
Leonid: Exploring Automated Kernel Fusion in
Performance-Portable Programming Models for

Scientific Computation
Chenchen Zhang
Peking University
Beijing, China

zhangchenchen@stu.pku.edu.cn

Hao Luo
Peking University
Beijing, China

lhsms@pku.edu.cn

Chao Yang∗
Peking University
Beijing, China

PKU-Changsha Institute of
Computing and Digital Economy

Changsha, China
chao_yang@pku.edu.cn

Abstract
With advances in hardware performance, architectural di-
vergence and the growing gap between computational power
andmemory bandwidth have become increasingly pronounced.
Existing performance-portable models address hardware
divergence but lack automated kernel fusion to optimize
memory-bound scientific applications. To address this issue,
we propose Leonid, a performance-portable programming
model designed to support automated kernel fusion. Leonid
integrates separatemodules for unified global and scratchpad
memory management, and for unified parallel and serial exe-
cution patterns, both specifically tailored for automated ker-
nel fusion, alongside an integrated automated kernel fusion
module. These components ensure the compatibility across
CPUs, GPUs, and Sunway platforms for automated kernel
fusion. Performance evaluations demonstrate that Leonid
achieves up to 1.52× speedup (averaging 1.19×) over manu-
ally implemented code, outperforms Kokkos and RAJA, and
matches the efficiency of manually fused code in bandwidth-
limited algorithms and applications. For bandwidth-limited
and fusion-eligible code, Leonid offers a significant advan-
tage over other performance-portable models that lack auto-
mated kernel fusion capabilities.

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3728489

CCS Concepts
•Computingmethodologies→Parallel computingmethod-
ologies.

Keywords
Performance Portability, Programming Model, Automated
Kernel Fusion, Parallel Computing, Memory Management

ACM Reference Format:
Chenchen Zhang, Hao Luo, and Chao Yang. 2025. Leonid: Exploring
Automated Kernel Fusion in Performance-Portable Programming
Models for Scientific Computation. In 2025 International Conference
on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3721145.3728489

1 Introduction
The enhancement of hardware has greatly driven the de-
velopment of scientific computing, accompanied by the in-
creasing diversity of hardware architectures. In addition to
traditional multicore CPUs, GPUs have emerged as a dom-
inant source of computational power. For instance, 9 out
of the top 10 supercomputers in the current Top 500 rank-
ings utilize hybrid CPU-GPU architectures [5]. Furthermore,
significant progress is being made with high-performance
processors such as ARM-based designs, Sunway (SW) pro-
cessors in the Sunway supercomputer [56], MT3000 chips in
Tianhe [31], and Google’s TPU chips [36], among others.

Additionally, the gap between computational power and
memory bandwidth is gradually widening. For instance, the
NVIDIA H100 SXM5 GPU offers 34 teraflops of FP64 compu-
tational capacity but is constrained to a memory bandwidth
of only 3 TB/s [14], resulting in a ratio of memory band-
width to computational capacity of just 0.1 bytes per FLOP.
This disparity is even more pronounced in the SW26010-Pro

https://orcid.org/0000-0003-4276-0510
https://orcid.org/0009-0008-1038-944X
https://orcid.org/0000-0001-7426-6248
https://doi.org/10.1145/3721145.3728489
https://doi.org/10.1145/3721145.3728489
https://doi.org/10.1145/3721145.3728489

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

manycore processor used in the latest generation of the Sun-
way supercomputer, where the ratio falls to approximately
0.004 [56].
These two trends pose significant challenges for scien-

tific and engineering computing: 1○ First, hardware diversity
forces developers to implement platform-specific codes us-
ing device-specific models (e.g., CUDA [2] for NVIDIA GPUs
and HIP [1] for AMD GPUs) to ensure portability across
accelerators. This incurs significant costs in development,
verification, and maintenance due to the extensive nature of
scientific and engineering codes. 2○ Second, the increasing
gap between computational power and memory bandwidth
prevents memory-bound applications from fully exploiting
hardware performance. Most scientific applications exhibit
low arithmetic intensity, with performance primarily con-
strained by memory bandwidth [41].

Performance-portable programming models are designed
to address the challenge of hardware divergence across plat-
forms for scientific and engineering applications. Among
them, Kokkos [17], RAJA [9], OpenCL [35] and SYCL [27] are
widely utilized in the field of scientific computing. They pro-
vide commonly used parallel patterns, support mainstream
hardware, and offer additional performance features, making
them a popular choice in many works [34, 38, 52, 54].

Reducing memory access to DRAM is crucial for improv-
ing the performance of scientific codes bound by memory
bandwidth, and kernel fusion is the primarymethod to achieve
this goal [46]. Several linear algebra libraries, such as Eigen
[19], LIBXSMM [22], and DESOLA [43], adopt kernel fusion
to optimize their codes. Automated kernel fusion, compared
to manual fusion, is especially valuable in real-world scien-
tific and engineering computations and is urgently needed. It
automatically detects fusion opportunities and fuses kernels,
thereby reducing development costs and improving main-
tainability. Nowadays, automated kernel fusion is widely
adopted in machine learning frameworks such as TVM [13],
TensorFlow [6], and ONNX [3], as well as in specific applica-
tions like GraphBlas [32].

However, there is currently no performance-portable pro-
gramming model that supports automated kernel fusion for
scientific computing, including Kokkos and RAJA. As a result,
these models fail to provide automated fusion optimizations
for memory-bound applications, exacerbating the challenge
of bridging the gap between memory bandwidth and com-
putational power in scientific and engineering applications.

To address the aforementioned challenges, this paper aims
to explore feasible solutions for automated kernel fusion
within performance-portable programming models. In
particular, we introduce Leonid, a light-weight performance-
portable programmingmodel for scientific computing. Leonid
draws on the core features of Kokkos and RAJA but is specif-
ically tailored for automated kernel fusion, with the goal of

investigating the possibility of integrating automated ker-
nel fusion into models like Kokkos and RAJA in the future.
In addition to supporting CPUs and GPUs, we deliberately
include support for the SW platform due to its significant ar-
chitectural differences from CPUs and GPUs, particularly its
support for direct memory access (DMA), which introduces
unique memory management challenges for automated ker-
nel fusion that do not exist on CPUs and GPUs. To the best
of our knowledge, this is the first attempt to integrate auto-
mated kernel fusion into a Kokkos-like performance-portable
model and the primary contributions of this paper are as fol-
lows:
(1) We develop a memory-management module for global

and scratchpad memory across platforms. The former
provides memory trace information for automated ker-
nel fusion, while the latter enables DMA and is fusion-
friendly.

(2) We introduce unified programming patterns for la-
tency execution across various hardware platforms,
which abstract hardware-specific details to hide imple-
mentation complexities, thereby eliminating the need
for device-specific programming models.

(3) We integrate an automated kernel-fusion mechanism
into Leonid which automatically constructs the data
dependency graph (DDG) and fuses dependent kernels
while ensuring correctness. This reduces redundant
global memory accesses, thereby improving perfor-
mance.

Performance evaluations are conducted at both the al-
gorithm and application levels. The experimental results
demonstrate that Leonid can achieve up to a 1.52× speedup
(with an average speedup of 1.19×) across multiple plat-
forms for various algorithms and applications, outperform-
ing Kokkos and RAJA and highlighting the importance of
automated kernel fusion.
The remainder of this paper is organized as follows. In

Section 2, we introduce the challenges of automated ker-
nel fusion in performance-portable programming models,
followed by a brief discussion of the design philosophy of
Leonid, highlighting how our approach facilitates automated
kernel fusion. Section 3 provides a in-depth introduction
to the implementation details of Leonid. In Section 4, we
present the evaluation results, comparing the performance
of Leonid with Kokkos and RAJA at both the algorithm and
application levels. Related work is discussed in Section 5,
and conclusions are drawn in Section 6.

2 Challenges and Design Philosophy
2.1 Challenges for automated kernel-fusion
Integrating automated kernel fusion into performance-portable
programming models presents several key challenges:

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1○RedundantMemoryAccessDue to ScratchpadMem-
ory: Scratchpad memory is a small, fast, software-managed
memory space used for temporary data storage, such as
shared memory in GPUs. Unlike cache memory, it lacks
caching behavior, requiring explicit manual management
for data loading and storing. The absence of a cache mecha-
nism in scratchpad memory necessitates repeated accesses to
main/global memory when fused kernels attempt to retrieve
the same data through scratchpad memory.

2○Lack of Kernel Fusion Support in Execution Pat-
terns: Existing programming models lack the data flow in-
formation of kernels required to guide automated fusion,
hindering the ability to perform kernel fusion automatically.

3○High Fusion Overhead on GPUs: GPUs feature a
large number of threads, each typically processing only a
small number of elements. Runtime kernel fusion generally
relies on function pointers, and the overhead from invok-
ing function pointers can become substantial, negating the
performance benefits of fusion.

2.2 Design Philosophy
We compare the design philosophies of Kokkos and RAJA
with Leonid to highlight how our framework is specifically
tailored to overcome the challenges of automated kernel
fusion.
In Kokkos and RAJA, kernels are executed immediately

after being launched. While this approach simplifies the ex-
ecution flow and ensures predictability, it cannot provide
runtime information about the data flow between kernels
and prevents Kokkos and RAJA from performing automatic
kernel fusion, unless fusion operation is manually imple-
mented. To enable automated kernel fusion, Leonid pro-
vides a latency-execution model. Under this model, ker-
nels are not executed immediately when encountered. In-
stead, the kernel is stored in an executable format with its
metadata—such as input arguments, loop ranges, and tiling
sizes—being collected. A DDG is then constructed from this
metadata, and a greedy algorithm is applied to automatically
fuse kernels while maintaining the correct execution order.
To address the challenge of high fusion overhead on GPU,
we implemented a static DDG and a static fusion method
specifically for GPU.
Furthermore, while Kokkos and RAJA provide memory

managementmechanisms (e.g., Kokkos’s𝑉𝑖𝑒𝑤 class), Leonid’s
corresponding module not only replicates this functionality
but also aids kernel fusion by providing memory-access-
range references. These references assist in deducing mem-
ory access ranges for kernel fusion.

Scratchpad memory support is another area where Leonid
improves upon Kokkos and RAJA. While Kokkos provides
scratchpad memory support, its default implementation does

not effectively minimize unnecessary data transfers between
scratchpad and main/global memory, especially in DMA op-
erations on the SW platform. Leonid addresses this limitation
by integrating cache-like scratchpad-memory management
with delayed-write support, which reduces unnecessary data
transfers and enhances performance.

2.3 Hardware Abstraction
Based on the design philosophy, in Leonid we introduce a
unified hardware abstraction layer shown in Figure 1. This
layer standardizes interactions across diverse processors,
facilitating portability and enabling kernel fusion.
Inspired by Kokkos, Leonid organizes devices into mem-

ory and execution spaces, focusing particularly on managing
scratchpad memory. Threads operate within the execution
space, while data resides in the memory space. The execu-
tion space encompasses CPU cores, streaming processors
(SP) on GPUs, and compute processing elements (CPEs) on
SW processors. The memory space in Leonid is divided into
two levels: main/global memory and scratchpad memory. On
GPUs, shared memory serves as scratchpad memory, while
SW processors use local device memory (LDM). Since CPUs
lack dedicated scratchpad memory, a portion of their cache is
repurposed for this role, maintaining a unified abstraction de-
spite differences in cache behavior. This unified abstraction
ensures seamless interaction across hardware architectures,
allowing us to tailor scratchpad memory operations for ker-
nel fusion.

GDDR/HBM

CPU Cores GPU Cores SW CPEs

Scratchpad Memory

Main/Global Memory

Cache Shared Memory LDM
DMA

Execution
Space

Memory
Space

DDRDDR

Figure 1: Hardware abstraction of Leonid.

3 Leonid Implementation
In this section, we introduce the framework of Leonid, a
C++ performance-portable programming model designed to
support automated kernel fusion. As illustrated in Figure 2,

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

Leonid addresses the aforementioned challenges through sev-
eral key components: 1○Memory Management: A dedicated
memory-management module handles main/global memory
across processors, complemented by a sub-module for uni-
fied scratchpad memory management, as detailed in Section
3.1. 2○ Execution Patterns: Unified execution models are im-
plemented for key parallel patterns, including 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐹𝑜𝑟
and 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑅𝑒𝑑𝑢𝑐𝑒 , along with support for serial execution
and hardware-specific optimized kernels. These models en-
able latency execution and serve as kernels to facilitate the
construction of DDG, directly addressing the lack of kernel
fusion support in execution models. Further details are pro-
vided in Section 3.2. 3○ Automated Kernel Fusion: Leonid
integrates an automated kernel-fusion mechanism within
the programming model. This method automatically builds a
DDG and performs kernel fusion, supporting both horizontal
and vertical fusion strategies. Further insights are provided
in Section 3.3. 4○ Execution backends: To ensure hardware
compatibility, Leonid leverages OpenMP [37], CUDA [2], and
SWUC [12] as execution backends for CPU, GPU, and SW
processors, respectively.

3.1 Memory Management
3.1.1 Main/Global Memory Management. In Leonid,
we introduce a data structure named Tensor to manage mul-
tidimensional arrays, which functions similarly to View in
Kokkos [17]. Additionally, Tensor provides allocation infor-
mation to aid in deducing memory access ranges, which are
used during the automated kernel fusion phase.
As illustrated in Figure 2(a), the main memory space is

divided into host memory space and device memory space,
akin to OpenCL [35]. The Tensor structure contains two
pointers: one pointing to the host memory and the other
to the device memory. In both CPU and SW environments,
the host memory and device memory actually refer to the
same memory region, resulting in identical pointers for both.
However, in a GPU context, the host memory pointer refers
to the main memory, while the device memory pointer points
to the GPU’s global memory. The memory layout provided
is LayoutRight (i.e., C-style layout). Since our parallel pat-
terns support multi-dimensional parallelism, LayoutRight is
sufficient to achieve memory coalescing on the GPU.

We provide APIs to control data read and write operations,
as well as transfer operations between host memory space
and device memory space. Additionally, both Copy and Deep-
Copy operations are supported. A constant assumed size can
serve as the template argument for the 𝑇𝑒𝑛𝑠𝑜𝑟 , providing
additional information during compile time when our static
kernel fusion method is applied.
To facilitate memory operations, we also offer View and

DeviceView classes. A View of one Tensor shares the same

memory space as the tensor but is restricted to read and
write operations, and it cannot allocate or release the associ-
ated memory. On the other hand, DeviceView manages the
device memory space of the tensor, allowing for operations
on device memory through it. A specific example is provided
in Listing 1.

1 /*set the device used*/
2 using Device=DEVICE ::GPU;
3 /* Template parameters: data type , dimension ,device ,Is

view , assumed size*/
4 Tensor <int ,2,Device ,false ,{1024 ,1024} > Array({L1,L2});
5 Array.DataSynchHost2Device ();
6 auto device_view = Array.GetDeviceView ();
7 auto view = Array.CreateView ();

Listing 1: A case of Tensor operation

3.1.2 Scratchpad Memory Management. Both shared
memory inGPU and LDM in SW serve as scratchpadmemory,
offering low latency and high bandwidth but with limited
capacity. However, there are notable differences in their uti-
lization. On GPU, shared memory is typically employed as
temporary storage to promote data reuse and reduce unnec-
essary memory accesses. In contrast, on the SW platform, the
use of LDM not only reduces memory accesses but also aims
to enhance bandwidth. The DMA supported by SW facili-
tates high-bandwidth data transfers between main memory
and LDM. If data is not accessed using DMA, the memory
bandwidth is approximately halved compared to when DMA
is employed. Therefore, by managing LDM, Leonid’s support
for DMA benefits memory access optimization in applica-
tions running on the SW system. Additionally, there is no
scratchpad memory in the CPU, and we allocate an array
in main memory with a size less than the cache capacity to
enable unified management across different devices.

Low overhead is crucial for effective scratchpad memory
management. To minimize overhead, we propose a light-
weight memory pool with a limited number of blocks, with
each bound to a unique global memory address. When a
scratchpad memory block is requested, if a block is already
bound to the corresponding global memory address, its as-
sociated scratchpad memory address is returned directly,
and no new block will be allocated. In the GPU context,
all threads within a single block share the same scratchpad
memory management instance, while in the CPU and SW
environments, each thread has its own dedicated instance.
Furthermore, these objects are declared statically to avoid
overhead introduced by construct and destruct operations.
Read and write operations on SW are implemented through
DMA.
Another goal of scratchpad-memory management is to

minimize repeated access to global memory while achieving
high bandwidth on SW and GPUs. As mentioned earlier, our

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 2: System overview of Leonid

Main/Global memory

Scratchpad memory

data0
Allocation

Read

direct
write

Compution
data1

Hit:data2 is
data1

data2
Miss:
read

delayed
write

unallocated block allocated block

Cache behavior

Figure 3: Scratchpadmemory allocation, read andwrite
operations diagram.

Leonid framework supports automated kernel fusion, which
can potentially lead to repeatedmemory accesses when fused
kernels operate on the same data through scratchpad mem-
ory. On the SW, this occurs because data loaded into LDM
bypasses the cache. On GPU architectures, although data
loaded into shared memory passes through the cache, the
limited cache capacity often leads to the eviction of the cor-
responding data from the cache. To address this issue, we
manage scratchpadmemory in a cache-like manner. The read
operation will access global memory only when new data
needs to be fetched; otherwise, it will return directly. For
the write operation, our scratchpad memory management
supports both direct and delayed write. With delayed-write,
data is written back only when new data is read in, thereby
minimizing unnecessary write and read operations. This
process is illustrated in Figure 3. Additionally, to minimize

overhead, our replacement strategy ensures that the data in
each memory block is only replaced with data from the same
array. The number of supported blocks can be set prior to use.
On both the GPU and SW platforms, users need to configure
the size of the scratchpad memory and set the parameters
according to their specific configurations.

3.2 Kernels: Execution Patterns
Leonid currently supports two general parallel patterns—the
Parallel For pattern and the Parallel Reduce pattern—as well
as one additional pattern for serial execution codes and
hardware-specific optimization codes: the Statement pattern.
Parallel For: An example of vector addition operation

using 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝐹𝑜𝑟 is provided in Listing 2. When utilizing the
Parallel For pattern, the computation for each iteration is
performed in parallel, and the execution order is not guar-
anteed. To ensure correct results, programmers must verify
that there is no dependency between iterations. Tiling oper-
ations are supported on both CPU and SW platforms. Kernel
fusion optimization relies on runtime information for both
platforms, with kernels stored as function pointers to stan-
dardize their form. Given the limited number of threads on
CPU and SW, tiling is an effective optimization method to
mitigate the overhead associated with function pointer calls.
The tiling operation is applied to the innermost loop to pro-
mote continuous memory access and enable the compilers’
automated vectorization optimization. On GPUs, the tiling
size is fixed at one and cannot be altered, as GPUs have a
massive number of threads and each thread usually handles a
few elements in the arrays. Under these conditions, runtime

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

fusion introduces significant overhead on GPUs. Therefore, a
static method is employed, which will be discussed in Section
3.3.
Parallel Reduce: Similar to the Parallel For pattern, the

execution order in Parallel Reduce is also not guaranteed,
meaning that the reduced result should be independent of
execution order. An example of vector dot production is
provided in Listing 2. Tiling is supported in this pattern as
well, mirroring its implementation in the Parallel For pattern.

In our Parallel Reduce pattern, users can provide their own
reduction operation. This reduction operation class should
include an initialization function to assign an initial value
to the reduced data, as well as a reduction function that de-
fines the specific reduction behavior. Additionally, for GPUs,
users are required to provide a ReduceToGlobal function to
optimize performance. Given the large number of threads
on GPUs, reduction of results directly using atomic oper-
ations would lead to significant performance degradation.
An optimized approach involves first performing intra-warp
reduction using warp shuffle, followed by inter-warp reduc-
tion using shared memory, and finally reducing the results
across different blocks using atomic operations.
To avoid data races, each thread keeps a private reduced

parameter, which is combined into the final result after all
threads complete their computations.

1 /* define the reduce operation */
2 template <class T>
3 class SUM{
4 HOST_DEVICE T InitialValue (){return static_cast <T>(0)

;}
5 HOST_DEVICE T operator ()(T a, T b){return a+b;};
6 #ifdef __CUDACC__
7 DEVICE void ReduceToGlobal(T* fininal_data ,T a){
8 /* reduce to global memory */
9 }
10 #endif
11 }
12 constexpr size_t tile_size =1024, Dim=1;
13 /* vector addition: A and B are inputs , and C is the

output */
14 ParallelFor <Dim ,tile_size > kernel0(ARG(A,B),ARG(C),

RANGE(start_l ,end_l));
15 kernel0.MakeLam ([](auto i, auto A, auto B, auto C){C(i)

=A(i)+B(i);}, A, B, C);
16 /*dot product: A and B are inputs , and sum is the

output */
17 ParallelReduce <Dim ,int ,SUM <int >,tile_size > kernel1(ARG(

A,B),ARG(sum),RANGE(start_l ,end_l));
18 kernel1.MakeLam ([](auto i,auto&& sum ,auto A,auto B){sum

+=A(i)*B(i)},sum ,A,B);

Listing 2: An example of performing vector addition
and dot production using the 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐹𝑜𝑟 and
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑅𝑒𝑑𝑢𝑐𝑒 patterns.

Statement: The Statement pattern does not inherently
have parallel semantics. However, users can define parallel
operations within it to optimize some algorithms on specific
hardware architectures, such as SpMV in CSR format on
GPUs. Additionally, the Statement pattern can also be used to

define serial or Message Passing Interface (MPI) operations.
An example is shown in Listing 3.

1 /*A and B are scalar inputs , and alpha is the output */
2 Statament kernel(ARG(A,B),ARG(alpha));
3 kernel.MakeKFLam ([](auto&& alpha ,auto A, auto B){
4 MPI_Allreduce(MPI_IN_PLACE ,&A,1,MPI_DOUBLE ,MPI_SUM ,

MPI_COMM_WORLD);
5 MPI_Allreduce(MPI_IN_PLACE ,&B,1,MPI_DOUBLE ,MPI_SUM ,

MPI_COMM_WORLD);
6 alpha=A/B
7 },alpha ,A,B);

Listing 3: A example of 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 pattern

Parallel For and Parallel Reduce using scratchpad
memory: When scratchpad memory is utilized, tiling op-
eration is done by the user. An example of a vector copy
case is shown in Listing 4. Each time a kernel is called, the
scratchpad memory module is initialized. The instance of
this module can be directly obtained through related API.

1 constexpr size_t tile_size =1024;
2 constexpr size_t Dim=1;
3 /* vector copy: A is input , and B is the output */
4 ParallelFor <Dim ,tile_size > kernel(ARG(A),ARG(B),RANGE(

start_l ,end_l));
5 kernel.MakeLams(
6 [tile_size](auto i, auto&& A, auto&& B){
7 auto&& sm=MakeInstance ();
8 auto A_buf=sm.Malloc(A.GetPtr (),tile_size);
9 auto B_buf=sm.Malloc(B.GetPtr (),tile_size);
10 sm.CacheReadFromGlobal(A_buf ,0,A,i,tile_size ,i);
11 for(int ii=0;ii<tile_size;ii++)
12 B_buf[ii]=A_buf[ii];
13 sm.CacheStoreToGlobal(B,i,B_buf ,0,tile_size);
14 },A,B);

Listing 4: An example of vector copy using 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐹𝑜𝑟

with scratchpad memory.

Other parallel patterns: Most other parallel patterns
used in scientific computing can be implemented using Par-
allel For pattern. For instance, Leonid additionally provides
the Parallel Scan operation, which is implemented through
Parallel For plus Hillis-Steele algorithm[24] and Blelloch
algorithm[11]. For CPU and SW, we use the Hillis-Steele
method for small vectors and switch to the Blelloch approach
for large ones. Specifically, on GPUs, we exclusively employ
the Blelloch method to minimize synchronization overhead.
Both inclusive-scan and exclusive-scan are supported. The
exclusive-scan mode is used in the Molecular Dynamics ap-
plication in Section 4.

3.3 Automated Kernel Fusion
After the declaration of kernels, they are added to a DDG.
It is crucial that kernels are added in a correct execution
order, as the final execution graph will be generated based
on this sequence. Interval analysis is employed to deduce
the memory access range for each array parameter based
on the context of the lambda expression and the Bounded
Regular Section (BRS) method [21] is used to store this range.

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

A BRS consists of lower and upper bounds, and a stride,
clearly defining the access range and proving sufficient for
most scientific computing applications. If the BRS cannot be
deduced, the allocation information provided by memory-
management module will be used to generate a reference
BRS.

a: Unfused DDG b: Fused DDG

tmp1=dot(r,r) tmp=SpMV(A,p)

tmp2=dot(p,tmp)alpha=tmp1/tmp2

r=r-alpha*tmp

tmp3=dot(r,r)

beta=tmp3/tmp1 p=r+beta*p

x=x+alpha*p

tmp1=dot(r,r) tmp=SpMV(A,p)

tmp2=dot(p,tmp)

alpha=tmp1/tmp3

r=r-alpha*tmp

tmp3=dot(r,r)

beta=tmp3/tmp1 p=r+beta*p

x=x+alpha*p

5

6 7

2

1

3

4

i

Statement
Kernel

Parallel for
Kernel

Parallel reduce
Kernel

Execution
Order

Flow
Dependency

Read-Write
Dependency

Figure 4: The DDG before and after automated kernel
fusion for CG algorithm.

The DDG is a directed acyclic graph that describes the data
dependencies between kernels, with nodes representing the
kernels and edges representing the set of variables that cause
dependencies. In Leonid, both runtime and static versions
of DDG are implemented. The runtime DDG uses memory
addresses to differentiate between variables. By employing
the BRS along with memory addresses, we can ascertain the
data access range in memory. If there is an overlap between
the memory accessed by the output parameters of a pre-
kernel and the input parameters of a post-kernel, we consider
that a dependency exists. The order in which kernels are
added to the DDG determines whether they are classified as
pre-kernels or post-kernels. In contrast, the static version of
the DDG is constructed at compile time and lacks runtime
information; thus, it relies on variable analysis to establish
dependencies. In addition, implicit read-write dependency is
also considered for both kinds of DDG. An example of the
Conjugate Gradient (CG) algorithm is shown in Figure 4(a).

Each kernel maintains two sets: one to indicate which ker-
nels have already been fused with the current kernel (named
FusedSet) and another to declare which kernels cannot be
fused with the current kernel (named AvoidSet). They are
used to assist in determining whether two kernels can be
fused. During the construction of the DDG, each kernel in-
cludes itself in its own FusedSet. For Parallel Reduce kernels,
their child nodes are added to their AvoidSet.

Both horizontal fusion and vertical fusion are implemented
in Leonid and are determined based on the DDG. The prereq-
uisites for horizontal fusion and vertical fusion are different,
as shown in Figure 5 and outlined below:

Horizontal Fusion:
(1) The two kernels share at least one common parent

node and have the same dependent vector variables
with the parent node. Furthermore, these variables
should exhibit sufficiently large overlapping memory
access ranges.

(2) Neither kernel is a Statement kernel, and neither is
included in the other’s AvoidSet.

(3) There is no path connecting these two kernels in DDG.
(4) The fusion operation does not alter read-write depen-

dencies.
Vertical Fusion:
(1) The two kernels form a producer-consumer relation-

ship with dependent variable of vector type whose
length exceeding a specified threshold.

(2) Neither kernel is a Statement kernel, and the child node
is not included in the parent’s AvoidSet.

(3) There is no other paths connecting the two kernels in
the DDG except for the directly connected one.

(4) The fusion operation does not alter read-write depen-
dencies.

(5) The difference between the index values of the variable
does not exceed the threshold.

Kn0

Kn2

Kn1

Kn3A[
lo

w1
, u

pp
er

1,
 s

tri
de

1]

A[low
2 , upper2 , stride2]

B

C

The path that prevents fusion

Kn0

Kn1

Kn2

A[
lo

w,
 u

pp
er

, s
tri

de
] B

C

The path that prevents fusion

a:Horizontal Fusion b:Vertical Fusion

Common Parent Node Pending Fusion Node Fusion-Blocking Node

Figure 5: Diagram illustrating the conditions for hori-
zontal and vertical fusion.

Leonid employs a greedy algorithm for automatic kernel
fusion, aiming to fuse as many compatible kernels as possible
while taking into account the limitations of cache and LDM
capacity. When two kernels can be successfully fused, the
FusedSet and AvoidSet will be updated using Equation 1 and
2. Figure 4(b) illustrates the fused DDG of CG algorithm after
the automated kernel fusion, serving as an example.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

𝐹𝑢𝑠𝑒𝑑𝑆𝑒𝑡𝑛𝑒𝑤 = 𝐹𝑢𝑠𝑒𝑑𝑆𝑒𝑡0 ∪ 𝐹𝑢𝑠𝑒𝑑𝑆𝑒𝑡1 (1)

𝐴𝑣𝑜𝑖𝑑𝑆𝑒𝑡𝑛𝑒𝑤 = 𝐴𝑣𝑜𝑖𝑑𝑆𝑒𝑡0 ∪𝐴𝑣𝑜𝑖𝑑𝑆𝑒𝑡1 (2)

Runtime automated kernel fusion is implemented on CPU
and SW platforms. In our implementation framework, ker-
nels after tiling process are transformed into function point-
ers. When kernels are fused, Leonid generates a new com-
posite function pointer that orchestrates the sequential ex-
ecution of the corresponding function pointers associated
with the original kernels.

A static approach is adopted for GPU to minimize the over-
head associated with function pointer calls. Although tiling
can be utilized, it will reduce the granularity of parallelism.
Furthermore, due to the large number of threads on GPUs,
the tiling method might lead to insufficient cache availability
for all threads to benefit from data reuse.
Our static kernel fusion method is performed at compile

time using the static DDG. The entire process of the static
method is shown in Figure 6. In static kernel fusion, the types
(including estimated vector size information in the 𝑇𝑒𝑛𝑠𝑜𝑟
type) and names of variables are used to construct the static
DDG, with the automated kernel fusion process mirroring
that of runtime fusion. Once kernels in the DDG are fused,
an index sequence is generated to indicate which kernels
will be combined. Kernel fusion is then performed based
on this sequence, and the new kernels are used to build the
execution graph. All of these steps occur at compile time,
ensuring no additional runtime overhead.
Moreover, with the compiler’s inline optimization, there

are no concerns regarding optimization barriers for other
compiler optimizations.

3.4 Backend Execution
After the automated kernel fusion, the DDG is used to gen-
erate an execution graph, which determines the correct exe-
cution order for launching the kernels. On the GPU, CUDA
graphs are used to store the GPU kernels. These execution
graphs can be reused multiple times, eliminating the over-
head of building the DDG and performing kernel fusion
operations at runtime.

OpenMP serves as the backend on CPU, parallelizing the
outermost dimension of the loop. SWUC is utilized on SW,
where the loop after tiling is fused into a one-dimensional
loop, which can be computed in parallel by 64 CPEs. For
GPU, CUDA is employed, supporting multi-dimensional par-
allelism with each thread responsible for calculating one of
the iterations.

Type:Tensor<...> Name: A

Tensor<Dim,T,...> A;

Input/Output argument

Kernels

Kn0 Kn1

Kn2 Kn3

DDG (before fusion)

Kn0

Kn1_2
Kn3

DDG (after fusion) Index Sequence

Index0 {0}
Index0 {1,2}
Index0 {3}

kernel0new

kernel1new

kernel2new

Kn0

Kn1 Kn2

Kn3

Generated Kernels

Kn0

Kn1_2

Kn3

Execution Graph

Launch

6

1 2

3 4

5

Figure 6: Diagram of static automated kernel fusion
for GPU.

4 Performance Evaluation
In this section, we present a performance evaluation of Leonid
onCPU, GPU, and SW26010-Pro processors, aiming to demon-
strate its effectiveness and applicability, as well as quantify
the benefits provided by its automated kernel fusion capabil-
ities. We compare the performance of Leonid with manually
implemented code, as well as implementations developed
using Kokkos and RAJA, both at the algorithm level and the
application level.

4.1 Experiment Setup
Linear Solvers and Applications: At the algorithmic level,
we compare the performance of Leonid, Kokkos, and RAJA
on several methods: Two-level V-cycle geometric Multi-Grid
(MG) with Jacobi as the smoother, Preconditioned Conjugate
Gradient (PCG) with Jacobi preconditioning, Quasi-Minimal
Residual (QMR), and Minimum Residual (MINRES). These
four algorithms are widely used in scientific and engineering
computing, and we apply them to the 2-D Diffusion Equa-
tion using a five-point star stencil pattern. We implemented
Sparse Matrix Vector Multiplication (SpMV) in a matrix-free
manner, facilitating the calculation of the theoretical maxi-
mum speedup after kernel fusion.

At the application level, four mini-applications, theHPCG
benchmark [23], the lid-driven cavity problem (Cavity) [44],
Lattice Boltzmann Method (LBM) [45] and Molecular Dy-
namics (MD) [8] are employed to demonstrate the applicabil-
ity of Leonid. HPCG solves a sparse linear system from the
Poisson equation on a 3D grid using MGPCG with a 2-level

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 1: Hardware Platform and Corresponding Compilers for Performance Evaluation

Platform Specification Memory Compiler
CPU Intel Xeon ICX Platinum 8358 (32c) 16 × TruDDR4 (32G) gcc 14.2.0
GPU NVIDIA Tesla V100 PCIe HBM2 (32G) Clang 18.1.8; CUDA 12.4.99
SW SW26010-Pro(6 clusters) 6 × DDR4(16G) swgcc 7.1.0

CPU GPU SW

0.8

1.0

1.2

1.4

Pe
rfe

rm
an

ce
 R

at
io

1.
00

x

0.
99

x

X

0.
90

x

0.
99

x

 X

1.
01

x 1.
12

x

1.
04

x

MG(1024x1024)

CPU GPU SW

0.8

1.0

1.2

1.4
Pe

rfe
rm

an
ce

 R
at

io

0.
99

x

1.
00

x
X

0.
99

x

1.
00

x

X

1.
12

x

1.
09

x

1.
03

x

MG(2048x2048)

CPU GPU SW

0.8

1.0

1.2

Pe
rfe

rm
an

ce
 R

at
io

1.
01

x

1.
00

x

X

1.
02

x

1.
00

x

X

1.
06

x

1.
08

x

1.
06

x

MG(4096x4096)

CPU GPU SW

0.8

1.0

1.2

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

1.
01

x

X

0.
99

x

1.
00

x

X

1.
04

x

1.
08

x

1.
08

x

MG(8192x8192)

CPU GPU SW

1.0

1.5

2.0

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

0.
83

x

X

0.
84

x

0.
83

x

X

1.
13

x 1.
52

x

1.
23

x

PCG(Jacobi)(1024x1024)

CPU GPU SW

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

0.
98

x

0.
92

x

X

0.
92

x

0.
91

x

X

1.
30

x

1.
45

x

1.
22

x

PCG(Jacobi)(2048x2048)

CPU GPU SW

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

1.
01

x

0.
96

x

X

0.
95

x

0.
93

x

X

1.
29

x

1.
43

x

1.
25

x

PCG(Jacobi)(4096x4096)

CPU GPU SW

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

1.
00

x

0.
96

x

X

0.
97

x

0.
94

x

X

1.
32

x

1.
42

x

1.
25

x

PCG(Jacobi)(8192x8192)

CPU GPU SW
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
94

x

0.
93

x

X

0.
85

x

0.
93

x

X

1.
13

x 1.
28

x

1.
15

x

QMR(1024x1024)

CPU GPU SW
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

0.
97

x

X

0.
94

x

0.
95

x

X

1.
08

x 1.
29

x

1.
13

x

QMR(2048x2048)

CPU GPU SW
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
98

x

0.
97

x
X

0.
97

x

0.
94

x
X

1.
21

x

1.
27

x

1.
18

x

QMR(4096x4096)

CPU GPU SW
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

0.
97

x

X

0.
99

x

0.
93

x

X

1.
24

x

1.
27

x

1.
09

x

QMR(8192x8192)

CPU GPU SW

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

0.
93

x

X0.
80

x

0.
93

x

X

1.
08

x 1.
45

x

1.
15

x

MINRES(1024x1024)

CPU GPU SW
0.75
1.00
1.25
1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
96

x

0.
96

x

X

0.
88

x

0.
85

x

X

1.
10

x 1.
31

x

1.
14

x

MINRES(2048x2048)

CPU GPU SW
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
98

x

0.
97

x

X

0.
95

x

0.
91

x

X

1.
21

x

1.
26

x

1.
09

x
MINRES(4096x4096)

CPU GPU SW
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

0.
97

x

X

0.
97

x

0.
93

x

X

1.
19

x

1.
26

x

1.
12

x

MINRES(8192x8192)

manual Kokkos RAJA Leonid

Figure 7: Performance ratios of different algorithm versions relative tomanually implemented code under different
platforms and grid sizes ("×" indicates that Kokkos and RAJA don’t support SW).

V-cycle multigrid preconditioner and Jacobi smoother. The
cavity, governed by the Navier–Stokes equations on a 2D
grid, is discretized using a 2nd-order finite difference scheme,
and the resulting linear system is solved using the biconju-
gate gradient stabilized method. The SpMV operations in
both application are performed in a matrix-free manner. In
the LBM application, we adopt the Bhatnagar-Gross-Krook
(BGK) collision model [10] in a 2D box with a D2Q9 lattice
for incompressible flow simulation. We use Verlet integra-
tion [49] for motion updates and a truncated Lennard-Jones
potential [47] for energy calculations in the MD case. A
neighbor list with a controlled cutoff radius ensures that
each particle interacts with 2–3 others, with random initial-
ization within the 2D box.
Platforms: Table 1 lists the specific hardware platform in-
formation and the compilers used. The CPU used in this

section has an L3 cache of 48 MB per processor. Each Stream-
ing Multiprocessor on NVIDIA V100 GPU has a configurable
128 KB combined L1 cache and shared memory, which we set
to 64KB for L1 cache and 64 KB for shared memory during
testing. The SW26010-Pro processor includes a scratchpad
memory of 256 KB, of which we configured 128 KB as cache.

4.2 Evaluation on Algorithm Level
Performance comparison with state-of-the-art meth-
ods: Figure 7 shows the performance ratios of different
algorithm versions compared to the manually implemented
code across various grid sizes. On both CPU and GPU, we
evaluate Kokkos, RAJA, and Leonid against the manual code.
On the SW platform, only Leonid is compared, as Kokkos
and RAJA do not currently support it.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

Figure 7 demonstrates that Leonid outperforms both Kokkos
and RAJA across all test cases. Overall, Leonid achieves a
maximum speedup of 1.52× and an average speedup of 1.19×
compared to the manually implemented code. This perfor-
mance gain is primarily attributed to kernel fusion, which
reduces redundant accesses to main or global memory. While
Kokkos and RAJA can deliver performance comparable to
the manually implemented code, they do not match the level
of improvement achieved by Leonid.

Among all the profiled algorithms, PCG achieves the high-
est acceleration ratio, with a maximum speedup of 1.53x and
an average speedup of 1.45×. In contrast, MG only achieves
a maximum speedup of 1.12×. There are two main reasons
for this performance difference: (1) A higher proportion of
kernels in the PCG algorithm can be fused. In PCG, 11 paral-
lel kernels are fused into 5, whereas in MG, only 7 parallel
kernels are fused into 5. (2) In the MG algorithm, some com-
putations are performed on the coarse grid level, where the
kernel execution time is short. Compared to kernels running
on the fine grid, the benefits of kernel fusion on the coarse
grid are relatively limited.

When the grid sizes are 4096 × 4096 and 8192 × 8192, the
acceleration ratio tends to stabilize. However, the accelera-
tion ratio of kernel fusion on the SW platform is lower than
that on the GPU and CPU, except for MG with a grid size of
8192 × 8192. This performance difference can be attributed
to the fact that the SW platform has only one level of cache.
On CPUs, Leonid can take advantage of the L1 cache, which
provides a bandwidth of approximately 64 GB/s per core. On
the GPU platforms, our static kernel fusion method enables
register-level reuse. In contrast, a stream test on the SW plat-
form indicates a much lower bandwidth value of only 6.75
GB/s.
Overhead profile of Leonid: We use the PCG and MIN-
RES algorithms as examples to study the overhead of Leonid
across different grid sizes and platforms. The result is illus-
trated in Figure 8. We compare the performance of Leonid
with the manually implemented codes, both with and with-
out kernel fusion. The manual fusion code’s fusion patterns
are based on the DDG generated by Leonid’s automated
kernel-fusion mechanism.

Overall, on all evaluation platforms, Leonid achieves per-
formance comparable to the manually implemented code,
regardless of whether kernel fusion is applied, except when
the grid size is 1024 × 1024 on the CPU.
When the grid size is 1024 × 1024, a performance loss

can be observed on CPU for Leonid with automated kernel
fusion. This because Leonid can only use cache to implement
data reuse, and the function pointer calls incur overhead. In
contrast, manually fused kernel code can achieve register
reuse. When the grid size is small, the overall computational
workload and memory bandwidth pressure are low, making

the overhead in Leonid more noticeable. In addition, the large
L3 cache in the CPU may cause the speedup lower when
the grid size is small. For example, when the grid sizes are
1024 × 1024 and 2048 × 2048, the vector sizes are 8M and
32M, respectively, which fit within the capacity of L3 cache.
Under these conditions, the data reuse of certain arrays in the
unfused code partially diminishes the performance benefits
of kernel fusion.
On the GPU platform, when the grid size is 1024 × 1024,

Leonid can outperform the manually implemented code by
about 7% to 20%. This is because, the computational workload
is relatively small for the GPU at this point, and the overhead
of kernel launches becomes more significant. Leonid saves
parallel kernels as CUDA graphs by default on the GPU,
which reduces the overhead of kernel launches.
DMAprofile on SW: The scratchpad-memory-management
module in Leonid enables the use of DMA on the SW plat-
form. We compare the performance of DMA-enabled Leonid
with manually implemented code, both with and without
DMA. In our implementation, only contiguous arrays lever-
age DMA operations, while non-contiguous arrays in SpMV
continue to rely on non-DMA access. The performance eval-
uation is presented in Figure 9, where MG is replaced with
CG, as CG involves fewer discrete data accesses compared
to MG.

Compared tomanually implemented code, Leonid achieves
up to a 1.87× speedup. Furthermore, for manually imple-
mented DMA code, Leonid without kernel fusion delivers
performance nearly identical to the manual implementa-
tion. Notably, Leonid’s automated kernel fusion method pro-
vides additional performance benefits, achieving a maximum
speedup of 1.28×. The performance gain for the QMR al-
gorithm is relatively lower compared to the other three al-
gorithms. This is because the SpMV operation constitutes
a larger portion of the QMR algorithm, and DMA was not
applied to SpMV in our implementation.

4.3 Evaluation on Application Level
The evaluation on application level is shown in Figure 10.
We compare the performance of Kokkos, RAJA and Leonid
on CPU and GPU with Kokkos as the baseline, and we only
calculate the speedup of automared kernel fusion on SW (For
HPCG, we testes only up to a grid size of 256 × 256 × 256 on
SW due to memory capacity limitations).

On both the CPU andGPU, our Leonid outperforms Kokkos
and RAJA. In the HPCG benchmark, Leonid achieves a maxi-
mum performance improvement of 17% (13% on average) on
the CPU and 24% (19% on average) on the GPU over Kokkos
. Meanwhile, RAJA achieves approximately 97% of Kokkos’
performance. In the Cavity benchmark, Leonid achieves a
maximum speedup of 1.27× (1.23× on average) on the CPU

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1024 2048 4096 8192

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

1.
03

x

0.
97

x

0.
98

x

1.
00

x

1.
33

x

1.
24

x

1.
26

x

1.
25

x

1.
13

x 1.
30

x

1.
29

x

1.
32

x

CPU

1024 2048 4096 8192

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

1.
04

x

1.
01

x

1.
00

x

1.
00

x

1.
45

x

1.
41

x

1.
41

x

1.
39

x

1.
52

x

1.
45

x

1.
43

x

1.
42

x

GPU

1024 2048 4096 8192

1.0

1.5

Pe
rfe

rm
an

ce
 R

at
io

0.
98

x

0.
98

x

0.
98

x

0.
98

x1.
20

x

1.
19

x

1.
17

x

1.
22

x

1.
23

x

1.
22

x

1.
19

x

1.
25

x

SW

1024 2048 4096 8192
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

1.
01

x

0.
99

x

0.
99

x

0.
97

x

1.
26

x

1.
10

x

1.
23

x

1.
24

x

1.
08

x

1.
10

x

1.
21

x

1.
19

x

CPU

1024 2048 4096 8192
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

1.
14

x

1.
05

x

1.
02

x

1.
00

x1.
25

x

1.
28

x

1.
26

x

1.
26

x1.
45

x

1.
31

x

1.
26

x

1.
26

x

GPU

1024 2048 4096 8192
0.75

1.00

1.25

1.50

Pe
rfe

rm
an

ce
 R

at
io

0.
99

x

0.
99

x

0.
98

x

0.
99

x1.
17

x

1.
14

x

1.
11

x

1.
14

x

1.
15

x

1.
14

x

1.
09

x

1.
12

x

SW

manual Leonid without fusion manual_fusion Leonid Theoretical Acceleration Ratio

Figure 8: Kernel fusion performance comparison: Leonid vs. manually implemented and fused codes in PCG and
MINRES algorithms across different grid sizes. The x-axis represents the number of grid points along one side, eg.,
1024 corresponds to a grid size of 1024 × 1024.

[1024,1024] [2048,2048] [4096,4096] [8192,8192]

1.0

1.5

2.0

Pe
rfe

rm
an

ce
 R

at
io

1.
33

x

1.
37

x

1.
44

x

1.
52

x

1.
36

x

1.
41

x

1.
47

x

1.
55

x

1.
71

x

1.
70

x

1.
79

x

1.
87

x

PCG(Jacobi)

[1024,1024] [2048,2048] [4096,4096] [8192,8192]

1.0

1.5

2.0

Pe
rfe

rm
an

ce
 R

at
io

1.
23

x

1.
27

x

1.
32

x

1.
39

x

1.
28

x

1.
32

x

1.
37

x

1.
43

x

1.
58

x

1.
60

x

1.
66

x

1.
71

x

MINRES

[1024,1024] [2048,2048] [4096,4096] [8192,8192]

1.0

1.5

2.0

Pe
rfe

rm
an

ce
 R

at
io

1.
28

x

1.
30

x

1.
39

x

1.
46

x

1.
31

x

1.
34

x

1.
42

x

1.
45

x

1.
46

x

1.
45

x

1.
54

x

1.
57

x

CG

[1024,1024] [2048,2048] [4096,4096] [8192,8192]

1.00

1.25

1.50

1.75

Pe
rfe

rm
an

ce
 R

at
io

1.
23

x

1.
25

x

1.
33

x

1.
37

x

1.
22

x

1.
26

x

1.
33

x

1.
39

x

1.
24

x 1.
39

x

1.
50

x

1.
46

x

QMR

manual manual_dma Leonid without fusion Leonid

Figure 9: Performance Profiling of Leonid with DMA Enabled on SW for PCG, MINRES, CG, and QMR Algorithms
Across Different Grid Sizes.

and 1.58× (1.30× on average) on the GPU relative to Kokkos.
For LBM, Leonid achieves a maximum speedup of 1.19×
(1.17× on average) on the CPU and 1.26× (1.24× on average)
on the GPU compared to Kokkos. In MD, Leonid achieves up
to 1.47× (1.45× on average) on the CPU and 1.34× (1.30× on
average) on the GPU. On the SW platform, automated kernel
fusion provides an average performance improvement of
16% in HPCG, 12% in Cavity, 15% in LBM, and 23% in MD.

We also successfully implemented an MPI version of the
HPCG based on Leonid. The weak scaling parallel efficiency

is shown in Figure 11, demonstrating that our Leonid is
highly compatible with MPI.

4.4 Development cost discussion
Performance-portable frameworks simplify cross-device code
development by supporting diverse platforms. For instance,
the PCG case used in Section 4.2 spans 505 lines across
CPU (122), GPU (230), and SW (153), while Leonid accom-
plishes the same functionality in 150 lines. Although adopt-
ing Kokkos, RAJA, or Leonid requires some extra effort
compared to developing pure CPU code, these frameworks

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

128 256 512
0.8

1.0

1.2

1.4

Pe
rfe

rm
an

ce
 R

at
io

0.
92

x

0.
93

x

0.
96

x

1.
05

x 1.
17

x

1.
17

x

CPU

128 256 512
0.8

1.0

1.2

1.4

Pe
rfe

rm
an

ce
 R

at
io

0.
98

x

0.
99

x

0.
99

x1.
24

x

1.
19

x

1.
15

x

GPU

64 12
8

25
6

0.8

1.0

1.2

1.4

Sp
ee

du
p

1.
15

x
1.

18
x

1.
14

x

SW

512 1024 2048
0.8

1.0

1.2

1.4

Pe
rfe

rm
an

ce
 R

at
io

0.
85

x

0.
94

x

1.
04

x

1.
15

x

1.
14

x 1.
27

x

CPU

512 1024 2048
0.5

1.0

1.5

2.0

Pe
rfe

rm
an

ce
 R

at
io

1.
05

x

1.
01

x

0.
99

x1.
58

x

1.
34

x

1.
26

x

GPU

51
2

10
24

20
48

0.5
0.8
1.0
1.2
1.5

Sp
ee

du
p 1.
13

x
1.

11
x

1.
12

x

SW

107 5x107 108

0.8

1.0

1.2

1.5

Pe
rfe

rm
an

ce
 R

at
io

0.
81

x

0.
89

x

0.
89

x1.
16

x

1.
19

x

1.
17

x

CPU

107 5x107 108
0.8

1.0

1.2

1.4

Pe
rfe

rm
an

ce
 R

at
io

1.
00

x

1.
00

x

0.
98

x1.
23

x

1.
22

x

1.
26

x

GPU

10
7

5x
10

7

10
8

0.8

1.0

1.2

1.4

Sp
ee

du
p 1.
14

x
1.

17
x

1.
15

x

SW

107 5x107 108

1.0

1.5

2.0

Pe
rfe

rm
an

ce
 R

at
io

1.
00

x

1.
00

x

0.
99

x1.
40

x

1.
47

x

1.
47

x

CPU

107 5x107 108
0.8
1.0
1.2
1.4
1.6

Pe
rfe

rm
an

ce
 R

at
io

0.
97

x

0.
97

x

0.
97

x

1.
34

x

1.
31

x

1.
26

x

GPU

10
7

5x
10

7

10
8

0.8
1.0
1.2
1.4
1.6

Sp
ee

du
p

1.
23

x
1.

21
x

1.
24

x

SW

Kokkos RAJA Leonid

Figure 10: Performance evaluation of mini-applications: comparisons of Kokkos, RAJA, and Leonid on both CPU
and GPU, with the speedup achieved by Leonid’s automated kernel fusion on the SW. For HPCG and Cavity, the
x-axis ticks represent the grid size of each dimension, such as 128 in HPCG, which means the grid is 128 × 128 × 128.
In the LBM and MD subplots, the x-axis ticks represent the number of lattices and particles, respectively.

1 2 4 8
Number of processors/GPUs

97

98

99

100

101

Pa
ra

lle
l e

ffi
cie

nc
y(

%
)

100.0100.0
99.6

100.1

99.0

100.0

98.2

99.9100.0
99.6

98.3

97.5

Weak scaling parallel efficiency

CPU
SW
GPU

Figure 11: Weak scaling parallel efficiency of HPCG on
different platforms. The grid size is 512 × 512 × 512 per
GPU and CPU, and the size is 256 × 256 × 256 on SW.

enable multi-platform support with performance matching
hardware-specific models, ultimately saving development
costs across multiple platforms.

5 Related works
Performance Portability. Performance-portable program-
ming models provide the solution to hardware diversity
by abstracting hardware-specific details. OpenACC [4] and
OpenMP [37] facilitate code offloading and data transfer
through pragma directives, offering performance portabil-
ity for heterogeneous systems and enabling large-scale het-
erogeneous simulations [15, 20, 55]. However, as directive-
based programming models, OpenACC and OpenMP are
user-friendly but lack fine-grained control over comput-
ing devices. OpenCL [35] and its extension SYCL [25] are

performance-portable models at the programming language
level. They both provide abstractions for managing data and
controlling code execution, making it easier to achieve porta-
bility across diverse hardware platforms. Kokkos [17, 48] and
RAJA [9] are notable libraries for performance portability.
Kokkos evolved from the Kokkos Array [16] and has devel-
oped into a flexible programming framework for multiple
mainstream hardware platforms. RAJA shares similar goals
to Kokkos but also includes unique concepts and capabili-
ties.While these performance-portable programmingmodels
mentioned above effectively address the challenges posed by
hardware diversity, they lack support for automated kernel
fusion, leaving them unable to fully tackle the performance
bottlenecks of memory bandwidth-bound applications on
modern hardware architectures. In these models, users are
required to perform kernel fusion manually. Although SYCL
[39] supports user-driven kernel fusion at the compiler level
through its Just-In-Time (JIT) compilation framework, this
approach is not directly applicable to models like Kokkos
and RAJA. Moreover, the lack of automated kernel fusion
significantly complicates the development and maintenance
of large-scale projects involving dozens or even hundreds of
kernels.
Performance-portable DSLs can be regarded as program-

ming models tailored for specific applications. For instance,
Halide [42] and TVM [13] are programming languages specif-
ically designed for image processing and deep learning, re-
spectively. These DSLs leverage the LLVM toolchain and
code generation techniques to support multiple hardware

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

platforms and optimize kernel fusion. There are also DSLs
designed for scientific domains with performance-portable,
such as OpenArray [26] and JAX-CFD [28]. These are tailored
for ocean model simulations and fluid dynamics computa-
tions respectively, and support multiple platforms by code
generation.
Kernel Fusion. Kernel/Loop fusion is an effective opti-

mization technique designed to improve the performance of
bandwidth-bound codes. The significance of kernel fusion in
optimizing bandwidth-bound applications is highlighted in
reference [46]. Several linear algebra libraries, such as Eigen
[19], LIBXSMM [22], and DESOLA [43], use loop fusion to
enhance cache utilization. Eigen employs static techniques
for fusion optimization. In contrast, LIBXSMM and DES-
OLA achieve kernel fusion through code generation and JIT
compilation using runtime information. However, their ap-
proaches are limited to the linear algebra level and cannot be
directly integrated into performance-portable programming
models.
Automated operator fusion is widely used in the field of

machine learning, with frameworks like TVM [13], Tensor-
Flow [6], and ONNX [3] supporting it. This technique also
offers significant benefits for optimization in scientific com-
puting, and several works attempted to achieve automated
kernel fusion for scientific applications. Mastoras et al. [32]
designed a non-blocking execution GraphBlas, which enable
automated kernel fusion through latency-execution. How-
ever, their approaches are specifically designed for Graph-
BLAS. Lamzed-Short et al. [29] proposed a novel LLVM op-
timization pass which can fuse C++ kernels automatically
given a amount of additional information in the form of
source code annotations. But this method requires modifying
compilers and cannot currently be integrated into program-
ming models like Kokkos and RAJA. References [18, 40, 51]
provide source-to-source transformations that automatically
convert non-fused code into fused codes for GPU kernels.
However, their approaches are only applicable to GPUs, and
the source-to-source method may encounter integration dif-
ficulties with existing scientific computing codes. Both Meng
et al. [33] and Wahib et al. [50] proposed their own analysis
frameworks that identifywhich kernels can be fused together,
which only provide guidance for manual code fusion and do
not fuse the kernels automatically.
Some studies on GPU kernel fusion focus not on reduc-

ing main memory access but on improving GPU utilization
or power efficiency. Li et al. [30] and Usman Ahmed et al.
[7] implemented fusion of CUDA and OpenCL kernels, re-
spectively, to enhance resource utilization. Wang et al. [53]
proposed a fusionmethod to reduce energy consumption and
optimize power efficiency by fusing independent kernels.

6 Conclusion and Future work
In this paper, we present Leonid, a performance-portable
programming model designed to support automated ker-
nel fusion. Leonid integrates an automated kernel-fusion
mechanism alongsidemodules for cross-devicememoryman-
agement and unified parallel and serial programming pat-
terns, all of which are specifically tailored for automated
kernel fusion. The memory-management module supports
both main/global memory and scratchpad memory, enabling
SW DMA operations and reducing unnecessary memory ac-
cess through scratchpad management. The execution space
currently supports the 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐹𝑜𝑟 , 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑅𝑒𝑑𝑢𝑐𝑒 , and
𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 execution patterns. On CPU and SW platforms,
we use a runtime DDG for dynamic fusion, leveraging run-
time information. On GPUs, we utilize a static DDG for
compile-time fusion to minimize overhead.

Leonid delivers performance comparable to manually im-
plemented versions for memory-bound codes, regardless of
whether automated kernel fusion is applied. When auto-
mated kernel fusion is enabled, Leonid achieves up to 1.52×
speedup (with an average of 1.19×) compared to manually
implemented codes without kernel fusion, significantly out-
performing Kokkos and RAJA. On the SW platform, with
optimized scratchpadmemorymanagement, Leonid achieves
up to 1.87× performance improvement compared to man-
ually implemented codes without DMA, with a maximum
speedup of 1.28× from automated kernel fusion alone.
The current version of Leonid is primarily focused on

demonstrating the advantages of automatic kernel fusion
and does not yet offer the extensive functionality provided by
Kokkos and RAJA. In future work, we plan to integrate the
automated kernel fusion method developed in this paper into
Kokkos and RAJA to address this limitation. Furthermore, we
aim to utilize the LLVM toolchain to implement additional
optimizations using runtime information.

Acknowledgments
This work was supported in part by National Key R&D
Program of China (No. 2023YFA1011703), National Natural
Science Foundation of China (No. 12131002, 12288101) and
Changsha Science and Technology Bureau (No. KH2301001).
In addition, special thanks to Chengdi Ma for assistance
with the Cavity case discretization and valuable suggestions
during writing.

References
[1] 2024. AMD HIP homepage. https://www.amd.com/zh-cn/developer/

resources/rocm-hub/hip-sdk.html
[2] 2024. NVIDIA CUDA homepage. https://developer.nvidia.com/cuda-

toolkit
[3] 2024. ONNX: Open Neural Network Exchange. https://github.com/

onnx/onnx.

https://www.amd.com/zh-cn/developer/resources/rocm-hub/hip-sdk.html
https://www.amd.com/zh-cn/developer/resources/rocm-hub/hip-sdk.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/onnx/onnx
https://github.com/onnx/onnx

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Chenchen Zhang, Hao Luo, and Chao Yang

[4] 2024. OpenACC homepage. https://www.openacc.org/
[5] 2024. Top 500 supercomputer lists. https://www.top500.org/lists/top500/

2024/06/
[6] Martín Abadi, Ashish Agarwal, Paul Barham, et al. 2016. TensorFlow:

Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467 (2016).

[7] Usman Ahmed, Jerry Chun-Wei Lin, and Gautam Srivastava. 2022.
A ML-based resource utilization OpenCL GPU-kernel fusion model.
Sustainable Computing: Informatics and Systems 35 (2022), 100683.

[8] B. J. Alder and T. E. Wainwright. 1959. Studies in Molecular Dynamics.
I. General Method. The Journal of Chemical Physics 31, 2 (1959), 459–
466.

[9] David A. Beckingsale, Jason Burmark, Rich Hornung, Holger Jones,
William Killian, and Adam J. Kunen. 2019. RAJA: Portable Performance
for Large-Scale Scientific Applications. In 2019 IEEE/ACM International
Workshop on Performance, Portability, and Productivity in HPC (P3HPC).
IEEE, 71–81.

[10] P. L. Bhatnagar, E. P. Gross, and M. Krook. 1954. A Model for Colli-
sion Processes in Gases. I. Small Amplitude Processes in Charged and
Neutral One-Component Systems. Physical Review 94, 3 (1954), 511.

[11] Guy E. Blelloch. 1990. Prefix Sums and Their Applications. Technical
Report CMU-CS-90-190. Carnegie Mellon University.

[12] Huanqi Cao and Jiajie Chen. 2022. Design and Implementation of
Shenwei Universal C/C++. arXiv preprint arXiv:2208.00607 (2022).

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, et al. 2018. TVM: An
automated End-to-End optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 578–594.

[14] NVIDIA Corporation. 2022. NVIDIA H100 Tensor Core GPUArchitecture:
Exceptional Performance, Scalability, and Security for the Data Center.
White Paper. NVIDIA Corporation.

[15] Jose Monsalve Diaz, Kyle Friedline, Swaroop Pophale, Oscar Hernan-
dez, David E. Bernholdt, and Sunita Chandrasekaran. 2019. Analysis of
OpenMP 4.5 offloading in implementations: correctness and overhead.
Parallel Comput. 89 (2019), 102546.

[16] H. Carter Edwards, Daniel Sunderland, Vicki Porter, Chris Amsler, and
Sam Mish. 2012. Manycore performance-portability: Kokkos multidi-
mensional array library. Scientific Programming 20, 2 (2012), 89–114.

[17] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014.
Kokkos: Enabling manycore performance portability through poly-
morphic memory access patterns. J. Parallel and Distrib. Comput. 74,
12 (2014), 3202–3216.

[18] Jan Fousek, Jiři Filipovič, and Matuš Madzin. 2011. Automatic fusions
of CUDA-GPU kernels for parallel map. ACM SIGARCH Computer
Architecture News 39, 4 (2011), 98–99.

[19] G. Gaël et al. 2021. Eigen v3. http://eigen.tuxfamily.org.
[20] A. Hart, R. Ansaloni, and A. Gray. 2012. Porting and scaling OpenACC

applications on massively-parallel, GPU-accelerated supercomputers.
The European Physical Journal Special Topics 210, 1 (2012), 5–16.

[21] Paul Havlak and Ken Kennedy. 1991. An implementation of interpro-
cedural bounded regular section analysis. IEEE Transactions on Parallel
and Distributed Systems 2, 3 (1991), 350–360.

[22] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. 2016. LIBXSMM: Accelerating small matrix multiplications by
runtime code generation. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
981–991.

[23] Michael Allen Heroux and Jack Dongarra. 2013. Toward a new metric
for ranking high performance computing systems. Technical Report
SAND2013-4744. Sandia National Laboratories.

[24] W. DANIEL HILLIS and JR. GUY L. STEELE. 1986. Data Parallel Algo-
rithms. Commun. ACM 29, 12 (1986).

[25] Lee Howes andMaria Rovatsou. 2015. SYCL integrates OpenCL devices
with modern C++.

[26] Xiaomeng Huang, Xing Huang, Dong Wang, et al. 2019. OpenArray
v1.0: a simple operator library for the decoupling of ocean modeling
and parallel computing. Geoscientific Model Development 12, 11 (2019),
4729–4749.

[27] Khronos SYCL Working Group. 2021. SYCL 2020 Specification. Techni-
cal Report. Khronos Group.

[28] Dmitrii Kochkov, Jamie A. Smith, Anastasiya Alieva, et al. 2021. Ma-
chine learning–accelerated computational fluid dynamics. Proceedings
of the National Academy of Sciences 118, 21 (2021), e2101784118.

[29] Andrew Lamzed-Short, Timothy R. Law, Andrew Mallinson, Gihan R.
Mudalige, and Stephen A. Jarvis. 2020. Towards automated kernel
fusion for the optimisation of scientific applications. In 2020 IEEE/ACM
6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC) and Workshop on Hierarchical Parallelism for Exascale Computing
(HiPar). IEEE, 45–55.

[30] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Au-
tomatic horizontal fusion for GPU kernels. In 2022 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). IEEE,
14–27.

[31] Kai Lu, YaohuaWang, Yang Guo, et al. 2022. MT-3000: a heterogeneous
multi-zone processor for HPC. CCF Transactions on High Performance
Computing 4, 2 (2022), 150–164.

[32] Aristeidis Mastoras, Sotiris Anagnostidis, and Albert-Jan N. Yzelman.
2022. Design and implementation for nonblocking execution in Graph-
BLAS: Tradeoffs and performance. ACM Transactions on Architecture
and Code Optimization 20, 1 (2022), 1–23.

[33] Jiayuan Meng, Vitali A. Morozov, Venkatram Vishwanath, and Kalyan
Kumaran. 2012. Dataflow-driven GPU performance projection for
multi-kernel transformations. In SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–11.

[34] Richard Tran Mills, Mark F. Adams, Satish Balay, et al. 2021. Toward
performance-portable PETSc for GPU-based exascale systems. Parallel
Comput. 108 (2021), 102831.

[35] A. Munshi. 2009. The OpenCL Specification. In 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 1–314.

[36] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, et al. 2021. The design
process for Google’s training chips: TPUv2 and TPUv3. IEEE Micro 41,
2 (2021), 56–63.

[37] OpenMP Architecture Review Board 2021. OpenMP Application Pro-
gramming Interface (version 5.2 ed.). OpenMP Architecture Review
Board.

[38] S. J. Plimpton, S. G. Moore, A. Borner, et al. 2019. Direct simulation
Monte Carlo on petaflop supercomputers and beyond. Physics of Fluids
31, 8 (2019), 080607.

[39] Víctor Pérez, Lukas Sommer, Victor Lomüller, Kumudha Narasimhan,
and Mehdi Goli. 2023. User-driven online kernel fusion for SYCL. ACM
Transactions on Architecture and Code Optimization 20, 2 (2023), 1–25.

[40] Bo Qiao, Oliver Reiche, Frank Hannig, and Jïrgen Teich. 2019. From
loop fusion to kernel fusion: A domain-specific approach to locality
optimization. In 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 242–253.

[41] Milan Radulović. 2019. Memory bandwidth and latency in HPC: system
requirements and performance impact. Tesi doctoral, UPC, Departament
d’Arquitectura de Computadors (2019).

[42] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

https://www.openacc.org/
https://www.top500.org/lists/top500/2024/06/
https://www.top500.org/lists/top500/2024/06/
http://eigen.tuxfamily.org

Leonid: Exploring Automated Kernel Fusion in Performance-Portable Programming Models ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[43] Francis P. Russell, Michael R. Mellor, Paul H.J. Kelly, and Olav Beck-
mann. 2011. DESOLA: An active linear algebra library using delayed
evaluation and runtime code generation. Science of Computer Program-
ming 76, 4 (2011), 227–242.

[44] Mehmet Sahin and Robert G. Owens. 2003. A novel fully implicit
finite volume method applied to the lid-driven cavity problem—Part
I: High Reynolds number flow calculations. International Journal for
Numerical Methods in Fluids 42, 1 (2003), 57–77.

[45] S. Succi. 2001. The Lattice Boltzmann Equation: For Fluid Dynamics and
Beyond. Oxford University Press.

[46] Siham Tabik, G. Ortega, and Ester M. Garzón. 2014. Performance
evaluation of kernel fusion BLAS routines on the GPU: iterative solvers
as case study. The Journal of Supercomputing 70, 2 (2014), 577–587.

[47] Andrij Trokhymchuk and José Alejandre. 1999. Computer Simulations
of Liquid/Vapor Interface in Lennard-Jones Fluids: Some Questions and
Answers. The Journal of Chemical Physics 111, 18 (1999), 8510–8523.

[48] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko,
Vinh Dang, and Nathan Ellingwood. 2021. Kokkos 3: Programming
model extensions for the exascale era. IEEE Transactions on Parallel
and Distributed Systems 33, 4 (2021), 805–817.

[49] Loup Verlet. 1967. Computer "Experiments" on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules. Physical
Review 159, 1 (1967), 98.

[50] Mohamed Wahib and Naoya Maruyama. 2014. Scalable kernel fusion
for memory-bound GPU applications. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 191–202.

[51] Mohamed Wahib and Naoya Maruyama. 2015. Automated GPU ker-
nel transformations in large-scale production stencil applications. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing. 259–270.

[52] Chen Wang, Jian Xia, and Long Chen. 2024. A heterogeneous hybrid-
precision finite volume method for compressible flow on unstructured
grids. Computers & Fluids (2024), 106505.

[53] GuibinWang, YiSong Lin, andWei Yi. 2010. Kernel fusion: An effective
method for better power efficiency on multithreaded GPU. In 2010
IEEE/ACM Int’l Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Computing. IEEE, 344–
350.

[54] Junlin Wei, Pengfei Lin, Jinrong Jiang, et al. 2024. Accelerating LAS-
G/IAP climate system ocean model version 3 for performance porta-
bility using Kokkos. Future Generation Computer Systems (2024).

[55] Chuanfu Xu, Xi Wang, Dali Li, Yonggang Che, and Zhenghua Wang.
2019. OpenMP 4.5-enabled large-scale heterogeneous Lattice Boltz-
mann multiphase flow simulations. 2019 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom), 1007–1016.

[56] Qianchao Zhu, Hao Luo, Chao Yang, et al. 2021. Enabling and scaling
the HPCG benchmark on the newest generation Sunway supercom-
puter with 42 million heterogeneous cores. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. 1–13.

	Abstract
	1 Introduction
	2 Challenges and Design Philosophy
	2.1 Challenges for automated kernel-fusion
	2.2 Design Philosophy
	2.3 Hardware Abstraction

	3 Leonid Implementation
	3.1 Memory Management
	3.2 Kernels: Execution Patterns
	3.3 Automated Kernel Fusion
	3.4 Backend Execution

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Evaluation on Algorithm Level
	4.3 Evaluation on Application Level
	4.4 Development cost discussion

	5 Related works
	6 Conclusion and Future work
	Acknowledgments
	References

