fp cvp-int overall

(b) With prefetching.

Figure 15: Geometric mean single-core performance
comparison between a 16-way set-associative LLC with
DueLHASH and a 16-way SKEWEDCACHE with varied
skewing functions across all applications in this study.

g ®° \QQ‘P ‘9?"15’?)
:_5:; 15F skeweds8 1 |
-..g 10F duelhash HEEE
~ 5f i
[
=
| Dw j :l] = nl]
5 0 i freeeer
> _5 | 1
3
2 10l [S S S T T SO O
o SR S
L N N N N
= &%@6’3@"9@"3’@‘%@(&&&@ % Q@@QQ%E@%‘?\@%%%Q@%@?@&
PO O WO NN NS
& :@Q PSS e Q%Q LN
3 .
(a) No prefetching.
S O SO
S of skewed8 3
2 4l H- duelhash .
a
g 2 |
>
s [d EI] all
L - 1
g0 H‘ W r H’ ” H‘ T ﬂ' r—r
2.l ,
@ -2
Q | L 1 I
3 SES >
NITY N N N\
& &b’b@@’@%’ﬁ’@@»";&g&@éﬁb&g’é@é’?’%i@%%b%@gf
P PO QWG QNS N S
& I E R ERY SR SIS I
& . .
(b) With prefetching.

Figure 16: Performance of a 16-way set-associative LLC
with DUELHASH versus a 16-way SKEWEDCACHE (8
skewing functions) in non-uniform applications.

prefetching scenario, SKEWEDCACHE provides the maximum
speed up of 4.5% (in skewed8). In the presence of hardware
prefetching, the overall speed up of SKEWEDCACHE is 0.2%
(also in skewed8). Conversely, DUELHASH provides a more
uniform IPC improvement.

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

Figure 16 shows the performance of DUELHASH and SKEWED-
CacHe for the subset of non-uniform applications. We use
skeweds as it is the highest performing skewing setup. With-
out prefetching, DUELHASH yields a mean speed up of 2.7%
over DEFAULT, compared to a 4.4% speed up of SKEWED-
CachE. With prefetching, DUELHASH speed up is 1.3%, com-
pared to a 1.6% improvement of SKEWEDCACHE. SKEWED-
Cacse forms their index functions from a limited number of
address bits (22 bits). DUELHASH expands to 32 bits, thus gen-
erating better functions. SKEWEDCACHE is also static scheme,
lacking the capability of switching to a different index func-
tion to adapt to the running application. In both scenarios,
the overall performance gain of SKEWEDCACHE is biased
by the high speed up of 5 applications: 654.roms, bodytrack,
streamcluster, cvp-fp75, and cvp-fp84. In many other applica-

tions, SKEWEDCACHE results in a huge performance loss.
< o A
8 o

Q

20F
151
10F

'
1
T

D OO D »
D7 7V VR o
> ©° 0" 0¥ 07 (@ O

S S

MPKI Reduction over Default (%
|
2
|
|
=—=1
!
|
=2
o
L 1 1
02 s |
—t
=_
=
S
=
—

prime-ideal . xorhash entropy C—3 duelhash

_ (a) No prefetching.
& »?1
< 20F ———————— -
g 15 L
©
o 10t .
8 5| il J
iem Mg iitallall
E 2 fg;} .9’5 IN ‘\%’.\
< D5 OO D> DS \e) WS\ IR A Do £
T v E L <@ OL}Q'KQW & Q & '@\Q\V & {\(f0 ,3;/(\,90_ (@q’(\@ @e?'
= REISC A SIS Qe SPE SN
& \@q,@o DR oéQdQéQdQéQc\ IS5
prime-ideal I ? xorhash entropy C—1 duelhash
(b) With prefetching.

Figure 17: MPKI reduction in non-uniform applica-
tions with a 4-bank LLC setup.

4.4.6 DUELHASH for Banked LLC. We extended ChampSim
to evaluate DUELHASH on a banked LLC. We use a 4-bank
2MB LLC setup (512KB per bank). As we could not get the
simulator to fully support the parallel accessing to the banks,
we only report the MPKI (Figure 17) instead of the IPC results.
The banks are indexed using the lowest two bits of the block
address. The set index within the bank is then computed
using different indexing schemes that we are studying.

In this experiment, DUELHASH provides a 5.4% (no prefetch-
ing) and 5.6% (with prefetching) MPKI reduction compared
to the baseline, slightly less than the monolithic setup (Fig-
ure 11). This is because there is less opportunity to optimize
as the bank index function is static. XorHASH and ENTROPY-
INDEX exhibit the same behavior. For ENTROPYINDEX, we

12

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

used the index formulation for banked LLC proposed in the
original paper [39]. In that formulation, the bank index are
excluded from the set index function. In our experiment, the
two lowest address bits are the bank index bits. Excluding
these bits causes a huge degradation in ENTROPYINDEX per-
formance, because for most of the applications, these two
bits are the highest entropy bits. ENTROPYINDEX could be
tuned further for banked caches, but it is out of the scope
of this study. PRIME-IDEAL shows a better performance in
the banked setup compared to the monolithic setup. Most of
the improvements come from the compute-int benchmarks.
These benchmarks do not work well with PRIME originally.
Thus having the lowest two bits as the bank index (effectively
the DEFAULT index function) alleviates some negative impact
of PRIME on these workloads.

5 Conclusion

Current set-associative cache indexing schemes have two
major issues. First, there is no single index function that is
guaranteed to perform well for every application. Second,
advanced indexing schemes typically have sophisticated im-
plementation and prohibitively long computation time.

To address these challenges, we propose DUELHASH, an effi-
cient multi-way index dueling framework for set-associative
caches. At a high level, DUELHASH is an adaptive indexing
scheme that maintains a set of different index functions com-
peting with each other at runtime to select the optimal index
function for an application. We conducted a case study on a
shared 16-way set-associative LLC to illustrate the efficacy
of DUELHASH. In the study, we used a set of XOR-based index
functions generated by the Perfect Shuffle operations for Du-
ELHASH and evaluated their performance using a wide range
of benchmarks, including SPEC 2006, SPEC 2017, PARSEC
3.0, CVP and GAP. Experimental results show that without
prefetching, DUELHASH provides a mean IPC speed up of 2.8%
(with the highest being 23%) over DEFAULT, compared to a
1.6% speed up of XorHASH. When pattern-based prefetchers
present in the L1 data and L2 caches, DUELHASH can provide
up to 5.8% single-core speedup over DEFAULT. DUELHASH
also provides a 6.2% MPKI reduction over DEFAULT for non-
uniform applications, the highest among all schemes tested
in the study. The reduced LLC miss rate results in an uncore
energy saving of 4.9% (without prefetching) or 4.1% (with
prefetching). Compared to the state-of-the-art cache index-
ing scheme, DUELHASH offers a comparable performance in
most applications while using 93% less power.

Acknowledgments

We thank the members of PALab group and the reviewers
for valuable discussions. This work was supported in part
by NSF Award No 2301334 and the TAMU HPRC center.

A Cost-Effective Dueling Framework for Set-Associative Cache Indexing ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

References

[1] Anant Agarwal, John Hennessy, and Mark Horowitz. 1988. Cache
Performance of Operating System and Multiprogramming Workloads.
ACM Trans. Comput. Syst. 6 (nov 1988), 393-431. (2017).

[2] Anant Agarwal and Stephen D Pudar. 1993. Column-associative caches: (21] Moritz Lipp, Vedad Hadzi¢, Michael Schwarz, Arthur Perais, Clémen-
A technique for reducing the miss rate of direct-mapped caches. In tine Maurice, and Daniel Gruss. 2020. Take A Way: Exploring the
Proceedings of the 20th annual international symposium on Computer Security Implications of AMD’s Cache Way Predictors. In Proceedings
architecture. 179-190. of the 15th ACM Asia Conference on Computer and Communications

[3] Scott Beamer, Krste Asanovi¢, and David Patterson. 2017. The GAP Security (ASIA CCS "20).
Benchmark Suite. In arXiv. arXiv:1508.03619 [22] Sun Microsystems. 2007. UltraSPARC T2 supplement to the UltraSPARC
[4] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, art chit)ectur € 2007. Technicgl Report.))
and Daniel A. Jiménez. 2019. Perceptron-Based Prefetch Filtering. In [23] Agustin Navarro-Torres, Biswabandan Panda, Jesus Alastruey-Benedé,
2019 ACM/IEEE 46th Annual International Symposium on Computer Pablo Ibafiez, Victor Vifials-Yufera, and Alberto Ros. 2022. Berti: an
Architecture (ISCA). Accurate Local-Delta Data Prefetcher. In 2022 55th IEEE/ACM Interna-
[5] F.Bodin and A. Seznec. 1995. Skewed associativity enhances perfor- tional Symposium on Microarchitecture (MICRO). 975-991. doi:10.1109/
mance predictability. In Proceedings 22nd Annual International Sympo- MICRO56248.2022.00072
sium on Computer Architecture (ISCA). [24] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer. 2007. Adaptive
[6] J.Lawrence Carter and Mark N. Wegman. 1979. Universal classes of Insertion Policies for High Performance Caching. In Proceedings of
hash functions. J. Comput. System Sci. 18, 2 (1979), 143-154. doi:10. i
1016/0022-0000(79)90044-8 (IscA’07). 4 o _
[7] CRC-2.2017. The 2nd Cache Replacement Championship. http://crc2. (25] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based
Cache Attacks via Encrypted-Address and Remapping. In 2018 51st An-

[8] CVP-1.2018. The 1st Championship Value Prediction. https://microarch. nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
org/evpl/ 775-787. doi:10.1109/MICRO.2018.00068
[9] Jeffrey R Diamond, Donald S Fussell, and Stephen W Keckler. 2014. Ar- [26] B. Ramakrishna Rau. 1991. Pseudo-Randomly Interleaved Memory.
bitrary modulus indexing. In 2014 47th Annual IEEE/ACM International SIGARCH Comput. Archit. News 19, 3 (apr 1991), 74-83. doi:10.1145/
Symposium on Microarchitecture. IEEE, 140-152. 1159_53'115961) i)
[10] DPC-3. 2019. The 3rd Data Prefetching Championship. https://dpc3. [27] Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decoupling
compas.cs.stonybrook.edu Ways and Associativity. In 2010 43rd Annual IEEE/ACM International
[11] Antonio Gonzalez, Mateo Valero, Nigel Topham, and Joan M. Parcerisa. Symposium on Microarchitecture. 187-198. doi:10.1109/MICR0.2010.20

1997. Eliminating Cache Conflict Misses through XOR-Based Place- [28] S.Sethumurugan, J. Yin, and J. Sartori. 2021. Designing a Cost-Effective
Cache Replacement Policy using Machine Learning. In 2021 IEEE 27th

International Symposium on High Performance Computer Architecture
(HPCA). 291-303.

[29] André Seznec. 1993. A case for two-way skewed-associative caches.
ACM SIGARCH computer architecture news 21, 2 (1993), 169-178.

[30] Ishan Shah, Akanksha Jain, and Calvin Lin. 2022. Effective Mimicry of
Belady’s MIN Policy. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA).

[31] Z. Shi, X. Huang, A. Jain, and C. Lin. 2019. Applying Deep Learning
to the Cache Replacement Problem. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 413-425.

[20] Jinchun Kim, Elvira Teran, Paul V. Gratz, Daniel A. Jiménez, Seth H.
Pugsley, and Chris Wilkerson. 2017. Kill the Program Counter: Recon-
structing Program Behavior in the Processor Cache Hierarchy. ASPLOS

the 34th Annual International Symposium on Computer Architecture

ece.tamu.edu

ment Functions. In ICS.

[12] John L. Hennessy and David A. Patterson. 2017. Computer Architecture,
Sixth Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[13] HP-Labs. [n.d.]. An integrated cache and memory access time, cycle
time, area, leakage, and dynamic power model. https://www.hplhp.
com/research/cacti

[14] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. Systematic
reverse engineering of cache slice selection in Intel processors. In 2015
Euromicro Conference on Digital System Design. IEEE, 629-636.

[15] Akanksha Jain and Calvin Lin. 2016. Back to the future: Leveraging

Belady’s algorithm for improved cache replacement. In 2016 ACM/IEEE [32] Z_' Shi, A. Jain,. K. SW.ersky, M. Hashemi, P. Ranganathe.m, and Calvin

43rd Annual International Symposium on Computer Architecture (ISCA). Lin. 2021. A Hierarchical Neural Model of Data Prefetching. In Proceed-

IEEE. 78-89. ings of the 26th ACM International Conference on Architectural Support
[16] Akanksha Jain and Calvin Lin. 2018. Rethinking belady’s algorithm to for Programming Languages and Operating Systems (ASPLOS 2021).

accommodate prefetching. In 2018 ACM/IEEE 45th Annual International 861-873.

Symposium on Computer Architecture (ISCA). IEEE, 110-123. [33] H.S. Stone. 1971. Parallel Processing with the Perfect Shuffle. IEEE
[17] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010. Trans. Comput. C-20, 2 (1971), 153-161.

[34] Synopsis. [n.d.]. Synopsys Design Compiler NXT. https:
diction (RRIP). In Proceedings of the 37th Annual International Sympo- //www.synopsys.com/implementation-and-signoff/rtl-synthesis-

sium on Computer Architecture (ISCA’10). test/design-compiler-graphical html. i
Mazen Kharbutli, Keith Irwin, Yan Solihin, and Jaejin Lee. 2004. Using (35] Stephen J. Tarsa, Rangeen Basu Roy Chowdhury, Julien Sebot, Gau-

High performance cache replacement using re-reference interval pre-

[18

—

prime numbers for cache indexing to eliminate conflict misses. In 10th
International Symposium on High Performance Computer Architecture
(HPCA’04). IEEE, 288-299.

[19] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A.L. Narasimha Reddy,

Chris Wilkerson, and Zeshan Chishti. 2016. Path confidence based
lookahead prefetching. In MICRO.

tham Chinya, Jayesh Gaur, Karthik Sankaranarayanan, Chit-Kwan Lin,
Robert Chappell, Ronak Singhal, and Hong Wang. [n. d.]. Post-Silicon
CPU Adaptation Made Practical Using Machine Learning. In ISCA
2019.

N. Topham, A. Gonzalez, and J. Gonzalez. 1997. The design and per-
formance of a conflict-avoiding cache. In Proceedings of 30th Annual
International Symposium on Microarchitecture. 71-80. doi:10.1109/
MICRO.1997.645799

https://arxiv.org/abs/1508.03619
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
http://crc2.ece.tamu.edu
http://crc2.ece.tamu.edu
https://microarch.org/cvp1/
https://microarch.org/cvp1/
https://dpc3.compas.cs.stonybrook.edu
https://dpc3.compas.cs.stonybrook.edu
https://www.hpl.hp.com/research/cacti
https://www.hpl.hp.com/research/cacti
https://doi.org/10.1109/MICRO56248.2022.00072
https://doi.org/10.1109/MICRO56248.2022.00072
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/115953.115961
https://doi.org/10.1145/115953.115961
https://doi.org/10.1109/MICRO.2010.20
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://doi.org/10.1109/MICRO.1997.645799
https://doi.org/10.1109/MICRO.1997.645799

ICS °25, June 08-11, 2025, Salt Lake City, UT, USA

[37] John Tramm, Andrew Siegel, Tanzima Islam, and Martin Schulz. [n. d.].

(38

—

XSBench - The development and verification of a performance abstrac-
tion for Monte Carlo reactor analysis. In PHYSOR 2014 - The Role of
Reactor Physics toward a Sustainable Future.

Georgios Vavouliotis, Gino Chacon, Lluc Alvarez, Paul V. Gratz,
Daniel A. Jiménez, and Marc Casas. 2022. Page Size Aware Cache
Prefetching. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO).

14

[39]

[40]

[41]

Kevin Weston, Vahid Janfaza, Avery Johnson, and Abdullah Muzahid

Kevin Weston, Avery Johnson, Vahid Janfaza, Farabi Mahmud, and
Abdullah Muzahid. 2024. Customizing Cache Indexing Through En-
tropy Estimation. In 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO).

Kevin Weston, Farabi Mahmud, Vahid Janfaza, and Abdullah Muzahid.
2023. SmartIndex: Learning to Index Caches to Improve Performance.
IEEE Computer Architecture Letters 22 (2023).

Chuanjun Zhang. 2006. Balanced Cache: Reducing Conflict Misses of
Direct-Mapped Caches. In 33rd International Symposium on Computer
Architecture (ISCA’06). 155-166. do0i:10.1109/ISCA.2006.12

https://doi.org/10.1109/ISCA.2006.12

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Index Function for Set Associative Caches
	2.2 Alternative Cache Organizations

	3 Main Idea: Duelhash
	3.1 The Efficient Index Function Dueling Mechanism for Cache
	3.2 Cache Remapping Strategy
	3.3 Minimizing The Cache Index Function Transition Cost

	4 Case Study: 16-way Set-Associative LLC
	4.1 Selecting Index Functions for Duelhash
	4.2 Implementation
	4.3 Evaluation Methodology
	4.4 Evaluation Results

	5 Conclusion
	Acknowledgments
	References

