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Abstract
The advent of cutting-edge AI applications has emphasized
the importance of reducing inference latency. Consequently,
efficient model-parallel execution on multiple GPUs repre-
sents a key challenge in achieving high performance through
the partitioning of the target neural network. Nevertheless,
in recent complex deep learning models, as the size of param-
eters continues to increase and overall inference latency is no
longer solely dominated by kernel execution, performance
improvements using multiple GPUs cannot be achieved by
simply exploiting model parallelism without considering
data transfer parallelism and the system topology. To address
this challenge, this paper proposes SortingHat, which gener-
ates an efficient schedule of target neural network models on
multi-GPU systems to minimize inference latency. Initially,
SortingHat partitions a target model into multiple submodels
based on dominator analysis to find the best solution within
a reasonable time. Subsequently, SortingHat finds the best
schedule for each submodel using Mixed Integer Linear Pro-
gramming, taking system topology into account to exploit
both model parallelism and data transfer parallelism. Once
the schedules of all submodels are found, they are merged
and executed on the ready queue-based executor. Evalua-
tions on diverse multi-GPU environments with various large
language models show that SortingHat achieves an average
speedup of 2.28× and up to 2.96× over the single GPU on
TVM baseline.
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1 Introduction
Deep neural network (DNN) have become essential for
cutting-edge AI services such as chatbots [17, 39] or coding
assistants [2, 16]. Most of these services include interactive
interfaces, which implies that latency is more important than
throughput because users usually expect a fast response to
their questions or requests [42]. To accelerate DNNs for low
inference latency, the performance of single GPUs has con-
tinuously improved, and new hardware accelerators, such as
neural processing units (NPUs) [8, 25], have been introduced.
However, parallelism cannot be exploited within single-GPU
systems, and the accelerators which target specific models
are difficult to support newly introduced neural network
architectures immediately. These limitations have rendered
applying parallelism on multi-GPU systems a prevalent so-
lution for accelerating DNNs.

In multi-GPU systems, model parallelism is typically used
to minimize inference latency by maximizing the concurrent
execution of multiple independent operations [19, 46]. While
simple-structured models have few benefits from model par-
allelism, data transfer parallelism, which refers to simultane-
ous transmissions of parameters by fully utilizing PCIe buses
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Figure 1: The structure of (a) GPT2-xl and (b)
OpenLLaMA-7B models, represented by rectangles cor-
responding to operations such as Matmul and Trans-
pose. (c) The elapsed time of data transfer and kernel
execution on a single NVIDIA V100 GPU [30] for each
model. The shape indicates (batch, sequence length).

and NVLinks [33], can be applied efficiently regardless of
the model structure. For instance, DeepPlan [24] proposed
parallel transmission (PT) that the half of the parameters
are initially transferred to the secondary GPU and then re-
transferred to the first GPU through NVLink, while the other
half are transferred to the first GPU at the beginning. We
believe that a judicious combination of these parallelism
techniques will lead to a remarkable reduction in inference
latency.

While prior studies show that those parallelisms are effec-
tively utilized, it is not guaranteed that the methodologies
always reduce inference latency. In the case of model paral-
lelism, executing partitioned subgraphs on multiple GPUs
inevitably incurs additional data transfer between GPUs,
and the distribution of subgraphs across different GPUs can
lead to varying performance. In data transfer parallelism,
PCIe contention often occurs when parallel data transfers
are done over the same PCIe buses, or differing PCIe band-
width results in different data transfer time. Taken together,
the performance of individual GPUs and the configuration
of data transfer paths significantly impact the overall latency.
Therefore, it is crucial to find the best schedule that takes
into account System Topology, which encompasses both the
data transfer topology and GPU performance.

In conclusion, it is essential to develop a scheduling strat-
egy that considers model parallelism, data transfer paral-
lelism, and system topology to minimize inference latency
in diverse multi-GPU systems. Given that scheduling with
a single factor approach is already complicated, attempting
to address all the factors results in search space explosion.
Therefore, the key challenge in minimizing latency is iden-
tifying the best schedule within a reasonable time using a
sophisticated scheduling algorithm, avoiding the explosion
of search space.
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Figure 2: DifferentGPU selections on theV100 server of
Figure 8(a): (a) One PCIe bus and (b) two PCIe buses are
used, and (c) NVLink is 2× faster than (b). The orange
lines represent data transfer paths for inference with
selected GPUs.

To tackle this challenge, this paper presents SortingHat, a
novel framework that finds the best schedule by maximizing
both model and data transfer parallelism with considera-
tion of system topology on multi-GPU systems. SortingHat
first represents a target deep learning model as a computa-
tional graph and partitions it into multiple submodels based
on dominator analysis, thereby preventing search space ex-
plosion. Next, SortingHat finds the best schedule for each
submodel using Mixed Integer Linear Programming (MILP).
The MILP incorporates multiple expressions for latency esti-
mation that reflect various constraints such as data transfer
parallelism, model parallelism, and system topology. Once
all schedules of submodels are identified, they are merged
and run on the ready queue-based executor.
We evaluated SortingHat on three multi-GPU environ-

ments; two homogeneous servers with four NVIDIA V100
GPUs [30] and three RTX A6000 GPUs [32], respectively,
and one heterogeneous server with two high-performance
GPUs and two low-performance GPUs. We analyzed its per-
formance on representative LLMs to prove the effectiveness
of SortingHat for different model structures. In our experi-
ments, SortingHat achieved an average speedup of 2.28× and
up to 2.96× over the single GPU on TVM [9] baseline, while
state-of-the-art techniques such as DeepPlan [24] and Effi-
cientMIP [46] achieved an average speedup of 1.93×, 1.16×
and up to 2.14×, 1.62×, respectively.

This paper offers the following contributions:

• Avoidance of search space explosion through model
partitioning based on dominator analysis.

• MILP-based scheduling with the system topology con-
sideration: data transfer topology and GPU perfor-
mances.

• Ready queue-based executor with maximized model
parallelism and data transfer parallelism.

• Extensive evaluation of SortingHat with various neural
networks in diverse multi-GPU environments.
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Figure 3: (a) An example neural network model. The
expected most efficient execution timelines on (b) a
single GPU1, (c) GPU1 and GPU2, and (d) GPU1 and
GPU3, based on the topology of V100 server in Figure 2.

2 Background and Motivation
2.1 Model and Data Transfer Parallelism
The effect of model parallelism is highly influenced by target
model structures. Complex models, characterized by multi-
ple branches, can obtain significant performance gains by
distributing the execution of different operations across mul-
tiple GPUs. For example, Figure 1(a) and (b) depict that the
OpenLLaMA-7B model with a complex structure includes
many branches that can be executed concurrently, while
the GPT2-xl model with a simple structure has almost no
chance of applying model parallelism. This implies that more
opportunities for model parallelism exist in complex models.
While models with a simple structure have few benefits

from model parallelism, data transfer parallelism can be a
promising alternative. Figure 1(c) shows that the data trans-
fer overhead exceeds the kernel execution time, regardless
of the input shape. This means that total latency is influ-
enced not only by kernel execution but also by data transfer.
Despite significant efforts to reduce parameter size by com-
pression or quantization [10, 20, 23, 43, 53], the size of whole
parameters in models has continued to increase steadily in
recent years [15] and this trend is unlikely to change in the
near future. In this context, DeepPlan [24] suggested parallel
data transfer of parameters using independent PCIe buses
and NVLinks to reduce inference latency. This strategy is
applicable to a broad range of models, and therefore remains
effective even for relatively simple model structures.

To achieve synergy by combining both types of parallelism,
data transfers and computations can be overlapped [29].
However, recent studies aimed at reduction of inference
latency have primarily focused on only one of these par-
allelism strategies. DeepPlan proposed an efficient method
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Figure 4: Performance difference due to different GPU
selections on the V100 server in Figure 2, even with the
same schedule. Each performance is normalized to the
performance on a single GPU1.

for data transfer parallelism, yet it did not further reduce
inference latency by exploiting model parallelism. In con-
trast, EfficientMIP [46] introduced a method for searching
the best schedule using model parallelism, but it overlooked
the potential benefits of data transfer parallelism. Therefore,
as focusing exclusively on either data transfer parallelism
or model parallelism often misses opportunities for addi-
tional performance gains, both parallelism strategies must
be considered collectively to find the most efficient schedule.

2.2 System Topology on Multi-GPU System
With the widespread adoption of multi-GPU environments,
system topology can vary based on several factors such as
GPU performance, the number of PCIe buses, inter-GPU data
link interfaces, and support for peer-to-peer (P2P) data trans-
fer [27]. Even worse, although advanced GPU-based servers
use homogeneous all-to-all networks, real-world clusters
often still consist of heterogeneous GPUs [41, 42] or rely on
PCIe buses connecting the CPU or DRAM. These practical
factors remain important when considering performance and
scalability. As a result, the optimal configuration for maxi-
mizing both data transfer parallelism and model parallelism
is not identical depending on the system environment. For
instance, although the data transfers from a CPU to GPUs
in Figure 2 involve the same number of GPUs, their per-
formance differs significantly. The data transfer speed of
Figure 2(a) is up to twice as slow as that of Figure 2(b), as
Figure 2(b) utilizes all PCIe buses1 at full bandwidth, while
Figure 2(a) relies on a single PCIe bus operating at half band-
width. Figure 2(c) even outperforms Figure 2(b) thanks to
the doubled P2P data transfer bandwidth. If the performance
of each GPU were different, determining the optimal GPU
selection would be clearly more complex.

More specifically, Figure 3 demonstrates that the inference
latency can vary depending on the system configurations,
even with the same schedule. The only difference between
Figure 3(c) and (d) is the data transfer efficiency resulting
from the selection of different GPUs. As GPU1 and GPU2
1In this paper, PCIe bus refers to the PCIe link originating from CPU.
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Figure 5: An overview of SortingHat framework.

share the same PCIe bus, data transfer speed of each GPU
is half of the maximum bandwidth. In contrast, GPU1 and
GPU3 can transfer data at full bandwidth, as they utilize
separate PCIe buses. Due to this difference, operations C and
D need to wait significantly longer in the GPU1+GPU2 con-
figuration, resulting in even slower performance compared
to a single GPU inference of Figure 3(b).
Figure 4 shows the actual performance differences when

target models are executed across the configurations in Fig-
ure 2. The schedules were generated by EfficientMIP [46]
assuming a two-GPU system. Experimental results show that
the GPU1+GPU3 configuration is actually faster than the
GPU1+GPU2 configuration, as we expected. Furthermore,
GPU1+GPU4 consistently outperforms GPU1+GPU3, owing
to the 2× faster NVLink connection. This analysis highlights
the importance of considering system topology in multi-GPU
environments to optimize end-to-end inference performance.

2.3 Search Space for Latency Estimation
As mentioned earlier, several factors including GPU perfor-
mance and data transfer speed influence the inference latency
of a target model. Moreover, the overlap of data transfer and
kernel execution or emerging techniques such as parallel
transmission further complicates latency estimation. The
easiest way to simplify latency estimation is to ignore or
limit certain factors, but this approach does not guarantee
an optimal solution. For non-complex models, the optimal
schedule cannot be found without considering data transfer
parallelism, while model parallelism is crucial for complex
models. Therefore, it is essential to search for the optimal
schedule by comprehensively considering all factors that in-
fluence inference latency, with a realistic latency estimation.

Finding the optimal schedule using a brute-force algorithm
is impractical in terms of scheduling efficiency. Heuristic al-
gorithmsmay serve as potential solutions, but they do not en-
sure optimality. One of the most commonly used approaches
in such cases is Mixed Integer Linear Programming (MILP)

which involves defining an objective function and formulat-
ing constraints as inequalities consisting of integer variables
to find the optimal solution [19, 46, 48, 50, 56]. Although opti-
mality is not always guaranteed because this approach does
not always explore all possible cases, it generally provides
better search efficiency and the solution tends to converge
closer to the optimal as the running time of MILP increases.
However, for models with a large number of nodes, MILP
becomes practically infeasible due to the rapid growth of the
search space. Obviously, the search space would grow fur-
ther when considering system topology and various latency
minimization techniques. To address this challenge, Sorting-
Hat presents a method that provides an efficient multi-GPU
schedule along with a realistic latency estimation.

3 SortingHat
The overview of SortingHat is illustrated in Figure 5. First,
SortingHat profiles a target model to gather mandatory infor-
mation including data transfer time, execution times of each
operation on each GPU, and memory requirements. Then,
based on the results of dominator analysis, SortingHat parti-
tions the model into multiple submodels to reduce the search
space. For each submodel, a MILP-based search process finds
the best schedule, taking into account the system topology,
the schedule of preceding submodels, and profiling results.
The schedules for all submodels are then merged to form the
entire model. Lastly, SortingHat enqueues the merged model
into ready queues at the subgraph level and executes the
subgraphs concurrently, overlapping data transfer and ker-
nel execution. Each element is popped from the ready queue
whenever the GPU is ready, until the queue is empty. Please
note that the overhead and complexity of dominator analysis
and MILP are effectively amortized, as they are applied only
once before a series of inferences.



SortingHat: System Topology-aware Scheduling of Deep Neural Network Models ... ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

F
100

GPU1

GPU4

(c)

(b)

A

B C

Data Transfer(H2D) Kernel Execution Data Transfer(P2P)

5

B
100

D
100

B
50

D
50

F
50

C
100

C
50

E
50

5

5

= 410

= 455

5

D

E
100

G
100

G
50

E
100

5

B
100

D
100

B
50

D
50

G
50

C
100

C
50

E
50

5

5

F
100

G
100

F
50

A

A

5

5

B
100

D
100

B
50

D
50

C
100

C
50

5

A

5

E
100

G
100

E
50

G
50

F
100

F
50

5

(a)

A

B C

E F

D

E F

G

D

0 100 2000 100 200

GPU1

GPU4
5

B
100

D
100

B
50

D
50

C
100

C
50

5

A

0 100 200

F
100

F
50

E
50 55

E
100

G
100

G
50

Input Data

(d)

G

Model

Submodel 1

Submodel 2

Figure 6: (a) Dominator analysis of an example model.
(b) Submodels partitioned by node D. A node with
dashed line is a placeholder node. (c) Submodel 1 and 2
are scheduled independently. (d) Submodel 1 is sched-
uled first, then Submodel 2 is scheduled considering
the schedule of Submodel 1.

3.1 Model Partitioning via Dominator
Analysis

While complex model structures provide opportunities for
model parallelism, partitioning the entire model into submod-
els is necessary to reduce the search space, even though it
sacrifices some degree of parallelism. Therefore, identifying
appropriate partitioning points is crucial for both reducing
search time and preserving the potential of parallelism.
Intuitively, branches would remain in submodels if the

model is partitioned based on the nodes that must be visited
to go from an input node to an output node. In Figure 6(a), the
number of possible paths from input node A to output node
G is 4, which are (1) A-B-D-E-G, (2) A-B-D-F-G, (3) A-C-D-E-
G, and (4) A-C-D-F-G. Among these paths, node D is always
traversed, except for the input and output nodes. When the
model is partitioned based on node D, the branches of (A, B,
C, D) and (D, E, F, G) can be maintained in two submodels.

Therefore, identifying these points, also called as partition
nodes [50], is a critical aspect of model partitioning. These
points are effectively determined through dominator analy-
sis, a well-known control flow analysis methodology used in
compiler optimization. In dominator analysis, the dominators
of node 𝑣 refer to the set of nodes that appear in all paths
from the input node to node 𝑣 . It implies that partition nodes
can be defined as the dominators of the output node, making
it straightforward to identify partitioning points by recog-
nizing the dominators of the output node. While dominator
analysis is typically associated with control flow analysis
and deep learning models are inherently data flow-based as
described in Figure 1(a) and (b), it is a widely used technique
in deep learning compiler optimizations, such as operator fu-
sion [9]. As a result, it can be effectively applied to SortingHat
as well.

Once dominator analysis is completed, the target model is
partitioned into several submodels based on the dominator
nodes, as depicted in Figure 6(b). Please note that the size of
the submodels can be adjusted by the number of dominator
nodes included in each submodel. The last dominator node
in each submodel becomes the output node of the submodel,
while an additional placeholder node is added as the input
node except for the first submodel. The placeholder node
which is represented with a dashed line in Figure 6(b) is not
an actual operation but a virtual node used to simply hold
the data from the output node of preceding submodel. Note
that the correctness of model is guaranteed because the data
dependencies are not altered.
After partitioning the model into submodels, SortingHat

finds the best schedule for each submodel, as shown in Fig-
ure 6(d). An important point here is that the schedule of
preceding submodel must be considered. If each submodel is
scheduled independently, the information about data trans-
fer time and kernel execution time for each submodel cannot
be shared. This makes it challenging to find the best solution
from the perspective of the entire model, as demonstrated
in Figure 6(c): the latency of the schedule in Figure 6(c) is
higher compared to that of (d). Therefore, after reducing the
search space through model partitioning based on dominator
analysis, SortingHat should find the best schedule for each
submodel using the schedule of the preceding submodel.

3.2 Ready Queue-based Executor
After model partitioning, it is important to minimize infer-
ence latency by exploiting the potential parallelism during
inference. As illustrated in Figure 5, this can be accomplished
by creating multiple ready queues per GPU for subgraph in-
ference and per PCIe bus for data transfer. Also, based on
the principles of DeepPlan [24], SortingHat implements di-
rect host access (DHA) method and parallel transmission
(PT) concepts. DHA allows direct parameter access from
host memory, and PT facilitates the transfer of parameters
to adjacent GPUs, which are later copied to the target GPU
through the fast P2P data transfer. Algorithm 1 details how
SortingHat maximizes parallelism through the ready queue-
based executor, with the merged subgraphs as an input.

For efficient data transfer, a single GPU should exclusively
utilize the PCIe bus to avoid contention and thereby the max-
imum bandwidth can be secured. While a simple approach
might involve assigning exclusive access of a PCIe bus to
a single GPU until all data transfers in the GPU are com-
pleted, this might result in long starvation for other GPUs.
To address this issue, SortingHat proposes a round-robin pre-
emption scheme that allows each GPU to exclusively access
PCIe buses in turn. Initially, SortingHat creates ready queues
according to the PCIe bus (line 2, 28). Then, parameters in the
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Algorithm 1 Ready Queue-based Executor
1: function 𝐶𝑜𝑝𝑦𝑃𝑎𝑟𝑎𝑚(𝑝𝑖𝑑)
2: 𝑝𝑎𝑟𝑎𝑚𝑄 := Parameters that are copied via 𝑃𝐶𝐼𝑒𝑝𝑖𝑑 ,

enqueued based on the order pre-defined by MILP
3: while !𝑝𝑎𝑟𝑎𝑚𝑄.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () do
4: 𝑝 = 𝑝𝑎𝑟𝑎𝑚𝑄.𝑝𝑜𝑝 ()
5: Copy 𝑝 to destination GPU on 𝐻2𝐷𝑆𝑡𝑟𝑒𝑎𝑚𝑝.𝑑𝑠𝑡𝑔𝑖𝑑

6: Wait until copying 𝑝 is finished
7: Mark 𝑝 as copyFin
8: end function
9:
10: function 𝐸𝑥𝑒𝑐𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔𝑖𝑑)
11: 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑄 := Subgraphs that are run on 𝐺𝑃𝑈𝑔𝑖𝑑 ,

enqueued based on the order pre-defined by MILP
12: while !𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑄.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () do
13: 𝑠𝑔 = 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑄.𝑝𝑜𝑝 ()
14: if 𝑠𝑔.𝑒𝑥𝑒𝑐𝑇𝑦𝑝𝑒 != DHA then
15: for 𝑝 in 𝑠𝑔.𝐼𝑛𝑝𝑢𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do
16: Wait until 𝑝 is marked as copyFin
17: if 𝑝.𝑑𝑠𝑡𝐺𝑖𝑑 != 𝑔𝑖𝑑 then
18: Copy 𝑝 to 𝐺𝑃𝑈𝑔𝑖𝑑 on 𝑃2𝑃𝑆𝑡𝑟𝑒𝑎𝑚𝑝.𝑑𝑠𝑡𝑔𝑖𝑑,𝑔𝑖𝑑

19: for 𝑜𝑝 in 𝑠𝑔.𝐼𝑛𝑝𝑢𝑡𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 do
20: Wait until 𝑜𝑝 is marked as execFin
21: if 𝑜𝑝.𝑑𝑠𝑡𝐺𝑖𝑑 != 𝑔𝑖𝑑 then
22: Copy the result of 𝑜𝑝 to 𝐺𝑃𝑈𝑔𝑖𝑑

on 𝑃2𝑃𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑝.𝑑𝑠𝑡𝑔𝑖𝑑,𝑔𝑖𝑑

23: Run 𝑠𝑔 on 𝐸𝑥𝑒𝑐𝑆𝑡𝑟𝑒𝑎𝑚𝑔𝑖𝑑

24: Mark all operators in 𝑠𝑔 as execFin
25: end function
26:
27: for 𝑝𝑖𝑑 in 𝑟𝑎𝑛𝑔𝑒 (𝑛𝑢𝑚𝑃𝐶𝐼𝑒) do
28: spawn thread 𝐶𝑜𝑝𝑦𝑃𝑎𝑟𝑎𝑚(𝑝𝑖𝑑)
29: for 𝑔𝑖𝑑 in 𝑟𝑎𝑛𝑔𝑒 (𝑛𝑢𝑚𝐺𝑃𝑈 ) do
30: spawn thread 𝐸𝑥𝑒𝑐𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔𝑖𝑑)

ready queue are copied to the target GPU with a pre-defined
order by MILP (line 3-7), as briefly outlined in Figure 7(d).

In the case of subgraph inference, ready queues are created
per GPU, not PCIe bus (line 11, 30). To execute a subgraph,
the input parameters are prepared in three different ways.
First, if a subgraph is executed with DHA, the parameter
copying process is unnecessary (line 14). Second, when the
input parameters reside on adjacent GPUs by PT, additional
copying is required (line 17-18). All other input parameters
should be ready on the GPU by𝐶𝑜𝑝𝑦𝑃𝑎𝑟𝑎𝑚 function (line 16).
Once all input parameters are ready, the result data from
input operators is also copied by a similar process (line 19-
22), and then the subgraph can be executed (line 23). This
process is repeated until all ready queues are empty, and the
result of final output node becomes the inference result of
original model.

Table 1: Summary of constant variables used in MILP.
Constant Variables

𝑉
The set of all nodes
(operation nodes and parameter nodes)

𝐸 The set of edges
𝑊 The set of parameter nodes (𝑊 ⊂ 𝑉 )
𝑘 The number of GPUs

𝑞
The maximum number of subgraphs per GPU
in a submodel (multiple of 2)

𝐻 Large positive value that can be treated as infinity
𝑀𝑖 Maximum memory size of 𝐺𝑃𝑈𝑖

𝑚𝑣 Memory size of node 𝑣

𝑇0,𝑖
Data transfer speed from DRAM to 𝐺𝑃𝑈𝑖

(time per size)

𝑇𝑖1,𝑖2
Data transfer speed from 𝐺𝑃𝑈𝑖1 to 𝐺𝑃𝑈𝑖2

(time per size). If 𝑖1 is equal to 𝑖2, the value is 0.
𝑃𝐺𝑃𝑈
𝑣,𝑖 Latency of node 𝑣 on 𝐺𝑃𝑈𝑖 without DHA

𝑃𝐷𝐻𝐴
𝑣,𝑖 Latency of node 𝑣 on 𝐺𝑃𝑈𝑖 with DHA

𝑃𝐶𝐼𝑒𝑆𝑡𝑎𝑟𝑡𝐼𝑑𝑥
The set of subgraph indices that H2D data transfer
is begun at first in each PCIe bus.

𝑃𝑟𝑒𝑣𝑀𝑖 Size of memory which is already in use on the 𝐺𝑃𝑈𝑖 .

𝑃𝑟𝑒𝑣𝐷𝑇𝐹𝑖𝑛𝑑
Finish time of data transfer on 𝑃𝐶𝐼𝑒𝑑 in the previous
MILP. For the first MILP, the value is 0.

𝑃𝑟𝑒𝑣𝑆𝐺𝐹𝑖𝑛𝑖
Finish time of subgraph execution on 𝐺𝑃𝑈𝑖 in the
previous MILP. For the first MILP, the value is 0.

𝐹𝑖𝑥𝑒𝑑𝑁𝑜𝑑𝑒𝑠

The set of (𝑣 , 𝑖) pair, representing that node 𝑣 is
already allocated to 𝐺𝑃𝑈𝑖 in the previous MILP.
For the first MILP, the set is empty.

𝑃𝑎𝑟𝑒𝑛𝑡𝐷𝑇𝑗
Preceding subgraph index that data transfer is
done right before 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 ( 𝑗 ∉ 𝑃𝐶𝐼𝑒𝑆𝑡𝑎𝑟𝑡𝐼𝑑𝑥)

𝑃𝑎𝑟𝑒𝑛𝑡𝑃𝐶𝐼𝑒 𝑗 Index of PCIe bus in which 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 is included.

3.3 MILP-based Execution Plan Scheduling
SortingHat proposes a MILP model that incorporates key
factors to maximize both model parallelism and data transfer
parallelism, considering system topology and advanced data
transfer techniques such as DHA and PT. This section ex-
plains the construction of the MILP model and demonstrates
how the best schedules for submodels can be derived.

Prerequisites. The constant variables for the MILP inequali-
ties are summarized in Table 1. Please note that these con-
stant variables remain fixed during a single MILP run, but
not across multiple MILP runs. The term "subgraph" in the
context of the MILP refers to a subgraph in a submodel. A
subgraph in MILP can hold both parameter nodes and opera-
tion nodes, and each type of node is processed by pre-defined
order as described in Figure 7(c) and (d). 𝑖 (= 1, 2, ..., 𝑘) rep-
resents the indices of GPUs, and 𝑗 (= 0, 1, ..., 𝑘𝑞) represents
the indices of subgraphs. One important thing to note is that
𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ0 is a set of parameter nodes which are not copied
to GPU memory but remained in DRAM for DHA. Each
submodel can be split up to (𝑘𝑞 + 1) subgraphs, and 𝐺𝑃𝑈𝑖

contains 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ (𝑖−1)𝑞+1≤ 𝑗≤𝑖𝑞 as depicted in Figure 7(b). 𝑣
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Figure 7: Details of MILP with a topology of V100 server in Figure 8(a). (a) An example model after dominator
analysis. (b) Outline of subgraph slots. (c, d) Order of subgraph execution and data transfer. (e) An example
intermediate result of MILP. 𝑇𝑖1,𝑖2 is assumed to be 0 for simplicity and square brackets [Start, Fin] of DT and SG
mean 𝐷𝑇𝑆𝑡𝑎𝑟𝑡 𝑗 , 𝐷𝑇𝐹𝑖𝑛 𝑗 , 𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 and 𝑆𝐺𝐹𝑖𝑛 𝑗 , respectively.

is an index for any types of nodes and𝑤 is an index only for
parameter nodes. Edges are denoted as (𝑢, 𝑣), which repre-
sents an edge from node 𝑢 to node 𝑣 .

Objective. The ultimate goal of SortingHat is to minimize
inference latency subject to the given constraints. To achieve
this, SortingHat models the estimated latency of a submodel
as𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 and searches for the best schedule that min-
imizes 𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 while satisfying all constraints.

minimize 𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦

subject to Assignment Constraints, Data Movement,

Memory Limit, Parameter Copy, Subgraph Inference (1)

Assignment Constraints. Binary variable 𝑥𝑣,𝑗 indicates
whether node 𝑣 is a member of 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 , with a value of 1
assigned when node 𝑣 is placed in 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 , otherwise 0.
This variable has self-imposed constraints, regardless of data
transfer and subgraph execution. For example, each node
should be involved in only one subgraph (2), and already
fixed nodes should be started with the first subgraph of the
allocated GPU (3).

𝑘𝑞∑︁
𝑗=0

𝑥𝑣,𝑗 = 1 (∀𝑣) (2)

𝑥𝑣,(𝑖−1)𝑞+1 = 1 (∀(𝑣, 𝑖) ∈ 𝐹𝑖𝑥𝑒𝑑𝑁𝑜𝑑𝑒𝑠) (3)

Moreover, 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ0 is only for parameter nodes, not for
operator nodes. This implies that operator nodes must not

be assigned in 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ0 (4). On the other hand, the place-
ment of parameter nodes is determined by the execution
type of the operator nodes. If an operator node is executed
with DHA, the input parameter nodes must be placed in
DRAM (𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ0). Otherwise, they should be placed in
GPUs, not DRAM (5). For instance, in Figure 7(e), parame-
ter nodes 0, 1, 4, and 18 are the input parameter nodes of
𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ1, 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ9 and 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ7 that are executedwith
DHA, respectively, and they are all involved in 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ0.
In contrast, other parameter nodes that are executed without
DHA are included in 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗>0.

𝑥𝑣,0 = 0 (∀𝑣 ∈ 𝑉 \𝑊 ) (4)

𝑥𝑤,0 =

𝑘𝑞/2∑︁
𝑗=1

𝑥𝑣,2𝑗−1 (∀(𝑤, 𝑣) ∈ 𝐸) (5)

Finally, subgraphs should be contiguous, which executed
without interrupting or interleaving. SortingHat borrowed
the definition and inequalities of contiguity from Efficient-
MIP [46], where the binary variable 𝑧𝑣,𝑗 is 1 if 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 is
reachable from node 𝑣 . A subgraph is contiguous if a set of
𝑧𝑣,𝑗 values that satisfy the following inequalities exist (6-8).

𝑧𝑣,𝑗 ≥ 𝑥𝑣,𝑗 (∀𝑣) (∀𝑗 > 0) (6)
𝑧𝑢,𝑗 ≥ 𝑧𝑣,𝑗 (∀(𝑢, 𝑣) ∈ 𝐸) (∀𝑗 > 0) (7)
𝑧𝑣,𝑗 ≤ 𝑥𝑣,𝑗 − 𝑥𝑢,𝑗 + 1 (∀(𝑢, 𝑣) ∈ 𝐸) (∀𝑗 > 0) (8)
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Data Movement. Incoming edges to subgraphs must be recog-
nized when calculating data transfer time or subgraph execu-
tion time. To fulfill these requirements, two binary variables
are introduced. The first variable is 𝐸𝑑𝑔𝑒𝐼𝑛𝑢,𝑗 whose value is
1 if node 𝑢 has an outgoing edge to 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 (9). If 𝑥𝑣,𝑗 is
1 and 𝑥𝑢,𝑗 is 0 for edge (𝑢, 𝑣), 𝐸𝑑𝑔𝑒𝐼𝑛𝑢,𝑗 must be 1 due to the
inequality, thus indicating that 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 has an incoming
edge from node 𝑢. The second variable is 𝐶𝑜𝑝𝑦𝐼𝑛𝑣,𝑖, 𝑗 whose
value is 1 if node 𝑣 is assigned in𝐺𝑃𝑈𝑖 and has an outgoing
edge to 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 (10). This variable is used to determine
whether the result of node 𝑣 should be copied from 𝐺𝑃𝑈𝑖 to
𝐺𝑃𝑈⌊ ( 𝑗−1)/𝑞+1⌋ . In Figure 7(e), 𝐸𝑑𝑔𝑒𝐼𝑛2,9 becomes 1 and thus
𝐶𝑜𝑝𝑦𝐼𝑛2,1,9 also becomes 1, which means that node 2 with
an outgoing edge to 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ9 is allocated to 𝐺𝑃𝑈1.

𝐸𝑑𝑔𝑒𝐼𝑛𝑢,𝑗 ≥ 𝑥𝑣,𝑗 − 𝑥𝑢,𝑗 (∀(𝑢, 𝑣) ∈ 𝐸) (∀𝑗 > 0) (9)

𝐶𝑜𝑝𝑦𝐼𝑛𝑣,𝑖, 𝑗 ≥
𝑖𝑞∑︁

𝑗 ′=(𝑖−1)𝑞+1
𝑥𝑣,𝑗 ′ + 𝐸𝑑𝑔𝑒𝐼𝑛𝑣,𝑗 − 1

(∀𝑣) (∀𝑖) (∀𝑗 > 0) (10)

Memory Limit. 𝑃𝑟𝑒𝑣𝑀𝑖 is required to inherit the memory
usage of each GPU from previous MILP. Along with the
variable, it is assumed that the memory requirement is the
sum of the nodes copied to𝐺𝑃𝑈𝑖 , the nodes allocated in𝐺𝑃𝑈𝑖 ,
and the memory in use on 𝐺𝑃𝑈𝑖 from the previous MILP
(11). However, this assumption may vary depending on the
memory allocation policy of a target system and thus (11) can
be modified to accurately reflect the real-world environment.

𝑀𝑖 ≥
∑︁
𝑣

(
𝑚𝑣 ·

𝑖𝑞∑︁
𝑗=(𝑖−1)𝑞+1

( 𝑖−1∑︁
𝑖′=1

𝐶𝑜𝑝𝑦𝐼𝑛𝑣,𝑖′, 𝑗 +
𝑘∑︁

𝑖′=𝑖+1
𝐶𝑜𝑝𝑦𝐼𝑛𝑣,𝑖′, 𝑗

))

+
∑︁
𝑣

(
𝑚𝑣 ·

𝑖𝑞∑︁
𝑗=(𝑖−1)𝑞+1

𝑥𝑣,𝑗

)
+ 𝑃𝑟𝑒𝑣𝑀𝑖 (∀𝑖) (11)

Parameter Copy. Data transfers are performed according to
a round-robin preemption policy, as described in Figure 7(d).
In this figure, the 𝑃𝑎𝑟𝑒𝑛𝑡𝐷𝑇𝑗 values are assigned as follows:
𝑃𝑎𝑟𝑒𝑛𝑡𝐷𝑇5 = 1, 𝑃𝑎𝑟𝑒𝑛𝑡𝐷𝑇2 = 5, etc. If the index of subgraph
is an element of 𝑃𝐶𝐼𝑒𝑆𝑡𝑎𝑟𝑡𝐼𝑑𝑥 , data transfer begins imme-
diately after the last data transfer from the previous MILP
on the PCIe bus is completed (12). Otherwise, the data trans-
fer begins immediately after 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑃𝑎𝑟𝑒𝑛𝑡𝐷𝑇𝑗

completes a
transfer (13). The data transfer is finished after all parameters
in the subgraph are copied (14).

𝐷𝑇𝑆𝑡𝑎𝑟𝑡 𝑗 = 𝑃𝑟𝑒𝑣𝐷𝑇𝐹𝑖𝑛𝑃𝑎𝑟𝑒𝑛𝑡𝑃𝐶𝐼𝑒 𝑗 (∀𝑗 ∈ 𝑃𝐶𝐼𝑒𝑆𝑡𝑎𝑟𝑡𝐼𝑑𝑥) (12)
𝐷𝑇𝑆𝑡𝑎𝑟𝑡 𝑗 = 𝐷𝑇𝐹𝑖𝑛𝑃𝑎𝑟𝑒𝑛𝑡𝐷𝑇𝑗

(∀𝑗 > 0, 𝑗 ∉ 𝑃𝐶𝐼𝑒𝑆𝑡𝑎𝑟𝑡𝐼𝑑𝑥) (13)

𝐷𝑇𝐹𝑖𝑛 𝑗 = 𝐷𝑇𝑆𝑡𝑎𝑟𝑡 𝑗 +
∑︁
𝑤

𝑥𝑤,𝑗 ·𝑚𝑤 ·𝑇0,⌊ ( 𝑗−1)/𝑞+1⌋ (∀𝑗 > 0)

(14)

Subgraph Inference. To determine when a subgraph is ready
for beginning, the finish time of the input nodes must be

known. 𝑁𝑜𝑑𝑒𝐹𝑖𝑛𝑣 means the finish time of operator node 𝑣
and is set to the time at which the execution of its assigned
subgraph is completed (15). Similarly, 𝑁𝑜𝑑𝑒𝐹𝑖𝑛𝑤 is the finish
time of parameter node𝑤 and is set to the time at which the
data transfer of its assigned subgraph is finished (16). The
inequalities (15-16) are intended to be meaningless when 𝑥𝑣,𝑗
or 𝑥𝑤,𝑗 equals 0.
𝑁𝑜𝑑𝑒𝐹𝑖𝑛𝑣 ≥ 𝑆𝐺𝐹𝑖𝑛 𝑗 − (1 − 𝑥𝑣,𝑗 ) · 𝐻 (∀𝑣 ∈ 𝑉 \𝑊 ) (∀𝑗 > 0) (15)
𝑁𝑜𝑑𝑒𝐹𝑖𝑛𝑤 ≥ 𝐷𝑇𝐹𝑖𝑛 𝑗 − (1 − 𝑥𝑤,𝑗 ) · 𝐻 (∀𝑤) (∀𝑗 > 0) (16)

Subgraph inference is performed in parallel on each GPU,
as shown in Figure 7(c). If the subgraph is the first to run
on the GPU, its execution begins immediately after the last
inference from the previous MILP on the GPU is completed
(17). Otherwise, it starts after the inference of the preceding
subgraph is finished (18). The last condition is that all input
nodes must be ready for use (19). However, when an input
parameter node is allocated in same subgraph, (19) could be
null. For example, in the case of node 7 in Figure 7, the earliest
time at which node 7 can be executed is 25, which is after
the data transfer of the input parameter node 6 is completed.
Since 𝐸𝑑𝑔𝑒𝐼𝑛6,10 is 0, (19) is negated, and thus 𝑆𝐺𝑆𝑡𝑎𝑟𝑡10
becomes 10, which is the value of 𝑆𝐺𝐹𝑖𝑛9, according to (18).
This implies that operator node 7 can be executed even if
the input parameter node 6 is not ready. (20) is added to
prevent the invalidity when both an operator node and its
input parameter node are placed in the same 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑗 .

𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 ≥ 𝑃𝑟𝑒𝑣𝑆𝐺𝐹𝑖𝑛⌊ ( 𝑗−1)/𝑞+1⌋ (∀𝑗 = 1𝑚𝑜𝑑 𝑞) (17)
𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 ≥ 𝑆𝐺𝐹𝑖𝑛 𝑗−1 (∀𝑗 > 0, 𝑗 ≠ 1𝑚𝑜𝑑 𝑞) (18)
𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 ≥ 𝑁𝑜𝑑𝑒𝐹𝑖𝑛𝑣 − (1 − 𝐸𝑑𝑔𝑒𝐼𝑛𝑣,𝑗 ) · 𝐻

(∀𝑣) (∀𝑗 > 0) (19)
𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 ≥ 𝑁𝑜𝑑𝑒𝐹𝑖𝑛𝑤 − (2 − 𝑥𝑤,𝑗 − 𝑥𝑣,𝑗 ) · 𝐻

(∀𝑗 > 0) (∀(𝑤, 𝑣) ∈ 𝐸) (20)

Once all input nodes are ready, subgraph inference is per-
formed according to the execution type. When 𝑗 is even, the
subgraph is executed without DHA (21), and when 𝑗 is odd,
it is executed with DHA (22). Among the finish times of each
subgraph inference, the largest value becomes𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦
(23). The 𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 of the last submodel represents the
total inference latency of original model.

𝑆𝐺𝐹𝑖𝑛 𝑗 = 𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 +
∑︁
𝑣

∑︁
𝑖

𝐶𝑜𝑝𝑦𝐼𝑛𝑣,𝑖, 𝑗 ·𝑚𝑣 ·𝑇𝑖,⌊ ( 𝑗−1)/𝑞+1⌋

+
∑︁
𝑣

𝑥𝑣,𝑗 · 𝑃𝐺𝑃𝑈
𝑣,⌊ ( 𝑗−1)/𝑞+1⌋ (∀𝑗 > 0, 𝑗 = 0𝑚𝑜𝑑 2) (21)

𝑆𝐺𝐹𝑖𝑛 𝑗 = 𝑆𝐺𝑆𝑡𝑎𝑟𝑡 𝑗 +
∑︁
𝑣

∑︁
𝑖

𝐶𝑜𝑝𝑦𝐼𝑛𝑣,𝑖, 𝑗 ·𝑚𝑣 ·𝑇𝑖,⌊ ( 𝑗−1)/𝑞+1⌋

+
∑︁
𝑣

𝑥𝑣,𝑗 · 𝑃𝐷𝐻𝐴
𝑣,⌊ ( 𝑗−1)/𝑞+1⌋ (∀𝑗 = 1𝑚𝑜𝑑 2) (22)

𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ≥ 𝑆𝐺𝐹𝑖𝑛 𝑗 (∀𝑗 > 0, 𝑗 = 0𝑚𝑜𝑑 𝑞) (23)
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Table 2: Details of target multi-GPU systems.
Server V100 V100(hetero) A6000
OS Ubuntu 20.04 LTS

DRAM 256GB 128GB

CPU Intel Xeon
E5-2698 v4 [22]

AMD EPYC
7262 8-Core Processor [4]

GPU
NVIDIA Tesla V100
DGXS 32GB [30]

×4

NVIDIA Tesla V100
DGXS 32GB

1) 1500MHz ×2
2) 135MHz ×2

NVIDIA RTX A6000 [32]
×3

PCIe PCI Express gen 3 PCI Express gen 4

NVLink
Fully connected with

2-ways ×2 (GPU1-GPU4, GPU2-GPU3)
1-way ×4 (Others)

4-ways ×1
(GPU2-GPU3)

CUDA 11.4 [31] 12.4 [34]
TVM [9] Modified based on 0.15.0

PyTorch [5] 2.5.1

3.4 Adjustment of Constant Variables in
MILP

This section discusses how to adjust the constant variables in
MILP to improve the accuracy of latency estimation. First, in-
evitable PCIe contention should be considered when measur-
ing the 𝑃𝐷𝐻𝐴

𝑣,𝑖 value. Since the execution with DHA method
requires direct DRAM access, data communication over PCIe
buses during computation is unavoidable. This may lead to a
collision with other subgraph executions with DHA or data
transfers from host memory to GPUs, while latency with
DHA is measured without PCIe contention in a profiling step.
To resolve the problem, SortingHat adjusts the 𝑃𝐷𝐻𝐴

𝑣,𝑖 value
by multiplying it by twice the number of GPUs sharing the
same PCIe bus, under the assumption of the worst-case sce-
nario bandwidth. As a result, SortingHat mitigates the overall
performance degradation that would occur from selecting
DHAmethods more than necessary. Similarly, host-to-device
(H2D) data transfer time can also be influenced by DHA. Nev-
ertheless, SortingHat does not adjust for this, because H2D
data transfer typically takes much longer than execution
with DHA and the impact of PCIe contention is relatively
negligible.

The𝑇𝑖1,𝑖2 value also requires a similar process.When𝐺𝑃𝑈𝑖1

and 𝐺𝑃𝑈𝑖2 are connected with a single direct link free from
interference by other GPUs, contention in the link is only
possible when both GPUs transfer data to each other simul-
taneously. Since the likelihood of this situation occurring
is low, SortingHat recommends simply multiplying the 𝑇𝑖1,𝑖2
value by 1.5 rather than 2. On the other hand, if PCIe buses
are shared bymultiple GPUs for data transfer, as in the case of
the PCIe buses between GPU1 and GPU3 in Figure 8(c), PCIe
contention would arise often. Theoretically, the maximum
number of GPUs sharing the same PCIe bus equals the total
number of GPUs. If all GPUs exchange data simultaneously,
the data transfer latency increases by a factor proportional
to the total number of GPUs. Therefore, SortingHat suggests
multiplying the𝑇𝑖1,𝑖2 value by the total number of GPUswhen
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(a)

GPU 4
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PCIe Switch

GPU 1
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(b)

GPU 3

(Low)

GPU 3

(A6000)

GPU 1

(A6000)
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GPU 2
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PCIe NV1
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NV2 NV4

Figure 8: System topology of (a) V100, (b) V100(hetero),
and (c) A6000 servers in Table 2.

𝐺𝑃𝑈𝑖1 and𝐺𝑃𝑈𝑖2 do not have a direct link between them. In
this case, P2P data transfer may be selected only if it is still
efficient even after the adjustment.

4 Evaluation
4.1 Experimental Setup
Multi-GPU System Setup. SortingHat is evaluated on three
different multi-GPU servers as shown in Figure 8 to show the
generality of SortingHat, and detailed information is provided
in Table 2. One notable point is that the frequencies of GPU1
and GPU4 are set to 1500MHz, while GPU2 and GPU3 are
set to 135MHz in the V100(hetero) server. To set up the
heterogeneous environment, it was necessary to emulate low-
performance GPUs to achieve an overall performance similar
to the low performance GPUs with fewer SMs. Therefore, we
set an extremely low frequency for these GPUs, but Multi-
Process Service (MPS) [35] could also be a good option.

Integer Programming Solver. SortingHat used Gurobi
10.01 [18] to design and run the MILP models. The Python
API of Gurobi was used to write the inequalities in MILP,
and the runner to find the best solution was processed on
an Intel Core i7-13700K CPU [21] with 64GB DRAM.

Implementation. We used cuBLAS [36] kernels for fast
GEMM operations and modified TVM to apply the tech-
niques proposed in Section 3.2. First, parameters are loaded
into DRAM allocated by cudaMallocHost() and P2P data trans-
fer is enabled by cudaDeviceEnablePeerAccess(). Moreover,
streams created by cudaStreamCreate() are used for overlap-
ping data transfer and operation execution.

Target Neural Network Models. In the evaluation, we used
representative pre-trained LLMs: GPT2-large, GPT2-xl [45],
OpenLLaMA-3B, and OpenLLaMA-7B [12, 14, 47] models
which can be found on Hugging Face [51, 52]. As a result, we
were able to prepare a variety of combinations with different
parameter sizes and structures. Additionally, to verify that
SortingHat works well for diverse model structures and ra-
tios of data transfer to kernel execution time, various input
shapes were used with different batch sizes and sequence
lengths: (1, 32), (1, 1024), (4, 128), and (32, 64).
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Figure 9: Normalized performance improvements of baselines and SortingHat over the performance of single GPU
(TVM) on (a) V100, (b) V100(hetero), and (c) A6000 servers. The parentheses on the x-axis are the input shapes and
OOM stands for out of memory. The boxes of Critical Path are drawn with dashed lines as these are theoretical
values, not actual end-to-end execution results.

4.2 Baselines
SortingHat is evaluated with a time limit of 30 seconds per
submodel for MILP running. Each submodel contains one
dominator node and 𝑞 in MILP was set to 6. Four scheduling
methods are used to compare performance with SortingHat.

Single GPU: For TVM, the inference latency of serial exe-
cution on a single GPU is used as the baseline. Any additional
techniques such as DHA and PT are not used, but the only
changes applied are DRAM allocation via cudaMallocHost()
and the use of cuBLAS kernels as mentioned in Section 4.1.
PyTorch execution on a single GPU is also used as a baseline.
Since the pure end-to-end latency of PyTorch is too slow
due to memory allocation, JIT compilation, and other over-
heads, we only considered data transfer and kernel execution
time for a fair comparison. In the V100(hetero) server, the
experiments were conducted with the fastest single GPU.
Critical Path: Critical path is the longest path in the

model inference process. When sufficient GPUs are available,
it corresponds to the theoretical minimum inference time
achievable through model parallelism alone. However, Sort-
ingHat outperforms the theoretical minimum by considering
data transfer parallelism.
EfficientMIP: EfficientMIP only considers model paral-

lelism and assumes that all data transfers between GPUs
must pass through DRAM with the same speeds. Therefore,
EfficientMIP is used to prove the effectiveness of considering
the system topology and data transfer parallelism in Sort-
ingHat. To avoid search space explosion, we partitioned the
models into submodels exactly the same as SortingHat. Each
submodel is scheduled independently without considering
the preceding schedule and the data transfer speed is set
to be twice as fast to mimic a multi-GPU environment. 30

seconds of time limit per submodel is imposed, and the value
of 𝑞 in EfficientMIP is set to 6. Please note that EfficientMIP
is not evaluated on the V100(hetero) server, as it does not
support heterogeneous environments.
DeepPlan: As mentioned earlier, DeepPlan proposed

DHA and PT strategies to minimize data transfer overhead
by fully utilizing PCIe and NVLink bandwidth. However, it
did not propose a strategy to maximize model parallelism
by fully utilizing GPUs. Therefore, SortingHat is expected to
gain additional performance improvements over DeepPlan
by considering model parallelism.

4.3 Performance Evaluation
Latency Improvement. Figure 9 shows the speedup of Sort-
ingHat and other baselines over single GPU (TVM). For Sort-
ingHat, OpenLLaMA models with an input shape of (1, 1024)
show remarkable performance improvements of up to 2.96×.
Since these models have many branches and large parame-
ters, opportunities for applying not only data transfer paral-
lelism but also model parallelism exist, and thus SortingHat
considering both parallelism is the most effective framework.
Although the model structure is simple, GPT2 models with
an input shape of (4, 128) also demonstrate satisfactory per-
formance improvements, as the ratio of data transfer to ker-
nel execution is well balanced. In contrast, the performance
improvements achieved by EfficientMIP and DeepPlan are
less effective, as they focus on only one of both parallelisms,
disregarding system topology.
For GPT2 and OpenLLaMA models with an input shape

of (1, 32), data transfer parallelism has a greater impact due
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Figure 10: A partial scheduling result (left) and to-
tal execution timelines (right) by SortingHat for
OpenLLaMA-3B (1, 1024) on (a) V100, (b) V100(hetero),
and (c) A6000 servers.

to the small ratio of kernel execution. Because of these limi-
tations, SortingHat achieves similar performance improve-
ments compared to DeepPlan, but still finds the best sched-
ules. EfficientMIP shows similar or even worse performance
improvements than Critical Path, as each submodel is sched-
uled independently without considering the schedule of the
preceding submodel. Unlike the input shape of (1, 32), the
kernel execution time in (32, 64) has a much greater impact
on performance and it means that the influence of model
parallelism is significantly greater than that of data trans-
fer parallelism. As a result, the OpenLLaMA models with a
more complex structure showed a significant performance
improvement, while the GPT2 models showed a smaller im-
provement. Nevertheless, when compared to other baselines,
SortingHat still proved to be the most effective framework.
An interesting observation from Figure 9(b) is that Sort-

ingHat consistently outperforms the other baselines, even
on the heterogeneous GPU servers. This is because Sorting-
Hat avoids low-performance GPUs for kernel execution by
considering the system topology, as shown in Figure 10(b),
whereas all GPUs are utilized evenly in the V100 server, as
depicted in Figure 10(a). The importance of system topology-
aware scheduling is also highlighted in A6000 server. Fig-
ure 8(c) illustrates that only GPU2 and GPU3 are connected
via NVLink, indicating that selecting GPU2 and GPU3 for
P2P data transfer is the most efficient option. Indeed, as
demonstrated in Figure 10(c), SortingHat selected GPU2 and
GPU3 for most of nodes, resulting in a notable performance
improvement. These results suggest that SortingHat is able
to search the best schedules with taking system topology
into account, across various kinds of systems.

While a direct comparison between PyTorch and TVM is
challenging due to the different execution mechanisms of
the two frameworks, Single GPU (PyTorch) shows slightly
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Figure 11: Comparison of expected latency and actual
latency on (a) V100, (b) V100(hetero), and (c) A6000
servers.

lower performance compared to Single GPU (TVM) for all
test cases. Nevertheless, SortingHat demonstrates consistent
performance gains across various environments and models.

Accuracy of Latency Estimation. Figure 11 demonstrates that
SortingHat provides the best performance with results nearly
identical to those obtained using MILP, not by coincidence.
The margin of error between actual and expected latency
is 2.97% across all cases, and the overall trend of actual la-
tency closely matches the expected latency. In conclusion,
while the performance improvement may vary depending
on the target model, SortingHat finds the best schedules with
accurate latency estimation by considering data transfer par-
allelism, model parallelism, and system topology. Further
ablation studies will prove that this is thanks to the compre-
hensive inclusion of all these factors.

4.4 Ablation Study
Search Space and Search Time. The number of dominator
nodes in a submodel (𝑛𝐷𝑜𝑚) indicates the size of the sub-
model. A large 𝑛𝐷𝑜𝑚 value may lead to the discovery of
schedules that are not found in the MILP with a smaller
𝑛𝐷𝑜𝑚. Similarly, the 𝑞 value and the MILP time limit exhibit
similar characteristics, since more efficient schedule might
be found by a larger 𝑞 value or a longer MILP running time.
Figure 12 proves that SortingHat yields enough perfor-

mance improvements, even when the value of 𝑞, the sub-
model size (𝑛𝐷𝑜𝑚), and the MILP running time are not large,
respectively. In most cases, the performance improvement
is greatest when (𝑞 = 6, 𝑛𝐷𝑜𝑚 = 1). Although the config-
uration of (𝑞 = 6, 𝑛𝐷𝑜𝑚 = 2) is also effective for reducing
inference latency, the best schedules for OpenLLaMA mod-
els in Figure 12(b) remain far from the best. Experiments
conducted with the (𝑞 = 12, 𝑛𝐷𝑜𝑚 = 1) configuration show
that the scheduling results do not significantly differ from
those obtained with the (𝑞 = 6, 𝑛𝐷𝑜𝑚 = 1) configuration.
Therefore, 𝑞 value, submodel size, and search time are not
needed to be always large to identify the best solution.
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and (b) A6000 servers. Performance is normalized to the single GPU (TVM) baseline.
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system topology consideration, and SortingHat on (a) V100 and (b) V100(hetero) servers. Each case has a time limit
of 30 seconds for MILP running. Performance is normalized to the single GPU (TVM) baseline.

System Topology and PCIe Contention Awareness. The in-
equalities (12) and (13) in Section 3.3 are modified to
𝐷𝑇𝑆𝑡𝑎𝑟𝑡 𝑗 = 𝑃𝑟𝑒𝑣𝐷𝑇𝐹𝑖𝑛⌊ ( 𝑗−1)/𝑞+1⌋ (∀𝑗 = 1 𝑚𝑜𝑑 𝑞) and
𝐷𝑇𝑆𝑡𝑎𝑟𝑡 𝑗 = 𝐷𝑇𝐹𝑖𝑛 𝑗−1 (∀𝑗 > 0 & 𝑗 ≠ 1𝑚𝑜𝑑 𝑞) with assump-
tion that each GPU has independent PCIe bus, for checking
the effectiveness of preventing PCIe contention. The ready
queue-based executor is also modified to transfer data using
per-GPU ready queues instead of per-PCIe bus. Figure 13
demonstrates that it is consistently inefficient than origi-
nal SortingHat although the performance is not significantly
different. To evaluate the impact of system topology aware-
ness, the data transfer speed and GPU performances are all
set to their average values. In Figure 13(a), most of the im-
provements were similar to those observed with the original
SortingHat, as all GPUs are of the same type. However, in
Figure 13(b), severe performance degradation is observed,
even worse than a single GPU. These results suggest that sys-
tem topology and PCIe contention awareness are essential
factors in identifying efficient schedules.

Remaining Parameters. Some parameters can remain in mem-
ory until they are unloaded. When the same schedule is per-
formed again, data transfer for the remaining parameters
can be skipped. Figure 14 shows that SortingHat is efficient
even in these situations. The experiment was conducted with

varying ratios of remaining parameters among previously
loaded parameters, using GPT2-large and OpenLLaMA-7B
models whose parameter sizes are the smallest and largest,
respectively. For the GPT2-largemodels, re-running the same
schedule is slightly slower than a single GPUwhen all param-
eters (100%) remain in memory. This is because the original
schedule involves data transfers between GPUs, and the total
inference latency is too small to hide the overhead of these
transfers. Nevertheless, the absolute latency difference is
minimal, and SortingHat is significantly faster than a single
GPU in most other cases.

5 Related Work
Table 3 compares the key aspects of SortingHat with relevant
works.

Topology-aware Scheduling. Several studies have explored
topology-aware scheduling in multi-GPU systems. M. Ama-
ral [1] proposes a GPU placement method designed to ef-
ficiently process each request in multi-GPU clouds. While
similar to SortingHat in its consideration of topology, this
work differs in that model parallelism is not incorporated and
the scheduling policy aims to minimize the sum of the accu-
mulated execution times of multiple requests. DAPPLE [13]
introduces a topology-aware device assignment mechanism



SortingHat: System Topology-aware Scheduling of Deep Neural Network Models ... ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

OpenLLaMA-7B

(1, 32)

GPT2-large

(1, 32)

OpenLLaMA-7B

(1, 1024)

0

0.1

0.2

0.3

0% 30% 60% 100%

L
at

en
cy

(s
)

Single GPU (TVM) Re-run

0.05

0.15

0.25

0.35

0% 30% 60% 100%

GPT2-large

(4, 128)

0.2

0.3

0.4

0.5

0% 30% 60% 100%

GPT2-large

(1, 1024)

0

0.8

1.6

2.4

0% 30% 60% 100%

0.4

1.2

2

2.8

0% 30% 60% 100%

OpenLLaMA-7B

(4, 128)

0.8

1.7

2.6

3.5

0% 30% 60% 100%

Figure 14: Latency comparison between the single GPU
(TVM) baseline and re-running SortingHat schedule on
the V100 server. The x-axis is the ratio of remaining
parameters.

for efficient training. However, DAPPLE does not address
PCIe and GPU interconnect structures which are critical for
modern GPUs, and focuses on reducing training time.

Model Parallelism. EfficientMIP [46] proposes several algo-
rithms for generating schedules to minimize latency for a
given model. However, EfficientMIP provides only theoret-
ical performance improvements and does not consider the
underlying system topology. As a result, its applicability
is limited in multi-GPU systems with varying topologies.
Similarly, Pesto [19] introduces an ILP-based algorithm to
find efficient schedules for training on multi-GPU systems.
Since Pesto does not address key factors such as data transfer
from DRAM to GPU or system topology, it is challenging
to implement efficient multi-GPU inference across diverse
systems.

Data Transfer Parallelism. PipeSwitch [6] accelerates deep
learning applications through pipelined model transmission
and unified memory management. However, PipeSwitch sup-
ports data transfer parallelism to reduce context switching
costs and does not consider system topology. Additionally,
PipeSwitch primarily focuses on single-GPU tasks, whereas
SortingHat is designed for multi-GPU environments. Deep-
Plan [24] effectively reduces the amount of data transfers
and the associated overhead by utilizing direct host access
and parallel transmission. Although an additional GPU is em-
ployed for parallel transmission, it is solely dedicated to data
transfer and not leveraged for model parallelism, missing
the opportunity for further latency reduction. Additionally,
DeepPlan relies exclusively on P2P data transfers between
GPUs connected via NVLink, which requires manual iden-
tification of the system topology. This implies that parallel
transmission cannot be utilized if NVLink is unavailable or
if the system topology is not identified.

Table 3: A comparison table with related works.
✔ : Considered / ▲ : Partially considered / ✘ : Not considered / — : Not confirmed

Works Topology
-aware

Model
Parallelism

Data Transfer
Parallelism Heterogeneity

M. Amaral[1] ✔ ✘ ✘ —
DAPPLE[13] ✔ ✘ ✘ —

EfficientMIP [46] ✘ ✔ ✘ ✘
Pesto [19] ✘ ✔ ✘ ▲

PipeSwitch [6] ✘ ✘ ✔ —
DeepPlan [24] ▲ ✘ ✔ —
SortingHat ✔ ✔ ✔ ✔

6 Discussion
Extensibility to New Trends in LLM Inference. KV cache or
prefix cache [40, 44] has been widely used for accelerating
LLMs in recent years. PagedAttention [26] proposed parti-
tioning the KV cache into multiple KV blocks and reusing
these blocks for efficient memory management. Consider-
ing the scenario where SortingHat handles the remaining
parameters, as depicted in Figure 14, we believe that Sort-
ingHat would also be efficient in an environment where KV
blocks are reused. To efficiently handle multiple requests
from users, batching or new serving methodologies are in-
troduced. Orca [54] introduces selective batching, which
applies batching only to a selected set of operations. If selec-
tively batched models can be represented as graph format,
we expect that SortingHat could be extended with Orca. Split-
wise [42] suggested scheduling LLMs with a split between
the prompt computation phase and the token generation
phase, as each phase has different characteristics. By setting
the KV cache results from the prompt computation phase
as input parameter nodes for the token generation phase
and scheduling each phase separately, SortingHat could be
easily extended to such emerging inference optimizations.
While inter-operator parallelism is already handled by model
parallelism, we believe that SortingHat could be extended to
support intra-operator parallelism by treating sub-operators
as separate operators or by modifying model graphs. Please
note that we do not consider data parallelism, as it is mainly
intended to improve training efficiency, whereas SortingHat
is focused on reducing inference latency.

Extensibility to New Types of DNN Workloads. Following the
huge success of LLMs, more advanced models [7, 28, 49, 55]
have emerged. These models may be further expanded or
entirely new model architectures may be introduced in the
near future. We believe that SortingHat will be able to handle
the model evolution effectively as long as the models can be
represented in a computational graph format. In addition to
the model architecture, the methods or scenarios for serving
DNNs can vary significantly. For example, heterogeneous
DNN models could be served together to improve the overall
utilization of server resources [11]. In such scenarios, domi-
nator analysis can be applied to each model independently,
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as these models are independent. Submodels generated by
the models through dominator analysis can then be com-
bined into an integrated submodel. The integrated submodel
can be treated and processed just like any other single model,
by eliminating the need for specialized handling. Therefore,
SortingHat will still be an effective framework even in this
case.

Extensibility to New Types of GPU Systems. To overcome data
transfer bottlenecks, some systems have adopted new equip-
ments such as NVSwitch [38], and we can further accelerate
deep learning inference using SortingHat on the advanced
structures. For example, the AWS p4d.24xlarge [3] instance
has eight A100 GPUs fully connected by NVSiwtch, and four
PCIe buses connected to DRAM. When we ran the MILP
using the system topology of the p4d.24xlarge instance and
four models with an input shape of (32, 64), the MILP result
predicted that SortingHat would achieve up to a 3.7× per-
formance improvement over the expected latency of TVM
running on a single GPU in the p4d.24xlarge instance. This
demonstrates that SortingHat could be effectively applied to
emerging types of Multi-GPU systems. Furthermore, new
technologies that enhance GPU resource utilization have
also been developed. For example, the Multi-Instance GPU
(MIG) [37] technique allows a single GPU to be partitioned
into multiple virtual GPUs, and the Multi-Process Service
(MPS) [35] enables multiple processes to share a single GPU.
If each GPU instance is treated as an individual GPU and pro-
filing is conducted accordingly, we believe that SortingHat
would still be effective.

7 Conclusion
This paper presents SortingHat for efficient DNN scheduling
on multi-GPU systems. The model is partitioned into mul-
tiple submodels based on dominator analysis, and MILP is
performed on each submodel with system topology consider-
ation. After merging the submodels based on the found MILP
result, the target model is served by the ready queue-based
executor with maximized model parallelism and data trans-
fer parallelism. As a result, it achieves an average speedup
of 2.28× and up to 2.96× compared to a single GPU on TVM
baseline.
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