
OPMOS: Ordered Parallel Algorithm for
Multi-Objective Shortest-Paths

Leo Gold
University of Connecticut

Storrs, CT, USA
leo.gold@uconn.edu

Adam Bienkowski
University of Connecticut

Storrs, CT, USA
adam.bienkowski@uconn.edu

David Sidoti
US Naval Research Laboratory

Monterey, CA, USA
david.m.sidoti.civ@us.navy.mil

Krishna Pattipati
University of Connecticut

Storrs, CT, USA
krishna.pattipati@uconn.edu

Omer Khan
University of Connecticut

Storrs, CT, USA
khan@uconn.edu

Abstract
The Multi-Objective Shortest-Path (MOS) problem finds a
set of Pareto-optimal solutions from a start node to a destina-
tion node in a multi-attribute graph. The literature explores
multi-objective A*-style algorithmic approaches to solving
the NP-hard MOS problem. These approaches use consistent
heuristics to compute an exact set of solutions for the goal
node. A generalized MOS algorithm maintains a “frontier” of
partial paths at each node and performs ordered processing
to ensure that Pareto-optimal paths are generated to reach
the goal node. The algorithm becomes computationally in-
tractable at a higher number of objectives due to a rapid
increase in the search space for non-dominated paths and
the significant increase in Pareto-optimal solutions. While
prior works have focused on algorithmic methods to reduce
the complexity, we tackle this challenge by exploiting par-
allelism to accelerate the MOS problem. The key insight is
that MOS algorithms rely on the ordered execution of partial
paths to maintain high work efficiency. The proposed paral-
lel algorithm (OPMOS) unlocks ordered parallelism and effi-
ciently exploits the concurrent execution of multiple paths
in MOS. Experimental evaluation using the NVIDIA GH200
Superchip’s 72-core Arm-based CPU shows the performance
scaling potential of OPMOS on work efficiency and paral-
lelism using a real-world application to ship routing.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only. Request permissions from
owner/author(s).
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725781

CCS Concepts
• Computer systems organization → Parallel architec-
tures; •Computingmethodologies→Parallel algorithms.

Keywords
Multi-objective search, shortest path, graph algorithms, par-
allel computing, multicore CPU

ACM Reference Format:
LeoGold, AdamBienkowski, David Sidoti, Krishna Pattipati, andOmer
Khan. 2025. OPMOS: Ordered Parallel Algorithm forMulti-Objective
Shortest-Paths. In 2025 International Conference on Supercomputing
(ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3721145.3725781

1 Introduction
In many optimization problems, several distinct (and often
competing) objectives need to be considered simultaneously.
For example, when planning a road trip, one may wish to
minimize the driving distance, driving time, and cost of
tolls along the route. Similarly, when planning a journey
by sea, one may be interested in the fastest and the most
fuel-efficient routes, but deciding the right trade-off may
depend on the urgency of the matter and the meteorological
and oceanographic (METOC) environment.

This paper explores the NP-hard multi-objective shortest-
path (MOS) problem, a generalization of the well-known
(and polynomial) single-objective shortest-path problem [27].
Given a weighted graph with non-negative edge weights,
the shortest path problem computes the minimum-cost path
from a start node to a goal/destination node in the graph [32].
In amulti-objective setting, each edge is given a non-negative
cost vector (constant length for each edge in a graph), with
each element corresponding to an objective. When these
objectives compete, no single path can optimize all the ob-
jectives simultaneously. MOS aims to find a set of Pareto-
optimal (non-dominated) solution paths, where a path is

https://orcid.org/0009-0004-1057-4777
https://orcid.org/0000-0002-4738-8749
https://orcid.org/0000-0002-2347-225X
https://orcid.org/0000-0002-0565-181X
https://orcid.org/0000-0001-6293-7403
https://doi.org/10.1145/3721145.3725781
https://doi.org/10.1145/3721145.3725781

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

…

!!

!"

!#

!" = ($, (9,1,5, …))
!# = ($, (1,9,4, …))
!! = ($, (3,7,2, …))

…

!∗ = ($, (/!, /#, /%, …)) Dominance and
Prune Check

!∗

$

!∗ = ($, /) Cost
Check

! = ($, 5)

(a) Single Objective (b) Multi-Objective

!∗
!

$&

$

Figure 1: Comparison of (a) single objective vs. (b)
multi-objective intermediate labels between the source
node 𝑣𝑠 and an intermediate node 𝑣 . A new candidate
label 𝑙∗ is shown alongside the associated label-level
operations.

Pareto-optimal if no single objective of the path can be
improved without causing at least one of the other objec-
tives to deteriorate in quality. For example, (5,4) and (4,5)
can be Pareto-optimal path costs to a node. During execu-
tion, the intermediate path cost vectors form the so-called
Pareto-optimal labels1 that comprise potential candidate solu-
tions. However, computing this front is computationally hard
[3, 5, 20, 27], even for two objectives [7]. As the number of
objectives increases, so does the computational complexity
and the number of Pareto-optimal solution paths [24].
To efficiently compute the Pareto-optimal solution front,

algorithmic solutions are developed based on the multiob-
jective extension of the A* algorithm designed for single-
objective search [15, 31, 34]. Multi-objective A* (MOA*), un-
like A* that exits once the first solution is found, needs to
store a set of Pareto-optimal solution paths to the goal node.
A New Approach to Multi-Objective A* (NAMOA*) [15] uses
consistent heuristics for the A* search to ensure that an exact
set of solution paths are computed to the goal node. NAMOA*
handles an arbitrary number of objectives to compute an
exact set of solution paths, thus serving as the basis for the
proposed MOS algorithm in this paper.
In a single-objective shortest path, there can be only one

minimum solution path cost for each node in the graph. As
seen in Figure 1(a), this is computed using a singular cost
comparison for a given node in the graph. However, MOS
does not have a single solution path guarantee since mul-
tiple non-dominated paths can exist from the start node to
any other node in the graph. If a label 𝑙 (𝑣) is defined to be
a path cost from the source node to a node 𝑣 , when a new
candidate label 𝑙∗ (𝑣) is discovered, a dominance check must
be performed to verify if the accumulated cost vector for any
previous labels for that node 𝑣 dominate the cost vector for
𝑙∗ (𝑣). The label 𝑙∗ (𝑣) must be compared with all previously
found non-dominated labels to 𝑣 , as illustrated in Figure 1(b).
1MOS literature also identifies a candidate path as a label [16, 24, 26].

If it is not dominated, then the mutually non-dominated set
of labels at 𝑣 must be updated with the new label, possibly
pruning existing solutions if the new label dominates them.
These dominance and pruning checks are expensive, espe-
cially as the number of non-dominated labels increases with
the number of objectives. A recent survey paper [25] sug-
gests key challenges facing MOS algorithms. These include
tackling the computational complexity of label processing
with increasing objectives, choosing the best lexicographic
order when ordering the candidate labels, and creating scal-
able and efficient parallel MOS implementations.

Identifying the right labels for parallelization is crucial to
unlocking parallel performance potential in MOS. In the se-
quential setting, a lexicographically ordered priority ensures
a globally optimal label is extracted at each iteration [15].
However, when multiple labels are extracted in a parallel set-
ting, the resulting labels may not be Pareto-optimal. Sanders
andMandow [26] reach the same conclusion in their theoreti-
cal parallel model for one of the original bi-criteria MOS algo-
rithms [16]. Their approach focuses on extracting the global
Pareto front at each iteration using a specialized Pareto-
queue data structure confined to only two objectives. They
assert that an exact implementation of the global Pareto
queue is unknown for more than two objectives and, con-
sequently, propose a controlled relaxation of label ordering
for more than two objectives. This forms the basis for our
proposed hypothesis: the work efficiency of MOS needs to be
kept in check by extracting labels as close to global Pareto-
optimal ordering as possible. With increasing objectives, the
priority queue presents more labels that may be close to
being globally Pareto-optimal. If high-priority labels are ex-
tracted, there exists the potential for a lower reduction in
work efficiency since each wasted label processed is a com-
plex operation with a high order of dominance and pruning
checks. The key idea of ordered queue extraction is proposed
for parallel MOS. It encompasses two main components: can-
didate label ordering and the number of labels extracted at
each iteration.

We make the following observations from a performance
characterization of MOS: (1) the complexity of the algorithm
grows substantially with the number of objectives, (2) there
is an opportunity for exploiting parallelism given the large
time spent in candidate label computations relative to the pri-
ority queue operations, (3) load balanced work distribution is
challenging due to extreme variability in work performed for
each candidate label, and (4) the ordering of the candidate la-
bels is salient for work efficiency. Herein, an Ordered Parallel
MOS algorithm (OPMOS) is proposed to capture the impor-
tance of maintaining order in computations while extracting
parallel performance for MOS acceleration. It aims to keep
the order intact for extracting high-priority labels from a

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

lexicographically-ordered priority queue (PQ) of intermedi-
ate non-dominated labels. These labels are distributed among
the cores of a multicore CPU processor at each iteration. OP-
MOS faces load balancing and the inherent serialization of
PQ operations as key performance scaling challenges.
The work done for each label is not uniform since inter-

mediate graph connections are explored in an unstructured
manner, and each label performs a non-deterministic number
of dominance and pruning checks (unique to MOS). The chal-
lenge worsens as the graph size and the number of objectives
increase. A label-complexity-aware load-balancing method
is proposed to reduce the load imbalance in OPMOS. When
multiple labels are processed in parallel, the label extractions
and updates to the PQ must be performed sequentially. To
overcome the serialization bottleneck, an asynchronous ex-
ecution of parallel label processing is proposed to hide the
latency of PQ operations. This paper makes the following
contributions:

• The NAMOA* MOS algorithm is evaluated using the
Tool for Multi-objective Planning and Asset Routing
(TMPLAR) [30] that deploys a set of state-space re-
duction techniques to generate graphs with over 10
objectives. The performance characterization reveals
several core observations: the growth in complexity
with an increase in objective count, the potential for
parallelism due to long computational critical paths,
the extreme variability in the work done for each can-
didate label, and the importance of ordering candidate
labels for work-efficient parallel execution.

• OPMOS is proposed for parallel MOS execution that
handles an arbitrary number of objectives to compute
an exact set of solution paths. OPMOS is evaluated
to highlight the work efficiency and parallelism trade-
offs. The evaluation using a 72-core Arm CPU shows
a geometric mean 34× speedup over sequential for the
evaluated graphs using the NAMOA* algorithm.

2 Related Work
The MOS problem is well-studied from an algorithmic per-
spective, and it is known that generating an exact Pareto-
front is NP-hard [27]. Alternative genetic and evolutionary
algorithms [2, 12, 38, 42] have been explored in the literature,
but they suffer from computational inefficiencies and poor
explainability of the quality of their solutions. Therefore, re-
searchers have focused on tackling the algorithmic complex-
ity of the generative Pareto front approaches, as summarized
in a recent survey paper [25]. Algorithmic techniques have
been explored to reduce the runtime complexity or approxi-
mate the Pareto front using label-setting or label-correcting
methods. Martin’s algorithm [16] is a label-setting algorithm

that extends single-objective Dijkstra to the multi-objective
setting. MOA* [31] introduces A* to the multi-objective do-
main. Since then, many improvements over MOA* have been
explored in the literature, with NAMOA* [15] serving as
the basis of most modern advancements [25]. Algorithmic
enhancements include: dimensionality reduction (NAMOA*-
dr [23]), lazy versus eager dominance checks (BOA* [34]), and
enhanced data structures (EMOA* [24]), among others [25].
While these algorithmic optimizations have been pro-

posed, most focus on two or three objectives due to the
exploding size of the search space induced by the increasing
number of objectives [24, 25]. NAMOA* remains one of the
only modern MOS algorithms that applies to an arbitrary
number of objectives, establishing itself as the baseline for
this paper. Due to the NP-hard nature of the exact gener-
ative algorithms, approximations to the Pareto front have
also been explored to lower the complexity at higher objec-
tive counts through runtime state-space reductions. War-
burton [37] introduces an 𝜖-based procedure that allows
approximate dominance checks to enable pruning of paths
within an 𝜖-bounded range. Several optimizations to the ap-
proximation strategy have been introduced [3, 4, 9, 33]. The
quality of solutions is impacted with approximations, intro-
ducing a trade-off between runtime efficiency and solution
quality [40]. In this paper, we retain the exact solution qual-
ity of NAMOA* and propose a parallel NAMOA* algorithm
to tackle its computational complexity.

So far, all discussed strategies address the MOS complexity
from an algorithmic perspective. Parallel MOS is an under-
exploredmethod of handling the complexity as the number of
objectives increases [25]. Sanders and Mandow [26] present
a parallel variant of Martin’s algorithm in the bi-objective
setting. It constructs a Pareto queue to allow the parallel ex-
traction of all globally Pareto-optimal labels at each iteration,
which the authors assert is not practical for more than two
objectives. Focusing on theoretical analysis, this paper does
not introduce an implementation or experiments and notes
that the proposed algorithm may not be practical. Others
attempt parallelization by launching multiple MOS instances
with different lexicographical orderings of objectives [25].
However, there is no known single-instance parallel MOS
algorithm in the literature that is capable of handling an
arbitrary number of objectives. We propose to address the
MOS complexity problem for higher numbers of objectives
using ordered parallelism.
A key challenge in systematically evaluating MOS algo-

rithms is the lack of multi-objective graph benchmarks us-
ing real-world applications [25]. Prior works use synthetic
graphs to constrain the search space or use a road network
with only two or three objectives [24]. The search space for
MOS in the New York City map (264𝐾 nodes and 733𝐾 edges)
is so massive that limited evaluation is performed in [24] by

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

comparing partial solution paths obtained within a runtime
limit of 600 seconds. TMPLAR [17, 30, 40] is the only frame-
work (to the best of our knowledge) that evaluates real-world
maritime ship routing. It uses a spatio-temporal setting and
a set of state-space reduction techniques to generate graphs
with over 10 objectives using a variety of dynamic weather
and ship datasets, presenting real-world scenarios requiring
multi-objective path planning. TMPLAR uses the NAMOA*
MOS algorithm to produce ship routes based on an arbitrary
number of input objectives. Despite the state-space reduc-
tion, many routes are still intractable for high numbers of
objectives. Therefore, the maximum number of objectives
completed within a predetermined runtime limit is used for
evaluation in this paper.
Ordered graph processing is the cornerstone of extract-

ing parallelism in modern graph applications [8, 21]. Vari-
ous concurrent priority schedulers for graph analytics have
been introduced in the literature, ranging from hardware-
centric to software approaches. Swarm [13] and its variant
Hive [22] propose speculative execution of tasks in hard-
ware to achieve super-linear speedups for task-parallel graph
problems. HD-CPS [28] proposes a hardware-software co-
design to trade off work efficiency and parallelism in concur-
rent priority schedulers for task parallel graph processing.
Many CPU and GPU frameworks have also been proposed
for ordered graph processing, such as MBQ [39], Galois [18],
GraphIt [41], and Gunrock [36]. Dynamic load balancing
schedulers are also explored to overcome challenges related
to work irregularity in graph problems [1, 14]. While all
these ordered graph frameworks and enhancements show
promise, no work has pursued these methods for the MOS
problem. Our proposed approach to exploiting ordered par-
allelism in MOS can fit into any ordered graph processing
framework. However, we propose a general-purpose ordered
parallelization of the MOS problem in this paper.

3 Background and Complexity of MOS
Consider an input graph 𝐺 = (𝑉 , 𝐸, 𝑐) with a set of nodes 𝑉
and edges 𝐸. For each edge 𝑒 ∈ 𝐸, there is a non-negative
cost vector 𝑐 (𝑒) of length 𝑑 objectives. Given a source node
𝑣𝑠 and a goal node 𝑣𝑔 in the graph 𝐺 , the path from 𝑣𝑠 to an
intermediate node 𝑣𝑖 is defined as 𝜋 (𝑣𝑖), represented by a
sequence of nodes where each node is connected to its pre-
decessor on the path. For each path 𝜋 (𝑣𝑖), 𝑔(𝜋 (𝑣𝑖)) denotes
the path cost from 𝑣𝑠 to 𝑣𝑖 , calculated as the sum of the cost
vectors 𝑐 (𝑒) for all edges present on the path. Since multi-
ple objectives may compete, MOS introduces a dominance
check such that given two paths 𝑎 = 𝜋1 (𝑢), 𝑏 = 𝜋2 (𝑢) with
𝑑 objectives, 𝑎 dominates 𝑏 (denoted 𝑎 ⪰ 𝑏) if and only if
𝑔(𝑎) [𝑖] ≤ 𝑔(𝑏) [𝑖],∀𝑖 ∈ 1, 2, ..., 𝑑 , and 𝑔(𝑎) [𝑖] < 𝑔(𝑏) [𝑖], ∃𝑖 ∈
1, 2, ..., 𝑑 . All non-dominated paths from 𝑣𝑠 to 𝑣𝑔 constitute

the Pareto-optimal solution set. MOS aims to find a cost-
unique Pareto-optimal solution set where no two paths in
the subset have the same cost vector.

A few additional terms must be introduced to describe the
MOS problem. A label 𝑙 = (𝑣, 𝑔) is a tuple representing an
intermediate solution path from 𝑣𝑠 to 𝑣 ∈ 𝑉 with a cost vector
𝑔. For simplicity, we denote 𝑣 (𝑙) to be the vertex and 𝑔(𝑙) to
be the cost vector contained in 𝑙 . A label 𝑙 dominates another
label 𝑙 ′ (𝑙 ⪰ 𝑙 ′) if they share the same vertex (𝑣 (𝑙) = 𝑣 (𝑙 ′))
and 𝑔(𝑙) ⪰ 𝑔(𝑙 ′). A heuristic vector ℎ̂(𝑣) is an admissible
heuristic such that it dominates (less than or equal for all
objectives) all Pareto-optimal solutions from node 𝑣 to the
goal node [15]. A vector 𝐹 (𝑙) denotes the estimated path
cost from the start node to the goal node for a given label,
calculated as 𝐹 (𝑙) = 𝑔(𝑙) + ℎ̂(𝑣 (𝑙)). Let OPEN be a queue of
labels prioritized by 𝐹 (𝑙) in increasing lexicographic order.
For each vertex 𝑢 ∈ 𝑉 , let 𝛼 (𝑢) denote the frontier set at
node 𝑢, holding all non-dominated labels 𝑙 at node 𝑢. Each
label in 𝛼 (𝑢) is a non-dominated partial solution path from
𝑣𝑠 to 𝑢. In NAMOA*, 𝛼 is split into two sets 𝐺𝑂𝑃 and 𝐺𝐶𝐿 ,
the open and closed sets, respectively. Here, 𝐺𝑂𝑃 contains a
per-node set of all partial solution labels in OPEN, while𝐺𝐶𝐿

contains the remaining non-dominated solution labels in the
frontier set of each node. Every label in 𝛼 (𝑢) can be found in
either 𝐺𝑂𝑃 (𝑢) or 𝐺𝐶𝐿 (𝑢) for all nodes 𝑢 ∈ 𝑉 . NAMOA* also
maintains the Pareto-optimal solution front, 𝑃 , holding the
frontier set at the goal node (𝛼 (𝑣𝑔)). The output of NAMOA*
is an exact set of Pareto-optimal solution paths in 𝑃 .

As shown in Algorithm 1, after initializing the data struc-
tures (lines 1-2), a label for the start node 𝑙𝑠 = (𝑣𝑠 , 0̂) is
created and inserted into both OPEN (with priority 0̂) and
𝐺𝑂𝑃 (𝑣𝑠) (lines 3-4). At each iteration (lines 6-31), the label
with the lexicographically lowest 𝐹 -vector is extracted from
OPEN (line 6). This label 𝑙 is removed from𝐺𝑂𝑃 and inserted
into 𝐺𝐶𝐿 (line 7) to update the frontier sets. At this point,
there are a few key procedures to define.
NotDominated (l, S) compares 𝑙 with labels in a given set 𝑆
to verify if a label exists in 𝑆 that dominates 𝑙 . It returns false
if 𝑙 is dominated by a label in 𝑆 , and returns true otherwise.
Prune (S, l) searches through all labels in a given set 𝑆 , and
removes all labels in 𝑆 that are dominated by 𝑙 .
PruneOPEN (l) searches the entire OPEN and removes all
labels in OPEN heuristic-dominated by 𝑙 (i.e. 𝐹 (𝑙) ⪰ 𝐹 (𝑙∗)
for an 𝑙∗ ∈ OPEN).
If 𝑙 is at the goal node (𝑣 (𝑙) = 𝑣𝑔, line 8), PruneOPEN is

called (line 9) to prune out labels heuristic-dominated by 𝑙
in OPEN. These labels are subsequently removed from𝐺𝑂𝑃

(line 10). This operation requires a computationally expen-
sive full index search through OPEN every time the goal
node is reached. The complexity of this operation grows
substantially with the number of objectives due to a rapid

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Algorithm 1 Sequential NAMOA*
Input: Edge costs𝐶 , heuristics 𝐻 , start 𝑣𝑠 and goal 𝑣𝑔 nodes
1: OPEN← PriorityQueue(∅); 𝑃 ← ∅
2: 𝐺𝑜𝑝 (𝑢) ← ∅,𝐺𝐶𝐿 (𝑢) ← ∅, ∀𝑢 ∈ 𝑉
3: 𝑙𝑠 ← (𝑣𝑠 , 0̂)
4: OPEN.insert(𝑙𝑠),𝐺𝑂𝑃 (𝑣𝑠) .insert(𝑙𝑠)
5: while OPEN ≠ ∅ do
6: 𝑙 ← OPEN.popmin()
7: 𝐺𝑂𝑃 (𝑣 (𝑙)) .remove(𝑙);𝐺𝐶𝐿 (𝑣 (𝑙)) .insert(𝑙)
8: if 𝑣 (𝑙) = 𝑣𝑔 then
9: PrunedOPENLabels← PruneOPEN(𝑙)
10: for all 𝑙∗ ∈ PrunedOPENLabels do𝐺𝑂𝑃 (𝑣 (𝑙∗)) .remove(𝑙∗)
11: Prune(𝑃, 𝑙)
12: if NotDominated(𝑙, 𝑃) then
13: 𝑃 .insert(𝑙)
14: else
15: for all 𝑣′ ∈ GetNeighbors(𝑣 (𝑙)) do
16: 𝑙 ′ ← (𝑣′, 𝑔 (𝑙) + 𝑐 (𝑣 (𝑙), 𝑣′) ; parent(𝑙 ′ ← 𝑙)
17: 𝐹 (𝑙 ′) ← 𝑔 (𝑙 ′) + ℎ̂ (𝑣 (𝑙 ′))
18: if not Visited(𝑣′) then
19: if NotDominated(𝐹 (𝑙 ′), 𝑃) then
20: OPEN.insert(𝑙 ′)
21: 𝐺𝑂𝑃 (𝑣 (𝑙 ′)) .insert(𝑙 ′)
22: else if Duplicate(𝑙 ′) then
23: continue
24: else if NotDominated(𝑙 ′,𝐺𝑂𝑃 (𝑣 (𝑙 ′))) and
25: NotDominated(𝑙 ′,𝐺𝐶𝐿 (𝑣 (𝑙 ′))) then
26: Prune(𝐺𝐶𝐿 (𝑣 (𝑙 ′)), 𝑙 ′)
27: PrunedLabels← Prune(𝐺𝑂𝑃 (𝑣 (𝑙 ′)), 𝑙 ′)
28: for all 𝑙∗ ∈ PrunedLabels do OPEN.remove(𝑙∗)
29: if NotDominated(𝐹 (𝑙 ′), 𝑃) then
30: OPEN.insert(𝑙 ′)
31: 𝐺𝑂𝑃 (𝑣 (𝑙 ′)) .insert(𝑙 ′)
32: return 𝑃

increase in the number of candidate labels. Then, Prune is
called (line 11) to remove labels in 𝑃 dominated by 𝑙 , ensur-
ing the 𝑃 set contains only globally Pareto-optimal solution
labels. NotDominated is called to check if 𝑙 is not dominated
by any labels in 𝑃 (line 12), and if successful 𝑙 is inserted into
the Pareto-optimal solution front 𝑃 (line 13). The complexity
of this operation is proportional to the number of candidate
labels in 𝑃 , which grows with the number of objectives.
If 𝑙 is not at the goal node, then all neighbors 𝑣 ′ of 𝑣 (𝑙)

are explored (line 15). For each 𝑣 ′, a new candidate label 𝑙 ′ =
(𝑣 ′, 𝑔(𝑙) +𝑐 (𝑣 (𝑙), 𝑣 ′)) is generated by extending 𝑙 from 𝑣 (𝑙) to
𝑣 ′. The parent pointer of 𝑙 ′ is set to 𝑙 to allow solution path
reconstruction once execution concludes (line 16). The new
𝐹 (𝑙 ′) is also computed, combining the new path cost 𝑔(𝑙 ′)
with the heuristic cost ℎ̂(𝑣 (𝑙 ′)) (line 17) to create a lower-
bound estimate of the total path cost from the source 𝑣𝑠 to the
goal node 𝑣𝑔 . If 𝑣 ′ is explored for the first time (line 18), then
extra computations can be skipped under the assumption
that𝐺𝑂𝑃 (𝑣 ′) and𝐺𝐶𝐿 (𝑣 ′) are empty. Before 𝑙 ′ can be inserted
into OPEN and 𝐺𝑂𝑃 (lines 20-21), NotDominated is called

(line 19) to check if the lower-bound path estimate (𝐹 (𝑙 ′)) is
dominated by any goal-node solutions in 𝑃 . The complexity
of this operator is also proportional to candidate labels in 𝑃 .

If 𝑣 ′ has been visited, then 𝑙 ′ is compared against the labels
in 𝐺𝑂𝑃 (𝑣 (𝑙 ′)) and 𝐺𝐶𝐿 (𝑣 (𝑙 ′)) in procedure Duplicate(𝑙 ′) to
check if 𝑙 ′ is a duplicate label, and if it is, the rest of the iter-
ation is skipped (lines 22-23). Otherwise, dominance checks
are performed to see if any label in𝐺𝑂𝑃 (𝑣 (𝑙 ′)) or𝐺𝐶𝐿 (𝑣 (𝑙 ′))
dominates 𝑙 ′ (lines 24-25). The complexity of the duplicate
and dominance checks depends on the number of candidate
labels in 𝐺𝑂𝑃 and𝐺𝐶𝐿 for this node, which grows with the
number of objectives. If 𝑙 ′ is not dominated, all labels from the
frontier set of 𝑣 (𝑙 ′) dominated by 𝑙 ′ are pruned (lines 26-27).
The labels pruned from 𝐺𝑂𝑃 are memorized to prune them
from OPEN and avoid a full index search (line 28). Before 𝑙 ′
can be inserted into OPEN and 𝐺𝑂𝑃 (lines 30-31), NotDom-
inated is called (line 29) to check if the lower-bound path
estimate (𝐹 (𝑙 ′)) is dominated by any goal-node solutions in
𝑃 . Again, the complexity of the dominance check operator is
proportional to candidate labels in the set searched (𝑃 ,𝐺𝑂𝑃

and𝐺𝐶𝐿 for this node). The Prune operators’ complexity also
increases with candidate labels being processed for a given
node, which grows with the number of objectives.

Once OPEN is empty, the algorithm terminates, and 𝑃 con-
tains the final labels representing the Pareto-optimal solution
paths (also referred to as exact solutions). Each label pro-
cessed during the MOS execution performs unstructured and
nondeterministic work. Depending on the graph characteris-
tics, each label processed may explore an arbitrary number
of adjacent labels. For each neighbor label, a nondeterminis-
tic number of labels must be compared via dominance and
pruning checks. The complexity of these operators relies
on the number of candidate labels being compared, which
increases with the number of objectives. Given the high
complexity of each label processed, NAMOA* emphasizes
reducing the work being performed. The OPEN is imple-
mented as a Priority Queue with lexicographical ordering
of objectives, guaranteeing that a Pareto-optimal label is ex-
tracted at each iteration. This ensures that a candidate label
with the highest chance of remaining in the final solution is
processed, reducing redundant work.

4 Characterization and Motivation
Many representative graph datasets, such as road networks,
become infeasible for MOS to handle due to the rapid ex-
plosion of the state space as the number of objectives in-
creases [24]. TMPLAR attempts to solve this challenge using
a variety of graph state-space reduction techniques [30, 40].
A forward and backward single-source shortest path (SSSP)
is performed to compute a bounding box of reachable nodes

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

0

600

1200

1800

2400

3000

3600

4200

4800

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 6 8 10 12
N

or
m

. L
ab

el
 E

xt
ra

ct
io

ns

N
or

m
. R

un
tim

e
[in

 m
ill

io
ns

]

Number of Objectives

PQ Operations
Label Processing
Label Extractions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

2 3 4 6 8 10 12

Ex
ec

ut
io

n
Ti

m
e

D
is

tr
ib

ut
io

n

Number of Objectives

Figure 2: TMPLAR Route 1 sequential MOS (left) rel-
ative runtime performance and label extractions nor-
malized to two objectives, and (right) execution time
distribution for two to twelve objectives.

to reduce the search space while also creating a time expan-
sion of the graph to account for weather conditions over time.
Then, the edge weights, followed by an admissible heuristic
(using SSSP), are computed for each objective. TMPLAR gen-
erates directed spatio-temporal graphs with >10 objectives.
The details about the objectives (Table 1) and routes (Table 2)
are discussed in Section 6. However, to characterize the com-
putational challenges, the MOS Algorithm 1 is evaluated
with Route 1 (cf. Table 2), as used in [40].

Figure 2 (left) shows the measured execution time and
the number of labels extracted from OPEN with increasing
objective counts from two to the maximum objectives. The
OPEN extractions are established as a metric of the work
performed and algorithmic complexity. As the number of
objectives increases, the execution time increases rapidly,
as does the relative work performed. The execution time of
3 milliseconds is recorded for two objectives, which rises
to over 38 minutes for 12 objectives. For more insights, Fig-
ure 2 (right) shows the runtime breakdown split into label
computations and OPEN (PQ) operations for two to twelve
objectives. At lower objectives, less time is spent on label
processing due to the low complexity of label operations.
With few labels per node at lower objectives, few dominance
checks are performed per candidate label. As the number of
objectives increases, more candidate labels exist, resulting
in an explosion in label processing complexity. At higher
objectives, the runtime is dominated by label processing, and
the priority queue operations become less prominent.
The updates for each label can be performed before ex-

tracting a new label from OPEN, decoupling the extrac-
tion/updates from the label computations. If multiple labels
can be processed simultaneously, these independent com-
putations can be parallelized to improve runtime efficiency.
However, exploiting label-level parallelism is not trivial. Fig-
ure 3 shows the number of label checks and comparisons per
label processed for two, six, and twelve objectives. If some
nodes have many candidate labels, they require more checks

0.0 0.5 1.0 1.5 2.0 2.5
Candidate Label 1e2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

. D
om

in
an

ce
 C

he
ck

s

1e2

(a) Two Objectives

0.0 0.5 1.0 1.5 2.0
Candidate Label 1e5

0.0

0.5

1.0

1.5

2.0

2.5

N
um

. D
om

in
an

ce
 C

he
ck

s

1e5

(b) Six Objectives

0.0 0.2 0.4 0.6 0.8 1.0
Candidate Label 1e6

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
um

. D
om

in
an

ce
 C

he
ck

s

1e6

(c) Twelve Objectives

Figure 3: Distribution of per-label comparisons per-
formed in sequential MOS for Route 1 for two, six, and
twelve objectives. From two to six objectives, the num-
ber of dominance checks and labels processed go up
by three orders of magnitude, and from six to twelve,
they increase by an additional order of magnitude.

than nodes with few labels. Each label performs tens to hun-
dreds of comparisons at two objectives, which increases to
hundreds of thousands to millions of comparisons at twelve
objectives. This highlights the high variability in label com-
putations. The irregular nature of label processing presents
significant load-balancing challenges for MOS. Determining
how to distribute these labels for parallel execution becomes
more important as the number of objectives increases.
Another key factor for processing labels in parallel is ex-

tracting multiple labels in a given iteration. Diverging from
the global Pareto-optimal order may result in redundant

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1

1.5

2

2.5

3

3.5

4

1 4 8 16 32 64 128 256

N
or

m
. L

ab
el

 E
xt

ra
ct

s
fr

om
 P

Q

Number of Label Extractions per Iteration

2 Objectives 3 Objectives 4 Objectives 6 Objectives 12 Objectives

1

1.5

2

2.5

3

3.5

4

1 4 8 16 32 64 128 256N
or

m
. L

ab
el

 E
xt

ra
ct

s
fr

om
 F

IF
O

Figure 4: TMPLAR Route 1 sweep of label extractions
from a priority queue (PQ) and FIFO normalized to a
PQ with single extraction per iteration.

labels, leading to work inefficiency. A single global Pareto-
optimal extraction per iteration is used as a baseline for work
efficiency. It is possible to extract the top 𝑛 labels keeping
the priority order intact but with no guarantee that labels
after the first extraction are globally Pareto-optimal. Figure 4
shows the relative decrease in work efficiency as the number
of label extractions per iteration increases. As the number of
objectives increases, this multi-pop strategy extracts more
Pareto-Optimal labels, thereby reducing the impact on work
inefficiency.

MOS is unique in that it performs significant and variable
work for each label, making it sensitive to work efficiency. In
general, graph algorithms have only a few (tens) instructions
per node to process, where extra iterations are acceptable
when they come with the potential for higher orders of par-
allelism. In MOS, the work for each label is significant, there-
fore, wasted label computations have a considerable impact
on performance (see Figure 2, where execution time scales
three orders of magnitude higher than the number of labels
extracted). A first-in-first-out (FIFO) queue is evaluated to
explore the potential impact of relaxing priority for label
extractions. Figure 4 (right) shows the work efficiency of a
FIFO queue normalized to the sequential baseline that uses
a priority queue (PQ) for OPEN. Note that at two objectives,
over 6× the number of labels are extracted with FIFO com-
pared to PQ, exceeding the limits of the chart. In all cases,
even at the maximum objectives, over 25% additional work
is performed. Since labels are computationally expensive at
increasing numbers of objectives, any increase in work needs
to be compensated with significant reductions in queue ex-
tractions and updates. If the queue operations are not the
bottleneck (as suggested by Figure 2), then PQ is preferred.
The general trend is that relaxing the priority queue results
in extractions farther from the global Pareto front, indicating
the importance of maintaining order in label processing.

Algorithm 2 OPMOS with NUM_POP & NUM_THDS parameters
Input: Edge costs𝐶 , heuristics 𝐻 , start 𝑣𝑠 and goal 𝑣𝑔 nodes
1: ShMem Data Structures: OPEN,𝐺𝑂𝑃 ,𝐺𝐶𝐿, 𝑃, 𝑐𝐵𝑟𝑒𝑔, 𝑐𝐵𝑔𝑜𝑎𝑙 , 𝑛𝐵𝑟𝑒𝑔,

𝑛𝐵𝑔𝑜𝑎𝑙 , 𝑃𝐼𝑁𝑆 , 𝑃𝐷𝐸𝐿,OPEN𝐼𝑁𝑆 ,OPEN𝐷𝐸𝐿,𝐺𝐶𝐿𝐷𝐸𝐿
,𝑈 𝑝𝑑𝑎𝑡𝑒𝑠𝑅𝑑𝑦

2: 𝑡𝑖𝑑 ← Thread ID; #WT←NUM_THDS−1
3: if Main then ⊲ Main Thread
4: 𝑙𝑠 ← (𝑣𝑠 , 0̂)
5: OPEN.insert(𝑙𝑠),𝐺𝑂𝑃 (𝑣𝑠) .insert(𝑙𝑠)
6: while (𝑐𝐵𝑟𝑒𝑔 .len + 𝑐𝐵𝑔𝑜𝑎𝑙 .len + 𝑛𝐵𝑟𝑒𝑔 .len + 𝑛𝐵𝑔𝑜𝑎𝑙 .len) > 0 do
7: Barrier Synchronization
8: 𝑛𝐵𝑟𝑒𝑔 ← ∅; 𝑛𝐵𝑔𝑜𝑎𝑙 ← ∅
9: while (𝑛𝐵𝑟𝑒𝑔 .len+𝑛𝐵𝑔𝑜𝑎𝑙 .len) < NUM_POP and OPEN≠ ∅ do
10: 𝑙 = OPEN.popmin()
11: if PrunedFrom(𝑙 ,𝐺𝑂𝑃 (𝑣 (𝑙))) then continue
12: 𝐺𝑂𝑃 (𝑣 (𝑙)) .remove(𝑙);𝐺𝐶𝐿 (𝑣 (𝑙)) .insert(𝑙)
13: if 𝑣 (𝑙) = 𝑣𝑔 then
14: 𝑛𝐵𝑔𝑜𝑎𝑙 .insert(𝑙)
15: else
16: 𝑛𝐵𝑟𝑒𝑔 .insert(𝑙)
17: NumReturned← 0
18: while NumReturned < #WT do
19: for 𝑡𝑖𝑑 from 1 . . . #WT do
20: if 𝑈𝑝𝑑𝑎𝑡𝑒𝑠𝑅𝑑𝑦 [𝑡𝑖𝑑] = 1 then
21: ApplyUpdates(𝑡𝑖𝑑 , 𝑃𝐼𝑁𝑆 , 𝑃𝐷𝐸𝐿,𝐺𝐶𝐿𝐷𝐸𝐿

)
22: ApplyUpdates(𝑡𝑖𝑑,OPEN𝐼𝑁𝑆 ,OPEN𝐷𝐸𝐿)
23: 𝑈𝑝𝑑𝑎𝑡𝑒𝑠𝑅𝑑𝑦 [𝑡𝑖𝑑] ← 0
24: NumReturned← NumReturned +1
25: Barrier Synchronization
26: return 𝑃

27: else ⊲ Worker Thread (WT)
28: while true do
29: Barrier Synchronization
30: if (𝑐𝐵𝑟𝑒𝑔 .len + 𝑐𝐵𝑔𝑜𝑎𝑙 .len +𝑛𝐵𝑟𝑒𝑔 .len +𝑛𝐵𝑔𝑜𝑎𝑙 .len) > 0 then
31: return
32: for 𝑏𝑖𝑑 from 1...𝑠𝑖𝑧𝑒 (𝑐𝐵𝑔𝑜𝑎𝑙) do
33: 𝑙 ← 𝑐𝐵𝑔𝑜𝑎𝑙 [𝑏𝑖𝑑]
34: for 𝑖 = (𝑡𝑖𝑑 + 𝑏𝑖𝑑) % (#𝑊𝑇) ; 𝑖 < #𝑁𝑜𝑑𝑒𝑠 ; 𝑖+ = #𝑊𝑇 do
35: Prune𝐺𝑂𝑃 (𝑖 , 𝑙 , OPEN𝐷𝐸𝐿)
36: if (𝑏𝑖𝑑 % #𝑊𝑇) = 𝑡𝑖𝑑 then
37: PruneAndInsertP(𝑙 , 𝑃𝐼𝑁𝑆 , 𝑃𝐷𝐸𝐿)
38: 𝑠𝑙 , 𝑠𝑛𝑏𝑟 , 𝑒𝑙 , 𝑒𝑛𝑏𝑟 ← NbrSplitting(𝑐𝐵𝑟𝑒𝑔, 𝑡𝑖𝑑)
39: for 𝑙 ′ in range(𝑠𝑙 , 𝑠𝑛𝑏𝑟 , 𝑒𝑙 , 𝑒𝑛𝑏𝑟) do
40: ProcessRegularLabel(𝑙 ′ , OPEN𝐼𝑁𝑆 ,OPEN𝐷𝐸𝐿,𝐺𝐶𝐿𝐷𝐸𝐿

)
41: 𝑈𝑝𝑑𝑎𝑡𝑒𝑠𝑅𝑑𝑦 [𝑡𝑖𝑑] ← 1

5 Ordered Parallel MOS
In MOS, labels are expensive, and redundant computations
impact work efficiency. Deviation from the priority order re-
sults in a significant increase in the number of labels. Ordered
Parallel Multi-Objective Shortest-Path (OPMOS) builds upon
MOS in Alg. 1, introducing parallel computations in a load-
balanced manner while maintaining as close to the global
priority of label extractions as possible. OPMOS proposes
a parallel multi-threaded execution model that operates on
a global priority queue. At a high level, the main thread
extracts several labels (determined by the NUM_POP sys-
tem parameter) from the queue of prioritized labels (OPEN)

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

in lexicographic order. These labels are distributed among
worker threads for parallel execution using a MOS-centric
load-balancing scheduler. The parallel execution of labels is
done asynchronously with label extractions from OPEN. The
worker threads perform the dominance and pruning checks
and create updates for the processed labels. These updates
are then applied asynchronously in the main thread to hide
the sequential latency of these operations.
Algorithm 2 presents the pseudo-code for OPMOS. The

data structures remain unchanged from Alg. 1. However,
OPEN, 𝐺𝑂𝑃 , 𝐺𝐶𝐿 , and 𝑃 are initialized in shared memory
for efficient parallel access by worker threads. Per-worker-
thread data structures, 𝑃𝐼𝑁𝑆 , 𝑃𝐷𝐸𝐿 , OPEN𝐼𝑁𝑆 , OPEN𝐷𝐸𝐿 , and
𝐺𝐶𝐿𝐷𝐸𝐿

are also initialized in shared memory to track local
updates during parallel execution of labels. The updates are
communicated between the worker and main threads using
the𝑈𝑝𝑑𝑎𝑡𝑒𝑠𝑅𝑑𝑦 shared memory flags. The label extractions
are performed in the main thread from OPEN and stored in
the bag data structures, described in more detail next.

5.1 Asynchronous Execution Model
OPMOS leverages a single centralized priority queue to main-
tain as close to a global priority order as possible and reduce
work inefficiency. The MOS characterization suggests that
many labels can be extracted without significantly impacting
work efficiency. However, applying the label updates in the
main thread creates a sequential bottleneck. To overcome
this challenge, OPMOS proposes pipelining label extractions
and updates across consecutive iterations. A set of labels
extracted in a given iteration is processed in the subsequent
iteration while a new set of labels is concurrently extracted
from the priority queue. Moreover, as labels are processed in
worker threads, their updates are applied asynchronously in
the main thread. This enables OPMOS to hide priority queue
operations by performing label processing asynchronously.
As the complexity of label processing increases with the
number of objectives, the asynchronous model has more
opportunities to hide sequential bottlenecks.
To enable asynchronous execution, OPMOS proposes to

differentiate between the bag of labels being processed on
the current iteration and the bag of labels being extracted for
the next iteration. The bag of labels processed by the worker
threads in a given iteration are stored in the 𝑐𝐵𝑟𝑒𝑔 and 𝑐𝐵𝑔𝑜𝑎𝑙
data structures, and the labels that are extracted for the next
iteration are stored in the 𝑛𝐵𝑟𝑒𝑔 and 𝑛𝐵𝑔𝑜𝑎𝑙 data structures.
From an implementation perspective, the physical bag data
structures are logically swapped on each iteration and are
independently managed by the main and worker threads.
After initialization, OPMOS diverges into a main thread and
multiple (NUM_THDS −1) worker threads. The main thread

creates the start label (line 4) and inserts the label into both
OPEN and 𝐺𝑂𝑃 (line 5) to initialize the system.
At any given iteration 𝑖 , the main thread performs label

distribution and updates. While the main thread executes
these operations, the worker threads process labels from
the bags extracted in the previous iteration 𝑖 − 1, i.e., 𝑐𝐵𝑔𝑜𝑎𝑙
and 𝑐𝐵𝑟𝑒𝑔 (lines 32-40). This allows decoupled execution of
label computations from the priority queue operations. At
the start of iteration 𝑖 , the main thread sequentially extracts
labels from OPEN and 𝐺𝑂𝑃 and inserts the labels into 𝐺𝐶𝐿

(lines 10, 12). If a label corresponding to the goal node, 𝑣𝑔,
is extracted (line 13), then the label is inserted into the next
iteration goal-node bag 𝑛𝐵𝑔𝑜𝑎𝑙 (line 14). Otherwise, the label
is inserted into the next iteration bag for regular labels, 𝑛𝐵𝑟𝑒𝑔
(line 16). Label extractions continue until either NUM_POP
labels are extracted or OPEN is empty (line 9).

After eachworker thread finishes performing its necessary
work and preparing its updates, it signals to the main thread
that the updates are ready (line 41). The main thread polls
the worker threads to check if their updates are ready (lines
18-20). It sequentially processes the updates from worker
threads asynchronously (lines 21-22) and resets the worker
status flag (line 23). This allows update latency to be hidden
if the runtime of worker threads exhibits variability in la-
bel computations (cf. Section 4). The main thread does not
progress to the next iteration until all the worker threads
return and their updates are applied. When performing la-
bel updates on data structures that are visible to the worker
threads for label processing (𝐺𝑂𝑃 , 𝐺𝐶𝐿 , and 𝑃), care must
be taken to ensure that all label metadata is consistently
propagated among threads. This is ensured by tracking each
label’s metadata with a ready flag. Setting this flag indicates
that metadata is visible in shared memory, while clearing
this flag indicates a label’s deletion. The label update time is
primarily spent on priority queue operations (OPEN inserts
and deletes, line 22). Note that OPEN is a local data structure
visible only to the main thread.

OPEN inserts must be performed when the updates are
applied. However, deletes can be postponed until the labels
are extracted from OPEN at a later iteration. Rather than
deleting from the priority queue at the time of update (in-
place), deletes from OPEN are marked for removal in the
relevant𝐺𝑂𝑃 entry. On OPEN extraction, the label is checked
against 𝐺𝑂𝑃 and discarded if it is marked for removal (line
11). This replaces the expensive random-access deletes from
OPEN with cheaper priority queue extractions, reducing the
sequential latency of OPEN deletes. There is no delay in a
delete propagating its effect to other labels because the 𝐺𝑂𝑃

entry is marked at update time, not OPEN extraction.
After all threads finish execution, they synchronize on a

barrier to ensure data consistency across iterations (lines
7 and 29). Execution continues until the current and next

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

bags are empty (line 6). Upon the main thread exiting the
loop, it performs barrier synchronization to allow the worker
threads to continue and observe the termination condition
(lines 29-31). The main thread returns 𝑃 , the set of exact
Pareto-optimal solutions.

A key challenge for OPMOS is the latency of priority queue
operations. OPMOS proposes asynchronous OPEN extrac-
tions and updates, and on-the-fly OPEN deletes to reduce
the impact of the sequential latency. An alternative is to per-
form in-place OPEN deletes by directly removing labels from
the priority queue. Similarly, extractions and updates can be
performed synchronously with label processing. Processing
multiple labels on a single iteration may introduce candidate
labels that dominate each other or create duplicate updates.
The worker threads can synchronize to perform dominance
and duplicate checks. Although this may reduce the update
volume, it serializes all updates to the main thread, which
results in inherently synchronous updates. To evaluate the ef-
ficacy of the proposed asynchronous execution model, these
alternatives are evaluated in Section 7.

5.2 Label-Aware Load Balanced Execution
On each iteration 𝑖 , the worker threads process labels in the
bags 𝑐𝐵𝑟𝑒𝑔 and 𝑐𝐵𝑔𝑜𝑎𝑙 generated in the previous 𝑖 − 1 itera-
tion. A naïve load balancer distributes the labels in the bags
among workers for parallel execution. However, labels at the
goal node, 𝑣𝑔 may have more complexity than regular labels.
The full-index search in PruneOPEN (lines 9-10 in Alg. 1)
is expensive. If these searches are not handled in parallel
and performed alongside other labels, it leads to a significant
load imbalance. On the other hand, if predominantly goal
node labels are processed in iterations and the amount of ex-
ploitable parallelism is limited in them, then it is beneficial to
distribute these labels alongside other labels. OPMOS treats
goal node labels separately from other labels for balanced
work execution. This splits the load-balancing problem into
two parts: regular labels and goal-node labels.
Within goal-node execution (lines 9-13 in Alg. 1), there

are two primary components: Pruning from OPEN and 𝐺𝑂𝑃

(lines 9-10 in Alg. 1), and computations on 𝑃 (lines 11-13
in Alg. 1). OPMOS distributes these components separately.
The PruneOPEN function in Alg. 1 performs a full-index
search over OPEN. However, OPEN and𝐺𝑂𝑃 store the same
labels, allowing either to be searched to determine the labels
for pruning.𝐺𝑂𝑃 is organized on a labels-per-node granular-
ity, which allows the full-index search to be spread across
multiple worker threads using node-centric distribution. For
each label in the 𝑐𝐵𝑔𝑜𝑎𝑙 bag, the nodes are split using a round-
robin approach, and𝐺𝑂𝑃 for each respective node 𝑖 is pruned
against the goal label with the Prune𝐺𝑂𝑃 function (lines 34-
35). Note that a naïve round-robin approach where the nodes

are split in a static way for each label can suffer from load bal-
ancing challenges when there is insufficient parallelism due
to few labels in OPEN/𝐺𝑂𝑃 per node, or high load imbalance
due to a few nodes with a high number of labels. To over-
come this challenge, the start position for the round-robin
is biased by the bag index 𝑏𝑖𝑑 of the label. This allows work
to be evenly distributed across the worker threads, reducing
load imbalance.
For computations on 𝑃 , the prune and insert operations

require that labels are inserted after pruning. Otherwise,
a label may be incidentally pruned by its pruning check
in another thread. Hence, exploiting parallelism within the
computations on 𝑃 requires fine-grain thread synchroniza-
tion. OPMOS avoids this additional synchronization burden
and performs 𝑃 computations by distributing each label in
𝑐𝐵𝑔𝑜𝑎𝑙 to an independent thread. The goal labels are assigned
round-robin among the worker threads (lines 36-37).

The regular labels are processed after the goal bag compu-
tations are complete. A naïve load balancer distributes each
label to a worker thread. However, the amount of work per-
formed for each label has high variability due to an irregular
number of neighbors for each node and the number of other
candidate labels to check for dominance (cf. Section 3). This
variability results in significant load imbalance. Therefore,
OPMOS proposes a label-centric approach that distributes
chunks of neighbors (i.e., candidate labels) among worker
threads. The NbrSplitting function (line 38) performs this
distribution for the 𝑐𝐵𝑟𝑒𝑔 bag labels. The cost-per-thread is
computed as the ratio of the total number of expanded la-
bels over the number of worker threads. The NbrSplitting
function uses this cost and its thread ID to determine the
chunk of labels to process. The function performs a search
to determine the start (𝑠𝑙) and end (𝑒𝑙) labels as pointers to
the 𝑐𝐵𝑟𝑒𝑔 bag, as well as the neighbor to start processing for
the start label 𝑠𝑛𝑏𝑟 and to end processing for the end label
𝑒𝑛𝑏𝑟 . This schedule of labels is then processed (lines 39-40),
and the updates are accumulated in the relevant update data
structures. Note that the ProcessRegularLabel function refers
to lines 16-31 in Alg 1.

A key challenge for OPMOS scaling is the computational
load variability for the parallel processing of labels. Several
alternative load-balancing strategies are considered to eval-
uate the efficacy of the proposed label-centric approach. A
naïve approach does not differentiate goal and regular labels
and distributes them equally among the worker threads. Go-
ing further, the variability in regular label processing may
be reduced by distributing regular labels at the neighbor
level, again considering goal labels the same as regular labels.
When considering goal and regular labels independently, an
alternative approach is to distribute each goal label one at
a time with a worker thread performing computations on
𝑃 and the remaining threads executing the OPEN and 𝐺𝑂𝑃

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

Obj. # Objective # Objective
1 Distance 5 Vert. Acceleration 9 Wave Height
2 Fuel 6 Horiz. Acceleration 10 Wave Period
3 Roll 7 Vert. Bending Moment 11 Rel. Wave Bear.
4 Pitch 8 Vert. Shear Force 12 Random

Table 1: TMPLAR Objective List. For a given 𝑛 objec-
tives, the first 𝑛 are used for lexicographical ordering.

pruning operations at the node granularity. These alternative
approaches are evaluated against OPMOS in Section 7. Future
work can supplement the proposed label-centric approach
with runtime tracking of label complexity to reduce load im-
balances. One can go further, breaking the dominance checks
at a finer granularity. However, unlocking such parallelism
may require complex serialization among threads.

6 Methods
The NVIDIA GH200 [19] Superchip’s CPU is used for eval-
uation. It integrates 72 Neoverse V2 Arm cores operating
at 3.1𝐺𝐻𝑧 in a single chip. Each out-of-order core has six
integer and four floating-point execution units. The mem-
ory hierarchy supports 64𝐾𝐵 L1 instruction and data caches,
1𝑀𝐵 private L2 cache per core, a shared 114𝑀𝐵 last-level
cache, and∼500𝐺𝐵 of on-package LPDDR5X unifiedmemory
with 512𝐺𝐵/𝑠𝑒𝑐 memory bandwidth. Although the Super-
chip includes a Hopper NVIDIA H100 GPU interconnected
with the CPU using NVLink, it is not used in this paper.

6.1 TMPLAR Graphs
TMPLAR is a Python-based tool that generates ship routing
graphs with up to twelve objectives (as shown in Table 1).
The distance objective measures the distance along a line
with constant bearing to true North (the so-called rhumb
line distance). Three weather and oceanic parameters are
directly used as objectives: wave height, wave direction (rel-
ative to ship bearing), and wave period. These parameters
are obtained from the ERA5 dataset [10], analyzed at 3-hour
intervals starting January 1, 2016. The oceanographic param-
eters are also used to generate seven objectives: fuel con-
sumption (based on required propulsion in calm water [11]
and due to wave resistance [6]), and six ship dynamic re-
sponse objectives (calculated using a nonlinear wave-load
analysis [29]): roll, pitch, vertical acceleration, horizontal
acceleration, vertical bending moment, and vertical shear
force. A pseudo-randomly generated objective is calculated
using a seed of the latitude, longitude, and time window in-
formation at each graph edge. TMPLAR allows any number
of objectives to be run for a given route, where the objectives
are selected in the order specified in Table 1.

TMPLAR’s state-space-reduced graph routes used for eval-
uation are shown in Table 2. These are generated using start
and end locations as inputs, along with the start date of

Rt.
#

Origin
(Long., Lat)

Des
(Long., Lat.) Nodes Edges Max

Obj.

1 Roanoke Isl., NC
75.0°W, 36.5°N

Bahamas
76.0°W, 25.0°N 471 4394 12

2 Alaska
144.4°W, 58.5°N

San Diego
117.6°W, 32.7°N 1610 10019 4

3 Alaska
144.4°W, 58.5°N

Seattle
125.6°W, 48.4°N 461 2610 12

4 Guam
144.8°E, 13.4°N

Sasebo
134.1°E, 31.5°N 201 2476 12

5 Str. of Gibraltar
7.5°W, 36.0°N

Roanoke Isl., NC
75.0°W, 36.5°N 778 7787 6

Table 2: TMPLAR State-Space Reduced Routes

Jan. 1st, 2016 for weather data information, minimum and
maximum ship speeds of 5 and 30 knots, and a trip length
of 14 days (±1 day). Furthermore, the graphs are expanded
with 10 time windows per node to capture temporal weather
variations. The edge weights are populated with data for
the user-specified number of objectives. The graphs in Ta-
ble 2 are generated using these inputs for evaluation. An
8-hour time limit is imposed on sequential NAMOA*. Routes
1, 3, and 4 complete the maximum number of objectives (12).
However, routes 2 and 4 only complete 4 and 6 objectives in
this time limit.

6.2 NAMOA* and OPMOS Implementation
The TMPLAR tool is implemented in Python 3.10.1 [35] and
used to generate the inputs for NAMOA* and OPMOS (ad-
jacency list, edge costs, and heuristic data). These inputs
are then supplied to a C++ implementation of NAMOA* and
OPMOS using the python ctypes library. The C++ code is
compiled using GCC version 11.4.0.
Two types of data structures are described in Alg. 1: la-

bel sets and the priority queue. The label sets 𝐺𝑂𝑃 , 𝐺𝐶𝐿 ,
and 𝑃 are implemented as arrays of structures with user-
managed dynamic array sizing. The OPEN queue is imple-
mented as a std::set with a custom lexicographical order-
ing function. These same data structures and their imple-
mentations are used for the parallel OPMOS algorithm, with
the label set arrays stored in global shared heap memory.
OPMOS uses intermediate buffers for communicating work
distribution with additional shared memory data structures
(𝑐𝐵𝑟𝑒𝑔, 𝑐𝐵𝑔𝑜𝑎𝑙 , 𝑛𝐵𝑟𝑒𝑔, 𝑛𝐵𝑔𝑜𝑎𝑙 , 𝑃𝐼𝑁𝑆 , 𝑃𝐷𝐸𝐿, OPEN𝐼𝑁𝑆 , OPEN𝐷𝐸𝐿,

𝐺𝐶𝐿𝐷𝐸𝐿
, and𝑈𝑝𝑑𝑎𝑡𝑒𝑠𝑅𝑑𝑦 in Alg. 2). The threads in OPMOS

are spawned using the POSIX thread (pthread) library for ef-
ficient multi-threaded implementation with fast inter-thread
communication using shared memory.
The evaluation metrics are collected using instrumented

performance counters and the C++ chrono library with a
steady clock to ensure accurate time reporting. The total
number of label extractions, candidate labels explored, and

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

final Pareto-optimal solutions are collected using perfor-
mance counters. The end-to-end execution time of OPMOS
measures the total runtime of the main thread while-loop in
Alg. 2 (i.e., the runtime does not include the initialization of
the data structures and threads). To further describe where
time is spent in execution, the runtime of sequential MOS is
broken into the following components: time spent in OPEN
extractions, time spent in updates, and time spent in la-
bel processing. In parallel OPMOS, OPEN extractions and
updates can be hidden by the time spent in label processing.
If time can be hidden, it is first taken from OPEN extrac-
tions and then updates. For label processing, the worst-case
worker thread on each iteration is considered. This runtime
is further split into the time spent in parallel label process-
ing, and the remaining time is reported as communication
overheads (time spent waiting on non-blocking barriers in
Alg. 2). The average time spent in each component across all
worker threads is reported. The remaining time in the main
thread not spent on OPEN extractions and updates or being
hidden by the worker threads is added to the communi-
cation overheads component. The sum of all breakdowns
(unhidden OPEN extractions, unhidden updates, parallel la-
bel processing, and communication overheads) equals the
total runtime of the algorithm.

7 Evaluation
OPMOS operates with two key system parameters: the num-
ber of threads (NUM_THDS) and the number of label extrac-
tions from OPEN on each iteration (NUM_POP). Figure 5
evaluates the performance of OPMOS for two (lowest), three,
and the maximum number of objectives (as shown in Table 2)
for each route. The number of label extractions for each iter-
ation (NUM_POP parameter) is set equal to the number of
worker threads (NUM_THDS - 1), and the number of worker
threads is increased from 1 to 128. The normalized number
of label extractions is plotted as a metric of work efficiency.
The speedup and normalized label extractions are shown
relative to sequential MOS.
The performance does not scale at two objectives due

to a rapid increase in work inefficiency at higher worker
threads and label extractions. The labels diverge from the
global Pareto-front in the priority queue (cf. Section 4) and
more redundant and unnecessary labels are processed. To
gain insights into the tradeoff involved, Figure 6 shows the
geometric mean runtime distribution of all routes for two
objectives. The sequential baseline is dominated by priority
queue operations that cause serialization bottlenecks in OP-
MOS. The label processing time is cut in half at four worker
threads, but 50% additional labels are processed. These re-
dundant labels make label processing time, extractions, and
updates more expensive leading to runtime overheads. In

0

10

20

30

40

50

60

1 8 16 32 64 12
8 1 8 16 32 64 12
8 1 8 16 32 64 12
8 1 8 16 32 64 12
8 1 8 16 32 64 12
8

Route 1 Route 2 Route 3 Route 4 Route 5

Sp
ee

du
p

O
ve

r S
eq

ue
nt

ia
l

Sweep of Worker Threads from 1 to 128 across Routes

0

10

20

30

40

50

N
or

m
. L

ab
el

 E
xt

ra
ct

io
ns 2 Objectives 3 Objectives Maximum Objectives

Figure 5: OPMOS speedup and labels extracted at in-
creasing worker threads (and labels extracted) relative
to sequential MOS.

0
1
2
3
4
5
6
7
8
9
10

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64

2 Objectives 3 Objectives Maximum Objectives

N
or

m
. L

ab
el

 E
xt

ra
ct

io
ns

R
un

tim
e

N
or

m
al

iz
ed

 to
 S

eq
. M

O
S

Sweep of Worker Threads from 1 to 64 across Routes

Updates
OPEN Extractions
Communication Overheads
Label Processing
Total Label Extractions

Figure 6: OPMOS geometric mean runtime with av-
erage distributions across routes for two, three, and
maximum objectives.

addition, the label checks are relatively inexpensive (as char-
acterized for two-objective MOS in Figure 3a). This leads to
fast label processing in worker threads, which causes serial-
ization in the main thread. The asynchronous model hides
label extractions, but a significant portion of the updates and
communication stalls are left unhidden. As a result, there is
little performance gain (22%) at 4 worker threads. The perfor-
mance scaling worsens at higher worker threads, primarily
due to the rapid increase in work inefficiency.
The label processing time is observed to scale up to 64

worker threads at three objectives. This is attributed to high-
quality label extractions from OPEN, leading to less work
inefficiency. Moreover, there are more candidate labels per
node for dominance checks at three objectives, which leads
to higher complexity and processing time per label. With
more work being performed by the worker threads, there
are opportunities for the asynchronous model to hide the
priority queue operations and the communication stalls. At

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2

Route 1 Route 2 Route 3 Route 4 Route 5

N
or

m
. L

ab
el

 E
xt

ra
ct

io
ns

R
un

tim
e

N
or

m
al

iz
ed

 to
 S

eq
. M

O
S

Sweep of Labels Extracted per Iteration from 64 to 512 across Routes

Updates
OPEN Extractions
Communication Overheads
Label Processing
Total Label Extractions

Figure 7: OPMOS runtime distributions using 64
worker threads and maximum labels extracted per it-
eration (NUM_POP) swept from 64 to 512.

64 worker threads, the reduction in computation time leaves
less room for latency hiding, and thus, the update latency
begins to increase and reflect the growth in work inefficiency.
This prevents OPMOS from scaling past 32 worker threads
at three objectives, leading to 4× performance scaling com-
pared to sequential MOS. The increase in label complexity
and decrease in work inefficiency trends continue through
maximum objectives (4 in route 2, 6 in route 5, and 12 in
the remaining routes), allowing all runtime components to
achieve higher scaling. This leads to a geometric mean 28×
performance scaling at 64 worker threads.

As work efficiency is marginally impacted by the number
of labels extracted at maximum objectives, it is possible to
extract higher numbers of labels and further improve per-
formance scaling. To evaluate, the NUM_POP parameter is
swept from 64 to 512 labels, keeping the number of worker
threads fixed to 64. Figure 7 shows the runtime distribution of
OPMOS for this study, with runtime distributions normalized
to sequential MOS. Note that the figure is capped at 1/10th
the sequential runtime to highlight the distributions. For all
routes, the work inefficiency trends remain unchanged until
a higher number of label extractions. Consequentially, the
runtime components’ scale and performance improves up to
256 label extractions, saturating at 512. Route 3 is the clear
exception, with worse scaling and runtime dominated by
updates and communication. In this route, the priority queue
grows slowly, leading to relatively few labels per node (data
not shown). As the number of label extractions increases, so
does the time to extract fromOPEN (and the time spent in up-
dates). With 256 labels extracted, OPEN extractions become
visible (hidden in all other cases). This leaves no time to hide
updates and communication stalls among the threads that
return in close temporal proximity. Despite these challenges,
the speedup from 64 to 512 label extractions increases from
13.5× to 20×. Route 4 is similar in size to Route 3 (Table 2)
but has higher density, leading to more active labels in OPEN,
thereby increasing the complexity of label computations. The

0

0.5

1

1.5

2

2.5

3

3.5

Route 1

Route 2

Route 3

Route 4

Route 5

N
or

m
. L

ab
el

 E
xt

ra
ct

io
ns

0

10

20

30

40

50

60

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

Route 1 Route 2 Route 3 Route 4 Route 5

Sp
ee

du
p

ov
er

 S
eq

ue
nt

ia
l w

ith
 P

Q

Sweep of Worker Threads from 16 to 64

FIFO PQ

Figure 8: Comparison of OPMOS using PQ and FIFO
relative to sequential MOS with PQ. Speedup is shown
with increasing worker threads and label extractions
(left). Normalized label extractions are shown at 64
worker threads and NUM_POP set to 64 (right).

higher complexity labels allow OPMOS to hide OPEN extrac-
tions and updates and reduce the impact of communication
stalls. As a result, most of the OPEN extractions and updates
are hidden, leading to an increase in performance scaling of
26× to 37× from 64 to 512 label extractions. Routes 1, 2, and
5 are large and achieve good performance scaling. However,
routes 2 and 5 operate at a much lower number of objectives
(4 and 6 respectively) compared to route 1 which operates
at 12 objectives. The higher complexity of label processing
in route 1 leads to a 61× speedup (near-linear scaling) at
512 extractions. However, routes 2 and 5 show somewhat
diminished speedups ranging from 28× to 37×, which tapers
at 256 label extractions. All subsequent evaluations use 64
worker threads and 256 label extractions, where a geometric
mean speedup of 34× is achieved for the maximum number
of objectives.

The achieved speedups are attributed to the following OP-
MOS contributions: close-to-priority extractions, asynchro-
nous execution, and the load-balancing scheme. The close-
to-priority extractions allow many labels to be processed in
parallel while not significantly impacting work inefficiency.
The asynchronous model hides the latency of OPEN opera-
tions and communication stalls. The load balancer accounts
for the diversity in label complexity to harness the variability
for efficient parallel execution. The efficacy of these contri-
butions is evaluated next.

7.1 Evaluation of Priority Queue vs. FIFO
OPMOS relies on processing high-priority labels to achieve
work-efficient parallel execution. However, priority queue
operations are expensive and lead to sequential bottlenecks.
An alternative is to use a faster data structure that man-
ages candidate label ordering in first-in-first-out (FIFO) order.
FIFO inserts and deletes are cheaper than a priority queue

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0
0.25
0.5
0.75
1
1.25
1.5
1.75
2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

O
PM

O
S

In
-P

la
ce

As
yc

PQ
-S

yn
cU

Sy
nc

P
Q

-S
yn

cU
D

up
&

Do
m

O
PM

O
S

In
-P

la
ce

As
yc

PQ
-S

yn
cU

Sy
nc

P
Q

-S
yn

cU
D

up
&

Do
m

O
PM

O
S

In
-P

la
ce

As
yc

PQ
-S

yn
cU

Sy
nc

P
Q

-S
yn

cU
D

up
&

Do
m

O
PM

O
S

In
-P

la
ce

As
yc

PQ
-S

yn
cU

Sy
nc

P
Q

-S
yn

cU
D

up
&

Do
m

O
PM

O
S

In
-P

la
ce

As
yc

PQ
-S

yn
cU

Sy
nc

P
Q

-S
yn

cU
D

up
&

Do
m

Route 1 Route 2 Route 3 Route 4 Route 5

N
or

m
. L

ab
el

 E
xt

ra
ct

io
ns

R
un

tim
e

N
or

m
al

iz
ed

 to
 O

PM
O

S

Updates
OPEN Extractions
Communication Overheads
Label Processing
Total Label Extractions

Figure 9: OPMOS runtime distribution comparison to
execution model variants.

(PQ). However, it may result in low-priority labels being ex-
tracted on each iteration. Figure 8 evaluates the performance
scaling trends by sweeping worker threads and label extrac-
tions from 16 to 64 at the maximum number of objectives.
The completion time of OPMOS with FIFO and PQ is nor-
malized to the sequential MOS using PQ. Both PQ and FIFO
scale with an increasing number of worker threads. How-
ever, a consistently higher number of labels are extracted
and processed using FIFO, which decreases work efficiency
compared to the PQ for all routes. This results in perfor-
mance scaling reduction for routes 3, 4, and 5 with up to a
2× decrease in performance for FIFO at 64 worker threads.
In routes 1 and 2, although more labels are processed using
FIFO, the work done per label decreases compared to the PQ.
This is attributed to the order in which labels are processed.
In the FIFO order, the low-priority labels are processed when
inserted earlier than higher-priority labels. Such labels may
perform less complex dominance checks if processed in ear-
lier iterations. Consequently, routes 1 and 2 observe some
performance gains using FIFO compared to the PQ. Overall,
the priority queue yields a 47% speedup over FIFO, highlight-
ing the importance of maintaining a close-to-priority order
of label processing in OPMOS.

7.2 Evaluation of Asynchronous Execution
A key tenet of OPMOS efficacy is its ability to hide the
sequential latency required to maintain a global priority
queue. Figure 9 evaluates the runtime distributions and la-
bel extractions for alternative configurations normalized
to the OPMOS asynchronous model with on-the-fly OPEN
deletes. OPMOS with in-place priority queue deletes (In-
Place) has the same work efficiency as OPMOS, however,
it adds to the update latencies. This confirms that delay-
ing OPEN deletes helps the asynchronous model to hide
serial update operations. OPMOS with synchronous updates
(AsycOPEN-SyncUpd) waits for all worker threads to return
for an iteration, which prevents any update latencies from

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

O
PM

O
S

La
be

l-C
en

tri
c

N
ei

gh
bo

r-C
en

tri
c

G
oa

l-P
rio

rit
y

O
PM

O
S

La
be

l-C
en

tri
c

N
ei

gh
bo

r-C
en

tri
c

G
oa

l-P
rio

rit
y

O
PM

O
S

La
be

l-C
en

tri
c

N
ei

gh
bo

r-C
en

tri
c

G
oa

l-P
rio

rit
y

O
PM

O
S

La
be

l-C
en

tri
c

N
ei

gh
bo

r-C
en

tri
c

G
oa

l-P
rio

rit
y

O
PM

O
S

La
be

l-C
en

tri
c

N
ei

gh
bo

r-C
en

tri
c

G
oa

l-P
rio

rit
y

Route 1 Route 2 Route 3 Route 4 Route 5

R
un

tim
e

N
or

m
al

iz
ed

 to
 O

PM
O

S Updates
OPEN Extractions
Communication Overheads
Label Processing

Figure 10: OPMOS runtime distribution comparison to
alternative load balancing strategies.

being hidden. Moreover, the updates do not propagate to
active labels being processed in the given iteration, which
leads to a slight decrease in work efficiency (routes 2 and 5)
and an increase in label processing time. Disabling the asyn-
chronous model (SyncOPEN-SyncUpd) introduces OPEN
extraction time into the distribution. Work efficiency may
improve since label extractions and processing are done in
the same iteration. This leads to a slight improvement in la-
bel processing time compared to AsycOPEN-SyncUpd. How-
ever, the serialization of label extractions and updates leads
to diminished performance compared to OPMOS. Finally,
inter-thread duplicate and dominance checks in OPMOS
(Dup&Dom) increase communication and update stalls. All
worker threads need to communicate to perform their update
reduction operations. This prevents updates from being sent
asynchronously to the main thread, resulting in unhidden
update stalls. The communication stalls also increase due
to additional inter-thread synchronizations. The advantage
of reducing the update volume (or unnecessary updates) is
insufficient to overcome these overheads, resulting in di-
minished performance compared to OPMOS. Overall, the
asynchronous model introduced in OPMOS efficiently hides
label extractions and updates while allowing the system to
minimize communication stalls.

7.3 Evaluation of Load Balancing Methods
The high variability in label complexity presents a challenge
for efficient load distribution. Figure 10 evaluates the runtime
distribution for alternative load-balancing models normal-
ized to OPMOS. A naïve scheduler distributes all extracted
labels (regular and goal) among threads (Label-Centric). The
Neighbor-Centric scheduler further distributes the regular
labels at their neighbor granularity. The variability in la-
bel complexity leads to significant load imbalances in both
schedulers, increasing communication stalls. Routes 2 and
5 stand out due to the disproportional complexity of goal
node labels compared to regular labels. The Goal-Priority

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

Route
#

Max
Obj.

Sequential
Time (s)

OMPOS
Time (s)

OPMOS
Speedup

1 12 2,725 48.22 57×
2 4 23,083 628.36 37×
3 12 0.92 0.054 17×
4 12 25.26 0.732 34.5×
5 6 6,968 190.88 36.5×

Table 3: TMPLAR Pareto-Optimal execution time re-
sults for all routes. OPMOS results shown with 64
worker threads and 256 labels extracted per iteration.

scheduler handles goal labels independent of regular labels
and distributes them one by one among worker threads by
splitting their pruning checks at node granularity. However,
the computations for 𝑃 are assumed to be cheap and thus
executed in a single worker thread. This scheduler reduces
load imbalance and nearly matches OPMOS for routes 2 and
5 but introduces significant load imbalance in routes 3 and
4. These routes do not have enough work for goal nodes to
exploit the available parallelism, and their not-so-cheap 𝑃
computations are serialized in a single worker thread. This
leads to high variability in work per thread, leading to com-
munication stalls. OPMOS executes all goal node labels in
parallel, where pruning checks and computations on 𝑃 are
distributed among worker threads. Consequently, all routes
observe low communication stalls in OPMOS.

7.4 Summary of Evaluation
MOS optimizes all objectives simultaneously and finds a
set of Pareto-optimal (non-dominated) solution paths. As
the number of objectives increases, so does the number of
Pareto-optimal solution paths and execution times. OPMOS
maintains the exact solution set while extracting maximum
parallelism for acceleration. The total number of solutions
obtained from the sequential MOS match perfectly with OP-
MOS for all experiments discussed in this paper. Furthermore,
as shown in Table 3, OPMOS exploits label-level parallelism
to accelerate the MOS problem by an order of magnitude or
more. This allows decision-makers to make informed deci-
sions in high-impact application scenarios.

8 Future Directions
A complementary approach is to reduce the complexity of
MOS by adopting approximate algorithms. For example,
an 𝜖 parameter has been proposed to influence the domi-
nance checks [37] to enable the pruning of labels within an
𝜖-bounded range. Approximating the dominance checks de-
creases the number of labels processed and their complexity.
However, the gains in performance through parallelism and
work-efficiency improvements may come at the cost of so-
lution quality. This raises concerns about the explainability

of approximation techniques to accelerate OPMOS further.
Therefore, on the algorithmic front, future research must
devise methods to understand the relationship between par-
allelism, work efficiency, and solution quality.
To unlock parallelism further, an approach that favors

parallel execution by relaxing ordered label processing can
be implemented where a large number of candidate labels
are processed in parallel until the algorithm settles on a
set of Pareto-optimal solutions. This approach will require
massively parallel hardware with fast communication to sup-
port label-level checks. Vector architectures, such as modern
GPUs, and multi-node high-performance computing (HPC)
clusters are potential architectures that enable such a para-
digm. However, on the architectural front, future research
must devise work-efficient and load-balanced parallel execu-
tion to unlock the performance potential of MOS.
Although this paper uses TMPLAR’s ship routing appli-

cation as a benchmark for MOS, more research is needed to
support routes with increasing graph sizes and diverse ap-
plications. MOS can benefit real-world applications, such as
autonomous systems, road networks, energy grids, and social
networks, to name a few. Dealing with increasing objective
counts requires state space reductions and pre-processing of
graph data, akin to TMPLAR, that generates Pareto-optimal
solutions within a time limit. The benchmarking front
requires future research to create open-source MOS bench-
marks for broader community adoption.

9 Conclusion
This paper explores the NP-hard, multi-objective shortest
path problem. State-of-the-artMOS algorithmsmaintain a set
of partial paths at each node and perform ordered processing
to ensure that Pareto-optimal solution paths are generated.
Finding a set of exact solutions becomes computationally
intractable as the number of objectives increases. The per-
formance characterization of MOS reveals that the compu-
tational complexity grows substantially with the number
of objectives. However, due to long computational paths in
label processing, there is potential for parallelism. It is con-
cluded that ordered processing of candidate labels is needed
for work-efficient parallel execution. Using this insight, the
Ordered Parallel MOS (OPMOS) algorithm is proposed to
handle large numbers of objectives. Novel approaches are
proposed to create load-balanced and asynchronous exe-
cution of labels. The evaluation using a 72-core Arm CPU
shows a geometric mean 34× speedup over sequential MOS.

Acknowledgments
This research was supported by the U.S. Government under
a grant by the Naval Research Laboratory and the National
Science Foundation.

OPMOS: Ordered Parallel Algorithm for Multi-Objective Shortest-Paths ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

References
[1] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work-

efficient algorithm for parallel unordered depth-first search. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Austin, Texas) (SC ’15). Association
for Computing Machinery, New York, NY, USA, Article 67, 12 pages.
doi:10.1145/2807591.2807651

[2] Faez Ahmed and Kalyanmoy Deb. 2011. Multi-objective path planning
using spline representation. In 2011 IEEE International Conference on
Robotics and Biomimetics. 1047–1052. doi:10.1109/ROBIO.2011.6181426

[3] Thomas Breugem, Twan Dollevoet, and Wilco van den Heuvel. 2017.
Analysis of FPTASes for the multi-objective shortest path problem.
Computers & Operations Research 78 (2017), 44–58. doi:10.1016/j.cor.
2016.06.022

[4] Fritz Bökler and Markus Chimani. 2020. Approximating Multiobjective
Shortest Path in Practice. 120–133. doi:10.1137/1.9781611976007.10

[5] Matthias Ehrgott. 2005. Multicriteria Optimization. In Multicriteria
Optimization.

[6] D Fathi and JR Hoff. 2004. Shipx vessel responses (veres). Theory
manual, Marintek A/S 13 (2004).

[7] Pierre Hansen. 1980. Bicriterion Path Problems. In Multiple Criteria
Decision Making Theory and Application, Günter Fandel and Tomas
Gal (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 109–127.

[8] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali.
2011. Ordered vs. unordered: a comparison of parallelism and work-
efficiency in irregular algorithms. In Proceedings of the 16th ACM Sym-
posium on Principles and Practice of Parallel Programming (San Antonio,
TX, USA) (PPoPP ’11). Association for Computing Machinery, New
York, NY, USA, 3–12. doi:10.1145/1941553.1941557

[9] Refael Hassin. 1992. Approximation Schemes for the Restricted Short-
est Path Problem. Mathematics of Operations Research 17, 1 (1992),
36–42. http://www.jstor.org/stable/3689891

[10] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András
Horányi, JoaquínMuñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca
Radu, Dinand Schepers, Adrian Simmons, Cornel Soci, Saleh Ab-
dalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gion-
ata Biavati, Jean Bidlot, Massimo Bonavita, Giovanna De Chiara,
Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana Dragani,
Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer,
Leo Haimberger, Sean Healy, Robin J. Hogan, Elías Hólm, Marta
Janisková, Sarah Keeley, Patrick Laloyaux, Philippe Lopez, Cristina
Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vam-
borg, Sebastien Villaume, and Jean-Noël Thépaut. 2020. The
ERA5 global reanalysis. Quarterly Journal of the Royal Meteo-
rological Society 146, 730 (2020), 1999–2049. doi:10.1002/qj.3803
arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803

[11] Jan Holtrop and G.G.J. Mennen. 1982. AN APPROXIMATE POWER
PREDICTION METHOD. International shipbuilding progress 29 (1982),
166–170.

[12] J. Horn, N. Nafpliotis, and D.E. Goldberg. 1994. A niched Pareto genetic
algorithm for multiobjective optimization. In Proceedings of the First
IEEE Conference on Evolutionary Computation. IEEE World Congress on
Computational Intelligence. 82–87 vol.1. doi:10.1109/ICEC.1994.350037

[13] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. 2015. A scalable architecture for ordered parallelism. In 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 228–241. doi:10.1145/2830772.2830777

[14] Charles E. Leiserson and Tao B. Schardl. 2010. A work-efficient parallel
breadth-first search algorithm (or how to cope with the nondetermin-
ism of reducers). In Proceedings of the Twenty-Second Annual ACM

Symposium on Parallelism in Algorithms and Architectures (Thira, San-
torini, Greece) (SPAA ’10). Association for Computing Machinery, New
York, NY, USA, 303–314. doi:10.1145/1810479.1810534

[15] Lawrence Mandow and José. Luis Pérez De La Cruz. 2008. Multiob-
jective A* search with consistent heuristics. J. ACM 57, 5, Article 27
(June 2008), 25 pages. doi:10.1145/1754399.1754400

[16] Ernesto Queirós Vieira Martins. 1984. On a special class of bicriterion
path problems. European Journal of Operational Research 17, 1 (1984),
85–94. doi:10.1016/0377-2217(84)90011-0

[17] Manisha Mishra, David Sidoti, Gopi Vinod Avvari, Pujitha Mannaru,
Diego Fernando Martínez Ayala, Krishna R. Pattipati, and David L.
Kleinman. 2017. A Context-Driven Framework for Proactive Decision
Support With Applications. IEEE Access 5 (2017), 12475–12495. doi:10.
1109/ACCESS.2017.2707091

[18] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A light-
weight infrastructure for graph analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New
York, NY, USA, 456–471. doi:10.1145/2517349.2522739

[19] NVIDIA. 2023. NVIDIA GH200 Grace Hopper Superchip.
https://www.aspsys.com/wp-content/uploads/2023/09/nvidia-
grace-hopper-cpu-datasheet.pdf

[20] C.H. Papadimitriou and M. Yannakakis. 2000. On the approximability
of trade-offs and optimal access of Web sources. In Proceedings 41st
Annual Symposium on Foundations of Computer Science. 86–92. doi:10.
1109/SFCS.2000.892068

[21] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prount-
zos, and Xin Sui. 2011. The tao of parallelism in algorithms. In Pro-
ceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (San Jose, California, USA) (PLDI ’11).
Association for Computing Machinery, New York, NY, USA, 12–25.
doi:10.1145/1993498.1993501

[22] Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey. 2022. A
scalable architecture for reprioritizing ordered parallelism. In Proceed-
ings of the 49th Annual International Symposium on Computer Archi-
tecture (New York, New York) (ISCA ’22). Association for Computing
Machinery, New York, NY, USA, 437–453. doi:10.1145/3470496.3527387

[23] Francisco-Javier Pulido, Lawrence Mandow, and José-Luis Pérez de-la
Cruz. 2015. Dimensionality reduction in multiobjective shortest path
search. Computers & Operations Research 64 (2015), 60–70. doi:10.1016/
j.cor.2015.05.007

[24] Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim
Likhachev, and Howie Choset. 2022. Enhanced Multi-Objective A*
Using Balanced Binary Search Trees. Proceedings of the Interna-
tional Symposium on Combinatorial Search 15, 1 (July 2022), 162–170.
doi:10.1609/socs.v15i1.21764

[25] Oren Salzman, Ariel Felner, Carlos Hernández, Han Zhang, Shao-
Hung Chan, and Sven Koenig. 2023. Heuristic-Search Approaches
for the Multi-Objective Shortest-Path Problem: Progress and Research
Opportunities. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI-23, Edith Elkind (Ed.). In-
ternational Joint Conferences on Artificial Intelligence Organization,
6759–6768. doi:10.24963/ijcai.2023/757 Survey Track.

[26] Peter Sanders and Lawrence Mandow. 2013. Parallel Label-Setting
Multi-objective Shortest Path Search. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. 215–224. doi:10.
1109/IPDPS.2013.89

[27] Paolo Serafini. 1987. Some Considerations about Computational Com-
plexity forMulti Objective Combinatorial Problems. In Recent Advances
and Historical Development of Vector Optimization, Johannes Jahn and

https://doi.org/10.1145/2807591.2807651
https://doi.org/10.1109/ROBIO.2011.6181426
https://doi.org/10.1016/j.cor.2016.06.022
https://doi.org/10.1016/j.cor.2016.06.022
https://doi.org/10.1137/1.9781611976007.10
https://doi.org/10.1145/1941553.1941557
http://www.jstor.org/stable/3689891
https://doi.org/10.1002/qj.3803
https://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803
https://doi.org/10.1109/ICEC.1994.350037
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/1810479.1810534
https://doi.org/10.1145/1754399.1754400
https://doi.org/10.1016/0377-2217(84)90011-0
https://doi.org/10.1109/ACCESS.2017.2707091
https://doi.org/10.1109/ACCESS.2017.2707091
https://doi.org/10.1145/2517349.2522739
https://www.aspsys.com/wp-content/uploads/2023/09/nvidia-grace-hopper-cpu-datasheet.pdf
https://www.aspsys.com/wp-content/uploads/2023/09/nvidia-grace-hopper-cpu-datasheet.pdf
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/3470496.3527387
https://doi.org/10.1016/j.cor.2015.05.007
https://doi.org/10.1016/j.cor.2015.05.007
https://doi.org/10.1609/socs.v15i1.21764
https://doi.org/10.24963/ijcai.2023/757
https://doi.org/10.1109/IPDPS.2013.89
https://doi.org/10.1109/IPDPS.2013.89

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Gold et al.

Werner Krabs (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
222–232.

[28] Mohsin Shan and Omer Khan. 2022. HD-CPS: Hardware-assisted Drift-
aware Concurrent Priority Scheduler for Shared Memory Multicores.
In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 528–542. doi:10.1109/HPCA53966.2022.00046

[29] Y.S. Shin, Vadim Belenky,W.M. Lin, K.M.Weems, A.H. Engle, K. McTag-
gart, Jeffrey Falzarano, B.L. Hutchison, M. Gerigk, and S. Grochowalski.
2003. Nonlinear time domain simulation technology for seakeeping
and wave-load analysis for modern ship design. Transactions - Society
of Naval Architects and Marine Engineers 111 (01 2003), 557–583.

[30] David Sidoti, Gopi Vinod Avvari, Manisha Mishra, Lingyi Zhang,
Bala Kishore Nadella, James E. Peak, James A. Hansen, and Krishna R.
Pattipati. 2017. A Multiobjective Path-Planning Algorithm With Time
Windows for Asset Routing in a Dynamic Weather-Impacted Environ-
ment. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47,
12 (2017), 3256–3271. doi:10.1109/TSMC.2016.2573271

[31] Bradley S. Stewart and Chelsea C. White. 1991. Multiobjective A*. J.
ACM 38, 4 (Oct. 1991), 775–814. doi:10.1145/115234.115368

[32] Robert Endre Tarjan. 1983. Data structures and network algorithms.
Society for Industrial and Applied Mathematics, USA.

[33] George Tsaggouris and Christos Zaroliagis. 2006. Multiobjective Op-
timization: Improved FPTAS for Shortest Paths and Non-Linear Ob-
jectives with Applications. Theory of Computing Systems 45 (01 2006),
162–186. doi:10.1007/s00224-007-9096-4

[34] Carlos Hernández Ulloa, William Yeoh, Jorge A. Baier, Han Zhang,
Luis Suazo, and Sven Koenig. 2020. A Simple and Fast Bi-Objective
Search Algorithm. In Proceedings of the 30th International Conference
on Automated Planning and Scheduling (ICAPS). AAAI Press, 143–151.

[35] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA.

[36] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl
Yang, Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang
Liu, Andy T. Riffel, and John D. Owens. 2017. Gunrock: GPU Graph
Analytics. ACM Trans. Parallel Comput. 4, 1, Article 3 (Aug. 2017),
49 pages. doi:10.1145/3108140

[37] Arthur Warburton. 1987. Approximation of Pareto Optima in Multiple-
Objective, Shortest-Path Problems. Oper. Res. 35, 1 (Feb. 1987), 70–79.

[38] Yuan Yao, Zhe Peng, and Bin Xiao. 2018. Parallel Hyper-Heuristic
Algorithm for Multi-Objective Route Planning in a Smart City. IEEE
Transactions on Vehicular Technology 67, 11 (2018), 10307–10318. doi:10.
1109/TVT.2018.2868942

[39] Guozheng Zhang, Gilead Posluns, and Mark C. Jeffrey. 2024. Multi
Bucket Queues: Efficient Concurrent Priority Scheduling. In Proceed-
ings of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures (Nantes, France) (SPAA ’24). Association for Computing
Machinery, New York, NY, USA, 113–124. doi:10.1145/3626183.3659962

[40] Lingyi Zhang, Adam Bienkowski, Matthew Macesker, Krishna R. Pat-
tipati, David Sidoti, and James A. Hansen. 2021. Many-Objective
Maritime Path Planning for Dynamic and Uncertain Environments. In
2021 IEEE Aerospace Conference (50100). 1–10. doi:10.1109/AERO50100.
2021.9438262

[41] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhuli-
pala, Shoaib Kamil, Saman Amarasinghe, and Julian Shun. 2020. Opti-
mizing ordered graph algorithms with GraphIt. In Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Opti-
mization (San Diego, CA, USA) (CGO ’20). Association for Computing
Machinery, New York, NY, USA, 158–170. doi:10.1145/3368826.3377909

[42] E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach. IEEE
Transactions on Evolutionary Computation 3, 4 (1999), 257–271. doi:10.
1109/4235.797969

https://doi.org/10.1109/HPCA53966.2022.00046
https://doi.org/10.1109/TSMC.2016.2573271
https://doi.org/10.1145/115234.115368
https://doi.org/10.1007/s00224-007-9096-4
https://doi.org/10.1145/3108140
https://doi.org/10.1109/TVT.2018.2868942
https://doi.org/10.1109/TVT.2018.2868942
https://doi.org/10.1145/3626183.3659962
https://doi.org/10.1109/AERO50100.2021.9438262
https://doi.org/10.1109/AERO50100.2021.9438262
https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1109/4235.797969
https://doi.org/10.1109/4235.797969

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Complexity of MOS
	4 Characterization and Motivation
	5 Ordered Parallel MOS
	5.1 Asynchronous Execution Model
	5.2 Label-Aware Load Balanced Execution

	6 Methods
	6.1 TMPLAR Graphs
	6.2 NAMOA* and OPMOS Implementation

	7 Evaluation
	7.1 Evaluation of Priority Queue vs. FIFO
	7.2 Evaluation of Asynchronous Execution
	7.3 Evaluation of Load Balancing Methods
	7.4 Summary of Evaluation

	8 Future Directions
	9 Conclusion
	Acknowledgments
	References

