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Abstract
The GPU device heterogeneity in accelerating deep learn-

ing training workloads poses significant challenges for job

scheduling in datacenters. Existing heterogeneity-aware job

schedulers, however, cannot effectively reduce the overall job

completion time (JCT) or provide fairness guarantees due to

their coarse-grained resource allocation and poor integration

of conflicting objectives.

This paper presents FFT, a novel scheduling system de-

signed for Fast and Fair deep learning Training in heteroge-

neous GPU clusters. FFT incorporates two key designs. First,

it incorporates a resource allocation scheme in each round to

enable fine-grained control over resource utilization. Second,

it seamlessly integrates a fairness compensation mechanism

that dynamically evaluates fairness in real-time. Building

upon these designs, FFT formulates a cost minimization prob-

lem to determine the optimal schedule, striking a delicate

balance between efficiency and fairness. Extensive experi-

ments conducted in physical clusters as well as large-scale

testbed demonstrate that FFT can significantly accelerate

the overall JCT by up to 5.2× while improving job finish-

time-fairness by more than 2.2× compared to state-of-the-art

heterogeneity-aware solutions.
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1 Introduction
In recent years, deep learning (DL) has played a pivotal role

in driving advancements across various domains, including

computer vision, natural language processing, and video

processing [18, 43, 50]. The computational demands of DL

training necessitate high-performance hardware, and GPUs

and TPUs have emerged as the preferred choices due to their

superior parallel processing capabilities compared to CPUs.

In response to the strong market demand, GPU manufac-

turers have been accelerating their efforts to release new

hardwares. Consequently, technology giants and research

labs have accumulated a diverse array of accelerators boast-

ing varying computation capabilities over time. For instance,

the Alibaba machine learning platform offers more than

eight types of GPU devices, spanning from older generations

to the latest equipment [1]. Recent works have extensively

shown that these heterogeneous GPU devices can signifi-

cantly differ in training throughput across various types of

DL workloads [7, 23, 30, 33, 46, 53].

However, this fast GPU technology evolution presents sig-

nificant challenges to the scheduling of deep learning train-

ing workloads. Motivated by the scaling law, AI researchers

build larger and larger models over time to break state-of-the-

art performance. For instance, the Llama-2 language model,

one of the most popular giant language models, consists of

70B parameters [48]. Transferring the training state to new

hosts incurs substantial transmission overhead. Addition-

ally, the operation overhead to preempt an ongoing training

process, including checkpoint saving and loading as well as

communication group initialization, is also non-negligible.

To this end, inappropriate preemption operation can nullify

the throughput advantages of training on high-end GPUs.

Unfortunately, all existing heterogeneity-aware sched-

ulers overlook the impact of migration overhead in heteroge-

neous environments. This oversight leads to two main issues:

significant wastage of GPU time during training and data

preparation stages [33], or a failure to effectively leverage
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migration for accelerated training on high-end devices [23].

We have identified the root causes of these inefficiencies -

these schedulers only characterize resource allocation in a

coarse-grained manner based on effective throughput. By

relying solely on throughput-based allocation, which repre-

sents average allocation over the long term, these schedulers

fail to accurately capture the scheduling order among jobs

and lack the necessary expressiveness to account for mi-

gration overhead. Consequently, the scheduling efficiency is

significantly compromised, often leading to JCT performance

degradation by over two times in many cases.

Furthermore, existing DL training schedulers that aim to

minimize JCT in heterogeneous clusters [23, 33] often strug-

gle to incorporate another vital metric at the same time - job

fairness, which is crucial for incentivizing resource sharing

among users in large clusters [13, 27]. As jobs arrive in the

DL cluster continuously over time [32, 40], schedulers that

focus on fast completion [23] tend to prioritize jobs with

fewer GPU requirements and training iterations. This may

lead to the neglect of giant training jobs [41, 49] requiring

substantial GPU quotas, resulting in unfair resource alloca-

tion. Conversely, schedulers that focus on fairness often lead

to significant JCT degradation because of poor integration

between fairness guarantees and JCT optimization [7]. This

highlights the challenge of finding the optimal balance be-

tween these conflicting objectives in heterogeneous clusters.

In this paper, we introduce FFT, a new system designed

for Fast and Fair Training of distributed DL workloads in het-

erogeneous GPU clusters. FFT encompasses two key goals:

1) leveraging fine-grained resource allocation and facilitate

opportunistic migration to maximize the utilization of het-

erogeneous resources for JCT reduction, 2) maintaining a

dedicated balance between reducing JCT and ensuring long-

term job fairness. To achieve these goals, FFT incorporates

two essential designs. First, FFT leverages a per-round re-

source allocation vector that captures the dynamic nature of

the cluster, accounting for churn events of jobs and machine

changes, while mitigating the problem of excessive switch-

ing caused by overly frequent allocation changes. Second,

FFT integrates seamless fairness compensation by promptly

identifying instances where a job’s allocation deviates signif-

icantly from the most fair scheduler. On top of these designs,

FFT tackles a cost minimization problem to identify the glob-

ally optimal schedule with minimal overhead. Moreover, FFT

employs a hierarchical mechanism to strategically determine

the placement of DL workloads across various hosts, effec-

tively mitigating communication overhead.

We implement a prototype of FFT on top of Kubernetes,

providing support for diverse DL training jobs. FFT delivers

seamless and efficient profiling and switching functionality,

ensuring a nearly non-intrusive experience for users. Our

extensive evaluations of FFT cover both a physical cluster and

a large-scale simulation testbed, involving comprehensive

DL training workloads derived from enterprise traces [32].

In summary, we make the following contributions:

• We identify the significance of fine-grained resource alloca-

tion in optimizing JCT. With our novel allocation scheme,

opportunistic migration can be achieved, allowing for max-

imum utilization of heterogeneous accelerators.

• We make a delicate balance between reducing JCT and en-

suring long-term fairness, by integrating seamless fairness

compensation into a global optimization objective. By our

design, the fairness control is transparent to users.

• We implement a scalable system to support our design,

and experimental results highlight that our system outper-

forms state-of-the-art schedulers by up to 5.2× in terms of

JCT and nearly 2.2× in fairness.

2 Background and Motivation
2.1 Scheduling Co-located DL Jobs
Cluster-level scheduling optimizes JCT through dynamic re-

source orchestration among co-located jobs, by strategically

reallocating accelerators (e.g., prioritizing shorter jobs via

GPU redistribution from long-running workloads) to combat

JCT inflation and alleviate high-end GPU queueing bottle-

necks [40]. To maximize systemic efficiency, heterogeneity-

aware schedulers must (1) mitigate contention-driven JCT

inflation by aligning accelerator capabilities (e.g., GPU gen-

erations, memory bandwidth) with the specific workload

demands of co-located jobs [19], and (2) ensure resource-

efficient GPU time utilization across co-located DL jobs in

real time. This necessitates intelligent coordination across

heterogeneous devices to balance workload requirements of

various DL jobs with hardware capacities.

2.2 Opportunistic Migration
Previous studies [7, 23, 33, 46] extensively showcase the sig-

nificantly superior performance of high-end GPUs for DL

jobs. As illustrated in Fig. 1(a), we observe varying accelera-

tion effects ranging from 1.6× to 2.71×. To hasten the training
process for earlier completion, it is desirable for schedulers

to migrate DL jobs to high-end workers whenever possible.

However, this migration can introduce substantial overhead

due to the following characteristics:

• Large-volume training states. Resuming DL training jobs

on a new host necessitates the availability of previously

updated parameters. Large language models, in particular,

experience substantial parameter growth. Compounding this,

modern optimizers like Adam [22] expedite the gradient de-

scent process by incorporating additional information, such

as exponentially weighted averages and exponential moving

averages. Moreover, if the gradient accumulation technique

is used, the gradients also need to be stored. Consequently,
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Figure 1: Benefits and overhead of job migration across
diverse DL workloads over heterogeneous devices. 𝐽1
(ResNet) and 𝐽2 (VGG) were trained on the Imagenet-
1k and CiFAR-10 datasets. Additionally, 𝐽3 (GPT-neo-
350M) and 𝐽4 (OPT-6.7B) were trained on the Wikitext-
103 and pile-law datasets.
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Figure 2: Illustration of opportunistic migration. Jobs
𝐽1, 𝐽2, and 𝐽4 submitted at time 0, 10, and 0 respectively.
Migrating 𝐽4 costs twominutes. 𝐽4 lasts for 14.4minutes
in T4GPUwhile the execution on eachGPU follows the
SRTF (i.e., shortest-remaining-time-first) order. Grey
spaces denote the time wasted by migration.

the training state of a DL training job can become signifi-

cantly large. As depicted in Fig. 1(b), the 𝐽4 with gradient

accumulation and Adam techniques enabled generates state

files as large as 107GB.

• Extra operation overhead. On the other hand, the opera-

tion overhead of stopping and restarting training process is

non-negligible. Specifically, writing and loading checkpoint

files are critical components of the migration operation, as

training must always resume from the latest state. Further-

more, when training processes are restarted elsewhere, user

containers must be restarted, and the NCCL communica-

tion group for multi-GPU training must be reestablished,

inevitably wasting valuable GPU time.

The non-negligible migration overhead can impede the

performance gains on high-end GPUs. In Fig. 2, we construct

an example to prove the importance of taking the migration

overhead into scheduling decision. We have three jobs in the

cluster, i.e., 𝐽1, 𝐽2, and 𝐽4, where the throughput gap among

different GPUs and the training state sizes abide by the data

listed in Fig. 1. The training time of 𝐽1 and 𝐽2 on A10 are

5 minutes, while it is 14.4 minutes for 𝐽4 on T4. Under the

overhead-agnostic approach (Fig. 2(a)) to schedule training

jobs like SRTF policy, i.e., shortest-remaining-time-first, the

𝐽4 is frequently migrated once the cluster condition changes,

e.g., short jobs enter and complete in the cluster (i.e., events

at time 0, 5, and 10), leading to significant GPU time waste.

Moreover, the JCT for 𝐽4 is improved by 25%. In extreme

case where the length of 𝐽4 is prolonged and the new jobs

Table 1: Throughput and allocation matrix of jobs
where each allocation rate denotes the proportion of
time the job spends on the corresponding GPU

Throughput (epochs/min) Allocation rate

GPU0 GPU1 GPU0 GPU1

𝐼0 8 1 𝑚0 𝑚1

𝐼1 8 1 𝑛0 𝑛1

with short jobs continuously enter the cluster, nearly 40%

of its training time will be wasted on migration. A more

effective policy (Fig. 2(b)) is to continue the training of 𝐽4
at time 5 on T4 with the knowledge of its training time and

the speedup on high-end GPUs, avoiding severe migration

overhead meticulously. We refer it as opportunistic migration.

2.3 Limitations of Current Schedulers in
Optimizing JCT

Despite the existence of various heterogeneous DL sched-

ulers, such as Allox and Gavel [23, 33] that are designed to

minimize JCT, we found that they encounter specific short-

comings and challenges in achieving effective performance

when dealing with switching overhead in heterogeneous

environments.

• Disabling switching can significantly prolong JCT. AlloX
adopts a direct approach by relying solely on execution time

and completely disabling job switching during scheduling.

When new jobs arrive, AlloX assigns them to the tail of

queue with shortest waiting time, and the training process

cannot be interrupted. This solution results in significantly

degraded efficiency due to the head-of-the-line (HOL) block-

ing problem, where smaller jobs experience prolonged wait-

ing times [38]. Additionally, the absence of job switching

capability prevents many jobs from leveraging the accelera-

tion offered by higher-end GPUs, resulting in resource waste

and degraded JCT.

• Throughput-based allocation helps little to reduce JCT.
Gavel determines a schedule based on effective throughput.

However, it is worth noting that throughput-based optimiza-

tion does not yield optimal JCT performance. To illustrate,

we construct a simple scenario in Table 1 where two identical

jobs arrive at time zero and require 16 epochs to complete.

Gavel finds an allocation matrix (𝑚0,𝑚1;𝑛0, 𝑛1) where𝑚𝑘

and 𝑛𝑘 represent the fraction of time that 𝐼0 and 𝐼1 is assigned

to the 𝑘-th GPU, respectively. The effective throughput is

(8𝑚0+𝑚1) for 𝐼0 and (8𝑛0+𝑛1) for 𝐼1. To minimize the overall

JCT, the optimization problem becomes:

min

16

8𝑚0 +𝑚1

+ 16

8𝑛0 + 𝑛1
≥

(√
16 +

√
16

)
2

8(𝑚0 + 𝑛0) + (𝑚1 + 𝑛1)
≥ 64

9

,

where the inequality is due to Cauchy-Schwarz Inequality,

and 𝑚0 + 𝑛0 ≤ 1, 𝑚1 + 𝑛1 ≤ 1. The equality is attained

when 𝑚0 = 𝑚1 = 𝑛0 = 𝑛1 = 0.5, which is equivalent to
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Figure 3: Coarse-grained throughput-based allocation
involves approximation within multiple rounds, lead-
ing to frequent migrations that are colored in grey.

fair allocation. By contrast, an optimal policy is to assign 𝐼0
to GPU0 and 𝐼1 to GPU1 first, and migrate 𝐼1 to GPU0 after

𝐼0 finishes. This results in an overall JCT of 4 + (16-2)/8 =

5.75 minutes, which is 20% less than that under Gavel. If we

proceed to increase the number of jobs, we can demonstrate

that this gap can be up to twice as large by repeating this

analysis.

When the objective of Gavel is to minimize the makespan,

i.e., the maximum JCT among jobs, the optimization formu-

lation will change as follows:

minmax

{
16

8𝑚0 +𝑚1

,
16

8𝑛0 + 𝑛1

}
≥ 1

2

(
16

8𝑚0 +𝑚1

+ 16

8𝑛0 + 𝑛1

)
.

This results in the same allocation policy as above. As

such, The optimization framework of Gavel, which adopts

effective throughput, is more relevant to job fairness than

JCT minimization.

Furthermore, Gavel triggers frequent migrations in re-

sponse to an allocation matrix characterized by numerous

fractional values, aiming to synchronize job scheduling with

the allocation outcome. To illustrate, consider the scheduling

scenario delineated in Table 1, where migration accounts for

40% of the time in each scheduling round for both jobs. With

𝑚0 =𝑚1 = 𝑛0 = 𝑛1 = 0.5, each job alternates their training

on both GPU types within each scheduling round, as visually

depicted in Figure 3, resulting in a utilization as low as 60%.

Takeaway I : Coarse-grained allocation significantly
degrades scheduling efficiency. Upon examination, Gavel

and Allox are impeded by their coarse-grained allocation

strategies. Specifically, they either disable switching alto-

gether or rely on throughput-based allocation, which con-

tributes minimally to reducing JCT and fails to effectively

coordinatemigration benefits and overhead among jobs. Con-

sequently, the scheduling efficiency is compromised, result-

ing in suboptimal performance.

2.4 Limitations of Current Schedulers in
Optimizing Fairness

Ensuring fairness is crucial to prevent starvation andmitigate

the imbalance of benefits among users, thereby promoting

resource sharing within the cluster. In the domain of DL

scheduling, Finish Time Fairness stands out as a vital crite-

rion for long-term job-level fairness [10]. It quantifies the

fairness level of jobs by comparing JCT in a shared cluster

with that in an exclusive cluster where each job has access to

1

/
𝑁 of the available resources, with 𝑁 being the number of

DL jobs. However, existing fair schedulers including Gavel

and Gandiva
fair

[7] still perform unsatisfactorily within het-

erogeneous clusters.

• Throughput-based allocation fails to guarantee finish time
fairness in dynamic environments. Gavel also includes a fairness-
oriented policy based on training throughput. Specifically,

it establishes a fairness target for allocation matrix and em-

ploys round-based schedules to align with this target. How-

ever, this policy assumes that the allocation matrix across

heterogeneous devices undergoes minimal changes, enabling

it to progressively allocate permissions over time and ap-

proximate the fractional share for each job. Unfortunately, in

dynamic environments with frequent job arrivals, new jobs

are prioritized over older ones in scheduling. As a result, the

allocated share for older jobs cannot be preserved, and in

extreme cases, they may not be scheduled at all.

• Poor integration degrades JCT. In addition to fairness vi-

olations, current fair schedulers also result in degraded JCT

performance. Specifically, Gandiva
fair

allocates heteroge-

neous GPU resources equally to tenants based on max-min

fairness and then focuses on maximizing overall training

throughput through greedy trading among users. Unfortu-

nately, these optimizations ignore essential job resource de-

mand including requested workers and job length, leading

to substantial JCT degradation consequently.

Takeaway II : Balancing JCT reduction and fairness is
challenging. While it is important to prioritize both JCT re-

duction and fairness, an excessive focus on fairness alone can

negatively impact JCT performance. This is because there are

inherent conflicts between these two objectives [14], making

it essential to achieve an optimal balance. However, striking

this delicate balance poses significant challenges in the pres-

ence of highly dynamic job submission and heterogeneous

environments.

2.5 Our Goal
Based on the analysis conducted above, it is clear that hetero-

geneity presents substantial difficulties in efficiently sched-

uling DL workloads, with existing solutions falling short in

minimizing JCT or ensuring fairness. In order to overcome

these limitations, we aim to design a new heterogeneity-ware

scheduler for DL workloads with two primary goals:

• The scheduler needs to capture resource allocation in a

more fine-grained manner, aiming to enhance resource

efficiency and facilitate opportunistic migration. These

improvements are pivotal for reducing JCT and improving

fairness performance.

• The scheduler should ensure a long-term fairness guar-

antee among DL jobs in highly dynamic environments,

necessitating a systematic and flexible combination of fair-

ness and JCT reduction.
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3 FFT System Overview
To achieve our design goals, we propose FFT, a new system

that dynamically distributes DL training workloads across

heterogeneous accelerators. In this section, we provide a

high-level overview of the FFT system to highlight its key

design ideas and architectural features.

3.1 Key Ideas
Incorporating per-round optimization vector. In pur-

suit of fine granularity, FFT integrates a per-round resource

allocation vector as the sole optimization variable, capturing

the instantaneous scheduling of heterogeneous GPU devices

for all jobs within a cluster. This approach stands in stark

contrast to the throughput-based allocation in Gavel [33].

The inclusion of this vector enables FFT to dynamically quan-

tify the training progress of each job and assess migration

overhead in real-time. As a result, it facilitates global opti-

mization across all DL training jobs and addresses the issue

of excessive switching caused by frequent allocation changes.

Additionally, this vector empowers FFT to accurately capture

the dynamic nature of the cluster, encompassing events such

as job churn and machine changes.

Seamless Fairness compensation. Long-term fairness is

quantified by cumulative workload allocations relative to

an equal-share policy—a baseline where cluster resources

are evenly partitioned across all jobs. FFT ensures fairness

by dynamically benchmarking its GPU allocations against a

fairness-optimized reference scheduler, tracking and quanti-

fying deviations from this policy over time. This approach

enables FFT to promptly identify instances in each round

where a job’s allocation significantly deviates from what is

considered fair. In such cases, FFT canmake appropriate com-

pensations during the relevant rounds, while still ensuring

the overall JCT optimization.

3.2 Architecture & Workflow
Fig. 4 illustrates an architecture overview of FFT, along with

its scheduling workflow. FFT is a comprehensive system that

takes control of distributed DL training jobs throughout their

entire process. Upon submission of jobs to the cluster using

the API ❶, FFT automatically initiates the profiling process

and records key information such as the required number of

workers, the required training iterations, and the specified

dataset. We store all above information in the Recorder.

Since it is impractical for users to provide throughput in-

formation for all types of accelerators and specify switching

overhead in clusters, the profiler module ❷ in FFT profiles

the runtime throughput and the size of the training state for

jobs on the fly. Armed with the above information and the

historical execution status, the FFT scheduler ❸ then outputs

a preliminary GPU type-level result for the incoming round.

Profiler

Iteration Dataset
J1 J2 Jn

# of worker

API
throughput
state size

generating
profiling tasksjob configuration

Scheduler

up
da

te
lo

ok
up

Placer

history placement
dataset size & locality

T4

Recorder

plan across
GPU types

1

A10V100

2

3 4

Figure 4: The system architecture of FFT.

This output strives to coordinate jobs for better utilization

of heterogeneous GPUs in clusters. To guarantee fairness

in the long term for each job, FFT traces the execution of

jobs round by round, which enables FFT to prioritize both

the starved and small jobs simultaneously. Subsequently, the

placer module ❹ offers a more refined placement scheme for

DL training jobs at the host level, based on the history of

placement schemes and dataset information such as size and

locality. This optimization minimizes futile preemption and

avoids unreasonable waste of time spent on data transfer.

4 FFT System Design
In this section, we will delve into the design details of the

key components in FFT.

4.1 Fine-grained Allocation Vector
We first formally define the heterogeneous DL scheduling

problem as follows. The cluster containsM different types of

accelerators, each having Y𝑖 GPUworkers. DL job 𝑗 arrives at

the cluster at time 𝑎 𝑗 . Upon the arrival of job 𝑗 , the scheduler

knows the requested number of workers 𝑑 𝑗 and the number

of epochs, denoted as 𝑊𝑗 , required for job 𝑗 to execute
1
,

Furthermore, the scheduler is informed of the throughput

𝜃 𝑖𝑗 after profiling. The throughput represents the number of

epochs that can be completed on GPU type 𝑖 during each

scheduling round. Consequently, the completion time of job 𝑗

on device of type 𝑖 , without any preemption, can be estimated

as𝑊𝑗/𝜃 𝑖𝑗 .
The scheduler incorporates a fine-grained resource alloca-

tion vector for each job 𝑗 to capture amore specific per-round

allocation across heterogeneous devices, ®𝑥 𝑗 (𝑡) =
{
𝑥𝑖𝑗 (𝑡)

}
.

Here, 𝑥𝑖𝑗 (𝑡) ∈ {0, 1} is a binary variable that represents if

job 𝑗 is executed on type 𝑖 device during round 𝑡 . When

considering the scheduling at a given time, only the jobs

1
The FFT scheduler does not depend on precise workload estimations and

exhibit resilience to significant estimation errors as shown in Fig. 13.
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that have not yet completed by that time 𝑡 , i.e., 𝐴(𝑡), the
resource allocation vector ®𝑥 𝑗 (𝑡) must satisfy the following

constraints:

M∑︁
𝑖=1

𝑥𝑖𝑗 (𝑡) ≤ 1,∀𝑗, 𝑡 ;
∑︁

𝑗∈𝐴(𝑡 )
𝑑 𝑗𝑥

𝑖
𝑗 (𝑡) ≤ Y𝑖 ,∀𝑖, 𝑡 . (1)

These constraints state that job 𝑗 can only be executed

on one device type and each device type cannot be over-

subscribed. In addition to this, the schedule generated by

®𝑥 𝑗 (𝑡) must be work-conserving, i.e., always keeping the GPU

devices busy if there are jobs applicable to be scheduled. The

scheduler determines ®𝑥 𝑗 (𝑡) for each job 𝑗 at the beginning

of each round with the objective to minimize the overall JCT

and ensure fairness among users.

4.2 FFT Scheduler
The fine-grained resource allocation vector ®𝑥 𝑗 (𝑡) makes it

possible for us to evaluate JCT, fairness, and migration cost

on-the-fly. Due to this, the scheduler efficiently combines all

these factors together within one single objective to design

policies that can well balance the trade-off between JCT and

long-term fairness.

4.2.1 Minimizing JCT.. The job completion time 𝐶 𝑗 is de-

fined as the earliest time that all 𝑊𝑗 epochs of job 𝑗 are

executed: 𝐶 𝑗 = min

{
𝐿 ∈ N :

∑𝐿
𝑡=𝑎 𝑗

∑M
𝑖=1 𝑥

𝑖
𝑗 (𝑡)𝜃 𝑖𝑗 ≥𝑊𝑗

}
− 𝑎 𝑗 .

However, this formulation is in general intractable since it is

in the form of a combinatorial set. In the scheduling literature

[3, 20, 26], a standard linear approximation is provided for

𝐶 𝑗 to analyze the theoretical performance of widely adopted

schedulers SRPT and Round-Robin, more specifically, we

have:

𝐶 𝑗 ≈
∞∑︁

𝑡=𝑎 𝑗

(𝑡 − 𝑎 𝑗 ) ·
M∑︁
𝑖=1

𝑥𝑖𝑗 (𝑡)𝜃 𝑖𝑗/𝑊𝑗 . (2)

The approximation can be interpreted as a fractional com-

pletion time where

∑M
𝑖=1 𝑥

𝑖
𝑗 (𝑡)𝜃 𝑖𝑗/𝑊𝑗 fraction of job 𝑗 spends

(𝑡−𝑎 𝑗 ) rounds before it finishes. As such, this approximation

serves as a lower bound of the true JCT.

Directly minimizing the overall JCT using the above ap-

proximation is computationally inefficient, as it requires op-

timizing over a resource allocation space with dimensions

of M · N · T where N represents the total number of DL jobs

submitted to the cluster and T indicates the total number of

rounds for scheduling. When jobs keep arriving, T can go to

infinity and the optimization problem becomes intractable.

To provide a scalable solution that can be practically used,

the scheduler chooses to optimize job scheduling in each

round based on the fraction (𝑡 − 𝑎 𝑗 ) ·
∑M

𝑖=1 𝑥
𝑖
𝑗 (𝑡)𝜃 𝑖𝑗/𝑊𝑗 . How-

ever, simply solving this per-round minimization problem

results in a poor schedule that always gives scheduling prior-

ity to jobs with large completion time𝑊𝑗/𝜃 𝑖𝑗 . To avoid such
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Figure 5: An illustrative example of fairness compen-
sation mechanism under FFT using a specific training
job. The value of 𝜌 𝑗 serves as an indicator of the GPU
resources allocated to the job, increasing continuously
during periods of starvation and decreasing when the
desired resources are obtained. As 𝜌 𝑗 grows, so do the
job’s chances of being scheduled.

situations, the scheduler also incorporates the volume of job

demand, i.e., the number of GPUs required multiplied by the

total processing time of job 𝑗 on type 𝑖 , into the objective:

min

∑︁
𝑗∈𝐴(𝑡 )

M∑︁
𝑖=1

(
(𝑡 − 𝑎 𝑗 )𝜃 𝑖𝑗/𝑊𝑗 +

(
𝑑 𝑗𝑊𝑗/𝜃 𝑖𝑗

) )
· 𝑥𝑖𝑗 (𝑡). (3)

This formulation forces the scheduler to prioritize jobs with

shorter processing time (i.e., 𝑊𝑗/𝜃 𝑖𝑗 ) and fewer GPUs re-

sources (i.e., 𝑑 𝑗 ), making the scheduler behaves similarly

to SRSF (shortest remaining-service-time first).

4.2.2 Incorporating fairness. Minimizing the overall JCT

alone can sometimes lead to unfairness, where larger jobs are

starved for a significant duration under SRSF-like schedulers.

To incorporate fairness in job scheduling, we introduce a

compensation factor 𝜌 𝑗 (𝑡)𝜃 𝑖𝑗 to the JCT objective in Eq. (3),

resulting in a balanced optimization problem:

min

∑︁
𝑗∈𝐴(𝑡 )

M∑︁
𝑖=1

(
(𝑡 − 𝑎 𝑗 )𝜃 𝑖𝑗/𝑊𝑗 +

(
𝑑 𝑗𝑊𝑗/𝜃 𝑖𝑗

)
− 𝜌 𝑗 (𝑡)𝜃 𝑖𝑗

)
· 𝑥𝑖𝑗 (𝑡).

(4)

The purpose of the compensation factor is to compensate job

𝑗 when its allocation is far way from its fair share. Specifically,

𝜌 𝑗 (𝑡) captures the amount by which job 𝑗 falls behind with

respect to what it would have received under a max-min fair

scheduler up until time 𝑡 since its arrival. If 𝜌 𝑗 (𝑡) is large, the
scheduler prioritizes scheduling job 𝑗 on a higher-end type 𝑖

to achieve a greater throughput 𝜃 𝑖𝑗 in subsequent scheduling

rounds. We exemplify the variantion of 𝜌 𝑗 (𝑡) across different
conditions in Fig. 5. To ensure easy updates on-the-fly and

maintain positivity, the scheduler recursively designs 𝜌 𝑗 (𝑡)
as shown below:

𝜌 𝑗 (𝑡 + 1) = max

{
0, 𝜌 𝑗 (𝑡) + 𝜇 𝑗 (𝑡) ·

( 𝑊𝑗

𝜏 𝑗 − 𝑎 𝑗
−

M∑︁
𝑖=1

𝜃 𝑖𝑗𝑥
𝑖
𝑗 (𝑡)

)}
.

(5)
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When job 𝑗 enters the cluster, no compensation is given

initially, resulting in 𝜌 𝑗 (𝑎 𝑗 ) = 0.

The interpretation of this design is as follows: 𝜏 𝑗 represents

the time at which job 𝑗 would complete under the max-min

fair scheduler. Consequently,𝑊𝑗/(𝜏 𝑗 − 𝑎 𝑗 ) quantifies the av-
erage workload that job 𝑗 should complete in each round un-

der the fair scheduler. As FFT completes

∑M
𝑖=1 𝜃

𝑖
𝑗𝑥

𝑖
𝑗 (𝑡) work-

load in round 𝑡 , the amount of workload FFT falls behind the

progress supposed to be achieved under a fair scheduler in

round 𝑡 can be computed as as𝑊𝑗/(𝜏 𝑗 − 𝑎 𝑗 ) −
∑M

𝑖=1 𝜃
𝑖
𝑗𝑥

𝑖
𝑗 (𝑡).

Moreover, the scheduler dynamically updates the estimation

of 𝜏 𝑗 for all 𝑗 when a job arrives or completes. Specifically,

it estimates 𝜏 𝑗 as the completion time of job 𝑗 , when it is

trained in a dedicated cluster with 1/|𝐴(𝑡) | of all types of
resources.

2

In the design, 𝜇 𝑗 (𝑡) serves a fairness coefficient that reg-

ulates the update of 𝜌 𝑗 (𝑡), aiming to achieve a dedicated

balance between JCT and fairness. It is important to note

that if the fairness coefficient remains constant over time,

larger jobs still have limited opportunities for scheduling

when continuously incoming jobs with higher scheduling

priority are present. To this end, the scheduler adopts a dy-

namic fairness coefficient that increases with the duration a

job has stayed in the cluster. Specifically, 𝜇 𝑗 (𝑡) is defined as

(𝑡 − 𝑎 𝑗 )
/
(𝜏 𝑗 − 𝑎 𝑗 ). When a job has been starved for a long

time, 𝜇 𝑗 (𝑡) can become quite large due to its increasing trend

over time. This grants job 𝑗 more chances for scheduling,

thereby ensuring better long-term fairness guarantees.

4.2.3 Switching control. To facilitate opportunistic migra-

tion, the scheduler integrates a meticulously crafted penalty

term, denoted as 𝑠𝑖𝑗 (𝑡). The design principle aims at discour-

aging over-frequent switching, which leads to substantial

migration overhead between hosts of diverse device type.

The penalty factor 𝑠𝑖𝑗 (𝑡) is determined by the expected

training state transfer time. Specifically, if the training of

job 𝑗 at time 𝑡 is going to be conducted on a type 𝑖 different

from the type at time 𝑡 − 1, the scheduler assigns it as the

value of transfer duration, as migration is inevitable in this

situation. However, if job 𝑗 is executed consecutively on the

same GPU type during time slots 𝑡 and 𝑡 − 1, we hold an

optimistic assumption that the job can be placed on the same

host at time 𝑡 and no switching overhead is incurred. This

assumption is maintained by utilizing the placement strategy

explained in section 4.3.

4.2.4 Scheduling based on cost minimization. Combining

all the design components, the scheduler formulates a cost

minimization problem as follows:

2
Computing the completion time for jobs with different number of workers

in heterogeneous DL clusters is an open problem, we resort to an approxi-

mation, i.e., evaluating the 𝜏 𝑗 on the condition that preemption is disabled.

min

∑︁
𝑗∈𝐴(𝑡 )

M∑︁
𝑖=1

(
𝜑𝑖
𝑗 (𝑡) + 𝑠𝑖𝑗 (𝑡) − 𝜌 𝑗 (𝑡)𝜃 𝑖𝑗

)
· 𝑥𝑖𝑗 (𝑡), (6)

along with a work-conserving constraint:

M∑︁
𝑖=1

∑︁
𝑗∈𝐴(𝑡 )

𝑑 𝑗 · 𝑥𝑖𝑗 (𝑡) ≥ K(𝑡),∀𝑡 . (7)

In the objective, the scheduling cost is represented by the sum

of three terms and and is associated with a pair of a job and

device type. The first term𝜑𝑖
𝑗 (𝑡) = (𝑡 − 𝑎 𝑗 )𝜃 𝑖𝑗/𝑊𝑗+(𝑑 𝑗𝑊𝑗/𝜃 𝑖𝑗 )

is used to optimize JCT, the second term 𝑠𝑖𝑗 (𝑡) is to control
switching, and the third term 𝜌 𝑗 (𝑡)𝜃 𝑖𝑗 is for ensuring fairness.
The constraint reflects the goal of utilizing the GPUs in the

clusters asmuch as possible. The quantityK(𝑡) represents the
minimum value between the number of available GPUs and

the maximumGPU demand of the available jobs, considering

the per-type resource constraint at time 𝑡 .

This optimization problem can be formulated as an integer

linear optimization problem. Since the variables are related to

the number of GPU types rather than the number of GPUs,

this scheduling problem can be efficiently solved even in

a large-scale cluster by leveraging standard optimization

solvers without incurring significant overhead. As depicted

in Fig. 13, FFT can solve this problem, which involves 4000

jobs, in just two seconds.

4.2.5 Theoretical foundations. As many optimization prob-

lems with constraints, e.g., min𝑥 𝑓 (𝑥), s.t., 𝑔(𝑥) ≤ 0, the

scheduling algorithm can be interpreted as the first step

of dual approach [4], i.e., min𝑥 𝑓 (𝑥) + 𝜆𝑔(𝑥) where 𝜆 is the

Lagrangian multiplier. Specifically, 𝑓 (𝑥) corresponds to the

JCT objective in Eq. (3) and 𝑔(𝑥) corresponds to the fairness

term that measures the difference between the completed

workload in each round under fair scheduler and that un-

der FFT’s scheduler. More interestingly, the compensation

factor 𝜌 𝑗 (𝑡) can be viewed as the multiplier 𝜆 whose update

takes a recursive form similar to Eq. (5). Similarly, we can

interpret 𝜇 𝑗 (𝑡) as the learning rate in the dual update. When

𝑓 (𝑥) is a time-varying function, recent advancements have

extended the dual approach to deal with online optimization

problems [8, 28, 57]. By applying the analytical techniques

developed in these studies, we can substantiate the opti-

mality of both efficiency and fairness achieved by FFT, as

corroborated by the ensuing theorems.

Theorem 4.1. The number of unfinished jobs under FFT is
at most 𝑂

(√
𝑁
)
, and the achieved fractional JCT under FFT is

upper bounded by a constant factor times the optimal JCT.

Theorem 4.2. Under FFT, each job has been executed in at
least one round within a constant time from its arrival.
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Figure 6: An example illustrating the placement mech-
anism in FFT. At time 𝑇1, intra-host GPU workers are
prioritized for jobs with data- and tensor-parallelism,
specifically 𝐽1 and 𝐽3. Later, at time 𝑇2, job 𝐽2 is selected
for migration due to a churn event, as it incurs min-
imal migration overhead and is likely to benefit the
most from the migration.

The first theorem establishes that the schedule generated

by FFT ensures that the majority of jobs are completed be-

fore they would finish under the optimal schedule. Addition-

ally, the overall fractional JCT achieved by FFT’s schedule

is highly close to the actual JCT attained under the optimal

schedule. This indicates that FFT is near-optimal for min-

imizing JCT. The second result guarantees job fairness by

ensuring that a job is not left waiting for an extended period

of time after its arrival. This is particularly significant consid-

ering that existing JCT-optimized schedulers often neglect

larger jobs, causing them to be delayed excessively.

We prove these two theorems by utilizing the widely rec-

ognized Lyapunov-drift analysis [35, 57]. The pivotal step

involves quantifying the drift of the compensation factor

𝜌 𝑗 (𝑡). By substituting this drift into the objective function

in Eq. (6), we can compare the differences between the max-

min fair schedule and FFT’s schedule. Through this process,

we can establish an upper bound for 𝜌 𝑗 (𝑡), which directly

reflects the amount of workload completed under FFT. Based

on this bound, we compare FFT with an optimal schedule to

evaluate its overall JCT.

4.3 Optimizing DL Workload Placement
In addition to GPU resource allocation, job placement also

plays a critical role in improving training throughput. The

first issue related to placement is that transferring the train-

ing states and datasets of DL training jobs can incur heavy

switching overhead. While the FFT scheduler can provide

jobs with accelerator GPU type-level migration control, jobs

within each GPU type still compete for workers, aiming

to minimize switching overhead from their individual per-

spectives. The second issue arises from the advantage of

packing workers of DL training jobs onto as few hosts as

possible to minimize cross-network communication over-

head [15, 19, 24, 39, 58], as the bandwidth of LAN is typi-

cally lower than intra-host interconnections such as PCIe

and NVLink. In the current landscape, the significance of

network packing is increasing, driven by the exponential

growth in parameter size [34]. This growth necessitates a

larger volume of data synchronization, particularly under

hybrid communication patterns.

Simultaneously optimizing the two aforementioned issues

in a large-scale cluster is generally intractable. Therefore,

FFT introduces a straightforward yet efficient placement

heuristic, employing a hierarchical strategy among jobs allo-

cated to each GPU type. It takes into account both parallelism

and migration overhead successively, as illustrated in Fig. 6.

Given the long training process, FFT first strives to reduce

communication overhead existed in each training iteration.

Specifically, it prioritizes packing intra-operator DL train-

ing jobs [59] that involve data/tensor parallelism into as

few hosts as possible. This limits intensive inter-worker col-

lective communication (i.e., All-Reduce operation) within

high-speed intra-host connections and prevents inter-host

networks from heavy contention. In contrast, inter-operator

jobs that only leverage pipeline parallelism, are less sus-

ceptible to network contention due to their point-to-point

communication pattern and small scale of intermediate re-

sults. In this sense, we can minimize the training throughput

degradation in the cluster level. In addition, at each churn

event, FFT strives to pack training jobs requiring multiple

GPU workers into a single host if possible for enhancing the

overall training throughput, where the priority is determined

by their migration overhead in an ascending order.

4.4 General Settings
4.4.1 Compatibility to large models. Large DL models, par-

ticularly popular large language models (LLMs) to date [2,

42, 48, 49], demand a substantial GPU memory capacity, ren-

dering them unsuitable for training on low-end GPUs with

limited memory. Fortunately, FFT offers supports to limit

the GPU type selection algorithmically. To be specific, FFT

employs placement constraints that explicitly restrict cer-

tain GPU types assigned to a specific job by the equation

𝑥𝑖𝑗 (𝑡) = 0, if their GPU memory is not enough to host the

memory usage in the training process, including activations,

gradients, model parameters, and optimization states, etc.

4.4.2 Dataset fetching. To ensure that DL training jobs can

be executed properly in a local storage-based cluster, FFT

transfers the associated datasets from the repository to the

host before initiating the training process if they do not

already exist there, enabling the overlapping of I/O with

computational tasks. In contrast, when dealing with jobs

that have their training datasets stored in high-bandwidth

NFS-based environments, the network overhead of dataset

transfer can be significantly reduced by pre-fetching samples

during the computation phase [9, 36].
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Table 2: The representative DL trainingworkloads used
in experiments

model variants dataset workers
VGG 16,19 ImageNet

CIFAR

wikiart

1,2,3,4

ResNet 50,152 1,2,3,4

DenseNet 121,201 1,2,3,4

Bark normal,small librispeech 1

Bert base,large Wikipedia 1

GPT-neo 1.3B,2.7B

pile

4

GPT-2 medium,large 4,8

OPT 2.7B,6.7B 4,8

4.4.3 Awareness of training stall. In distributed DL training,

it is observed that jobs spanningmultiple GPU types often ex-

perience reduced throughput due to training stalls in lower-

end workers [9]. In data-parallelism, while tuning the train-

ing configuration parameters such as batch size and learning
rate across different workers within the same job can help

mitigate this stall, it also leads to significant performance

loss [39]. Moreover, pipeline parallelism also faces signifi-

cant bubble effects in the presence of straggler GPUs, which

can only be balanced via adjusting the model layers in each

stage. Worse still, these solutions require framework-specific

adaptation to amortize the performance gap within the GPU

workers. To offer a uniform scheduling framework for train-

ing jobs of various parallisms, FFT avoids this dilemma via

enforcing that only a single type of GPUs can be allocated

to each job at the same time.

5 Implementation
FFT is built on top of Kubernetes, providing users with a plat-

form for training various models using PyTorch and different

training paradigms, including data parallelism and model

parallelism. Control messages are exchanged between mod-

ules through gRPC, while training state files among training

jobs are transferred over the network using rSync.

Submission API. Users submit DL training jobs to FFT via a

command-line API that is registered as a Python entry point.

Users only specify the training script, the requested worker

number, and the number of training iterations in API. Once

the API is involved, it submits user-specified information

to the Job Recorder. After that, it generates and distributes

profiling tasks to different hosts.

Job recorder. The job recorder is developed on Redis, an

efficient Key-Value store, to serve the update requests and

offer fast lookup for the job information. The data is encoded

as { 𝑗𝑜𝑏_𝑖𝑑 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}.

Profiler. In FFT, profiling tasks are generated for each job to

evaluate the training throughput and the file size of training

states. Notably, different from elastic training setting [15, 19,

24, 46], we only profile job runtime using the user-specified

worker number. These profiling tasks have top scheduling

priority as they are crucial for making accurate scheduling

decisions based on the runtime configurations of jobs. Con-

sequently, ongoing training jobs are temporarily suspended

to allow the profiling tasks to be executed. Once the profiling

tasks are completed, the suspended training jobs resume. We

replace the default dataloader in user code by our customized

one, to minimize the effort for profiling. Our customized dat-

aloader supplies only a limited number of data batches to

the training loop in the profiling mode, while functioning

normally in the training mode. To minimize the impact of

profiling on the cluster, we kick off profiling tasks for jobs on

GPUs with greatest memory first. As such, we can measure

the memory consumption and omit the profiling process on

device types with insufficient memory.

Scheduler. In each scheduling round, the scheduler lever-

ages the cvxpy solver to generate an allocation that satisfies

the basic constraints. To accomplish this, it formulates the ob-

jective using a variable matrix and a parameter matrix of size

M ×𝐴(𝑡). To evaluate parameter matrix and formulate the

necessary constraints, the scheduler queries job information

from the job recorder. After making scheduling decisions, 𝜏 𝑗
values are updated accordingly.

Placer. The placer component utilizes the interfaces pro-

vided by Kubernetes to initiate or terminate containers that

are used for training on specific workers. It employs the

rSync command to migrate training state files over the net-

work before resuming the training process.

6 Evaluation
6.1 Experiment Setup
6.1.1 Cluster setup. Our experimental cluster was devel-

oped on the Alibaba Cloud Platform and consisted of twelve

T4 GPUs, twelve A10 GPUs, and twelve V100 GPUs. All hosts

are equipped with the Ubuntu 20.04 LTS operating system,

Python 3.8 interpreter, PyTorch v2.1.2, and CUDA 12.4 en-

vironment. Each server contained four GPU workers, and

physical hosts were connected via 10 Gbps LAN.

6.1.2 Workloads. We leveraged a diverse range of DL train-

ing jobs as our workload, encompassing popular DL models

from various domains. These models exhibit distinct run-

time profiles, checkpoint sizes, and associated datasets, as

outlined in Table. 2. We also assigned different batch sizes to

these training models to enhance the diversity of the work-

load. Additionally, all training jobs apply Adam optimizer

and gradient accumulation techniques to accelerate their

training processes.

6.1.3 Traces. To showcase the comprehensive advantages

of FFT, we conducted evaluations using nine different traces

that adhere to the arrival time and processing time distribu-

tions in Philly [32]. Specifically, we performed experiments
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in the physical cluster under the first two traces, with the re-

maining traces being evaluated in the simulation testbed. For

cluster evaluation, we designed Trace 1, which comprised

of four-worker training jobs only, to enable a fair compari-

son with AlloX (which requires each job in a cluster to have

the same GPU demand), and Trace 2, which consists of jobs

with varying amounts of worker demand. Both Trace 1 and

Trace 2 comprise 800 jobs that continuously enter the cluster

over a period of two days. By default, we adopted trace-1

in the cluster testbed. In the simulation testbed, we used

the remaining traces, each consisting of up to 20,000 jobs of

different models and variants submitted in diverse frequency.

6.1.4 Baselines. We compared FFT with existing representa-

tive schedulers that are designed to optimize JCT or ensure

fairness. Although Tiresias [16] is not initially designed for

heterogeneous DL clusters, we made adaptations to ensure

its compatibility in heterogeneous GPU clusters, i.e., ran-

domly assigning each incoming DL training job to queues

for different GPU types. We achieved this by maintaining a

queue for each GPU type, and upon job arrival, they were

randomly placed in one of the queues.

• AlloX [23]. AlloX offers an efficient scheduling algorithm

to single-worker jobs. Particularly, it allocates newly ar-

rived jobs to the GPU queue with the lowest JCT contribu-

tion.

• Gavel [33]. Gavel includes several scheduling policies

and the SJF-like policy turns out to be the best policy for

minimizing JCT. It adopts a multi-round approximation

scheme to preserve its throughput-based allocation in the

long term, which is oblivious to switching overhead.

• Tiresias [16]. Tiresias employs a scheduling policy based

on Shortest Remaining Service Time-First (SRSTF). Under

this approach, incoming jobs are directed to the queue

of the GPU type with the smallest cumulative remaining

service time. Moreover, inter-GPU type migration is not

permitted due to the absence of a heterogeneity-aware

control mechanism.

• PAL [21]. PAL aims to mitigate the performance variabil-

ity effects of homogeneous GPUs on training processes

by leveraging locality-aware job placement—a strategy

analogous to scheduling in heterogeneous GPU clusters.

However, it lacks the ability to incorporating opportunistic

migration when updating the placement of DL jobs.

6.1.5 Fairness quantification. We utilized two metrics to

evaluate fairness. The first one is the Finish-Time-Fairness

(FTF) introduced in Themis [27]. Specifically, the FTF value of

each job is defined as 𝜌 = 𝑇𝑠ℎ/𝑇𝑖𝑑 , where𝑇𝑖𝑑 is the completion

time in an exclusive cluster, and 𝑇𝑠ℎ is the completion time

in a shared cluster. It accounts for the slowdown due to

placement and any queuing delays that the training jobs

experience in the shared cluster. As per the definition, FTF
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Figure 7: The efficiency advantages of FFT.

underscores the incentive to share resources within a cluster,

with a tighter distribution of 𝜌 signifying improved fairness

performance. The second metric is the starvation time of

jobs, which refers to the duration between job submission

and the first time it is executed.

6.1.6 Simulation setup. Although there exist several simu-

lators designed for evaluating scheduling strategies in large-

scale clusters [5, 6, 52, 54–56], they do not ultimately meet

our requirements. Specifically, they cannot capture the signif-

icant overhead of migrating DL training jobs, which involves

large-volume states including optimizer states and model

parameters. Additionally, they also fail to characterize the di-

verse sensitivity of DL training jobs to inter-GPU bandwidth

under varying topologies, making it difficult to simulate the

real-world collective-communication overhead involved in

DL training. To this end, we developed a simulator to validate

the effectiveness of FFT in a large-scale DL cluster. The train-

ing data in our simulator, including training throughput and

migration overhead, is collected from the real-world experi-

ments. These information helps mimic a precise long-term

execution result in cluster testbed. To validate the fidelity, we

compared the scheduling results generated by our simulator

with those obtained from the cluster testbed. The maximum

JCT deviation is 4.9%.

6.2 Performance in Physical Cluster
6.2.1 Fast job completion. Fig. 7 presents the comparison of

FFT with other schedulers in terms of JCT and makespan per-

formance. FFT employs fine-grained allocation to enable pre-

cise switching control, achieving significant JCT reductions

of 1.46× and 1.37× compared to Gavel across both experi-

mental traces. In contrast, PAL’s reliance on coarse-grained

cluster-level resource management and its lack of oppor-

tunistic migration lead to a 2.11× increase in JCT. Tiresias

performs notably worse, exhibiting slowdowns of up to 3.15×
relative to FFT due to its inability to dynamically leverage

GPU migration capabilities. Furthermore, when compared

to AlloX under Trace 1 where each job requested the same

amount of GPU workers, FFT still outperforms AlloX by

achieving a remarkable JCT reduction of up to 5.22×. This il-
lustrates that although AlloX is aware of the heavy switching

overhead of DL jobs and schedules jobs in a heterogeneity-

aware manner, its failure to prioritize short jobs and leverage

migration benefits hampers JCT optimization.
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Figure 9: The distribution of the starvation time and
the maximum starvation time of DL training jobs.

We conducted further analysis on the makespan, which

represents the time required to complete all training jobs in

Fig. 7. It is worth noting that AlloX consistently minimizes

the waiting time for each incoming job, resulting in a rela-

tively shorter makespan. However, thanks to FFT’s migration

capability and delicate migration control, long-waiting jobs

could utilize idle resources or benefit from the acceleration

of high-end GPU workers, leading to a significant reduction

in makespan. Specifically, FFT outperforms baselines by up

to 3.12×.

6.2.2 Long-term fairness. We conducted an investigation

into long-term fairness performance among jobs. As AlloX

lacks the switching control that can provide jobs with fair-

ness, we removed it from the baselines for comparison. Gavel,

PAL, and Tiresias prioritize short jobs over time, resulting

in more short jobs with small JCT and more long jobs with

greater JCT. As a result, both of these schedulers generated

relatively slacker FTF distributions than FFT, as depicted in

Fig. 8(a), which indicates inferior fairness performance. More-

over, PAL performs similarly to Gavel due to their similar

preemptive policies. With the exception of a few short jobs

where Tiresias has a slight advantage over FFT, FFT over-

whelmingly outperforms both baselines in offering smaller

FTF values. Specifically, 70% of jobs could yield a FTF value

smaller than 1 under FFT, whereas only 38% and 49% of

such jobs exists under Gavel and Tiresias, respectively. More

importantly, as shown in Fig. 8(b), FFT reduces the mean

FTF value by 1.64× and 1.67×, and cut down the maximum

FTF value by 1.4× and 2.18× against Gavel and Tiresias, re-

spectively. This indicates that FFT grants more scheduling

opportunities to jobs requesting more service quantum, en-

abling them to complete earlier than baselines.
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Figure 10: An ablation study on migration, where the
beneficial migration ratio, job switching frequency,
and non-training overhead under FFT are presented.

In addition to FTF, we also investigated the first starvation

time of jobs across baselines to examine the impact of fairness

from a microscopic perspective. As shown in Fig. 9(a), FFT

consistently achieves the shortest starvation times compared

to the other schedulers. This advantage can be attributed to

the design of the fairness coefficient in FFT, which allows

effective fairness compensation for both short and long jobs,

effectively reducing the overall starvation time for all jobs.

On the other hand, due to the lack of fairness considerations

in their design, both Gavel and Tiresias are insufficient in

mitigating severe starvation for long jobs. As depicted in

Figure 9(b), they increase the maximum starvation time by

up to 2.03× and 6.35× respectively compared to FFT.

6.2.3 Switching control performance. We have also explored

the performance of FFT’s switching control. Since Gavel is

the only scheduler that can take advantage of higher-end

GPU resources on-the-fly, we selected Gavel as the baseline

for comparison.

In Fig. 10(a), we observe significant migration benefits un-

der FFT compared to Gavel. Specifically, 63% of migrations

were towards higher-end devices under FFT, while this num-

ber was only 49% under Gavel. This indicates that FFT can

effectively leverage switching control in the cluster level to

fully utilize heterogeneous resources and avoid unnecessary

migrations.

Furthermore, FFT achieves a 1.46× reduction in switch-

ing frequency as depicted in Fig. 10(b). This reduction is

mainly attributed to the optimization of workload placement

in the host level, which minimizes time spent on dataset

transfer and switching events. Specifically, in Fig. 10(c), FFT

reduces task-switching latency by 1.59× through proactive

eviction of training datasets when host-local storage reaches

capacity. Even without dataset migration, it still achieves a

1.28× reduction in switching overhead. These improvements

significantly contribute to the JCT advantage of FFT.

6.2.4 Benefit of FFT’s placement. We performed an ablation

experiment to demonstrate the benefits of FFT’s workload

placement scheme in mitigating communication overhead.

To control variables, we conducted scheduling using Trace

2 on A10 hosts and subsequently compared the training
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Figure 11: Efficiency performance of large-scale simu-
lation on different traces.
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Figure 12: Fairness performance of large-scale simula-
tion on different traces.
throughput under FFT with that of the baselines. Among

the baseline schedulers, Tiresias distinguishes itself as the

sole scheduler that takes placement impact into account.

Nevertheless, its focus solely on the distribution of tensor

size, while overlooking the effects of the communication

paradigm. Consequently, it consistently diminishes training

throughput by an average of 5.2%. Given Gavel and Allox’s

lack of special consideration for placement, the throughput

under their placement schemes lags behind FFT by 12.4%.

6.2.5 Profiling overhead. We also conducted measurements

on the overhead of FFT’s profiling process, specifically focus-

ing on preemption overhead and profiling time. The results

indicate that these two components contribute to only a

small fraction of the total training time, i.e., up to 0.8%.

6.3 Performance in Large-scale Testbed
6.3.1 Efficiency performance. To examine how FFT performs

under different settings, we utilized a wide range of traces.

In particular, we compared the performance across seven

different traces using our simulator, namely Trace 3 to Trace

9. Among these traces, Trace 6 stands out as it consists of a

significant number of large models. Approximately 50% of

the models in Trace 6 are GPT-neo, GPT-2, and OPT, which

require at least four workers and generated large files for

training state. Additionally, Trace 7 experiences the highest

intensive arrival rate, while Trace 9 has the smallest job

length variance, with a factor of 3× between the shortest and

longest jobs.

As depicted in Fig. 11, FFT showcases superior perfor-

mance compared to the baselines across all scenarios. No-

tably, both Trace 6 and Trace 7 exhibit the most remarkable

results, highlighting the significant advantages of FFT in

handling intensive cluster contention and high switching

overhead through more precise switching control. Specif-

ically, FFT achieves a JCT reduction of 1.74×, 2.38×, and
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Figure 13: The sensitivity analysis result of FFT, where
both scheduling overhead and the prolongment of JCT
given profiling errors are in a moderate range.
3.88× compared to Gavel, PAL, and Tiresias, respectively. A

similar trend was observed in terms of makespan, where FFT

achieves the highest reductions under Trace 6 and 7. Fur-

thermore, when comparing Trace 9 with other normal traces

(e.g., Trace 3-5, Trace 8), FFT proves minimal performance

differences in JCT, indicating robustness to highly variable

job length.

6.3.2 Fairness performance. Moreover, we conducted exper-

iments to highlight the superior long-term fairness of FFT

under various scenarios. Specifically, FFT demonstrates the

greatest performance margin over the baselines in the most

resource-demanding traces, namely Trace 6 and Trace 7, as

illustrated in Fig. 12. This highlights FFT’s ability to effec-

tively balance fairness and efficiency even in highly intensive

contention scenarios, thanks to its fairness compensation

mechanism. Specifically, compared to Gavel and Tiresias, FFT

can reduce the mean FTF value by up to 2.19× and 2.48×,
and the maximum FTF value by up to 1.99× and 2.52×.

6.4 Sensitivity Analysis
In this part, we also evaluated the performance of FFT con-

cerning two important considerations in scheduling, i.e., scal-

ability and tolerance to profiling errors, both of which are

critical in the large-scale training background.

6.4.1 Scalability. Although FFT relies on Integer Linear Pro-

gramming (ILP) to find out allocation schemes, it only incurs

minimal computational overhead due to its well-designed

formulation. Specifically, a limited number of GPU variables

are involved since we consider GPU types instead of all GPU

devices in the objective function and constraints, thereby sig-

nificantly reducing the optimization overhead. As illustrated

in Fig. 13(a), when scheduling a cluster of 1000 GPUs with

eight types for 4000 jobs, the ILP-based solver introduces

a mere overhead of 1.53 seconds. This overhead is signifi-

cantly smaller than the duration of a scheduling round, i.e.,

5 minutes in our system by default.

6.4.2 Tolerance to profiling errors. We conducted an analysis

to evaluate the ability of FFT to handle workload estimation

errors, as users often struggle to provide precise values for

the total training iterations of their jobs. We focused on
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assessing the performance of JCT under varying degrees

of estimation error rates. Results in Figure 13(b) highlight

the robustness of FFT in managing inaccuracies in job size

estimation. Specifically, when the number of epochs specified

by the user deviated by up to 30% from the actual value, FFT

exhibits only a modest increase in the overall JCT, reaching

a maximum of 17%. Moreover, using the trace-6 and trace-7,

we observed a JCT prolongment as low as 8% under the same

error rate setting.

7 Related Works
DL schedulers for JCT minimization. Recently, a variety
of schedulers have been developed to minimize JCT [16, 21,

30, 37, 46, 47, 51, 53]. For instance, Gandiva and Tiresias effec-

tively reduces JCT by implementing an efficient packing pol-

icy and adapting heuristic policies (e.g., SRSF and LAS) in the

homogeneous GPU cluster, while TopoOpt optimizes commu-

nication topology to accelerate training. Optimus allocates

resources based on the model convergence curve. Beyond

conventional schedulers, recent elastic resource schedulers

dynamically provision heterogeneous GPUs for distributed

deep learning (DL) training. For instance, Sia [46] enhances

scheduling efficiency by dynamically adjusting batch sizes

and GPU assignments during training. In contrast, FFT inten-

tionally avoids modifying training configurations (e.g., batch

size, model architecture) to preserve model accuracy, demon-

strating strong orthogonality to Sia’s approach. Similarly,

Hadar [47] leverages parallelism by decomposing jobs into in-

dependent, single-GPU subtasks and strategically allocating

heterogeneous resources across them. However, this design

inherently restricts subtasks to single-GPU execution, pre-

cluding multi-GPU allocations for further JCT reduction—a

key divergence from FFT, which optimizes distributed train-

ing workflows requiring coordinated multi-GPU execution.

DL schedulers for fairness. Themis [27] introduces an

auction mechanism to provide Finish-Time Fairness for DL

jobs in homogeneous DL clusters, which ensures sharing

incentives across jobs within the cluster. Shockwave [60],

on the other hand, dynamically adjusts hyperparameters

of jobs to achieve fairness. Gandiva
fair

[7] and OEF [29]

strive to provide tenant-wise fairness in heterogenous DL

clusters, where the overall training throughput improvement

is balanced among users each has multiple identical training

jobs. Therefore, their scheduling policies are orthogonal to

job-wise JCT minimization.

UnrelatedMachine Scheduling. Scheduling DLworkloads
in heterogeneous clusters is analogous to unrelated machine

scheduling problem, where a body of works have proposed

randomized policies [11, 44, 45]. However, these solution are

generally with high complexity and cannot be practically

used in production clusters. Another research direction is

to bound the performance of fair sharing policy using lin-

ear approximations [3, 11, 20]. Although theoretically solid,

they fails to balance between fairness and JCT in real-world

scheduling scenarios.

Checkpointing techniques. With the continuous growth

of model size, mitigating the overhead of checkpointing for

deep learning training has gained widespread attention [12,

17, 25, 31]. However, these existing works mainly focus on

providing transparent and non-interruptible checkpointing

function to the training workflow, which is orthogonal to our

claim for opportunistic migration. To be specific, resuming

the training process elsewhere always requires the up-to-

date training states to be in place, leaving the checkpointing

overhead, i.e., the transmission overhead over network and

PCIe, unable to be hidden.

8 Conclusion
Existing heterogeneity-aware schedulers often struggle to

incorporate both JCT reduction and fairness guarantees due

to their coarse-grained resource allocation mechanism and

poor integration between fairness and efficiency. Motivated

by these limitations, this paper introduces FFT, a cluster-level

scheduler designed for fast and fair DL training in a hetero-

geneous GPU cluster. FFT incorporates two key designs to

simultaneously address efficiency and fairness. The first de-

sign is a fine-grained resource allocation vector proposed to

enable efficient resource utilization, and the second one is a

flexible fairness integration scheme that evaluates fairness

in real-time. By doing so, FFT can strike a delicate balance

between JCT and fairness without incurring excessive mi-

gration or starvation.

FFT is further distinguished by its placement scheme.

Through a straightforward placement heuristic, FFT effec-

tively mitigates network bottlenecks that could otherwise

degrade large-scale training. Another advantage of FFT is its

low complexity, rendering it a practical choice for implemen-

tation in large-scale production clusters. These features posi-

tion FFT as an effective solution for scheduling DL training

workloads in diverse and complex computing environments.
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