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Abstract

Large language models (LLMs) have demonstrated remarkable ca-
pabilities in generating contextually relevant responses to prompts,
but their inference performance is often constrained by a severe
memory bottleneck in the self-attention stage. This bottleneck,
which is inherently memory-bound, has led to extensive research
into strategies for reducing the size of the Key-Value (KV) cache.
Many existing approaches employ quantization to lower the data
precision and reduce data volume. However, these methods are con-
strained by memory technology, which requires the data read from
memory to match the data written into it. As a result, such strate-
gies must apply reductions at write-time, limiting either model
performance or achievable speedup.

We identify that enabling precision scaling at read-time — after
data has been stored in memory — offers a unique opportunity to si-
multaneously reduce memory traffic and retain model accuracy. To
this end, we develop a read-time precision-scaling mechanism and
introduce BitWeaver, a hardware-enabled solution for in-memory
truncation. BitWeaver dynamically reduces data precision during
memory reads, achieving up to a 3X increase in memory through-
put and execution speedups of up to 80% compared to baseline.
Additionally, BitWeaver enhances sparse KV cache strategies by
improving the efficiency of state-of-the-art sparsity techniques.
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Figure 1: Overview of BitWeaver. Because self-attention is se-
verely memory bound, we target accelerating token retrieval.
With memory’s limitations, we develop BitWeaver, a solution
which uses truncation-in-memory to reduce memory read
traffic.
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1 Introduction

Transformer-based large language models (LLMs) have achieved
remarkable performance across a wide range of natural language
processing (NLP) tasks, including text generation, machine transla-
tion, and summarization [10, 18]. This success is largely attributed
to the self-attention mechanism [45], which enables the model
to capture intricate dependencies between tokens, embedding con-
textual influence during each forward pass. However, as the model
size and sequence lengths increase to support complex downstream
tasks, the memory and computational demands grow significantly.

To mitigate the computational burden during inference, modern
LLMs employ Key-Value (KV) caches — precomputed represen-
tations that store attention-related vectors from previous steps.
By reusing these cached values instead of recomputing them, KV
caches reduce the redundant computation associated with pro-
cessing long contexts, particularly for auto-regressive tasks. De-
spite their benefits, KV caches can introduce substantial memory
overhead due to the sheer volume of data they retain, posing a
critical challenge for latency-sensitive applications and resource-
constrained deployments.
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To enhance the capabilities of LLMs, sequence lengths have been
steadily increasing to accommodate broader contextual informa-
tion beyond the explicit training data. For example, LLM inputs
are often augmented with prior prompts, retrieved documents, or
user-specific context to improve generation quality and relevance
[19, 27]. This allows models to reference rich historical information
during the generation of new tokens, thereby improving perfor-
mance on tasks requiring extended memory over long dialogues
or documents. The industry trend toward long-context models re-
flects the importance of this approach. Notably, Anthropic’s Claude
models exemplify this shift, with Claude 2 [4] offering a 100k-token
context window and Claude 3 [5] extending it to 200k tokens. While
future growth in sequence lengths may not follow the same ex-
ponential trend, these developments indicate that large context
windows are here to stay.

However, the benefits of extended sequence lengths come at the
cost of increased resource demands. For every additional token in
the sequence, an extra Key and Value (KV) vector is generated for
each attention head across all transformer layers. These KV vectors
are stored in memory for access during each step of autoregressive
inference, significantly inflating the memory footprint. Moreover,
this growth in data volume exacerbates the memory bandwidth
bottleneck during inference, as the KV caches must be read in full
for each generated token.

The low arithmetic intensity of the self-attention operation fur-
ther compounds this issue. Specifically, self-attention performs
approximately 1 floating-point operation per byte of data when
using FP16 precision, indicating that memory traffic dominates
execution time rather than computation [49]. While increasing the
sequence length does not inherently improve or worsen arithmetic
intensity, it linearly increases the number of memory reads and
operations required. As a result, extending sequence lengths ampli-
fies the memory bandwidth burden, making it a critical bottleneck
for efficient LLM inference. As highlighted by Figure 1, this means
that token retrieval throughput is the limitation on computation
throughput. In the absence of advances in physical bandwidth, opti-
mizing memory traffic at the workload level is necessary to ensure
scalability.

Existing strategies that mitigate memory traffic largely focus on
techniques such as sparsification [1, 12, 26, 29, 36, 39, 48, 53, 54],
quantization [9, 24, 30, 51], and dimensionality reduction [16, 24].
However, each of these approaches presents significant trade-offs.
Sparsification can lead to a non-trivial loss in model accuracy, while
quantization and dimensionality reduction, though effective in re-
ducing data volume, can disrupt the memory access patterns, dimin-
ishing the overall efficiency of the KV cache. Furthermore, Figure
1 identifies how quantization and dimensional reduction must be
applied some time before the next execution to accommodate the
necessary write. These limitations highlight the need for new ap-
proaches that improve memory efficiency without compromising
model performance or altering critical dataflows. Our work ad-
dresses this gap by proposing an in-memory truncation method for
KV caches that strategically reduces memory traffic at read time.
This approach aims to improve memory bandwidth utilization, en-
abling efficient LLM serving under long-sequence constraints.

To address the memory traffic bottleneck, we propose using trun-
cation instead of conventional quantization for precision scaling.
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Shown in Figure 1, our approach performs truncation in memory
to reduce the amount of data transferred during inference without
duplicating data. By selecting the precision level for each token
at read time, our method dynamically adjusts memory reads to
balance accuracy and memory traffic. Additionally, we introduce a
restorative adjustment term to mitigate truncation errors, ensuring
minimal impact on model quality. This approach leverages the natu-
ral synergy between precision scaling and memory traffic reduction
to optimize inference performance.

In this paper, we present BitWeaver, a low-cost hardware-based
solution for enabling in-memory truncation at read time. Our key
contributions are as follows:

(1) A hardware-aware in-memory truncation algorithm to dy-
namically adjust precision during inference.

(2) A specialized hardware implementation designed for com-
patibility with modern memory systems, such as HBM3.

(3) An accuracy retention mechanism that applies adjustment
terms to minimize truncation errors.

(4) A detailed analysis of the trade-offs between memory traffic
reduction and accuracy preservation.

2 Background

In this section, we discuss the role of memory in LLM serving,
review the state of modern memory technology, and outline the
need for pursuing memory techniques to address these challenges.

2.1 The Role of Memory in LLM Serving

Memory systems are critical to the performance of large language
model (LLM) serving platforms, where managing and accessing
vast amounts of data efficiently is paramount. Increasing sequence
lengths in LLMs has significantly improved performance by en-
abling models to capture broader contexts during inference. How-
ever, this progress comes at the cost of an exponential increase
in memory demands. For every additional token in a sequence,
new Key and Value (KV) vectors are generated for every attention
head across all layers, leading to dramatic growth in the memory
footprint. These KV vectors are stored in memory and must be ac-
cessed repeatedly during token generation, resulting in substantial
memory traffic.

The increasing reliance on longer sequences exacerbates the
memory bottleneck because self-attention, a core operation in LLMs,
is inherently memory-bound on most modern hardware. As shown
in Figure 2, a simple roofline analysis [49] underscores this chal-
lenge: self-attention’s arithmetic intensity is several orders of mag-
nitude below the level required to fully utilize compute resources,
even on cutting-edge systems. As a result, the performance of self-
attention is limited by memory bandwidth, leaving much of the
hardware’s computational capacity underutilized.

This growing disparity between computation and memory band-
width creates a critical performance bottleneck for LLM inference.
To bridge this gap, two primary approaches can be considered: in-
creasing arithmetic intensity or accelerating memory bandwidth.
However, while advancements in physical memory technologies,
such as HBM3, provide incremental improvements, these solutions
alone are insufficient to meet the demands of ever-growing LLM
workloads. Consequently, optimizing memory traffic and access
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Figure 2: Roofline analysis of an A100 GPU with and with-
out BitWeaver. With self attention exhibiting an arithmetic
intensity of 1 FLOP/Byte, it is severely memory bound and
benefits significantly from increases in effective bandwidth.

patterns at the workload level is essential to unlock the full potential
of LLM serving platforms.

2.2 The State of Memory Technology

To meet the demands of modern AI workloads, high-bandwidth
memory (HBM) has emerged as the premier memory solution for
high-performance GPUs and accelerators [23]. Initially introduced
in AMD’s FURY line of GPUs [31], HBM has become the standard
for flagship accelerators due to its unparalleled performance. The
latest generation, HBM3 [7, 37], provides industry-leading band-
width and capacity and is seeing commercial adoption. For exam-
ple, NVIDIA’s H100 GPU integrates 80 GB of HBM3, delivering an
impressive 3.35 TB/s memory bandwidth [11]. This level of perfor-
mance makes HBM3 indispensable for LLM serving platforms that
process massive datasets with low latency requirements.

HBM achieves its exceptional performance through innovations
in physical architecture and control mechanisms. By employing
3D stacking and increasing the number of memory channels, HBM
significantly boosts bandwidth and reduces latency [23, 31]. Addi-
tionally, the introduction of pseudo-channels since HBM2 enables
the first and second halves of a channel’s bits to be accessed from
separate rows [6]. This design facilitates non-uniform access pat-
terns, improving memory efficiency for irregular workloads—a
critical feature for Al and LLM serving.

2.3 The Need for Memory Acceleration

We propose to accelerate self-attention by increasing effective band-
width, as the arithmetic intensity of this operation is inherently
constant and inflexible. Unlike other layers in transformer models,
which can increase arithmetic intensity through techniques like
batching, self-attention does not benefit in the same way. For a
given sequence, the operands — Queries, Keys, and Values — are
unique to that sequence, preventing reuse or aggregation across
batches. Consequently, the arithmetic intensity of self-attention re-
mains fixed regardless of the batch size, making it a memory-bound
operation. To accelerate self-attention, it is therefore necessary to
focus on reducing memory traffic or enhancing memory bandwidth
utilization.
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Recent research highlights the importance of developing mech-
anisms to accelerate self-attention by addressing its memory de-
mands. Two primary strategies have emerged: reducing memory
traffic via sparsification and reducing the precision of stored KV
data. The sparsification approach selectively reduces the size of the
KV cache by predicting the importance of tokens and retaining only
those deemed relevant to the current inference step. For instance,
some methods evaluate past token performance to predict their
relevance to future tokens [1, 12, 26, 53, 54]. While effective, this
approach depends heavily on the quality of the prediction mech-
anism, introducing a risk of degraded accuracy if predictions are
inaccurate or made too far in advance. On the other hand, reducing
the precision of KV data is another promising avenue. Exemplar
techniques [16, 24] leverage multiple precision schemes to minimize
the KV cache footprint with minimal impact on model accuracy.

Despite their successes, these approaches suffer from two crit-
ical limitations: prediction distance and lack of synergy. Firstly,
many sparsification methods require predictions to be made well
in advance, tying accuracy directly to the quality of the predic-
tor. This dependency increases the risk of errors and can lead to
degraded model performance. Secondly, current precision reduc-
tion and sparsification techniques are often treated as mutually
exclusive. Implementing both simultaneously typically requires
significant data duplication or faces compatibility challenges. For
example, sparsification decisions may conflict with precision ad-
justments, preventing efficient integration. Theoretically, precision
scaling could complement sparsification by providing an interme-
diate option between dense and sparse representations, but this
synergy remains unexplored.

3 Motivation

In this section, we outline the key design principles for effective
memory acceleration in large language model (LLM) serving, em-
phasizing the need to reduce memory traffic, minimize decision
latency, and ensure flexibility. Building on these principles, we
provide the motivation for truncation-in-memory as a precision-
scaling solution, highlighting its potential to address the memory
bottlenecks inherent in self-attention and to complement existing
optimization techniques.

3.1 Design Principles of Memory Acceleration

We aim for three design principles to overcome current limitations
and improve the performance of LLM serving from effective mem-
ory acceleration. Firstly, the primary goal of memory acceleration
is to reduce traffic in and out of memory. This reduction not only
involves decreasing data volume but can also include more efficient
memory access and data transfer mechanisms, as demonstrated
by techniques like FlashAttention [14, 15]. By optimizing the man-
agement of memory traffic, unnecessary accesses are eliminated,
mitigating the memory bottleneck and improving overall through-
put. Without this fundamental reduction in traffic, no significant
performance gains can be realized, making it the cornerstone of
any effective memory design.

Secondly, we aim at minimizing the decision distance to en-
sure that decisions are based on the most up-to-date system state,
enhancing their accuracy and relevance. Here, decision distance
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refers to the temporal gap between when a decision (e.g., sparsifica-
tion or precision adjustment) is made and when it is applied within
the critical path of execution. While earlier decision-making often
relies on incomplete information, deferring decisions until closer to
their execution point guarantees access to the most comprehensive
state data, enabling better-informed choices. This principle empha-
sizes the importance of dynamic, real-time adaptability in memory
acceleration techniques.

Lastly, an ideal memory acceleration strategy should be flexi-
ble and seamlessly combined with other optimization techniques,
enabling synergistic implementations. For example, sparsifica-
tion and precision scaling are conceptually orthogonal; combining
them allows for complementary benefits. Precision scaling can
serve as an effective enhancement to sparsification, providing an
intermediate solution for managing tokens that lie “on the fringe”
of importance. This flexibility ensures that memory acceleration
strategies can adapt to varying workloads and benefit from the
strengths of multiple approaches simultaneously.

3.2 Motivation for Truncation-in-Memory

Traditional memory systems are inherently precision-static, mean-
ing they only allow retrieval of data exactly as it was originally
stored. While this is typically sufficient, it introduces inefficiencies
in contexts where data importance diminishes over time. For such
cases, the ability to retrieve a lower-precision representation of data
would significantly reduce memory traffic, offering a path toward
more efficient memory utilization.

Among precision-scaling methods, truncation and quantization
are two common approaches, but they differ fundamentally in im-
plementation and suitability. Truncation is a simple process that
discards the least significant bits of a number, directly deriving
lower-precision values from the original data. For instance, truncat-
ing the 4-bit binary representation of 15 (0b1111) to 2 bits results in
12 (0b1100). Quantization, on the other hand, adds a scaling oper-
ation to better match the data’s dynamic range to the representable
range. Using the same example, quantization of 15 within a range
of 12-15 would yield a new value (e.g., 15).

Quantization, while effective in some scenarios, is less suited
for multi-precision use because it generates new data rather than di-
rectly deriving from the original. This stores additional data/metadata
for each precision variant or triggers rewrites, increasing memory
overhead. In contrast, truncation leverages existing data and sup-
ports multi-precision use without data duplication, making it the
natural choice for the core functionality of BitWeaver.

In addition, truncation is advantageous in systems using floating-
point representations. The normalization inherent in floating-point
numbers ensures that the most significant bits of the mantissa con-
sistently encode valuable information, regardless of the magnitude.
This reduces the risk of truncating to zero, a common issue in
integer data where significant bits are sparsely utilized as num-
bers decrease in size. Floating-point truncation, therefore, enables
precision reduction with minimal impact on data fidelity.
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Figure 3: The packing of data within HBM3. Vectors of 64
elements are stored in 4 4-byte 8-burst groups. The packing
strategy is then repeated/mirrored for subsequent vectors.
This strategy maximizes throughput while minimizing la-
tency.

4 Truncation-in-Memory

We first define our fundamental approach for performing truncation-
in-memory. This section outlines our reconstruction-based strat-
egy for truncation-in-memory. Additionally, we discuss its flexibil-
ity/adaptability to other realizations.

4.1 Effective Truncation

Write-time fragmentation is the critical mechanism that enables
read-time precision scaling. As discussed previously, memory is
inherently precision-static, meaning that it is not possible to read
what was not previously stored. With just truncation, the data
would still need to be truncated before being placed in memory.

However, we can circumvent this limitation by fragmenting
instead of directly truncating. By fragmenting the data before it is
written in, the data can be restored as necessary during reads. In this
way, we are effectively truncating in memory. This does, though,
create a need to reconstruct during the write process. Due to the
fundamental IO limits of memory, this process cannot be completed
within the memory itself. Therefore, this would not be an entirely
in-memory process. Instead, data would need to be reconstructed
somewhere nearer the processor.

We design a 3-tier multiprecision system for FP16 data. Shown
in Figure 3, the fragmentation process is fairly simple for this sys-
tem, with every number split into pieces of progressive degrees of
precision. The splits are based the target precisions. In our design,
we consider scaling FP16 into target sizes of 4, 8, and 16 bits. This
creates 3 slices of 4, 4, and 8 bits. We then group elements based on
the smallest supported read. In HBM3, that is 256 bits of data (@
32 bits/pc x 8 reads/bursts). With this sizing, we group 64 values
together (256 bits / 4 bits/element). We then make 4 memory blocks
to hold all the data.

HBM'’s pseudo-channels presents an opportunity to reduce the
latency impact of fetching from two separate rows. BitWeaver lever-
ages this extensively by tiling across the pseudo-channel boundary.
This prioritizes pairs of reads such that either can read simultane-
ously. This reduces the latency of stitching and buffering require-
ments.

In the typical 16-bit 1x, 2x, 4x throughput configuration, we
use the packing strategy shown in Figure 3. This strategy places
the MSB & ISB packs as well as the two LSB packs in the same
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Figure 4: The process of reading values from memory. Be-
cause data has already been fragmented at the burst granu-
larity, the data required for 4-, 8-, and 16-bit precision can
be accessed independently. Vectors of FP16 values can then
be reconstructed with only the data retrieved. Compared to
high precision, medium and low precision achieve 2x and 4x
throughput increase in values/second respectively

row across the PC boundary. This forms a two-row, two-pc map-
ping which is then repeated and mirrored for subsequent blocks of
elements.

With data importance spread across reads, we can skip low-
importance reads to reduce traffic. Figure 4 highlights how reading
can be done for each of the three supported precisions. By skipping
bursts, we reduce traffic and scale the precision down accordingly.
Further, because we do not modify the memory architecture, we
do not risk reducing bandwidth.

As shown in Figure 4, the 3 possible reconstructions are HIGH
({[15:0]}), MEDIUM ({[15:8], Padding}, and LOW ({[15:12], Padding}).
In both LOW and MEDIUM precisions, padding is necessary to
align the reduced bits for computation with HIGH precision values.
In traditional truncation, this would be uniformly padded (0).

4.2 Adaptability

In order to scale precisions, we need a selection mechanism. In our
system, we choose to use a proven strategy [54] for determining
token importance. This strategy was used for sparsifying KV caches
at the token level based on the importance of individual tokens for
future predictions. In our case, we use it to create an additional tier
of tokens which are of lesser importance but not sparsified.

This strategy may not be optimal as it selects at the token level.
In the models being evaluated, the hidden dimension is thousands
of elements long, much larger than the 64-element requirement min-
imum. This suggests that some additional memory savings may be
attainable if sub-token ranges were scaled in precision. This is based
on [28] which applied activation-aware quantization to weights. A
strategy which identifies regions within the query vector of low
& high importance and maps this to tokens being fetched could
potentially recover greater accuracies at lower memory volumes.

The proposed implementation balances hardware complexity,
latency, and granularity with the size and variety of precisions.
It is, of course, not the only way to compose the system. Finer
granularities and lower full-precision latency are possible when
going between 8- & 16-bit precisions. This would, of course, come
at the cost of a larger low-precision, which caps the maximum
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Figure 5: Diagram of the combiner unit. The combiner unit
performs the reconstructs elements with minimal hardware.
Data is received by buffers (already provisioned in the mem-
ory controller) and is stitched together by Mixer units. Mixers
use simple wired logic, requiring no actual gates. Similarly,
padding is directly concatenated to the lower precision data.

attainable speedup. More precision variety is also possible, but
would come at the cost of additional reconstruction stages.

5 Hardware Implementation

Now that we have discussed the high-level approach of BitWeaver,
we present the hardware needed to support it. As previously out-
lined, while the truncation effectively occurs in the memory through
read skipping, the critical reconstruction occurs outside of the mem-
ory. In this section, we detail a specific deployment of this required
hardware which exists between the processor and the memory.
The remainder of this is organized as follows: we first discuss the
specific hardware needed to reconstruct values in Section 5.1, then
detail the operation of this hardware in Section 5.2, and finally
explain the location and interface of the hardware in Section 5.3.

5.1 Reconstruction Hardware

The combiner unit is the hardware component which enables the
reconstruction of fragmented data. As shown by Figure 5, it is
composed of 3 stages: The input stage, reconstruction stage, and
output stage. The exact operation of these stages are covered in
Section 5.2.

The input stage is composed of two asynchronous FIFOs dedi-
cated to receiving the data from their respective HBM3 PCs. These
FIFOs must be large enough to accommodate the PC-to-PC latency
present in HBM3, but not so large as to dramatically increase the
cost of the hardware. In our case, we already have buffers provi-
sioned in the memory controller. This allows us to remove these
buffers in this design.

The recombination stage is relatively simple. It consists of two
multiplexers to select primary and secondary sources, two mixer
units, and an intermediate register. The mixer units are simple, only
scattering the bits of the datalines directly through wire mapping.
The intermediate register exists to hold an intermediate result and
free the heads of the two FIFOs.

The output stage rectifies all values to the correct bit width (16-
bits). This stage consists of adjusters, subnormal filters, and output
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Algorithm 1 Reconstruction in combiner

repeat

Select primary and secondary

Read data into FIFOs.

if LOW then
Expand primary 4 to 16
Filter value
Send to processor

end if

Mix primary and secondary

if MEDIUM then
Expand mixer out 8 to 16
Filter value
Send to processor

end if

if HIGH then
Store to intermediate
Select secondary
Mix intermediate and secondary
Send to processor

end if

until Empty

multiplexers. Discussed in Section 6, the adjusters and filters apply
simple manipulations to the data before sending it to the processor.
Without these units being active, the data is simply padded to 16
bits.

5.2 Combiner Operation

Because the combiner is a high-throughput device, execution
must be kept fairly simple and parallel. With that, reconstruction
can best be considered as repeated precision extensions until the
required precision is achieved, at which point it is dispatched to
the processor.

Algorithm 1 describes the process of reconstructing data within
the combiner unit. Broadly, the process can be broken into re-
construction and padding. In reconstruction, blocks of data from
memory are combined through simple wiring in mixer units. These
rearrange the bits of data so that they are contiguous by element.
In the case of going from 8-bit to 16-bit precision, we provision an
intermediate register to catch the 8-Bit intermediate values which
can then free the heads of the FIFOs. The intermediate values are
then combined with the blocks of LSBs which now reside in the
heads of the queues.

For padding, we must expand 4- & 8-bit values to 16-bits. In
order to do this, we pad the remaining bits with the value in the
corresponding adjustment register. This yields a complete 16-bit
value. This result is then filtered with the subnormal filter before
it is outputted. The subnormal filter nullifies any value which has
leading 0’s, which suggests that the value could be subnormal/zero.
The motivation behind non-zero padding and filtering is further
explained in Section 6.

When using the combiner unit, the adjustment term is set prior
to reading as no information about the adjustment term is con-
veyed by the instruction. This does, however, limit how frequently
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adjustment regions can be changed. This is a reasonable tradeoff to
reduce hardware cost and interface complexity.

5.3 Hardware Interface

The use case of this hardware is for accelerating memory-bound,
saturated workloads. This places a significant burden on optimizing
the throughput of this device. Because the interface is critical to
maximizing throughput, we place the combiner unit in the memory
controller, directly in sequence with memory IO, and add dedicated
commands. This maximizes our throughput through the combiner
and avoids data movement-related latency and power overhead.

Despite being a controller extension, BitWeaver remains mini-
mally invasive as shown by Figure 6. It does this by reusing much
of the existing hardware and providing a bypass mechanism. When
standard requests are issued to the controller and executed, the
output multiplexers directly pass the results from the output queue
to the memory bus/processor, bypassing the combiner.

When requests arrive to reconstruct through the combiner unit,
the request translator translates the request into the corresponding
standard read requests. It also intercepts any overlapped reads.
These occur when full precision data is requested for a block already
being read out and only serve to signal the expected volume of data.
The BitWeaver controller maintains a queue of reads to occur, which
is used when the controller scheduler executes the corresponding
reads from memory. When the correct data is at the heads of the
FIFOs, the BitWeaver controller changes the multiplexers to the
combiner output and begins streaming reconstructed data.

Because the adjustment term is not a static, universally-defined
value, it is necessary to include a process for periodic updates. This
functionality enables the parameterization of the adjustment term,
which is essential to maximize accuracy.

For updating the adjustment term, we prioritize minimizing ad-
ditional hardware & overhead. In our deployment of the BitWeaver
algorithm, we consider a single value per model. In most LLM de-
ployments, we expect the frequency of model changes to be low.
This puts a low emphasis on fast adjustment updates. With the
tight power and area constraints of memory controllers, we reason
that this is an opportunity to minimize the cost. Thus, we design
this interface to use as little new hardware as possible.

To minimize controller modifications, updating the adjustment
term reuses most of the reading functionality. At a high level, to
update, a read is performed to load data into one of the FIFOs.
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Then specific values from the read data (bits 31:24 and bits 23:12 of
burst 0) are set as the new adjustment values. This simplifies the
hardware down to some additional request decoding and a short
connection to extender inputs. Figure 5 highlights the connections
of the primary elements to the mixers.

6 Truncation Error Mitigation

Although truncation alone provides reasonable accuracy with floating-
point data, we identify a means to recover additional accuracy at a
very low cost. This section details the process for improving the
accuracy of approximated values. We first motivate its necessity,
then describe the two key innovations & their hardware, and finally
describe the optimization of truncation adjustment.

6.1 Truncated Value Adjustment

Truncation introduces error into a value. This error, though, is not
entirely unpredictable. In fact, it is always reductive to the magnitude,
which means |x| > |trunc(x)| for all x. Thus, for every x, we have
some expected error that must be negative (E[|trunc(x)|—|x|] < 0).
Intuitively, we would expect that if we add the expected error, the
accuracy would improve. Arithmetically implementations of this
would be too expensive to be practical; performing addition or
multiplication on all fetched values would massively increase the
operations within self-attention.

However, non-zero padding presents an opportunity to recover
some of the accuracy lost by direct truncation. First, because the
fundamental error arises from replacing the lowest bits with 0’s, the
correct value is always achieved from within these bits. Put another
way, the range of potential values which includes the original,
correct value is entirely contained within the truncated bits. Second,
because the bits are zero, direct bit masking can be applied to
finely adjust the fetched values. This means that with a near-zero
computational burden, we can mildly scale the fetched values.

When it comes to identifying a term to set as the lowest bits, a
naive choice might be to apply a term equivalent to the expected
value of the lost bits. With floating point numbers, because of the
normalized mantissa, we observe that the distribution of bits on
nonzero values is uniform. In this case, the expected value is half
the dynamic range of the truncated bits (about 0x7F for 8 bits).

We can demonstrate that 0x7F minimizes the mean-squared error
on a per-element basis with Figure 7. For values in the range [1, 2],
the percent of error in truncation is shown both with and without
adjustment. Because all mantissas fall within this range, this is
representative of all exponents. With adjustment, we see that it
"splits" the error, ranging from around +10% to —10% compared to
the unadjusted with errors ranging from 0% to —20%. This alone
motivates the adjustment term as a per-element error minimizer.

6.2 Subnormal Filter

Applying an adjustment term is advantageous for most numbers but
presents a slight risk; when numbers are zero or near-zero, applying
an adjustment term will massively increase the magnitude of a
stored value. Zeroes would become non-zero under a naive policy,
which could increase computational load and disrupt accuracy. As
well, zeroes are fairly common in keys and values, which forces it
to be addressed.
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Figure 7: The effect of adjustment on truncation accuracy.
Using an adjustment of 0x7F, we see that it “Splits the differ-
ence” and reduces the worst case truncation error and MSE.

If we could selectively identify and sparsify these subnormal val-
ues, we could retain the benefits of truncation adjustment without
the potential performance degradation of these subnormal values.
Fortunately, identification of subnormal values is simple, as they oc-
cur with an exponent of all 0’s. Because the exponent is retained, the
combiner hardware could precisely filter subnormal values based
on this exponent. For this we design and implement subnormal
filters which enables the combiner to achieve simple per-element
sparsification.

The subnormal filters are a simple but effective hardware addi-
tion that prevents erroneous amplification of a given value. They
work by detecting whether the bits read out suggest that the full
value could be subnormal. When it could be, the entire value is
nullified. The reasoning behind this is that dropping a value entirely
was shown to be preferable to applying an adjustment term to a
value which otherwise would have been zero. The implementation
is a simple AND array on the output to the multiplexer.

6.3 Adjustment Term Optimization

As indicated earlier, a naive choice might be to apply a term equiv-
alent to half the dynamic range of the truncated bits (about 0x7F
for 8 bits). However, this does not consider the workload’s charac-
teristics.

We use a simple feedback-driven approach. In our testing, while
statistical approaches provided a reasonable choice for an adjust-
ment term, they did not always predict the optimal term. To better
identify high-accuracy terms, we performed a sweep of adjustment
values on a suite of lighter tasks to predict a generalized adjustment
term for the model. Although individual tasks exhibited tendencies
towards separate adjustment terms, what was more important was
identifying any terms that presented with strong consensus.

It also appeared to be possible to optimize the adjustment term
through gradient-based strategies. Both the derivative of the error
of elements with respect to the adjustment term and the gradient
of the error of dot products with respect to the per-element error
are continuous. However, this was beyond the scope of this work.

7 Evaluation

To validate our algorithm and hardware design, we use a wide range
of experiments. The organization of this section is as follows: We
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Table 1: Accuracy comparison of several tasks using BitWeaver. All BitWeaver trials apply the FP16 to FP8 conversion to all
tokens. Trials marked “+Truncation” apply a padding of 0 to all elements in the keys and values. Trials marked “+Adjustment”
apply a model-specific padding specified in Table 3. GeoMean is taken on the relative error rate, with lower being better.

Model (Accuracy %)

COPA WinoGrande RTE PiQA MathQA OpenbookQA Hellaswag Lambada GeoMean

GPT-] 6B 86 64.3 549 | 75.4
+Truncation 85 63.3 50.5 74.6
+Adjustment 84 64.4 54.2 | 75.1
Mistral 7B 92 73.9 68.2 | 80.3
+Truncation 92 73.0 70.8 | 80.2
+Adjustment 92 73.7 70.8 | 80.3
LLaMa3 8B 89 72.6 69.7 | 79.7
+Truncation 88 74.0 70.0 | 79.8
+Adjustment 90 73.9 70.8 | 79.5

26.6 29.0 49.5 68.2 -
254 27.8 47.8 67.8 103.83
25.8 28.2 49.3 68.5 102.21
354 33.0 60.9 75.4 -
34.8 34.2 60.2 74.6 99.93
35.2 33.0 60.6 75.0 99.36
40.6 34.8 60.2 76.0 -
38.5 344 59.3 77.2 100.40
39.3 34.4 59.8 74.8 98.95

Table 2: Comparison of scores on summarization tasks. In
all cases, adjustment significantly outperforms truncation
alone.

Model (Rouge) XSUM CNN/DailyMail

GPT-] 6B .0627 .154
+Truncation | .0520 128
+Adjustment | .0618 .150
Mistral 7B .0501 .096
+Truncation | .0472 .076
+Adjustment | .0495 .090
LLaMa3 8B .0608 124
+Truncation | .0024 .008
+Adjustment | .0587 .024

first explain our testing setup in Section 7.1, then present our re-
sults for our algorithm-based evaluations in Section 7.2, and finally
present our results for our hardware evaluations in Section 7.3.

7.1 Methodology

For LLM evaluations, we used three different models, Mistral [22],
LLaMa3-8B [17], and GPT-J [47]. These models were chosen based
on their size, relatively strong performance, and different charac-
teristics. We have four main evaluation suites that we perform for
each model in all tasks. The first is the uniform performance evalu-
ation, allowing for direct comparisons of characteristic individual
runs. The second is the adjustment term sweeps, which applies
BitWeaver uniformly to FP16 values and tests different values for
the adjustment term. Third is the equivalent-density sparsity sweep,
which compares different ratios of full:half:sparse tokens at equiva-
lent memory footprints. Fourth is the full-representation density
sweep, which gradually decreases the total memory density while
maintaining full token representation with FP8 and FP4.

To evaluate these we use the open-source LM Evaluation Harness.
We make minor modifications in the framework to inject attention
modifications. We evaluate all suites on the following tasks: Wino-
Grande [25], COPA [40], RTE [46], Lambada [35], MathQA [3],
OpenbookQA [32], Hellaswag [52], and PiQA [8]. Additionally, the
summarization tasks CNN/Daily Mail [20] and XSUM [33] were

used for uniform evaluations. These tasks were not used for sweep-
based evaluation to show the generalizability of the adjustment
term from simpler tasks. Additionally, no changes were made to
the default evaluation configurations as set by the maintainers, as
these are already standard protocols.

For all instances requiring token selection, we use the prediction
method outlined in [54]. This was for two major reasons. First is
that it is already an accepted method for ranking token importance,
making it a compelling choice for selection. Second is that it limits
the scope of this work. Although BitWeaver could enable different
prediction strategies, it was beyond our scope for this work.

For hardware-based evaluations, we used several tools. A modi-
fied version DRAMSim3, which used the pseudo-channels HBM2E
and HBM3, was used to get speedup & power characteristics as
precision was scaled to different levels. To generate traces, we first
generated the individual mapping of clusters of elements. We then
randomly marked clusters as high or medium precision at sub-token
granularity. This was done to demonstrate worst-case performance
which is not model-specific.

To evaluate the hardware design, we first validated RTL function-
ality and then synthesized it. Having written the RTL for a proof-
of-concept design, we validated it operated as expected through
thorough testing with cocoTB on Verilator. With confirmed func-
tionality, we synthesized the design with Synopsys Design Compiler
using the FreePDK45 [44] 45nm pdk.

To estimate execution speedup, we used VIDUR [2]. This was
because it was open source and thoroughly validated against hard-
ware performance. However, it is based on profiled performance
and therefore cannot directly evaluate a more theoretical hardware
enhancement. However, the profiled data are granular enough so
that we can specially modify the self-attention decoding time to
reflect a reasonable improvement under BitWeaver.

We determine a reasonable improvement as follows. Using the
analysis in Section 2, we estimate that because the self-attention
stage is significantly memory-bound, memory speedups will pro-
portionally speed up the attention computation itself. To prevent
a complete oversimplification, we assume an 85% gain; that is, we
assume that a 2x memory speedup will produce a 1.85x decoding
speedup. We then create two new sets of pseudo-profiled data of



BitWeaver: Read-Time Truncation in Memory

Table 3: FP8 adjustment terms. The selected terms are based
on task consensus for the three tested models.

Model Decimal Value Hex Value
GPT-] 6B 112 0x70
Mistral 7B 80 0x50
LLaMa3 8B 192 0xC0

A100s for use in VIDUR: 2x & 2.9x effective bandwidth amplifica-
tion under truncation in decoding. These were then used in place
of the original data when simulating performance.

7.2 Algorithmic Evaluation

We first evaluate the accuracy impact of BitWeaver to confirm viable
operating parameters. This section discusses the results of the four
major algorithmic evaluations as introduced by Subsection 7.1 and
highlights the ability for BitWeaver to decrease the theoretical
memory traffic while preserving accuracy.

7.2.1  Uniform Application. The first set of evaluations is the appli-
cation of BitWeaver uniformly to all Key & Value tokens. In Tables
1 & 2, we compare the baseline, BitWeaver with no adjustment, and
BitWeaver with the model’s best adjustment term for three models.
It is important to note that although individual tasks had better ad-
justment terms, we only show the results from the same adjustment
term for a given model. This is because we are interested in the
transferability of adjustment terms at a model level. These selected
adjustment terms are shown in Table 3.

In Table 1, we see that when uniformly applied, the adjustment
term consistently results in higher accuracies. Occasionally, the
accuracy even improved relative to the baseline performance. We
feel this highlights the importance of applying this adjustment
to truncated values, as many times it recovers several percentage
points of accuracy over the truncated-only values.

Despite the promising performance, it should be noted that oc-
casionally, the accuracy decreased relative to the non-adjusted case.
While the occurrences are minimal, it highlights an imperfection in
the strategy. We believe it suggests that there is more to understand
about the adjustment term and its role in maintaining accuracy.

Moving towards generalization, Table 2 shows the scores of two
summarization tasks across models. In these evaluations, the ad-
justment term was only selected based on the performance of the
simpler tasks in Table 1. Critically, we see that despite not using
these tasks for feedback, we see significant score improvement of
the adjusted terms over the baseline truncated values. This high-
lights both the transferability of the adjustment term at the model
level as well as the applicability of the adjustment term to more
than just token-prediction tasks.

7.2.2  Adjustment Optimization. Identifying adjustment terms is
a major aspect of our implementation. Our second evaluation are
sweeps adjustment terms for uniformly applied BitWeaver on sim-
ple tasks. Put another way, we apply truncation uniformly to all
keys & values, but vary the adjustment to see its effect on accuracy.
We plot the results for several models in Figure 8. This allows us
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Figure 8: The effect of the adjustment term on accuracy across
models. Within this subset of tasks, we see that despite tasks
having vastly different trends, they tend to have consensus
at some value.

to identify points of consensus where the model is most accurate
across a range of tasks.

This evaluation uncovers interesting behavior at the task level.
First, some tasks, such as Hellaswag [52], exhibit strong correla-
tion to the adjustment term. We see that across models, Hellaswag
generally improves in accuracy as the adjustment term increases
in magnitude. Similarly, PiQA [8] remains relatively tolerant to
changes in the adjustment. Finally, some tasks exhibit entirely dif-
ferent behavior dependent on the model, like RTE [46].

This task-level behavior was somewhat unexpected, but high-
lights the interaction between model, task, and adjustment term.
From this, though, we see that the task-transferability of adjustment
terms is low, with no general trends arising across tasks. Despite
this, points of consensus appeared that showed agreement between
tasks at specific values. Furthermore, these points were unique to
specific models. This leads us to determine that the model is a major
factor in selecting the adjustment term.

To use Figure 8 to identify the adjustment terms per model, we
searched for the regions most accurate of the least accurate tasks
and identified a region that maximizes the accuracy of multiple
tasks. Effectively, we search within the least accurate task to ap-
proximately maximize all tasks’ accuracies. The resultant values
which consider all tested tasks are shown in Table 3.

7.2.3 FP16 & FP8. Next we evaluate the accuracy as a function of
memory traffic for different percentages of FP16 and FP8 tokens.
Effectively, it progressively sparsifies the tokens being used for gen-
eration while representing the accuracy for different percentages
of data fetched (Analogous to sparsity). We aim to validate that
utilizing adjusted FP8 is a stronger tool than sparsification alone.
To do this, we employ a proven sparsification strategy to isolate
the effect of our precision-scaling strategy. The sparsity scheme we
choose to use is H20 [54].

In Figure 9, we show that utilizing adjusted FP8 consistently
achieves higher accuracy values compared to the equivalent sparsity
of FP16 tokens. Further, when comparing mixtures of full- and half-
precision tokens (FP16 & FP8), we see that it is consistently more
advantageous to accept lower precision tokens than to sparsify
more. This demonstrates that when considering FP16 and adjusted
FP8, greater degrees of token representation is more advantageous
than higher precision.

7.2.4  FP8 & FP4. Seeing as greater degrees of representation was
advantageous in the FP16-FP8 evaluation, it was natural to evaluate



ICS ’25, June 08-11, 2025, Salt Lake City, UT, USA

Winogrande PiQA Lambada

Hellaswag

Garrett Gagnon, Srikanth Malla, Yangwook Kang, and Liu Liu

OpenbookQA MathQA

Mistral

LLaMa 3
Accuracy

GPT-J

554

50 T T 70 T T 20

y — 40
50 40 30 20 50 40 30 20 50 40 30 20 50

--- Baseline —— H20

40

—*— 50% FP16, 50% FP8

—#— 25% FP16, 75% FP8

— T 20 T — 20
30 20 50 40 30 20 5
Memory Occupation (%)

o
]
o
w |
o
n
o

50 40 30 20

—#— 0% FP16, 100% FP8

Figure 9: Accuracy impact of various memory footprints for several mixtures of FP16 and adjusted FP8 tokens. Results are
compared across memory footprints and highlights that increased percentages of FP8 tokens preserve greater accuracy than
just sparse FP16. H20 is representative of the H20 algorithm [54] with exclusively FP16 tokens. All others implement an
adjusted policy which preserves a given percentage of FP8 tokens relative to the FP16 tokens.

Table 4: Synthesized results for a single combiner in 45nm.
Dynamic power is based on peak switching activity for all
transistors.

Parameter Value Unit
Area 20950 | pm?
Dynamic Power | 4.48 | mw
Leakage 63.29 | uw

if this trend continued between FP8 & FP4. In this evaluation, rather
than consider sparsity with various ratios of tokens, we instead
consider no sparsity with and vary the ratio as a function of memory
traffic percentage. Therefore, the memory traffic varies between
50% (all FP8) and 25% (all FP4). In this way, we can compare trends
across several tasks together.

The target of this evaluation is to validate that a mixture of
precisions retains substantial accuracy while reducing the overall
memory traffic. We see from Figure 10 that this is confirmed; The
accuracy in many tasks can be maintained while injecting large
amounts of FP4 tokens. Simpler tasks like PiQA and Hellaswag
maintain near-baseline accuracy at 34% traffic while other tasks can
only tolerate FP4 tokens down to around 40% memory traffic. This
is a positive result, as it highlights that the lossy FP4 of BitWeaver
can be used to preserve model accuracy while further reducing the
IMemory accesses.

7.3 Hardware Evaluation

In this subsection, we show that BitWeaver can provide theoretical
speedups of up to 80% through simulated hardware performance.
We first verify the memory access pattern regularity is maintained
via DRAMSim3 and then show that the accelerated bandwidth
speeds up LLM Inference systems.

Accuracy vs Memory Traffic on Mistral

0| = —_—

Accuracy Increase (%)
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—— Winogrande —=— RTE
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15
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Figure 10: The effect of different ratios of FP8 & FP4 tokens
reported as a function of memory traffic on Mistral-7B. 50%
represents entirely FP8 while 25% represents entirely FP4.
We see that unlike the case of balancing FP8 & FP16, there is a
limit to token representation in lower precision. However, we
see that a significant amount of tokens can be represented by
FP4 without degrading accuracy. This motivates a dynamic
multi-precision system.

7.3.1  Hardware Synthesis. Our synthesis results confirm our de-
sign to be reasonable for implementation. The results are presented
in Table 4. As outlined previously, we synthesized our design in
45nm, which is orders of magnitude less power and area efficient
than modern processes. Despite this, our synthesized design is
reasonably sized, at less than 0.021mm?. Furthermore, the power,
which assumes maximum switching activity, represents less than a
1% increase in channel power.

7.3.2 Memory Access Evaluation. We must verify that the sparse
memory access pattern is regular and hardware-friendly. This is
critical as an irregular access pattern could waste cycles/activations.
Therefore, despite a theoretical speedup from reduced reads, a poor-
quality pattern could fail to improve read times. We thus need to
confirm read saturation at a low level. In addition, a consistent
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Table 5: Results for single-channel BitWeaver performance
for progressively finer quantities of elements. We observe
that even at fine granularities, bandwidth is saturated with-
out any substantial power increase. FP16, FP8, and FP4 refer
to reading the entire sequence of values at that precision.

Power (mW) Bandwidth (GB/s)
#Vals FP16 FP8 FpP4 | FP16 FP8 FP4

16k 4543 4542 4559 | 298 29.6 295
8k 4543 454.0 4428 | 29.7 296 295
4k 454.0 440.8 4424 | 296 29.6 295
2k 441.0 4404 4420 | 297 296 295

Self-Attention Bandwidth vs. Model-Level Speedup

0.94 —--- Baseline —— 2x Bandwidth —— 2.9x Bandwidth

T T T T T T T T
0 2048 4096 6144 8192 10240 12288 14336
# of Generated Tokens

Figure 11: Plot of execution time for requests of varying
decoding lengths. All have a prefill context of 512 tokens.
We see that at this context, the speedup remains relatively
consistent.

memory speedup factor would allow for full system evaluation
with existing tools.

Table 5 highlights that BitWeaver’s memory access pattern is
hardware-friendly. We generate traces of fetching a given number
elements at each of the possible precisions and measure the achieved
bandwidth, power use, and actual numbers of reads. Table 5 shows
the achieved “real” bandwidth of HBM2 at several access patterns.
We see that even with small data volumes, the bandwidth saturates
to the hardware limit regardless of the pattern. Additionally, power
does not unduly rise due to inefficient memory accesses.

7.3.3  System-Level Performance. With the regularity shown for
the memory access pattern, we evaluate the performance impact
of decoding acceleration. Although we can show an expected im-
provement in decoding speed, it is unclear what the full execution
improvement would be. This is primarily due to the linear layers
of LLM’s having a significant performance impact while not being
influenced by BitWeaver in this implementation.

Figure 11 shows that bandwidth amplification via BitWeaver
produces measurable execution speedups. Using a simple BitWeaver
pattern that produces a 2x memory bandwidth amplification results
in an execution speedup of over 1.4x when generating about 4,000
tokens or more. With smaller generated sequences, the performance
improvement was still substantial, with 1.2-1.4x speedups typical
in the sub-3000 token regime.
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BitWeaver for 2.9x bandwidth amplification showed even greater
performance gains. When generating about 3,000 tokens or more,
the speedup achieved was more than 1.6x, even exceeding 1.8x
when generating large quantities of tokens.

8 Related Work

Attention sparsity is sparsification of the underlying attention
calculation, not inherently reducing the size of any stored tokens. It
still reduces the memory traffic and could be coupled with BitWeaver.
SpAtten [48] progressively removes tokens from atterntion calcula-
tions based on their importance in earlier layers. DOTA [38] uses
low-rank linear transformations of queries and keys to predict to-
ken importance and only calculates attention for significant outputs.
Similarly, SparQ [39] uses an approximation of attention to predict
and select tokens of high importance. InfiniGen [26] enables offload-
ing the KV cache to CPU memory by using an effective prediction
mechanism to identify strong attention scores and prefetch them
in time for computation. Token-picker [36] develops a strategy
which predicts the score for tokens prior to calculation in order to
prune out unnecessary calculations. All these methods could be
readily combined with BitWeaver, as they provide an token ranking
mechanism.

Sparsification of KV caches is another form of attention spar-
sity primarily targeting reducing the KV cache size. Instead of
choosing to retrieve fewer tokens at compute time, the tokens have
been evicted from the cache. Similar to general attention sparsifica-
tion, KV cache sparsification algorithms are highly applicable as
they create a ranking methodology which can be applied as tiers for
precision. One such algorithm, H20 [54], is a work which proposes
using past performance of tokens to identify “Heavy Hitters” and
sparsifies other tokens. In this work, we directly extend H20 to cre-
ate precision tiers. KeyFormer [1] takes a similar approach and de-
velops a score mechanism which factors in the past performance of
tokens and retains high scored tokens. Q-Hitter [53] improves H20
by prioritizing maintaining tokens which quantize well, thereby al-
lowing the cache itself to be more quantizable. CORM [12] uses the
previous queries and their attention to predict which tokens must
remain in the cache based on current queries. This could poten-
tially be adapted as a ranking scheme for BitWeaver. Scissorhands
[29] progressively drops tokens from the KV cache based on the
“importance” of that token to past attention calculations.

Multiprecision KV caches is another approach to reducing
their footprint. GEAR [24] proposes using multiple precisions to
fully represent the KV cache by having each successive tier mini-
mize the error from all previous ones. We, conversely, avoid data
duplication and computation by reusing slices of the original data
for multiple precisions. MiKV [51] uses an ultra-low precision to
avoid outright sparsifying stored values. LESS [16] applies the H20
[54] algorithm to sparsify tokens, but then uses a low rank approx-
imation of the sparsified elements to recover significant accuracy.
KIVI [30] identifies that keys and values have separate quantiza-
tion preferences and develops a low-loss 2-bit quantization scheme
around it. Another work [9] identifies that activations are difficult
to quantize due to outliers arising from attention attempting to pre-
vent updates to the state and effectively mitigates this and quantizes
activations down to INTS.
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Quantization methods are widely applicable across domains.For
post-training quantization (PTQ), which generally more applicable
to activation quantization, VS-Quant [13] proposes quantization at
the vector level (16-64 elements at a time). This method maintains
hardware-friendliness through low-bitwidth scale factors. For val-
ues generated at execution time, though, calculating and maintain-
ing the metadata can be costly. We skip identifying per-vector scale
factors and just read a segment of individual elements to achieve a
lower precision without arithmetic. MX [41] is a proposed method
to share “microexponents” between groups of floating-point num-
bers. This could potentially be integrated with BitWeaver as we
focus primarily on the mantissa and not the exponent.

Truncation is an alternative to quantization which we use in
this work. One work which aims to reduce IO traffic [42] makes
use of truncation by truncating and compressing floating-point
values before writing to memory and decompressing upon retrieval.
SmartQuant [50] explores slicing elements at each bit to offer a
wider range of available precisions. Additionally, it provisions a
more advanced reconstruction hardware and uses CXL to enable
greater transparency to the host device. We conversely implement
our design on host memory by splitting data into only 3 chunks to
reduce granularity and reconstruction cost. Furthermore, we make
use of HBM’s pseudo-channels to improve hardware friendliness.
SDP [21] quantizes values down to INT8, and then selects chunks
of INT4 data to compute with to meet computational budgets. Its
priority is the compute budget and focuses on CNN models. We
prioritize memory bandwidth within the self-attention stage of
transformer-based LLMs and apply no quantization to values to
maintain the original, full-precision value.

Attention acceleration also is explored beyond the previous
two categories. FlashAttention 1 [15] & 2 [14] reformulate and
optimize the execution flow of self-attention to reduce memory
traffic and better utilize compute resources. FlashAttention-3 [43]
uses some optimizations for tensor cores, but also implements lower-
precision execution. Sparse FlashAttention [34] extends the original
FlashAttention [15] algorithm to accommodate dynamic sparsity
in long sequences. On the other hand, BitWeaver does not change
anything within the compute pattern of self-attention or any other
applied workload. Thus, it is compatible with these

9 Conclusion

We present BitWeaver, a low-cost hardware-based approach to
enable truncation-in-memory at read-time. We apply this utility to
reduce data volume moving from memory during self-attention to
realize 3x improvements in effective bandwidth, translating to an
80% increase in full model inference throughput. Further, we show
this to be an adaptable strategy with the potential for numerous
other applications.
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