
UJOpt: Heuristic Approach for Applying
Unroll-and-Jam Optimization and Loop Order

Selection
Shilpa Babalad

Indian Institute of Science
Bengaluru, Karnataka, India

shilpab@iisc.ac.in

Shirish K Shevade
Indian Institute of Science
Bengaluru, Karnataka, India

shirish@iisc.ac.in

Matthew Jacob Thazhuthaveetil
Indian Institute of Science
Bengaluru, Karnataka, India

mjt@iisc.ac.in

R Govindarajan
Indian Institute of Science
Bengaluru, Karnataka, India

govind@iisc.ac.in

Abstract
Loop transformations help exploit features such as paral-
lelism (task and data-level parallelisms) and locality (tempo-
ral and spatial localities) to achieve higher performance in
multi-dimensional loops. Loop unroll-and-jam is one such
transformation that can exploit parallelism available in the
outer loop. However, not all loops benefit from the unroll-
and-jam transformation. Surprisingly this is true even when
the unroll-and-jam transformation exposes fine-grain data-
level parallelism and vectorization at non-innermost loops.
In this work, we propose UJOpt, a heuristic based approach
to determine whether unroll-and-jam is beneficial for a
given loop nest and the best-performing loop order (in terms
of lower execution cycles). Experimental evaluation on 32-
core Intel Xeon Cascadelake architecture demonstrates that
our approach identifies loop orders whose performance on
average is within 7% from that of the optimal loop order, for
loops taken from the Polybench test suite.

CCS Concepts
• Computer systems organization → Multicore archi-
tectures; • Software and its engineering → Compilers;
• Computing methodologies → Classification and re-
gression trees.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725778

Keywords
Loop transformations, Vectorization and Parallelization, Su-
pervised learning, Support Vector Machine, Hierarchical
Classifier
ACM Reference Format:
Shilpa Babalad, Shirish K Shevade, Matthew Jacob
Thazhuthaveetil, and R Govindarajan. 2025. UJOpt: Heuristic
Approach for Applying Unroll-and-Jam Optimization and Loop
Order Selection. In 2025 International Conference on Supercomput-
ing (ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3721145.3725778

1 Introduction
The continuous evolution in processor architecture over the
last several decades has resulted in a single processor hav-
ing multiple processor cores, each core supporting deep
pipelines to enable pipelined parallelism, multi-threading
to support concurrent execution of multiple threads, vec-
tor units to exploit fine-grained data-level parallelism, and
multi-level cache hierarchy with sophisticated hardware
prefetchers to enhance the memory bandwidth. Such a
processor can exploit task-level parallelism using multiple
cores, data-level (or SIMD) parallelism using vector pro-
cessing units, thread, and instruction-level parallelisms. To
take advantage of these architectural features and to extract
higher performance, the applications running on these ar-
chitectures should exploit these features effectively. Many
compiler transformations/optimizations, specifically loop
transformations [9], have been proposed to address this.

Loop tiling [37, 38] forms an important transformation on
multi-dimensional loops. It divides the iteration space of a
loop into small tiles that can exploit spatial and temporal lo-
cality of data accesses in loop nests. It maps a loop of depth𝑛
into loop nests of depth 2𝑛. The inner 𝑛 loops, known as the
intra-tile loops, run for a fixed number of iterations equal to

https://orcid.org/0000-0002-9114-0409
https://orcid.org/0009-0009-7202-6860
https://orcid.org/0009-0007-1550-8121
https://orcid.org/0000-0003-2517-9994
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3725778
https://doi.org/10.1145/3721145.3725778

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

the tile size in that dimension. The outer 𝑛 loops correspond
to different tiles and are known as inter-tile loops. Loop
permutation or interchange [3, 39] of a multi-dimensional
nested loop is a loop transformation that reorders the itera-
tion space of a loop by reordering its loop iterators. When
loop tiling and interchanges are applied on 𝑛-dimensional
loops, the 2𝑛 loop iterators in the loop can be permuted/re-
ordered as permissible by the dependencies in the program.

Loop unroll-and-jam is another transformation tech-
nique [24] in which the second innermost loop1 is unrolled
by an unroll-factor value, and the resulting statements are
jammed together. If the second innermost loop is parallel,
but the innermost is not, then unroll-and-jam transforma-
tion helps to exploit this parallelism present in the sec-
ond innermost loop. Existing loop transformation tools like
Polly [17] and Pluto [12], which are based on Polyhedral
techniques, are indeed quite useful in identifying and ex-
posing different types of parallelism, data locality, and reuse.
They also transform the given loop into a tiled loop with a
valid loop order such that all the data dependencies present
in the original loop are satisfied. They provide options to ap-
ply optimizations like loop unroll-and-jam . However, they
fail to identify when to apply the unroll-and-jam transfor-
mation and what is the best loop order.

The performance of each valid loop order differs depend-
ing on how well the transformed code exploits task-, data-
, and instruction-level parallelisms, to what extent it ex-
ploits temporal and spatial localities, how amenable are the
accesses in the loop nest for vector load/store and data
prefetching, etc. Among the many valid loop orders, the
loop order with the lowest execution time/cycles is called
the optimal loop order. In general, the interplay between
these different architectural features and their impact on
the performance of the transformed loop needs to be un-
derstood properly to generate efficient code for a given ar-
chitecture.

The specific problem addressed in this paper is:
Given an𝑛-dimensional loop nest in which each
of the loop dimensions is tiled, identify the loop
order that results in the best performance when
a combination of loop interchange and loop
unroll-and-jam transformations are considered.

We explain this with the help of an example. Consider a
2-dimensional loop nest from gemver of Polybench [25, 26]
suite as given in Listing 1.

This loop has parallelism in the 𝑖-dimension i.e., different
iterations of the 𝑖-loop can be executed in parallel as they
are independent of each other. However, the loop is not par-
allel in the 𝑗-dimension. Specifically, the value produced for
1In fact, the unroll-and-jam transformation can choose any loops other
than the innermost loop.

x[i] in each iteration of the innermost loop depends on the
value of x[i]written in the previous 𝑗-iteration. Hence, dif-
ferent 𝑗-iterations cannot be executed in parallel. Tiled ver-
sions of the loop nest with and without the unroll-and-jam
transformation (with an unroll factor of 4) are shown below.

for (i = 0 ; i <N ; i ++)
for (j = 0 ; j <N ; j ++)
x [i]= x [i]+ b e t a ∗A[j] [i] ∗ y [j] ;

Listing 1: gemver_k2 loop

#pragma omp p a r a l l e l
for (i = 0 ; i <N/T ; i ++)
for (j = 0 ; j <N/T ; j ++)
for (i i = 0 ; i i <T ; i i ++)
for (j j = 0 ; j j <T ; j j ++)
x [i ∗T+ i i]= x [i ∗T+ i i]+ be t a ∗A[j ∗T+ j j]

[i ∗T+ i i] ∗ y [j ∗T+ j j] ;

Listing 2: Tiled gemver_k2 loop

#pragma omp p a r a l l e l
for (i = 0 ; i <N/T ; i ++)
for (j = 0 ; j <N/T ; j ++)
#pragma simd
for (i i = 0 ; i i <T ; i i +=4)
for (j j = 0 ; j j <T ; j j ++)
x [i ∗T+ i i : i i +3]= x [i ∗T+ i i : i i +3]+ be t a

∗A[j ∗T+ j j] [i ∗T+ i i : i i + 3] ∗ y [j ∗T+ j j] ;

Listing 3: gemver_k2 loop with unroll-and-jam
transformation

Each version of the loop nest is fully permutable. There
are six possible loop orders, 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗), 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖),
𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗), 𝐿4(𝑗, 𝑖, 𝑖𝑖, 𝑗 𝑗), 𝐿5(𝑗, 𝑖, 𝑗 𝑗, 𝑖𝑖) and 𝐿6(𝑗, 𝑗 𝑗, 𝑖, 𝑖𝑖)
for each version. The dimensions 𝑖𝑖 and 𝑗 𝑗 correspond to
the intra-tile and 𝑖 and 𝑗 correspond to the inter-tile (We con-
sider loop orders in which an intra-tile dimension appears
within the corresponding inter-tile dimension.). The order-
ing of inter- and intra-tile dimensions dictate how the ar-
rays (specifically 2-dimensional) are accessed, affecting how
cache hierarchy and the hardware prefetchers are used. For
example, in 𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗), the dimensions 𝑗 and 𝑗 𝑗 traverse
a row in each tile before moving on to the next row given
by dimensions 𝑖 and 𝑖𝑖 . An optimizing compiler can unroll
the innermost loop multiple times in the tiled version (with-
out unroll-and-jam), even though we do not show it explic-
itly. Such unrolling is mandatorily donewhen the innermost
loop does not carry any dependency and can be vectorized.

For the above loop nest, without the unroll-and-jam trans-
formation (shown in Listing 2), the innermost loop in the
𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) loop order cannot be vectorized (and hence
cannot use the AVX instructions). On the other hand, the
𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) loop order with the unroll-and-jam version

UJOpt: Heuristic Approach for Applying Unroll-and-Jam Optimization and Loop Order Selection ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

(shown in Listing 3) can exploit vector parallelism as the 𝑖𝑖-
dimension is unrolled and does not carry any dependency.
This raises the question of how does 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) loop or-
der of the tiled version (without unroll-and-jam) performs
compared to the 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) loop order with unroll-and-
jam. In general, the question that we try to answer is which
among the 12 loop orders would perform the best. It can be
observed that some loop order(s) may exploit vector paral-
lelism, some may exploit task-level parallelism at the differ-
ent loop levels (outermost, second, or third outermost loop),
some loop orders may exploit spatial locality better, some
loop orders are more amenable for data prefetching, etc. De-
pending on these, the performance of different loops may
vary. Given this, can the compiler identify the optimal loop
order (the one that results in the lowest execution cycles)
for a given architecture?

In this work, we have developed an efficient heuristic to
determine whether the unroll-and-jam optimization bene-
fits a given loop nest and identify a best-performing loop
order that is near-optimal. To the best of our knowledge,
there is no work that considers a combination of loop tiling,
loop interchange and unroll-and-jam together and identifies
the best-performing loop order. We refer to our approach as
UJOpt. Our approach uses the characteristics of a given loop
nest, represented as high-level features, to decide whether
unroll-and-jam is beneficial and the best-performing loop
order. The proposed heuristic is evaluated on Intel XeonCas-
cade Lake 8268 server using 32 cores. We evaluate our ap-
proach on loops from the Polybench [25, 26] test suite and a
set of loops generated using a synthetic loop generator tool.
UJOpt results in performance that is within 7% and 13% of
the optimal performance for Polybench [25] and synthetic
loops benchmark suites, respectively. The loop orders iden-
tified by UJOpt, achieve an improvement of 1.15x — 1.79x
over Polly [17] and Pluto [12].

2 Background and Motivation
2.1 Background
2.1.1 Loop Transformation. Loop transformations refer to
transforming a given multi-dimensional loop into a form
such that the performance of the transformed loop is im-
proved while retaining the correctness of its functionality.
These transformations help exploit the underlying architec-
tural features to realize higher performance for an applica-
tion.Many loop transformation techniques exist, butwewill
limit ourselves to loop tiling, loop permutation, and unroll-
and-jam.

Loop tiling [37, 38] divides the iteration space of the orig-
inal loop into tiles/blocks to exploit temporal and spatial lo-
cality. The original loop nest with depth 𝑛 is transformed
into a loop nest with depth 2𝑛. The inner 𝑛 loop iterators

(intra-tile dimensions) run within a tile for a fixed number
of iterations equal to the tile size. The outer 𝑛 loop iterators
(inter-tile dimensions) iterate across tiles covering the en-
tire iteration space of a loop (see Listing 2). For a given loop,
the tile size is important to exploit the spatial and tempo-
ral localities. The performance of the resulting transformed
tiled loop is further enhanced if the outermost and the inner-
most loops are parallel and exploit coarse-grain data-level
parallelism on multiple cores and fine-grain data-level par-
allelism on vector processing units, respectively.

Loop interchange/permutation [3, 39] refers to exchang-
ing the order of loop iterators used by a nested loop. This
transformation changes the order in which the iteration
space of the original loop is traversed. The performance of
the transformed loop depends on the levels at which coarse-
grain and fine-grain parallelism are exploited and how ef-
fectively the multi-level cache hierarchy and the hardware
prefetchers are used to extract higher memory bandwidth.

Listing 2 shows the tiled version of the loop given in
Listing 1, as generated by Polly [17]. Tiling strip-mines
the original 2-dimensional loop into a loop with 𝑓 𝑜𝑢𝑟 it-
erators. The two loop iterators 𝑖 and 𝑗 correspond to the
inter-tile traversal, while the 𝑖𝑖 and 𝑗 𝑗 correspond to the
intra-tile traversal within the iteration space. The four iter-
ators can be interchanged/permuted such that the resulting
order should still satisfy all the dependencies in the origi-
nal loop. There are 24 such possibilities. However, we con-
sider only 6 of them where the intra-tile iterations happen
within the inter-tile iterations. In this work, we consider
only 2-dimensional perfect loop nests. Hence, tiling and in-
terchange give 𝑠𝑖𝑥 different permutations of the loop nest.
We denote them as 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗), 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖), 𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗),
𝐿4(𝑗, 𝑖, 𝑖𝑖, 𝑗 𝑗), 𝐿5(𝑗, 𝑖, 𝑗 𝑗, 𝑖𝑖), and 𝐿6(𝑗, 𝑗 𝑗, 𝑖, 𝑖𝑖).

Loop unroll-and-jam transformation unrolls the outer
loop multiple times (depending on the unroll factor) and
jams or packs together the inner loop statements. This trans-
formation is effective when parallelism is present in the
outer loop than the inner loop. The transformed loop re-
alizes high performance if it can exploit vector process-
ing units, multi-level cache hierarchy, hardware prefetchers,
and instruction level parallelism (ILP). For the loop shown in
Listing 1, with 𝑖-dimension being parallel, the transformed
unroll-and-jam code is shown in Listing 3. with an unroll
factor of 4. In the resulting transformed loop, as the dimen-
sion 𝑖 is parallel, the dimension 𝑖𝑖 will be vectorized.
The unroll-and-jam optimization can be applied to the

above six loop orders. The performance of each loop order
with unroll-and-jam again depends on how well it exploits
multiple cores, vector processing units, caches, and hard-
ware prefetchers. Hence, for a given perfect loop nest, there
are twelve loop orders possible: six without unroll-and-jam
and six with unroll-and-jam optimization. Our heuristics

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

Table 1: Normalized Execution Cycles for 𝑔𝑒𝑚𝑣𝑒𝑟_𝑘2

Normalized Execution Cycles for N=4096
L1 L2 L3 L4 L5 L6

without UJ 3.88 1.54 10.18 2.71 1.95 18.14
with UJ 1.00 1.16 3.39 1.85 1.71 4.81

take the characteristics of each of these loop orders and
determine whether the application of unroll-and-jam opti-
mization is beneficial and the loop order that gives the best
performance.

2.2 Motivation
Next, we motivate our work using a few example loops
taken from the Polybench benchmark suite.

2.2.1 Cases where unroll-and-jam is beneficial: Consider a
loop from 𝑔𝑒𝑚𝑣𝑒𝑟 benchmark as shown in Listing 1. The
code after the tiling transformation is given in Listing 2. This
loop is parallel in 𝑖-dimension, and the access pattern of the
2-D array𝐴 is of the form𝐴[𝑗] [𝑖]. Loop orders 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗),
𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖), and 𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗) exploit the coarse-level par-
allelism at the outermost loop on multiple cores, while for
𝐿4(𝑗, 𝑖, 𝑖𝑖, 𝑗 𝑗), 𝐿5(𝑗, 𝑖, 𝑗 𝑗, 𝑖𝑖), and 𝐿6(𝑗, 𝑗 𝑗, 𝑖, 𝑖𝑖), the parallel
threads need to synchronize for each 𝑗-iteration. Among
𝐿1, 𝐿2, 𝐿3, loop order 𝐿2 also exhibits fine-grain data-level
(vector) parallelism, and as the array access pattern (𝐴[𝑗] [𝑖])
align with the intra-tile traversal it generates vector loads.
On the other hand, 𝐿1 and 𝐿3 do not exploit vectorization,
as the innermost dimension 𝑗 𝑗 has loop-carried dependence
and hence generate simple loads/stores.

The code generated after applying the unroll-and-jam
transformation to 𝑔𝑒𝑚𝑣𝑒𝑟_𝑘2 loop is shown in Listing 3.
For this transformed loop, out of the six loop orders,
𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗), 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖), and 𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗) exploit coarse-
grain data-level parallelism. Among these three loop orders,
𝐿1 and 𝐿3 exploit fine-grain data-level parallelism (as 𝑖𝑖 di-
mension is parallel). For 𝐿2, the 𝑗 𝑗 dimension is unrolled
which is not parallel. Hence, it does not lead to any vector-
ization.

The normalized execution cycles of 𝑔𝑒𝑚𝑣𝑒𝑟_𝑘2 loop for
an input size 𝑁 = 4096 and a tile size of 32 with and with-
out unroll-and-jam optimization are reported in Table 1. The
data in each row is normalized with respect to the best-
performing loop order (one with the lowest execution cy-
cles) across all the 12 loop orders when executed on the In-
tel Xeon Cascadelake server.2 Table 1 shows that this loop
gets benefitted by the unroll-and-jam optimization with 𝐿1
as the best-performing loop order. Why does this particular
loop order perform better?
2The details of our experimental framework and methodology are pre-
sented in Section 5.

i

Array Traversal for A[j][i] in L1(i,j,ii,jj) j
Array Traversal for A[j][i] in L3(i,ii,j,jj)

(a)

i

Array Traversal for A[i][j] in L5(j,i,jj,ii) j
Array Traversal for A[i][j] in L4(j,i,ii,jj)

(b)

Figure 1: Array Traversal for Two Loop Orders
The loop statements generated for 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖) loop

order without unroll-and-jam and 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) and
𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗) loop orders with unroll-and-jam exploit task-
and data-level parallelism in a similar way. However, in
loop orders 𝐿1 and 𝐿3 with unroll-and-jam , the writes to
𝑥 [𝑖𝑖] are optimized to scalar writes for the entire 𝑗 𝑗 and 𝑗, 𝑗 𝑗

iterations, respectively, and 𝑥 [𝑖𝑖] is updated only at the end
of 𝑗 𝑗 and 𝑗, 𝑗 𝑗 iterations; whereas, in 𝐿2 loop order without
unroll-and-jam , with 𝑖𝑖 being the innermost dimension, the
array 𝑥 is updated for every 𝑖𝑖 iteration. Thus, 𝐿1, 𝐿3 with
unroll-and-jam perform fewer stores and hence are likely
to perform better than 𝐿2 without unroll-and-jam . Further,
among 𝐿1 and 𝐿3, with unroll-and-jam, spatial locality of
2-D array 𝐴 is exploited in 𝐿1 as compared to 𝐿3 as shown
in Figure 1a. The intra-tile dimensions of 𝐿1 traverse the
current tile completely before moving to the next tile while
in 𝐿3, the accesses are interleaved across tiles as shown
in Figure 1a. Hence, 𝐿1 with unroll-and-jam is likely to be
a better performing loop order. Here, even the best loop
order without the unroll-and-jam transformation is 1.54x
slower. Picking a wrong loop order can incur performance
loss as high as 18.14x.

2.2.2 Cases where unroll-and-jam is not beneficial: Con-
sider a loop from 𝑎𝑑𝑖 benchmark as shown in Listing 4. This
loop has parallelism in 𝑗-dimension. All the arrays are 2-
dimensional and have row-major ordering. Table 2 shows
the normalized execution cycles for the 𝑎𝑑𝑖_𝑘3 loop for in-
put size 𝑁 = 8192 and a tile size of 32 with and without the
unroll-and-jam optimization.

for (i = 1 ; i <N ; i ++)
for (j = 0 ; j <N ; j ++) {
X[i] [j]=X[i] [j]−X[i −1] [j] ∗A[i] [j] / B [i −1] [j] ;
B [i] [j]=B[i] [j]−A[i] [j] ∗A[i] [j] / B [i −1] [j] ;
}

Listing 4: adi_k3 loop

UJOpt: Heuristic Approach for Applying Unroll-and-Jam Optimization and Loop Order Selection ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 2: Normalized Execution Cycles for 𝑎𝑑𝑖_𝑘3

Normalized Execution Cycles for N=8192
L1 L2 L3 L4 L5 L6

without UJ 1.13 2.49 3.39 1.00 1.86 8.49
with UJ 1.61 1.32 1.54 2.29 1.11 1.93

For this loop nest, as 𝑗-dimension is parallel, only loop
orders 𝐿4(𝑗, 𝑖, 𝑖𝑖, 𝑗 𝑗), 𝐿5(𝑗, 𝑖, 𝑗 𝑗, 𝑖𝑖)and 𝐿6(𝑗, 𝑗 𝑗, 𝑖, 𝑖𝑖) exploit
coarse-grain data-level parallelism (at the outermost level).
Other loops orders will exploit coarse-grain parallelism
where the inter-tile dimension of 𝑗 occurs, and hence will
involve synchronization for each iterations of the next outer
loop level. Without unroll-and-jam optimization, among
loop orders 𝐿4, 𝐿5, 𝐿6, only loop order 𝐿4 with the parallel
𝑗 𝑗-dimension at the innermost level, generates vector loads
and stores, while 𝐿5, 𝐿6 do not vectorize the innermost loop
and hence use simple loads and stores for all the 2-D arrays.

Table 2 presents the normalized execution time of this
loop nest. From Table 2, it can be seen that this loop
nest does not benefit from the unroll-and-jam transforma-
tion. Specifically, the performance of loop order 𝐿4 with-
out unroll-and-jam is better than 𝐿5 with unroll-and-jam
by 11%. Why doesn’t unroll-and-jam help in this loop nest?
Among 𝐿5, 𝐿6, loop order 𝐿5 exploits spatial locality more
effectively than 𝐿6. Loop orders 𝐿4 without unroll-and-jam
and 𝐿5 with unroll-and-jam exploit both coarse-grain and
fine-grain data-level parallelism in a similar way. Further,
both loop orders exploit spatial locality as they traverse the
entire current tile beforemoving on to the next tile as shown
in Figure 1b. However, the 𝐿5 traversal covers the tiles in a
column first order, while the 𝐿4 order does it the other way
around, resulting in a small performance difference. In our
experiments, we found that there are loop nests where all
loop orders with unroll-and-jam perform poorly compared
to without unroll-and-jam.

3 Heuristics Based Best-Performing Loop
Order for Unroll-and-Jam Optimization

In this section, we discuss our heuristic approach (UJOpt) to
determine whether or not apply the unroll-and-jam trans-
formation and the best-performing loop order for a given
loop. We consider loop permutation, loop tiling and unroll-
and-jam transformations.With these transformations, there
are totally 12 different loop orders, six with and six without
the unroll-and-jam optimization.

3.1 What Factors Influences the
Performance of a Loop Nest?

The performance of a loop depends on how well it exploits
different architectural features like multiple cores, vector
units, cache hierarchy, hardware prefetchers. For the 2-D

perfect loop nests considered in this work, the 𝑖- or 𝑗- or
both dimensions could be parallel depending on the depen-
dencies present in the loop nest. Depending on the paral-
lelism available in the loop nest, a specific loop order will
exploit the coarse-grain data-level parallelism in the respec-
tive inter-tile dimension of the tiled code. If the parallel
dimension happens to be at the outermost level, the par-
allel threads can execute independently on multiple cores
available without having to synchronize after each iteration.
However, if the parallel dimension is one of the inner loops,
then synchronization is required for each iteration of the
next outer loop. Such synchronization overheads reduce the
performance of the loop.

Similarly, if the parallel intra-tile dimension happens to
be the innermost dimension, fine-grain data-level paral-
lelism (vectorization) is exploited. Further, whether the par-
allel innermost dimension leads to vectorized loads/stores or
scatter/gather accesses is determined by the access patterns
of 2-D arrays. For example, the loop order𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖), with
parallelelism in 𝑖-dimension, will lead to vector loads/stores
of arrays with access pattern of type 𝐴[𝑗 𝑗] [𝑖𝑖] whereas it
generates scatter/gather accesses for arrays with access pat-
tern 𝐴[𝑖𝑖] [𝑗 𝑗]. From a performance point of view, scatter/-
gather accesses are more expensive than a vector load/store
instruction. Last, the opportunity to exploit vectorization is
lost, if the parallel intra-tile dimension happens to be one of
the inner loops (but not the innermost loop).

Next, some of the loop orders lead to optimizing the read-
/write accesses to arrays, if the array accesses do not include
the index of the inner loop. For example, with loop order
𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) writes to 𝑥 [𝑖𝑖] are optimized to scalar writes
(or writes to a register instead of to a memory location) for
the entire 𝑗 𝑗-iteration, followed by write to memory 𝑥 [𝑖𝑖]
only only at the end of 𝑗 𝑗-iteration. Similarly, loop order
𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗) will replace the writes to 𝑥 [𝑖𝑖] for the entire
(𝑗, 𝑗 𝑗) iteration by writes to a temporary (register) followed
by single memory written at the end of entire 𝑗-iteration.
This operation where the writes to 1-D arrays are optimized
reduce the cachewritebacks and help in exploiting themulti-
level caches more effectively.

Last, for a given set of array accesses, some loop orders
exploit spatial locality better than others. More specifically,
for a given array access pattern, some loop orders access all
the elements in the current tile completely, before moving
on to the next tile. In such traversals, all the cache lines of
the current tile will be available in the L1-cache and such
accesses do not incur any stalls. On the other hand, for the
same array access pattern, some loop orders traverse the
tiles in an interleaved fashion, accessing a single column
from the current tile, all the way up to the entire iteration
space and then accessing the next element from the first tile.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

Such accesses experience cache misses as the cache line be-
longing to the current tile will be replaced by others, thus
incurring stalls. For example, for array pattern type𝐴[𝑗] [𝑖],
loop order 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗) exploits spatial locality better than
𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗) as shown in Figure 1a.

All these parameters influence the performance of a loop
as they dictate how the architectural features will be ex-
ploited. Our heuristics take the characteristics of each loop
order and decide the best-performing loop order based on
the performance of a loop order with respect to these pa-
rameters. Developing an analytical model for estimating
the cost (execution time) of different loop orders with and
without unroll-and-jamwould have helped to determine the
best-performing loop order. However, our initial efforts to
construct a performance model using linear regression did
not yield good performance. Hence, we have proposed a sim-
ple yet practical heuristic that considers the characteristics
exploited by the loop orders.

3.2 Heuristics for determining
best-performing loop order

Each of the twelve loop orders considered with and with-
out unroll-and-jam optimization are characterized by a few
properties/features that distinguish them from each other.
For each loop, we extract certain features such as dimen-
sions along which parallelisms exist (𝑖 , 𝑗 or both), the num-
ber of references to arrays of the form A[f(i)][g(j)],
A[g(j)][f(i)], X[f(i)] and X[g(j)] in read and write
operations, where X and A represent, respectively, one- and
two-dimensional arrays, and f and g represent affine func-
tions3 of loop index variables i and j . A compiler can easily
extract these features.

The chosen input features have bearing on the architec-
ture and impact the performance of the loop nest. For ex-
ample, the A[f(i)][g(j)] vs. A[g(j)][f(i)] access pat-
terns along with the loop order capture the locality in ac-
cesses, vector loads vs. scatter-gather accesses. Similarly,
parallelism in i- or j-dimension indicates parallel outermost
loops and vectorizable inner loops for different loop orders.
Writes to 1-D arrays and 2-D array access functions cap-
ture the dependent loop dimension. Using these features,
for each loop order, a vector representing its characteristics
is generated. We consider the following characteristics for
each loop order.
(1) A bit indicating whether the outermost loop is paral-

lel.
(2) The number of references to 2-dimensional arrays

that are vectorized.
3The constraints on the loop nest structure and affine accesses arise from
the polyhedral frameworks.

Table 3: Characteristic Vectors for gemver_k2 Loop

Loop Order Characters
Loop
Order

(1) (2) (3) (4) (5) (6)

Without Unroll-and-Jam Optimization
L1 1 0 0 0 1 5
L2 1 1 2 0 0 6
L3 1 0 0 0 1 4
L4 0 0 0 0 1 2
L5 0 1 2 0 0 3
L6 0 1 2 0 0 1

With Unroll-and-Jam Optimization
L1 1 1 2 0 1 5
L2 1 0 0 0 0 6
L3 1 1 2 0 1 4
L4 0 1 2 0 1 2
L5 0 0 0 0 0 3
L6 0 0 0 0 0 1

(3) The number of references to 1-dimensional arrays
that are vectorized.

(4) The number of references to 2-dimensional arrays
with scatter/gather memory operations.

(5) The number of references to 1-dimensional arrays
with write/store optimization.

(6) The spatial locality exploited on 2D (or higher dimen-
sional) arrays. A value in the range of 1 to 6 (higher is
better) is assigned to the 6 loop orders both with and
without unroll-and-jam optimization, indicating the
relative extent of spatial locality exploited by them.

Characteristics (2)-(4) of loop orders L1, L3, and L4 with-
out unroll-and-jam and L2, L5, and L6 with unroll-and-jam
will be the same, corresponding to the intra-tile dimension
that gets vectorized and unrolled in them, and vice-versa.
The characteristics numbered (1), (5) and (6) differ across
loop orders depending on the parallel dimension, store op-
eration and array access patterns in the loop order. Note that
the input size (N) is not included as a characteristic of a loop
order4. The loop order chosen by UJOpt will be the same
across all 𝑁 values of that loop nest. As we demonstrate in
Section 6, we have used three different 𝑁 values and our
approach works well across different input sizes.

For the loop shown in Listing 1, the twelve characteristic
vectors corresponding to twelve loop orders (first six with-
out unroll-and-jam and next six with unroll-and-jam opti-
mization) are as shown in Table 3.

Our heuristic algorithm is presented in Algorithm 1. It
takes as input the above 6 characteristics of the 12 differ-
ent loop orders, represented as a 12 × 6 matrix C and 𝑆𝑇

containing the list of all stores in the loop nest. From them,
4Our initial experiments with input size as a loop order characteristic did
not result in significant benefits, affecting the performance for a few loops.

UJOpt: Heuristic Approach for Applying Unroll-and-Jam Optimization and Loop Order Selection ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Algorithm 1: To Find the Best-Performing Loop Or-
der with Unroll-and-Jam Optimization

1 Function Find_Best_Performing_Looporder(C,𝑆𝑇)
Input: C[ℓ, 𝑘]: A 12 × 6 matrix, where ℓ

represents the loop order and 𝑘
represents the 𝑘𝑡ℎ characteristic
𝑆𝑇 : List of all stores in the loop nest

Output: Best-Performing loop order
2 𝑆1=Select from C the loop orders with parallel

outermost dimension i.e., loop orders for which
C[ℓ, 1] is 1

3 if Majority of stores in 𝑆𝑇 are 2-D then
4 𝑆2=Select loop orders from 𝑆1 that generate

either zero or minimum number of
scatters/gathers for 2-D arrays i.e., loop
orders that have the lowest values for
C[ℓ, 4]

5 𝑆3=Select loop orders from 𝑆2 that vectorize
1-D or 2-D arrays i.e., loop orders for which
C[ℓ, 2] or C[ℓ, 3] is 1

6 else
7 𝑆2=Select loop orders from 𝑆1 that vectorize

1-D or 2-D arrays i.e., loop orders for which
C[ℓ, 2] or C[ℓ, 3] is 1

8 𝑆3=Select loop orders from 𝑆2 that generate
lower scatters/gathers for 2-D arrays i.e.,
loop orders that have lower values for
C[ℓ, 4]

9 𝑆4=Select loop orders from 𝑆3 that enable write
optimizations i.e., loop orders for which C[ℓ, 5]
is 1

10 𝑆5=Select loop order(s) from 𝑆4 that exploits
spatial locality i.e., loop orders that have the
highest value for C[ℓ, 6]

11 if 𝑆5 contains only one loop order then
12 Output the loop order
13 else
14 Output the loop order without the

unroll-and-jam optimization

only loop orders with parallelism present in the outermost
level will be selected at line 2. In case of loops with both
dimensions parallel, all 12 loop orders will be selected. For
loops with either 𝑖- or 𝑗- dimension being parallel, only six
loop orders (three each with and without unroll-and-jam)
will be selected. The remaining loop orders which are not
parallel in the outermost level will be discarded.

At line 3, a check is made whether the majority of store
operations in 𝑆𝑇 contain 1-D or 2-D arrays. If the majority
of the store operations contain 2-D arrays, then at line 4, the

loop orders that generate either zero orminimumnumber of
scatter/gather accesses for 2-D arrays are selected as below.
Suppose all loop orders generate scatter-gather operations,
which happens for loops with both parallel dimensions and
2-D arrays of both access patterns are present; then, a check
is made whether there are loop orders with fewer scatter-
s/gathers. If such loop orders are present then they are se-
lected; else, all loop orders generate an equal number of scat-
ters/gathers, and they will be selected. If not all loop orders
generate scatters/gathers (which happens for either 𝑖- or 𝑗-
dimension parallel loops or both dimension parallel loops
with only one type of 2-D array access patterns), then only
loop orders that do not generate scatters/gathers will be se-
lected. From the selected loop orders, at line 5, only those
loop orders that vectorize 1- and 2-D arrays will be selected.

If the majority of the store operations contain 1-D arrays,
then at line 7, only those loop orders that vectorize either
1-D or 2-D arrays will be selected. At line 8, only those loop
orders that generate zero scatters/gathers for 2-D arrayswill
be selected. In the next step, from the selected loop orders,
only those loop orders that enable write optimizations will
be chosen at line 9. At line 10, only loop orders that ex-
ploits spatial locality will be chosen among the loop orders
selected in the previous step. At line 11, if the output set
contains a single loop order, then it is chosen as the best-
performing loop order as given by the heuristic. If there are
more than one loop orders in the output set, then the loop
order without unroll-and-jam is given as the output.

Intuitively, for loop nests with majority of 2-D store op-
erations the heuristic does not recommend unroll-and-jam
optimization, if the access pattern of all the 2-D arrays is
same, as some loop orders without unroll-and-jam gener-
ate vector loads/stores of 2-D arrays while with unroll-and-
jam there will be scatters/gathers. For loops with mixed 2-
D array access patterns, unroll-and-jam optimization is rec-
ommended with the loop order that exploits spatial local-
ity depending on the reference count of each access pat-
tern. For loop nests with majority of 1-D store operations,
if loops with parallel 𝑖- or 𝑗- dimension have all the 2-D ar-
rays of the same access pattern (either A[f(i)][g(j)] or
A[g(j)][f(i)]), then unroll-and-jam optimization is rec-
ommended. If 2-D arrays with both the access patterns are
present, then unroll-and-jam is recommended if majority of
the accesses are of the form A[f(i)][g(j)] for loops with
parallel 𝑖-dimension and A[g(j)][f(i)] for loops with par-
allel 𝑗-dimension.
We remark here that UJOpt only chooses one among 12

loop orders based on the characteristic vectors of each loop
orders. Checking the legality of loop transformation or en-
abling appropriate parallelization/vectorization is done by
the Polly [17] framework, which ensures the correctness of
our approach. Though, we use a simple heuristic approach

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

with a fewer characteristics of each loop order, it works well
in practice as demonstrated in Section 6.

4 Implementation
We have implemented our tool UJOpt as a separate module
for this work. Integrating the tools into mainstream com-
pilers like LLVM with Polly [17] and GCC [36], requires
marking the target loop using compiler directives and ex-
tracting the 12 characteristic vectors for the loopnest, which
are then given as input to ourUJOpt to identify the best loop
order. The rest of the compiler tool chain can take the out-
put of UJOpt and generate the code. The compilation pro-
cess involves generating an appropriate jscop file based on
the loop order selected by UJOpt. The generated jscop file
along with appropriate set of compiler flags are then given
to the LLVM compiler integrated with Polly [17]. The LLVM
compiler tool chain generates the architecture specific tar-
get code, using the jscop file and compiler flags. This ap-
proach does not require any modification to the existing
LLVM or Polly tool infrastructure. The overhead in terms
of compilation time introduced by our method is relatively
small (10’s of milliseconds) and the compilation times are
similar to the Polly [17] compiler. This small increase in the
compilation time due to our heuristics could potentially re-
sult in a significant improvement in the execution time,mak-
ing our heuristic approach favorable for real-world usage.

5 Experimental Methodology
5.1 Architecture Used
We have used an Intel Xeon Cascadelake 8268 system [6] for
our experiments, with 48 cores in a 2-socket configuration.
The base frequency of the processor is 2.9 GHz. The system
has 192GB of DDR4 RAM operating at 2933 MHz. There are
2memory controllers and 3memory channels per controller.
Each core has an L1d and L1i cache each of capacity 32KB
per core and an L2 cache of capacity 1MB per core. It sup-
ports AVX-512 instructions. The cores in a socket share an
L3 cache of capacity 35.75MB.

5.2 Measuring Execution Cycles
We measure the execution cycles for different loop or-
ders of loop nests, with and without unroll-and-jam
optimization, using the _𝑟𝑑𝑡𝑠𝑐 [2] function. We have
used state-of-the-art compilers LLVM 11.0v integrated
with Polly tool (opt 11.0) with appropriate flags (polly-
parallel, polly-vectorizer=polly, polly-tile-sizes=32,32,
mattr=+avx512f, mcpu=cascadelake, -O3) to generate the
code for each of these versions. We use 32 cores of Intel
Xeon Cascadelake server [6], to distribute the outer parallel
loop evenly across all cores for the problem sizes we
have considered. To minimize the variations in execution

cycles, we had exclusive access to the server during the
run, and hyperthreading on each core was disabled to
minimize OS-related latencies[15, 29]. Further, to reduce
the variations in the execution cycles across multiple
executions of test loops, in a single execution, we run the
program 20 times and measure the execution cycles in
each execution for the entire loop. From these values of a
single execution, outliers are removed using the standard
1.5 × 𝐼𝑛𝑡𝑒𝑟𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑅𝑎𝑛𝑔𝑒 (𝐼𝑄𝑅) [30] method. The resulting
values are accepted if the coefficient of variation (CV) is less
than or equal to 2%, else we repeat the execution ten more
times, discard the outliers, and accept the values if the CV
is less than or equal to 2%. The whole run is discarded if the
CV is found to be greater than 2% or if we find more than
20% of the outliers are removed. We repeat such execution
five times for each program. The final execution cycle
value is the average of all five averages taken across five
executions. With this rigorous procedure for measuring the
execution cycles, the CV was observed to be less than 2% in
all our measurements.

5.3 Benchmarks Used
Wehave used twenty-three 2-dimensional perfect loop nests
from Polybench-3.2 [25] benchmark suite that are per-
mutable, tileable in both dimensions and have parallelism
in at least one dimension. These loops have one or more
statements (up to five) but contain complex arithmetic ex-
pressions involving multiple operations and operands. The
name of the benchmark and the number of loop nests taken
from them are listed in Table 45. Further, we looked at
PolyBench-4.2 as well, but could not add any additional ker-
nels to our test set as they were not permutable. We refer to
this set of loops as Poly_Loops.

Table 4: List of Benchmarks Used

Benchmark
Name

No.of
loops

Benchmark
Name

No.of
loops

Benchmark
Name

No.of
loops

gemver 3 syrk 1 jacobi-2d 1
atax 2 adi 4 gemm 3

gesumm 1 fdtd-apml 2 syr2k 3
mvt 1 fdtd-2d 2

These loops can be grouped based on the parallel dimen-
sion, type and access pattern of arrays of store operations,
and the access patterns of the 2-D arrays present in the loop.
To complete Poly_Loops set to contain loops from all the
groups, we have included eight more synthetic loops in this
test loop set. Thus, there are 31 loops in Poly_Loops test set.
We have used three different problem size values, 𝑁 = 4096,
5Note that test loops fdtd-2d and jacobi-2d have stencil-like computations.

UJOpt: Heuristic Approach for Applying Unroll-and-Jam Optimization and Loop Order Selection ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 5: Performance Comparison

Geometric Mean of Normalized Execution Cycles
Test Set UJOpt Without unroll-and-jam With unroll-and-jam Oracle Predictor

SVM_Pred Polly Pluto SVM_Pred Polly Pluto SVM_Pred_Oracle Polly_Oracle Pluto_Oracle
Poly_Loops 1.07 1.23 1.92 1.54 1.24 1.34 1.48 1.16 1.30 1.25
Synth_Loops 1.13 1.56 1.68 1.33 1.22 1.30 1.44 1.19 1.19 1.14

𝑁 = 6144, and 𝑁 = 8192, in our evaluation6. We fixed the
tile size to 32 and unroll factor to 4. We obtain the execution
cycles for all the twelve loop orders and for all the problem
sizes of a test loop on Intel Xeon Cascadelake server and the
loop order with the minimum execution cycles is the best-
performing one. We also evaluate the performance of our
heuristics on another set of test loops obtained using a syn-
thetic loop generator tool, which generates 2-D loop nests
whose characteristics (as listed in Section 3.2) match that of
real-world loops. We generate 100 synthetic loops of each
problem size 𝑁 in this set and we refer to this test set as
Synth_Loops.

6 Results and Discussions
This section discusses the results of our heuristics-based ap-
proach for loop nests on Intel Xeon Cascadelake server. We
refer to our proposed heuristics-based approach as UJOpt.
We compare the execution cycles obtained using our ap-
proach with an oracle method (referred to as Optimal) that
always picks the best-performing loop order among the
12 loop orders. We report the normalized execution cycles
of our approach, normalized with respect to the Optimal
approach. This is a “lower is better metric” and indicates
how far the performance of the identified loop order of the
method is from the Optimal one. Further, when reporting
the performance for a set of test loops, we take the geomet-
ric mean of the normalized execution cycles across different
loops in the test set.

We compare the performance of UJOpt with (i) the
code generated by Polly [17] and Pluto [12] and (ii)
SVM_Pred [8], a highly-tuned Support Vector Machine
(SVM) based method that predicts the best-performing loop
order with and without the unroll-and-jam optimization.
We do not consider production compilers like GCC [36] and
Clang [21] as they do not tile or apply a loop order auto-
matically, and require the end user to manually tile the loop
and select a loop order. However, Polly [17] and Pluto [12]
which we consider for evaluation project are somewhat sim-
ilar comparison as Polly [17] uses the LLVM infrastructure
underneath (similar to Clang [21]. Compilers like TVM or
6These input sizes result in working set sizes which are beyond large L3
cache (35.75 MB of Intel Xeon Cascadelake processor.)

AutoTVM[13] used for deep learning optimizations, con-
sider only tiling and loop order selection but do not consider
loop unroll-and-jam transformation.

Further, for each of these methods, we report the per-
formance of an (infeasible) oracle version of each of these
methods that always knows whether or not to apply the
unroll-and-jam transformation for a given loop nest. In all
the methods, we used a fixed tile size of 32.

6.1 Performance Comparison
Table 5 reports the geometric mean of normalized execution
cycles of different methods, normalized with respect to the
oracle Optimal method. Our approach UJOpt performs bet-
ter than all the compared methods for both the test sets,
achieving performance within 7% and 13% from the Opti-
mal loop order. UJOpt outperforms Polly and Pluto by a sig-
nificant margin: UJOpt achieves 1.48x – 1.79x performance
improvement7 over Polly without the unroll-and-jam opti-
mization and 1.15x – 1.25x over Polly with the unroll-and-
jam optimization. Performance comparison over Pluto num-
bers range from 1.18x – 1.44x and 1.27x – 1.38x without
and with the unroll-and-jam optimization. UJOpt also out-
performs SVM_Pred [8] which is an SVM based loop order
predictor by 1.15x – 1.38x and 1.08x – 1.16x, respectively,
without andwith the unroll-and-jam optimization.With our
rigorous execution cycle measurement procedure discussed
in Section 5.2, the performance benefits reported in our re-
sults are significantly higher than the 2% CV that we used
in the measurement.

Interestingly, our heuristic approach UJOpt outperforms
the competing methods even when we assume that they
(Polly, Pluto and SVM_Pred) have an oracle capability to
decide on whether or not to apply the unroll-and-jam op-
timization. The performance improvement of UJOpt over
these methods (with the oracle capability) range from 16% –
30% for Polly loops and 14% – 19% for synthetic loops. At
best, the performance of Pluto_Oracle is close to that of
UJOpt for Synth_Loops. However, oracle predictors are hy-
pothetical and infeasible.
7These performance numbers against other competitive methods are ob-
tained by taking the ratio of normalized execution cycles of Polly to that
of UJOpt method.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

The average prediction accuracy, i.e., the ratio of the num-
ber of times UJOpt identifies the best-performing loop or-
der (among the 12 loops orders) to the total number of
loops in the benchmark is 70% and 52% for Poly_Loops and
Synth_Loops, respectively. Although the prediction accu-
racy values are not significantly high, the average perfor-
mance loss values of UJOpt over Optimal are only 7% and
13% for the two benchmark sets. This is because even when
our heuristic did not pick the best-performing loop order,
it selects either the second or third best-performing loop or-
der. To capture this and to give a better measure of accuracy,
we define top-2 accuracymetric, which considers the predic-
tion is accurate if the selected loop order is the lowest or the
second lowest. Similarly, for the top-3 accuracy metric, the
prediction is considered accurate if our heuristic selected a
loop order which is within top-3 configurations among the
twelve loop orders. The top-2 and top-3 prediction accura-
cies for our methods are 88% and 95%, respectively.

Polyhedral frameworks like Pluto [12] and Polly [17] use
simple heuristics to identify the loop order. Polly without
unroll-and-jam incurs significant losses, as it does not ex-
ploit data-level parallelism using vectorization in certain
loop nests. Pluto [12], on the other hand, optimizes for vec-
torization and therefore performs slightly better than Polly.
However, both methods (with and without the unroll-and-
jam optimization) still perform poor compared to UJOpt.
Both, Polly and Pluto determine the same loop orders for
a loop with and without unroll-and-jam optimization, with-
out taking into consideration that with unroll-and-jam op-
timization, the second innermost intra-tile dimension gets
unrolled.

The performance losses incurred by Polly with unroll-
and-jam are lesser than those without the unroll-and-jam
optimization. Polly gives the same loop order with and with-
out unroll-and-jam optimization. For most of the loops with
parallel 𝑖-dimension, with unroll-and-jam optimization, the
loop orders given by Polly unroll the parallel intra-tile di-
mension, leading to vectorized accesses of 1- and 2-D ar-
rays, and are the best-performing loop orders, thus reducing
the performance losses incurred. Pluto, on the other hand,
performs no additional optimizations with unroll-and-jam
other than unrolling the second innermost loop dimension,
although it takes vectorization into account.

6.2 Complete Benchmark Execution
Here, we consider five representative benchmarks from the
Polybench-3.2 suite [25, 26] having more than one ker-
nel, and measure the execution cycles taken for the com-
plete execution of the benchmark for each problem size.
For Polly [17] and Pluto [12], we consider the cases with
and without unroll-and-jam optimization separately, while

for our approach, we consider the loop orders given by
our heuristic model UJOpt. Figure 2 shows the normalized
execution cycles, normalized with respect to Polly_UJ, for
all the five methods (Polly_NoUJ, Pluto_NoUJ, Polly_UJ,
Pluto_UJ and UJOpt), for problem size 8192. It can be ob-
served that UJOpt performs better than all the other four
methods across all the five benchmarks. We observe similar
trends for problem sizes 4096 and 6144. Overall UJOpt out-
performs Polly and Pluto without unroll-and-jam optimiza-
tion by 48.34% and 14.2%, respectively, and Polly and Pluto
with unroll-and-jam optimization by 47.36% and 21.48%, re-
spectively.

Figure 2: Complete Benchmark Execution
Performance

6.3 Handling Higher Dimensional Loops
In this work, so far, we have considered only two-
dimensional perfect loop nests. When the dimensionality of
the loop nest is increased beyond, the number of legal or-
ders to be considered (with or without the unroll-and-jam
optimization) increases significantly. For example, for a 3-
dimensional loop, the number of loop orders with unroll-
and-jam is 180. Extending our heuristic approach to such
higher dimensional loop nests involves dealing with a large
number of loop orders, and this may in turn reduce the pre-
diction accuracy and the effectiveness. Instead, we propose
extending our approach by applying the heuristic only to
the innermost two loop orders.

We decide the innermost two loop orders to be used, by
a simple heuristic based on the parallel dimension, num-
ber of 2-D arrays vectorized or scattered/gathered, number
of write-optimizations, and spatial locality exploited by the
loop permutation. On the selected loop permutation, the in-
nermost two loop orders are tiled and our approach is ap-
plied on them. We have tested this approach, for a problem
size of 2048, on five 3-D test loops consisting of two loops
from the Polybench [25, 26] suite and three hand-generated
loops, to include different array access patterns. The geomet-
ric mean of normalized execution cycles of the loop orders
identified by UJOpt is within 16% of the Optimal loop order

UJOpt: Heuristic Approach for Applying Unroll-and-Jam Optimization and Loop Order Selection ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 3: Executing Higher Dimensional Loops with
UJOpt

among the 36 loop orders with or without the unroll-and-
jam (12 loop orders for each of the three loop permutations),
as shown in Figure 3. Note that for 3D3_kij loop, UJOpt per-
forms significantly better than all other methods. This is be-
cause the loop orders selected by other methods do not ex-
ploit spatial locality for some arrays, where as UJOpt identi-
fies a loop order that enables vectorization and exploits spa-
tial locality, thus performing better than other methods.This
demonstrates that our approach can be extended to higher
dimensional loops.

6.4 Sensitivity Study
6.4.1 Changing Core Count and Tile Size. For the experi-
ments discussed so far, we have used 32 (out of 48) cores
of the Intel Xeon Cascadelake processor [6] and a fixed tile
size of 32. To understand the performance of UJOpt for dif-
ferent number of cores and tile size, we experimented by
varying these parameters. The results of these experiments
are presented in Table 6.

On Intel Xeon Cascadelake processor we used two differ-
ent core counts, 16 and 48, keeping the tile size as 32. The
Table 6: Performance of UJOpt for Different Core

Counts and Tile Sizes

Intel Xeon Cascadelake
Tile Size No. of Cores GeoMean of

Normalized
Execution Cycles

32 16 1.09
32 32 1.07
32 48 1.09
32 32 1.07
64 32 1.07

AMD EPYC 9654 Processor
32 8 (1 NUMA) 1.12
32 16 (1 NUMA) 1.13
32 32 (2 NUMA) 1.13
32 32 (4 NUMA) 1.14

geometric mean of normalized execution cycles across the
93 benchmark loops (31 loop nests (23 Polybench loops +
8 synthetic loops) of three input sizes) for each core count
is presented in Table 6. Note that normalization of execu-
tion cycles for each loop nest and core count is done with
respect to the oracle Optimal loop order of that loop nest
for the given core count. We find the performance of UJOpt
across different core counts to be somewhat similar — less
than 9% performance loss compared to the oracle Optimal
method. Similarly, when the tile size is changed to 64 (with
core count of 32), the geometric mean of normalized exe-
cution cycles across the 93 benchmark loops for UJOpt is
1.07, demonstrating that the performance of our approach is
within 7% of the Optimal. These experiments indicate that
the heuristic used in UJOpt performs well across changing
core count and tile size parameters.

Further, we have also evaluated UJOpt on AMD EPYC
9654 processor [10], which is the fourth generation proces-
sor of the AMD EPYC server processor family. The proces-
sor cores can be organized into one, two or four NUMA do-
mains [4, 10]. On this processor, we fixed the tile size as
32 and experimented using three core count values, 8, 16
and 32 under different NUMA settings. The geometric mean
of normalized execution cycles of the loop order identified
by UJOpt across different core counts and NUMA configu-
ration varied between 1.12 –1.14. Note again that the nor-
malization is with respect to the oracle Optimal loop order
for the respective configuration. Thus, the performance of
UJOpt was within 12% – 14% from Optimal across all these
experiments. These experiments indicate that the character-
istic vectors considered by our heuristic capture the loop or-
der characteristics effectively and our approach works well
across different target architectures.

6.4.2 Changing Unroll Factor. The experiments discussed
so far use an unroll factor of 4. We experimented increasing
the unroll factor to 8 for 10 Poly_Loops kernels. Our heuris-
tic works well when the unroll factor is set to 8, although
the performance benefit decreases slightly as compared to
the unroll factor of 4. UJOpt performs within 12% of Opti-
mal for 30 Poly_Loops kernels (10 kernels each with 3 dif-
ferent input sizes) with an unroll factor of 8. It achieves an
improvement of 1.69x and 1.20x over Polly and Pluto (with-
out unroll-and-jam) and 1.20x and 1.53x over Polly and Pluto
(with unroll-and-jam). We observe that about 23% of the
loops do not get benefited by increased unroll factor with
unroll-and-jam and hence contribute towards the observed
performance loss.

6.5 Using Machine Learning Approaches
Can we apply machine learning techniques to identify the
best-performing loop order with and without the unroll-
and-jam optimization? This can be solved as a classification

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

problem by applying the supervised machine learning tech-
niques. The best-performing loop order of a loop (a number
in the range of 1 to 12) is the output class. The output class
for the loop nests are labeled by selecting the loop order that
results in the lowest execution cycles. We experiment us-
ing Support Vector Machine (SVM) [14, 23] supervised ma-
chine learning techniques to this labeled data. We use the
synthetic loops set, Synth_Loops, as the training data set
and Poly_Loops as the test set. The train and test data sets
are characterized by features (discussed in Section 3.2, such
as the parallel dimension (categorical variables), and the
number of references to arrays of the form A[f(i)][g(j)],
A[g(j)][f(i)], X[f(i)], and X[g(j)], where X and A rep-
resent one- and two-dimensional arrays, and f and g repre-
sent affine functions of loop index variables i and j. Addi-
tionally, we included a few other features such as the prob-
lem size 𝑁 and the number and the type of store operations.
The train and test data were normalized to zero mean and
unit variance for all our experiments.

6.5.1 C5.0 Classification Tree. We have trained a classifica-
tion tree based on C5.0 decision tree algorithm. We have
used the tree-based C5.0 implementation from the C50 [20]
package. The hyperparameter "trials", which is the number
specifying the boosting iterations was varied between 5 to
50, and we report the best performance across all iterations.
The geometric mean of normalized execution cycles of the
predictions made by this classification tree over Optimal
was 1.42 with a prediction accuracy of 26.88%. Although
classification tree methods have the advantage of explain-
able behavior, the higher performance loss and lower pre-
diction accuracy discourage us from pursuing it further.

6.5.2 SVM Classifier. We have used the SVM implementa-
tion e1071 [22], which solves a multi-class classification
problem using a one-against-one approach by constructing
𝑛(𝑛 − 1)/2 binary classifiers (where 𝑛 denotes the number
of classes) and the class label of a data point is found us-
ing a majority vote. For our experiments, we have explored
both linear and radial basis function kernels of the e1071
package of R(version 3.6.0). However, SVMs with linear ker-
nels performed better on our data set. The regularization
hyperparameters in the objective function of the SVM classi-
fication problemwere tuned using the cross-validation tech-
nique. These hyperparameters varied over 2−5 to 25. The hy-
perparameter values, which resulted in the best validation
set performance, were used for final training and prediction
purposes. We have used 5-fold cross-validation to avoid se-
lection bias in themodel. The geometricmean of normalized
execution cycles of the predictions made by this SVM classi-
fier model overOptimal was 1.27 with a prediction accuracy

Table 7: Performance of Machine Learning
Techniques

Geo Mean of Normalized Execn. Cycles
Test Set C5.0 SVM SVM_Tuned_100 SVM_Tuned_200

Poly_Loops 1.42 1.27 1.22 1.17

of 46.24%. The performance of this SVM classifier is no bet-
ter than our UJOpt; however it performs better than Polly
and Pluto.

We further tune the hyperparameters of the SVM radial
kernels using grid search methods to build a more robust
SVM classifier referred to as SVM_Tuned. The performance
loss incurred by SVM_Tuned overOptimal is 1.22 with a pre-
diction accuracy of 48.39%. The performance of the machine
learning techniques are summarized in Table 7. It can be
observed that, in our experiments, machine learning tech-
niques do not perform as well as our heuristic approach
UJOpt. The main reason for the sub-optimal performance
of machine-learning techniques could be that the training
data set used for building these models is a is small and con-
tains only 100 loops. It may not cover the entire set of all the
output classes, which could be one of the main reasons for
the average performance of these machine learning models.
By increasing the training data set to 200 loops, the perfor-
mance loss over Optimal was reduced from 1.22 to 1.17.

We have provided the machine-learning models as a rea-
sonable alternative to heuristic and our initial machine-
learning models are based on the existing features of the
training data sets. Improving the performance of these mod-
els can involve systematic exploration of the training space
or considering other options beyond C5.0 and SVM. By cap-
turing representative input features and using an extensive
training data set, these machine learning approaches can be
extended to build more robust models. However, such an
approach would also require larger training overheads. In
contrast, ourUJOpt uses simple heuristics (based on domain
knowledge) and is effective on both benchmark sets.

7 Related Work
Most of the work on loop transformations is towards com-
ing up with a compiler framework or use machine learning
(ML) based approaches to predict to explore the sequence of
loop transformations for the underlying architecture. Stock
et al. [34] develop an ML model trained using tensor con-
tractions and consider loop permutation, vectorization and
unroll-and-jam transformations. However, they do not con-
sider exploiting coarse-grain parallelism along with vector-
ization. In our work, the heuristic selects loop permutation
with and without unroll-and-jam optimization, that can en-

UJOpt: Heuristic Approach for Applying Unroll-and-Jam Optimization and Loop Order Selection ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

able both parallization and vectorization. Our heuristic se-
lects loop orders taking to account synchronization over-
heads that may be incurred at the outer loop level (depend-
ing on the dependencies and the chosen loop order). Fur-
ther, our approach handles loops with parallelism in either
or both the dimensions, while they consider only loop nests
with parallelism in all dimensions. Further, our approach ex-
tracts the features of the loop nest without generating the
object code for each loop order or variant, in order to gen-
erate the characteristic vectors for them. This could be an
important factor in the production compilers. While their
approach can handle multi-dimensional loops but does not
take tiling into account. Our approach considers tiling but is
limited to 2-dimensional loop nest, with extension to multi-
dimension loop nest in a limited setting.

Girbal et al. [16] present a framework based on unified
representation of loops and statements to support program
transformations such as loop fusion, tiling, array forward
substitution, statement reordering, array padding, etc., and
compositions of these transformations. Trifunovic et al. [35]
present a fast and accurate cost model and a framework
to extract vectorization opportunities using polyhedral rep-
resentation. Pouchet et al. [28] propose the decomposition
of the optimization problem represented as convex polyhe-
dron into sub-problems of much lower complexity, introduc-
ing fusibility concept in PoCC [27]. Bondhugula et al. [11]
develop a framework for automatic parallelization and data
locality optimization of imperfectly nested loops in the poly-
hedral model to minimize inter-tile communication volume.
A framework for integrated data locality, multi-core par-
allelism, and SIMD execution of programs was proposed
in [19] using codelets.

An end-to-end, fully automatic framework driven by an
integer linear optimization framework that finds out good
ways of tiling for parallelism and locality using affine trans-
formations is proposed in [12]. Grosser et al.[17] implement
polyhedral techniques on top of the LLVM framework to
transform and optimize parts of the program in a language-
independent way. While [17] attempts to exploit task-level
parallelism and data locality; it does not target data-level
parallelism/SIMD vectorization. We have performed a quan-
titative comparison of our method with [12] and [17]. The
work in [31] looks at selecting unroll factors for perfectly
nested loops automatically and generating the compact code
for the selected unroll factors. We focus on when to apply
the unroll-and-jam optimization, which could benefit by us-
ing a best-performing unroll factor. To the best of our knowl-
edge, there does not exist any work that integrates loop
tiling, loop permutation and loop unroll-and-jam transfor-
mations using heuristics to exploit coarse-grain paralleliza-
tion, vectorization, spatial locality and write optimization.
We also show substantial improvements over existing tools.

In [1], the authors develop an ML model by training a
set of programs for loop unrolling, common subexpression
elimination, if hoisting, and copy propagation. Ashouri et
al. [7] apply ML techniques to model and predict the phase
order of compiler optimization sequences Haj-Ali et al. [18]
use different ML methods for an auto-vectorization method,
but focus only on vectorization. Stephenson et al. [33] ap-
ply supervised classification to predict the unroll factors
for loops. OpenTuner [5] ensembles different search tech-
niques for autotuning a code for a given architecture based
on the architectural parameters. Sioutas et al.[32] developed
an analytical model for Halide DSL to select the cache hier-
archy level and the tile size such that cache misses are re-
duced. These focus more on memory hierarchy and domain-
specific languages.

8 Conclusion
In this work, we proposed a heuristic based approach for
identifying the best-performing loop order for a given loop
nest with unroll-and-jam optimization for multicore archi-
tectures. Our proposed approach considers loop permuta-
tions with unroll-and-jam that can enable parallelization
and vectorization and identifies the best-performing loop
order based on the characteristics of different loop orders.
Our proposed heuristic approach identifies loop orders that
are within 7% and 13% of the optimal loop order for the
two benchmark sets studied and outperforms state-of-the-
art techniques, Pluto and Polly.

Acknowledgments
We acknowledge the research fundings received from Intel
Technology India Private Limited and VolvoGroup India Pri-
vate Limited which supported this work.

References
[1] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori

Fursin, Michael FP O’Boyle, John Thomson, Marc Toussaint, and
Christopher KI Williams. 2006. Using machine learning to focus it-
erative optimization. In International Symposium on Code Generation
and Optimization (CGO’06). IEEE, 11–pp.

[2] KahramanAkdemir,Martin Dixon,Wajdi Feghali, Patrick Fay, Vinodh
Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich, and Ronen Zohar.
2010. Breakthrough AES performance with intel AES new instruc-
tions. White paper, June 12 (2010), 217.

[3] John R Allen and Ken Kennedy. 1984. Automatic loop interchange. In
Proceedings of the 1984 SIGPLAN symposium on Compiler construction.
233–246.

[4] AMD. 2024. 4th Gen AMD Processor Architecture. Technical Report.
AMD.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. Opentuner: An extensible framework for program autotuning.
In Proceedings of the 23rd international conference on Parallel architec-
tures and compilation. 303–316.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

[6] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar,
Lily P Looi, Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob
Valentine, Geetha Vedaraman, et al. 2019. Cascade lake: Next gen-
eration intel xeon scalable processor. IEEE Micro 39, 2 (2019), 29–36.

[7] Amir H Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano,
Sameer Kulkarni, and John Cavazos. 2017. Micomp: Mitigating the
compiler phase-ordering problem using optimization sub-sequences
and machine learning. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 3 (2017), 1–28.

[8] Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil,
and R Govindarajan. 2023. A Machine Learning Approach to
Identify the Best-Performing Loop Order. https://github.com/
knightlander2023/OptLoopOrder, Technical Report, Department of
Computer Science and Automation, Indian Institute of Science, Ben-
galuru.

[9] David F Bacon, Susan L Graham, and Oliver J Sharp. 1994. Compiler
transformations for high-performance computing. ACM Computing
Surveys (CSUR) 26, 4 (1994), 345–420.

[10] Ravi Bhargava and Kai Troester. 2024. AMD Next Generation" Zen 4"
Core and 4 th Gen AMD EPYC™ Server CPUs. IEEE Micro (2024).

[11] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagan-
nathan Ramanujam, Atanas Rountev, and Ponnuswamy Sadayappan.
2008. Automatic transformations for communication-minimized par-
allelization and locality optimization in the polyhedral model. In In-
ternational Conference on Compiler Construction. Springer, 132–146.

[12] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. 2008. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. 101–113.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing
compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 578–594.

[14] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks.
Machine learning 20, 3 (1995), 273–297.

[15] Pradipta De, Ravi Kothari, and Vijay Mann. 2007. Identifying sources
of operating system jitter through fine-grained kernel instrumenta-
tion. In 2007 IEEE International Conference on Cluster Computing. IEEE,
331–340.

[16] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen,
David Parello, Marc Sigler, and Olivier Temam. 2006. Semi-automatic
composition of loop transformations for deep parallelism and mem-
ory hierarchies. International Journal of Parallel Programming 34, 3
(2006), 261–317.

[17] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral
optimization in LLVM. In Proceedings of the First International Work-
shop on Polyhedral Compilation Techniques (IMPACT), Vol. 2011. 1.

[18] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao,
Krste Asanovic, and Ion Stoica. 2020. Neurovectorizer: End-to-end
vectorization with deep reinforcement learning. In Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Op-
timization. 242–255.

[19] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-
Noël Pouchet, and Ponnuswamy Sadayappan. 2013. When polyhe-
dral transformations meet SIMD code generation. In Proceedings of
the 34th ACM SIGPLAN conference on Programming language design
and implementation. 127–138.

[20] Max Kuhn, Steve Weston, Mark Culp, Nathan Coulter, Ross Quinlan,
et al. 2015. Package ‘C50’. CRAN, UTC (2015).

[21] Chris Lattner. 2008. LLVM and Clang: Next generation compiler tech-
nology. In The BSD conference, Vol. 5. 1–20.

[22] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weinges-
sel, Friedrich Leisch, Chih-Chung Chang, Chih-Chen Lin, and Main-
tainer David Meyer. 2019. Package ‘e1071’. The R Journal (2019).

[23] David Meyer and FTWien. 2015. Support vector machines. The Inter-
face to libsvm in package e1071 28 (2015), 20.

[24] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revis-
ited for short simd architectures. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques.
2–11.

[25] LN Pouchet. 2012. Polybench: The polyhedral benchmark suite. http:
//www.cs.ucla.edu/pouchet/software/polybench.

[26] LN Pouchet and Scott Grauer-Gray. 2011. PolyBench: The Polyhe-
dral Benchmark suite (2011), Version 3.2. http://www-roc.inria.fr/
~pouchet/software/polybench.

[27] Louis-Noël Pouchet, C. Bastoul, and U. Bondhugula. 2019. PoCC:
the polyhedral compiler collection. http://web.cs.ucla.edu/~pouchet/
software/pocc/.

[28] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Co-
hen, Jagannathan Ramanujam, Ponnuswamy Sadayappan, and Nico-
las Vasilache. 2011. Loop transformations: convexity, pruning and
optimization. ACM SIGPLAN Notices 46, 1 (2011), 549–562.

[29] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan. 2012.
Thread tranquilizer: Dynamically reducing performance variation.
ACM Transactions on Architecture and Code Optimization (TACO) 8,
4 (2012), 1–21.

[30] Peter J Rousseeuw and Mia Hubert. 2011. Robust statistics for outlier
detection. Wiley interdisciplinary reviews: Data mining and knowledge
discovery 1, 1 (2011), 73–79.

[31] Vivek Sarkar. 2000. Optimized unrolling of nested loops. In Proceed-
ings of the 14th international conference on Supercomputing. 153–166.

[32] Savvas Sioutas, Sander Stuijk, Henk Corporaal, Twan Basten, and Lou
Somers. 2018. Loop transformations leveraging hardware prefetching.
In Proceedings of the 2018 International Symposium on Code Generation
and Optimization. 254–264.

[33] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll
factors using supervised classification. In International symposium on
code generation and optimization. IEEE, 123–134.

[34] Kevin Stock, Louis-Noël Pouchet, and P Sadayappan. 2012. Using ma-
chine learning to improve automatic vectorization. ACM Transactions
on Architecture and Code Optimization (TACO) 8, 4 (2012), 1–23.

[35] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira
Rosen. 2009. Polyhedral-model guided loop-nest auto-vectorization.
In 2009 18th International Conference on Parallel Architectures and
Compilation Techniques. IEEE, 327–337.

[36] William Von Hagen. 2011. The definitive guide to GCC. Apress.
[37] Michael Wolfe. 1987. Iteration space tiling for memory hierarchies.

In Proceedings of the Third SIAM Conference on Parallel Processing for
Scientific Computing. 357–361.

[38] Jingling Xue. 2000. Loop tiling for parallelism. Vol. 575. Springer Sci-
ence & Business Media.

[39] Qing Yi and Ken Kennedy. 2004. Improving memory hierarchy per-
formance through combined loop interchange and multi-level fusion.
The International Journal of High Performance Computing Applications
18, 2 (2004), 237–253.

https://github.com/knightlander2023/OptLoopOrder
https://github.com/knightlander2023/OptLoopOrder
http://www. cs. ucla. edu/pouchet/software/polybench
http://www. cs. ucla. edu/pouchet/software/polybench
http://www-roc. inria. fr/~ pouchet/software/polybench
http://www-roc. inria. fr/~ pouchet/software/polybench
http://web.cs.ucla.edu/~pouchet/software/pocc/
http://web.cs.ucla.edu/~pouchet/software/pocc/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Heuristics Based Best-Performing Loop Order for Unroll-and-Jam Optimization
	3.1 What Factors Influences the Performance of a Loop Nest?
	3.2 Heuristics for determining best-performing loop order

	4 Implementation
	5 Experimental Methodology
	5.1 Architecture Used
	5.2 Measuring Execution Cycles
	5.3 Benchmarks Used

	6 Results and Discussions
	6.1 Performance Comparison
	6.2 Complete Benchmark Execution
	6.3 Handling Higher Dimensional Loops
	6.4 Sensitivity Study
	6.5 Using Machine Learning Approaches

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

