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Abstract
Processing-In-Memory (PIM) has recently emerged as a promis-
ing solution to alleviate the memory bottleneck by inte-
grating computing capabilities into memory chips. Since
PIM provides numerous Processing Elements (PEs) and high-
bandwidth on-chip data transfers, full utilization of the PEs
becomes a critical mission to maximize the performance of
PIM applications. However, due to the diverse and complex
characteristics of PIM applications, using more resources
does not always improve performance. It is therefore impor-
tant to find the suitable amount of resources to achieve the
best performance and to fully utilize the PIM resources.

To address this, we introduce PIM-CARE, a framework for
dynamic resource allocation across multiple applications
with compiler support on real-world PIM systems. PIM-
CARE first determines the best amount of PIM resources
to allocate for each application. To enable spatial multitask-
ing, the PIM-CARE daemon monitors resource allocation
and deallocation requests and estimates total PIM resource
utilization at runtime. It then dynamically schedules applica-
tions using a priority-based out-of-order policy, considering
both available PIM resources and resource requirements for
best performance. Evaluation on real-world PIM systems
∗Co-first authors.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725777

shows that PIM-CARE improves throughput by 5.49x and
average turnaround time by 5.71x compared to the baseline.
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1 Introduction
Memory-intensive applications such as deep learning, big
data analysis, and recommendation systems have recently
been widely deployed in various domains. As these applica-
tions have become increasingly complex, the need for effi-
cient data processing has become more critical to achieving
high performance. However, data transfer has emerged as
a primary bottleneck because it cannot keep up with the
escalating demands, in contrast to the significant advances
in computing power that are achieved in CPUs and GPUs.
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Recently, in response to this challenge, memory-centric
computing approaches, such as Processing-In-Memory (PIM)
[1–3, 9, 10, 12, 18, 23, 25, 26, 28–30, 34, 47] and In-Storage
Processing (ISP) [8, 13–15, 22, 31–33, 35, 36, 41, 43, 44], have
been intensively researched to improve the efficiency of
processing memory-intensive tasks. PIM integrates simple
processors with memory banks on a single chip, enabling
high-bandwidth computations close to the data. In particular,
DIMM-based PIM offer high parallelism with fair scalability
similar to main memory. Thanks to these features, data ac-
cess costs for memory-intensive applications can be reduced,
and overall performance can be improved by offloading tasks
from main processors such as CPUs or GPUs.
UPMEM PIM [6, 45] is one of the commercially available

real PIM architectures. UPMEM integrates general-purpose
processors, called DRAMprocessing units (DPUs), withmem-
ory banks and achieves high programmability by providing
well-designed programming models such as OpenCL and
CUDA. In the UPMEM, programmers can easily accelerate
existing memory-intensive workloads, unlike most other
PIM that only handle predefined operations. They offer a
PIM as a DIMM module with 128 DPUs and 8 GB of PIM-
enabledmemory, enabling simple scalability using a standard
memory control interface (currently up to 2,560 DPUs and
160 GB of memory). This enables systems to be built with
large PIM resource pools, such as cloud servers, that can
handle applications with diverse resource requirements.

Given the architectural characteristics of PIM, such as high
internal bandwidth and the proportional increase in paral-
lel computation performance with the increasing number
of memory banks, PIM workloads are expected to achieve
higher performance as more resources are used. However,
current PIM systems are used as additional accelerators
rather than fully replacing traditional main memory. Thus,
end-to-end performance is affected not only by the capabili-
ties within the PIM banks, but also by the external memory
bandwidth. Given these factors, using more PIM resources
does not always guarantee performance improvement [7].
Instead, each workload shows different performance trends
depending on the degree of workload parallelization and
variations in data communication costs. Therefore, it is criti-
cal to allocate an appropriate amount of resources to each
workload to achieve optimal performance in PIM systems.

By supporting spatial multitasking of multiple PIM work-
loads, it is possible to achieve higher overall system through-
put with full resource utilization while maintaining mini-
mum latency for each workload. However, despite the in-
creasing prevalence of multi-tenancy in high-performance
computing [16, 17, 24, 37–39, 48, 49], research on efficient
multitasking of PIM applications has not been actively per-
formed [21, 42]. Our prior work, VirtualPIM [21], was the

first to enable efficient orchestration of multiple PIM appli-
cations by supporting spatial multitasking across the full
PIM resource space. To maximize resource utilization, we
proposed several key techniques, including temporal opti-
mization to minimize the PIM resource occupancy, a resource
monitoring system to enable spatial multitasking, and fine-
grained scheduling to divide a single application into multi-
ple small units. Nevertheless, several challenges remain to
be addressed for further enhancement of this approach.
While in-order scheduling methods based on execution

order can ensure fairness, they are limited in maximizing
resource utilization because the performance of PIM systems
in multi-tenant environments relies heavily on dynamically
launched workloads. To address this issue, VirtualPIM pro-
poses fine-grained scheduling, aiming to fully utilize all PIM
resources regardless of workload dynamics. However, this
approach introduces significant runtime overhead, along
with additional costs to maintain data consistency. For ex-
ample, in the case of SCAN-RSS from PrIM benchmark [11],
data copied once is reused across multiple kernel executions.
With fine-grained spatial multitasking, VirtualPIM incurs
the overhead of re-transmitting input data for each kernel
operation to ensure data consistency (referred to as “input
reproduction”). As a result, host-to-PIM data transfers for
SCAN-RSS are doubled, leading to increased PIM resource
occupancy and a severe latency slowdown.
In contrast, out-of-order (OoO) scheduling can achieve

comparable or even higher system throughput than Virtu-
alPIM. The OoO approach rearranges the execution order
to prioritize workloads that require fewer resources than
available, effectively avoiding resource under-utilization and
improving throughput without incurring virtualization or
data consistency management overheads. By also using the
“best” amount of PIM resources for optimal performance,
the OoO approach can further minimize latency for each
workload and achieves better overall performance.

Even with out-of-order scheduling, it is not always possi-
ble to maximize resource utilization if there are no workloads
that can be allocated to available resources. However, be-
cause PIM workloads have predictable performance patterns
in relation to resource usage, executing tasks immediately
with suboptimal resources—assumingminimal latency degra-
dation—often outperforms waiting for sufficient resources.
Thus, by minimizing latency degradation, both resource uti-
lization and system throughput can be maximized. This re-
quires an efficient mechanism that can dynamically adjust
resource requirements and estimate performance trend at
minimal cost to optimize overall system performance.

Based on these insights, we propose a Compiler-Assisted
dynamic REsource allocation framework for PIM applica-
tions, called PIM-CARE, which enables near-optimal resource
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Figure 1: An overview of UPMEM PIM system.

allocation and efficient multitasking for multiple PIM ap-
plications. For this, we first construct per-application per-
formance tables using profiling. Based on this, PIM-CARE
dynamically determines the best amount of PIM resources
to use by considering both currently available resources
and application-specific performance variations based on
resource usage. A daemon monitors total PIM resource uti-
lization and manages dynamic resource allocation by com-
municating with all PIM applications. To enable this, the
PIM-CARE compiler modifies the PIM control APIs to the
communication API with the daemon process. PIM-CARE
schedules applications with an out-of-order policy to fully
utilize PIM resources while minimizing latency slowdowns.
As a result, PIM-CARE supports efficient orchestration of
multiple PIM workloads without any virtualization overhead.
We implemented PIM-CARE based on the core runtime

structure of the CASE [4] by adding the custom UPMEM
PIM backend API call library. We evaluated our framework
on the UPMEM PIM [6, 45], using various applications from
the PrIM benchmark [11]. We believe that the approaches
proposed in this work can be easily extended to most DIMM-
based PIM systems with many PEs. To the best of our knowl-
edge, this is the first work to maximize total resource utiliza-
tion by applying both dynamic resource adjustment and OoO
scheduling of PIM applications on real-world PIM systems.

The contributions of this study are as follows:

• The design of a PIM-CARE framework to efficiently
managemulti-application executionwith near-optimal
resource allocation.

(1) Determining the best amount of PIM resources for
each application with per-application profiling.

(2) Near-optimal dynamic resource allocation consid-
ering the optimal resource requirements and the
available resources.

(3) Out-of-order workload scheduling considering both
throughput and ATT within available resources.

• Full-stack implementation of the PIM-CARE frame-
work, including compiler-level code modification.
• Evaluation of the PIM-CARE framework on real PIM
systems, achieving a 5.49x improvement in throughput
and a 5.71x improvement in average turnaround time.

2 Background And Motivation
2.1 UPMEM PIM System
UPMEM PIM is a DRAM-based real PIM architecture that in-
tegrates DPUs closer to the memory bank. Owing to the high
bandwidth of up to 1GB/s [45] between memory and DPUs,
the UPMEM PIM effectively performs memory-intensive
workloads compared to traditional processors. Figure 1 shows
an overview of the UPMEM PIM system. A PIM module is
connected to host CPUs using DIMM connections, providing
two PIM ranks (64 PIM units per rank). The current UPMEM
PIM system can accommodate up to 20 PIM modules. In the
UPMEM PIM, each DPU operates independently and can-
not communicate with others. Communication between the
DPUs is achieved by data transfer via the host memory.
The UPMEM PIM system provides a high-level program-

ming model for PIM workloads. It also provides a commu-
nication API set that allows host programs to control PIM
resources easily, similar to GPUs. When a PIM application
requests a predefined number of DPUs or ranks to use, the
UPMEM system allocates the requested PIM resources at the
rank level if possible. However, since the current UPMEM
PIM architecture does not support any spatial multitasking
features, such as intra-rank multitasking for different pro-
grams, the UPMEM system returns an allocation error if there
are not enough PIM resources available for the requests.

The UPMEM communication APIs provide three types of
data transfer methods between the host-side main memory
and the PIM-side MRAM. The serial method transfers data
sequentially to each PIM unit, while the parallel method
transfers concurrently. Both methods support bidirectional
data transfer. The broadcast is a specialized form of the par-
allel method that supports unidirectional transfer from the
host to entire PIM units. Because current PIM devices are typ-
ically used as a new accelerator rather than as main memory,
they require explicit data transfers between host-side main
memory and PIM-side memory. Parallel transfers can overlap
data transfers up to the available bandwidth, whereas serial
transfers incur higher costs as more resources are used.
In a PIM system, the performance of each application is

affected by several factors, including the type of data transfer,
the ratio of kernel to data transfer, and the program flow. As
a result, the performance does not always improve as more
resources are allocated, and the resource requirements vary
depending on different application characteristics.
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Figure 2: The normalized performance of the PrIM bench-
marks [11] with increasing number of ranks.

2.2 PIM Application Characterization
When considering PIM architectures, it’s easy to think that
using more resources will improve performance by exploit-
ing more parallelism and bandwidth, but this is not a sim-
ple problem. According to the analysis of the PrIM bench-
mark [11], the execution time of kernel tasks generally de-
creases in proportion to the amount of resources used. How-
ever, since current PIM systems do not fully replace tradi-
tional main memory, explicit data transfers between host-
side memory and PIM-side memory are required. Thus, while
the computational load per PIM core is reduced by using
more PIM resources, the data transfer does not scale with pro-
portionally because the host-PIM memory bandwidth does
not improve as much as the increasing PIM resources. De-
pending on the application, some duplicate data transfers to
each PIM core may also be required, leading to performance
degradation when more PIM resources are used. Given this
complexity, using more PIM resources does not always lead
to performance improvements from a full system perspec-
tive [7]. The performance variation with different resources
is influenced by various factors, such as the algorithm of the
task and the data access patterns. However, it can generally
be categorized into two types: 1) applications that improve
performance with more resources and 2) others.
Figure 2 shows the performance changes depending on

the resource usage in applications from the PrIM benchmark.
The X-axis shows the number of PIM ranks used, and the
Y-axis shows the relative performance normalized to themax-
imum performance. In Figure 2 (a), some applications show
overall performance improvements as both kernel execution
and data transfer time decrease with increasing number of
PIM ranks. However, because data transfer does not improve
directly in proportion to resource usage, different patterns
of performance improvement are shown depending on the
ratio of kernel execution to data transfer. In addition, due
to limitations on the amount of data that can be distributed
across PIM ranks based on the target algorithm, performance
tends to saturate at a certain point (’Saturated’ in Figure 2).

On the other hand, some applications, as shown in Figure 2
(b), may not show performance improvements as the number

Figure 3: High-level insights for dynamic resource alloca-
tion. (a) Allocate the best number of ranks for each applica-
tion, (b) spatial multitasking support, (c) out-of-order, and
(d) availability-aware resource allocation.

of PIM ranks increases, and may even experience perfor-
mance degradation. For example, if an application involves
excessive redundant data transfers, the data transfer size will
increase as more PIM resources are used. Furthermore, as
discussed in Section 2.1, applications with numerous serial
copy operations, such as SpMV, are unable to fully leverage
memory bandwidth. Therefore, for these workloads, there is
a trade-off between the performance gains from distributing
tasks and the transfer costs affected by data access patterns
and bandwidth limitations. Consequently, each workload has
a consistent performance trend based on resource utilization.
In summary, using more resources does not always im-

prove performance in PIM systems. There is also the best
amount for each application that will maximize performance
based on its characteristics. It is therefore important to un-
derstand the performance variation and use the best amount
of resources for each application to minimize latency.

2.3 Opportunity for Efficient Scheduling to
Support Spatial Multitasking

As shown in Figure 3 (a), running all applications with the
best amount of resources not only improves the total system
performance but also provides new opportunities for spatial
multitasking with the remaining resources in multi-tenant
environments. In Figure 3 (b), resource utilization can be
increased by running other applications on the remaining
resources in parallel, resulting in improved overall system
throughput (App2). To achieve this, it is essential to support
resource monitoring similar to that used in VirtualPIM [21].
Even with spatial multitasking support, the remaining

resources are often insufficient to meet the resource require-
ments of the next applications. First-come, first-served (FCFS)
scheduling fairly controls multiple applications, but applica-
tions that require more resources than currently available
must wait to be executed. Since this also causes resource
requests from later applications to be pending, even though
some of them could be executed with current resources,
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FCFS cannot maximize the speedup from spatial multitask-
ing. However, as shown in Figure 3 (c), running applications
that are satisfied with current resources first can maximize
utilization and improve system performance (App3). Thus, it
is required for the workload scheduler to consider multiple
waiting applications and initiate them in an OoO manner.

2.4 Motivation for Availability-aware
Resource Allocation

As mentioned in Section 2.3, PIM resource utilization can be
improved by supporting spatial multitasking and OoO-based
workload scheduling. However, under the constraint that all
applications must secure the best amount of resources, the
total PIM resources may not be fully utilized. For example, if
the available resources do not satisfy the resource require-
ments of all applications to be scheduled, the resource will
remain idle until an application starts its execution by secur-
ing sufficient resources. While all applications can achieve a
minimum execution time under this constraint, it is worth in-
vestigating opportunities to further improve overall system
performance by improving overall resource utilization.
In a multi-tenant environment, the latency of an applica-

tion includes not only execution time but also waiting time
for resources to be allocated. If the waiting time for resources
is greater than the speedup due to the best resource alloca-
tion, always allocating the best resources would degrade the
overall system performance. In this case, it would be better
for the application to be executed immediately with the avail-
able resources, which can improve system throughput by
allowing more applications to run simultaneously. Therefore,
if an application is expected to be completed earlier than
running with the best resources after some waiting time,
it is beneficial to immediately execute with the currently
available resources, as shown in Figure 3 (d) (App2).

However, predicting at runtime whether allocating insuf-
ficient resources to an application is beneficial is difficult
and can introduce significant control overhead. In current
PIM architectures, traditional scheduling policies, such as the
context switching for CPUs/GPUs, are infeasible. Therefore,
it is appropriate to prioritize applications that are expected
to have the least performance degradation compared to their
peak performance when running with available resources.
In this priority-based scheduler, since starvation problems
can occur, it is important to avoid them while minimizing
time loss and ultimately improving system performance.

2.5 Summary and Insights
In this section, we have learned some important lessons. First,
since PIM applications show different performance trends
based on resource usage, it is important to allocate the best
amount of resources to each application to maximize its

performance. Second, since each application has a different
resource requirement, it is necessary to support spatial multi-
tasking to enable efficient execution of multiple applications.
Finally, even with spatial multitasking, resources cannot be
fully utilized because target applications cannot always allo-
cate their best amount of resources. Therefore, it is required
to maximize the resource utilization by introducing OoO-
based workload scheduling and availability-aware resource
allocation. In this paper, we propose a novel PIM workload
scheduling framework to incorporate all these insights.

3 PIM-CARE: Compiler-Assisted Dynamic
Resource Allocation Framework

We propose the PIM-CARE framework to improve overall
performance through spatial multitasking and dynamic re-
source allocation. As shown in Figure 4, PIM-CARE follows
three steps. First, PIM-CARE replaces the PIM resource allo-
cation and deallocation codes in existing applications with
the PIM-CARE APIs customized for dynamic resource alloca-
tion and deallocation (Figure 4 (a)). Second, PIM-CARE pro-
files or takes user-provided information of newly launched
applications to construct the performance table, and deter-
mines the best amount of resources (#ranks𝑏𝑒𝑠𝑡 1) for each
application based on this table (Figure 4 (b)). Finally, the
runtime daemon controls spatial multitasking by managing
dynamic resource allocation requests via the PIM-CARE API
from multiple applications through a task queue to allocate
near-best resources to each workload (Figure 4 (c)). Here,
taking into account the #ranks𝑏𝑒𝑠𝑡 of some requests and the
available resources, PIM-CARE updates the priority of each
request that can be allocated resources at the same time, and
allocates resources to the higher priority requests among
them (Figure 4 (d)). In summary, PIM-CARE achieves su-
perior throughput performance by dynamically allocating
the near-best number of ranks to workloads. PIM-CARE
can further improve overall performance, including both
throughput and turnaround time, by introducing a simple
but effective priority-based scheduling policy.

3.1 Host Code Modification & Custom PIM
control APIs

PIM-CARE modifies the default PIM resource allocation
and deallocation operations to custom APIs that can dy-
namically allocate the best number of ranks based on PIM
resource utilization. Specifically, the PIM-CARE compiler
identifies the standard PIM resource allocation and deallo-
cation API calls (dpu_alloc() and dpu_free() in the UPMEM
SDK) in the application host code and automatically replaces

1For clarity, we have used the term "rank" to mean the smallest allocatable
resource unit.
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Figure 4: An overview of the PIM-CARE framework. (a) Code modification, (b) performance table construction, (c) availability-
aware dynamic resource allocation, and (d) priority-based scheduling.

them with PIM-CARE API calls (DynRankAlloc() and Rank-
Free()). In PIM-CARE, the dynamic resource allocation (Dyn-
RankAlloc()) determines the best number of PIM ranks to
allocate by considering both #ranks𝑏𝑒𝑠𝑡 and #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,
regardless of predefined resource requests in the original
program code. As a result, DynRankAlloc() dynamically ad-
justs the number of PIM ranks to use, rather than failing
to execute if #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 is less than the original request,
as mentioned in Section 2.1. In our implementation, both
the DynRankAlloc() and RankFree() APIs communicate with
the runtime daemon. Therefore, DynRankAlloc() requests the
amount of available PIM resources to the daemon and assigns
PIM ranks as the return value. On the other hand, RankFree()
de-allocates the used ranks and informs the daemon.We have
implemented the PIM-CARE compiler as an LLVM pass, fol-
lowing an approach similar to CASE [4]. The original code
is automatically modified by the custom pass during com-
pilation of the PIM application. Both DynRankAlloc() and
RankFree() are implemented as a custom library, and linked
to the target executable during compilation.

3.2 Performance Table Construction using
Profile and User-provided Information

PIM-CARE introduces a profile-based method to predict the
execution time of each application on the UPMEM PIM sys-
tem. Unlike CPUs or GPUs, the current PIM architecture
lacks complex elements like cache structures that signifi-
cantly affect runtime performance. Thus, performance vari-
ation of PIM applications based on resource usage is fairly
consistent, and it can be estimated with reasonable accuracy
using a profiling method. Furthermore, since the UPMEM
PIM architecture does not allow simultaneous access of mul-
tiple applications to the same PIM resources, the uncertainty
in performance prediction is minimized.
Based on this insight, PIM-CARE profiles performance

variations according to the number of PIM ranks used for

each application and determines #ranks𝑏𝑒𝑠𝑡 . When a new ap-
plication is detected, PIM-CARE performs runtime profiling
and constructs a performance table for the application. Based
on this, PIM-CARE analyzes performance improvement pat-
terns and estimates the best number of ranks (#ranks𝑏𝑒𝑠𝑡 )
for optimal performance. To reduce profiling overhead, PIM-
CARE only runs profiling once for each application through
a subset of the total possible options. In our implementation,
we set 20% of the possible options as profiling points at reg-
ular intervals, rather than profiling the entire combinations.
We use linear interpolation over the nearest profiling points
to estimate performance for non-profiled points.

As mentioned in Section 2.2, allocating more resources to
applications that have been insufficiently allocated offers a
greater opportunity to improve system performance than
allocating them to applications that already exceed the satu-
ration point. To do this, PIM-CARE applies a threshold when
determining #ranks𝑏𝑒𝑠𝑡 , selecting the minimum number of
ranks from several candidates with comparable performance.

Algorithm 1 shows the profiling-based #ranks𝑏𝑒𝑠𝑡 determi-
nation process. It begins by determining the profiling steps
for a given maximum number of PIM ranks available on the
system (lines 1-3). For each profiling point, PIM-CARE mea-
sures the performance of the target workload and updates the
performance table (lines 4-7). To predict the performance of
non-profiled points, PIM-CARE performs a linear interpola-
tion based on the collected results (line 8). Then, PIM-CARE
normalizes the performance table between 0 and 1 based
on the best performance and analyzes the table to look for
#ranks𝑏𝑒𝑠𝑡 , considering the performance saturation trend
(lines 9-17). In our implementation, we set THOpt to 95%.

In addition, PIM-CARE can directly take a user-provided
performance table, including annotated #ranks𝑏𝑒𝑠𝑡 , to pro-
vide a way to more accurately predict performance. Pro-
filing information can be inaccurate when the workload
behaves differently depending on the size or shape of the
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Algorithm 1 Profile-based Best #Ranks Determination
Require: PIMWorkload𝑤 , ProfilingRatio ProfRatio
Ensure: #ranks𝑏𝑒𝑠𝑡 , PerformanceTable PerfTable
Let MaxRanks be the maximum number of ranks available.
Let ProfRatio be the ratio of profiling points.
Let THOpt be the performance threshold for #ranks𝑏𝑒𝑠𝑡 .
1: Step← int(1/ProfRatio)
2: ProfPoints← [i for i in range(1, MaxRanks, Step)]
3: ProfPoints.append(MaxRanks)
4: for Point in ProfPoints do
5: Perf← profile(𝑤 , Point)
6: PerfTable.AddResult(𝑤 , Point, Perf)
7: end for
8: PerfTable.LinearInterpolation()
9: List𝑏𝑒𝑠𝑡 ← []
10: PerfOpt← max([PerfTable.RetPerf(𝑤 , ProfPoints)])
11: PerfTable.Normalize(𝑤 , PerfOpt)
12: for item in PerfTable.RetTable(𝑤 ) do
13: if item.Perf > THOpt then
14: List𝑏𝑒𝑠𝑡 .append(item.NumRank)
15: end if
16: end for
17: #ranks𝑏𝑒𝑠𝑡 ← min(List𝑏𝑒𝑠𝑡 )

input. Most workloads running on PIM show similar trends
in performance change regardless of the input, but for input-
dependent applications, profiling cannot be applied. In such
cases, the user must manually provide the workload-specific
information, such as a performance table with #ranks𝑏𝑒𝑠𝑡
annotations, and PIM-CARE offers an interface for this.

3.3 Availability-aware Dynamic Resource
Allocation

PIM-CARE supports availability-aware dynamic resource al-
location to improve overall system performance while fully
utilizing all PIM resources. The resource monitoring sys-
tem tracks the availability status of PIM resources, and the
priority-based scheduler allocates near-best resources to re-
source requests and updates resource availability. We im-
plement a priority-based workload strategy to maximize
performance while avoiding starvation.
Resource Monitoring System: PIM-CARE includes a

centralized resource monitoring daemon to support spa-
tial multitasking on PIM systems. The daemon communi-
cates with each application via custom APIs (introduced in
Section 3.1). When an application requests resources, the
daemon returns the number of ranks determined by the
scheduler, considering both the number of ranks available
#ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 and #ranks𝑏𝑒𝑠𝑡 of the application. To achieve
this, the daemon tracks all resource allocation and deallo-
cation requests (DynRankAlloc() and RankFree()), and main-
tains #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 at runtime. Through this, PIM-CARE

Figure 5: An example of the dynamic resource allocation
process in PIM-CARE. (a) Finding the set of requests that
can secure #ranks𝑏𝑒𝑠𝑡 , (b) performance estimation for the
remaining requests, and (c) dynamic resource allocation.

supports software-level spatial multitasking in the PIM sys-
tem without hardware support.
Priority-based Workload Scheduler: PIM-CARE sets

the priority of each resource request and handles the highest
priority request first. For this, the scheduler performs two
scans of the scheduling window, which is the front part of
the task queue. Figure 5 shows an example of the dynamic
resource allocation process using priority information in
PIM-CARE. In Figure 5 (a), the scheduler first traverses the
task queue in order, identifies a combination of applications
that can be allocated #ranks𝑏𝑒𝑠𝑡 within #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , and
immediately assigns them the highest priority. In Figure 5
(b), applications that did not receive priority in the first scan
are assigned lower priority values based on their expected
relative performance with the remaining resources from the
first round. After these two scans, the scheduler sorts the
requests in the window in order of higher priority and dy-
namically allocates resources starting at the front of the win-
dow, as shown in Figure 5 (c). When resource requests from
the window are allocated and removed from the queue, the
window is updated to cover the remaining pending requests.
As a result, PIM-CARE maximizes resource utilization and
parallelism, further enhancing overall performance.

Strategy for StarvationAvoidance: In the priority-based
scheduler, lower-priority applications may experience pro-
longed pending states, leading to starvation. For example,
applications with a large #ranks𝑏𝑒𝑠𝑡 are likely to have a lower
priority with a small #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , so when applications
with smaller #ranks𝑏𝑒𝑠𝑡 are continuously enqueued in the
task queue, their scheduling would be delayed. This increases
the turnaround time of the applications, leading to a degra-
dation in overall system performance. Therefore, PIM-CARE
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Algorithm 2 Workload Scheduling Algorithm
Require: PIMWindow𝑤 , PerformanceTable PerfTable,
#ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
Ensure: PIMWindow𝑤𝑡

1: 𝑤𝑡 ← []
2: #ranks𝑡𝑒𝑚𝑝 ← #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
3: for app in𝑤 do
4: #ranks𝑏𝑒𝑠𝑡 ← PerfTable.RetBestRanks(app)
5: if #ranks𝑡𝑒𝑚𝑝 ≥ #ranks𝑏𝑒𝑠𝑡 then
6: app.priority← app.priority + 1
7: #ranks𝑡𝑒𝑚𝑝 ← #ranks𝑡𝑒𝑚𝑝 - #ranks𝑏𝑒𝑠𝑡
8: 𝑤𝑡 .append(app)
9: 𝑤 .erase(app)
10: end if
11: end for
12: for app in𝑤 do
13: if #ranks𝑡𝑒𝑚𝑝 > 0 then
14: app.priority← app.priority +

PerfTable.RetPerf(app, #ranks𝑡𝑒𝑚𝑝 )
15: end if
16: 𝑤𝑡 .append(app)
17: 𝑤 .erase(app)
18: end for
19: 𝑤𝑡 .sort()
20: for app in𝑤𝑡 do
21: #ranks𝑏𝑒𝑠𝑡 ← PerfTable.RetBestRanks(app)
22: if #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ≥ #ranks𝑏𝑒𝑠𝑡 then
23: #ranks← #ranks𝑏𝑒𝑠𝑡
24: else
25: #ranks← #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
26: end if
27: if #ranks > 0 then
28: launch(app, #ranks)
29: #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 - #ranks
30: 𝑤𝑡 .erase(app)
31: end if
32: end for

avoids the starvation problem by retaining the priorities
from the previous scheduling cycle and further reduces the
average response time of applications.

Algorithm 2 describes the priority-based workload sched-
uling algorithm including the starvation avoidance strategy.
The algorithm stores #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 in #ranks𝑡𝑒𝑚𝑝 to assign
priorities over two scans, and initializes a space to store re-
source requests with updated priorities (line 1-2). It then in-
creases the priority by 1 for each request where #ranks𝑏𝑒𝑠𝑡 is
less than or equal to #ranks𝑡𝑒𝑚𝑝 in the window, and decreases
#ranks𝑡𝑒𝑚𝑝 by its #ranks𝑏𝑒𝑠𝑡 (line 3-11). For the remaining
resource requests, their priorities are set according to the
relative performance predicted by #ranks𝑡𝑒𝑚𝑝 , compared to
the best performance (line 12-18). As mentioned in 3.2, the
performance table of PIM-CARE returns values greater than

0 and less than 1, except for the minimum execution time. Af-
ter two scans, the window is sorted by high priority (line 19).
It then allocates #ranks𝑏𝑒𝑠𝑡 to resource requests within the
sorted window if it can, otherwise it allocates #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
(lines 20-32). To prevent starvation, requests that have not
been allocated resources are carried over to the next sched-
uling cycle as input, maintaining their priority.

3.4 A Running Example of PIM-CARE
Figure 6 shows aworking example of multiple workloads run-
ning with spatial multitasking on the PIM-CARE framework.
In this section, we demonstrate dynamic rank allocation and
a priority-based scheduling policy, along with starvation
avoidance. First, as shown in Figure 6 (a), applications re-
quest dynamic rank allocation, and their initial priorities
in the scheduling window are set to 0. PIM-CARE begins
by traversing the window from head, identifying the com-
bination of requests that can be allocated #ranks𝑏𝑒𝑠𝑡 , and
adds a priority of 1 to them. It then adds the normalized per-
formance from the performance table with #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
to the priority for the remaining requests. In Figure 6 (b),
the requests in the scheduling window are sorted by prior-
ity, with higher priority requests appearing first. PIM-CARE
then begins dynamic rank allocation for these sorted requests
until #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 reaches 0. If the #ranks𝑏𝑒𝑠𝑡 for the re-
quest at the front of the window is smaller than or equal
to #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , PIM-CARE assigns #ranks𝑏𝑒𝑠𝑡 to that re-
quest; otherwise, it allocates the remaining #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 .
Requests that do not receive any ranks retain their priori-
ties and wait until ranks are available. As shown in Figure 6
(c), 6 ranks are released by another application’s RankFree().
Based on updated #ranks𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , PIM-CARE performs pri-
ority update again. Requests that did not receive resources
in the previous scheduling cycle add the new priority to the
previous one, regardless of whether they can be allocated
#ranks𝑏𝑒𝑠𝑡 or not. In Figure 6 (d), the window is sorted, and
dynamic rank allocation begins again. Even if there is a re-
quest within the window that can be assigned #ranks𝑏𝑒𝑠𝑡 , the
front of the window has the highest priority and is assigned
all 6 remaining ranks.

3.5 Compatibility with Other PIM Design
PIM-CARE is designed for UPMEM PIM, one of the few
publicly available PIM architectures. PIM-CARE can also be
adapted to other PIM architectures with minimal modifica-
tions, as most PIM architectures share the main character-
istics addressed in this paper. For example, both Samsung’s
HBM-PIM [29] and SK Hynix’s AiM [12, 27] allow PEs to
access memory only within the same PIM unit. Therefore,
depending on the application, duplicate data transfers to
multiple PIM units or data transfers between PIM units can
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Figure 6: A running example of PIM-CARE.
Table 1: System configuration

System Intel Server System (2 sockets, 24 DIMM slots)
CPU Intel Xeon Gold 5222 (3.8GHz) 2 EA

Main Memory 64GB DDR4 DRAM 4 EA (256GB)
PIM Memory 8GB DDR4 PIM Modules 20 EA (160GB)
PIM Module 64MB MRAM with DPU (450MHz) 128 EA (8GB)

UPMEM Driver 2021.4.0

Table 2: The benchmarks and workload sets

Group 1 Group 2

Apps #ranks𝑏𝑒𝑠𝑡 Apps #ranks𝑏𝑒𝑠𝑡

BS 11 BFS 1
GEMV 6 HST-L 6
MLP 21 HST-S 1
TS 16 RED 1

SCAN-RSS 1
SCAN-SSA 1

SEL 1
SpMV 1
VA 1
UNI 1

Workload Set W1 W2 W3 W4 W5
Group1:Group2 1:0 2:1 1:1 1:2 0:1

cause performance degradation as more resources are used.
In summary, the main idea of PIM-CARE, finding optimal
resource usage and supporting multitasking, can bring sig-
nificant performance gains in any PIM architecture.

4 Evaluation
4.1 Experimental Setup
SystemConfiguration: We evaluate PIM-CARE and several
approaches on the UPMEM system. The detailed configura-
tion is listed in Table 1. The UPMEM system consists of a
maximum of 40 PIM ranks, each containing 64 DPUs. How-
ever, in real PIM machines, some ranks have fewer than 64
available DPUs. Thus, we use 30 fully functional ranks, as-
suming that all PIM ranks have the same compute capability.
Workloads: We evaluate PIM-CARE with 14 PIM appli-

cations from the PrIM benchmark [11]. As shown in Table 2,

Figure 7: Scheduling examples of (a) SE-Full, (b) SE-Opt, (c)
SM-Opt (FCFS), (d) SM-Opt (OoO), and (e) PIM-CARE.

we classify them into two groups based on their performance
variation trends depending on the amount of PIM resources. 2
Group 1 consists of applications that show improved perfor-
mance as more PIM resources are utilized, reaching optimal
performance at a higher value. Group 2 consists of appli-
cations that achieve best performance at lower amount of
resources, with performance degradation occurring when
additional resources are used beyond that point. Thus, al-
though GEMV and HST-L have the same #ranks𝑏𝑒𝑠𝑡 of 6,
GEMV is classified into Group 1, while HST-L is categorized
into Group 2. We create five mixed workload sets with dif-
ferent ratios of applications from both groups to evaluate
PIM-CARE in various scenarios as listed in Table 2. Each
workload set was completely randomized according to the
given ratio for each experiment.
Methodology: To fairly evaluate PIM-CARE with differ-

ent scheduling approaches, we implemented four different
policies: SE-Full, SE-Opt, SM-Opt (FCFS), and SM-Opt (OoO).
SE-Full allocates all available PIM resources to applications
and executes them sequentially. SE-Opt allocates #ranks𝑏𝑒𝑠𝑡
to each application based on profile-based resource determi-
nation as described in Section 3.2, while still running appli-
cations sequentially. SM-Opt (FCFS) allocates #ranks𝑏𝑒𝑠𝑡 to
each application on a FCFS basis and runs the applications
simultaneously using spatial multitasking. SM-Opt (OoO)
is similar to SM-Opt (FCFS), but it searches for another task
2#ranks𝑏𝑒𝑠𝑡 for MLP was determined by user-provided information.
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that can be scheduled if the requirements of next application
cannot be met. SM-Opt (FCFS) and SM-Opt (OoO) do not sup-
port dynamic resource allocation in PIM-CARE, which limits
their ability to fully utilize PIM resources. PIM-CARE incor-
porates all the proposed techniques, including availability-
aware dynamic resource allocation with the priority-based
workload scheduler.We set the size of the schedulingwindow
to 6, which shows a reasonable performance empirically. Fig-
ure 7 shows the scheduling examples of the approaches. We
compared PIM-CARE and other approaches using through-
put and average turnaround time (ATT).

4.2 Performance Evaluation
Figure 8 shows the throughput and ATT of PIM-CARE and
other approaches. A total of 24 applications were used for
each workload set and all results were normalized to the
geometric mean of SE-Full. The Y-axis in Figure 8 (a) shows
throughput, while in Figure 8 (b) shows ATT. Figure 9 shows
the scheduling timelines of each approaches. In these figures,
each workload is shown as a box, with the X-axis and the
Y-axis representing time and occupied ranks, respectively.

Throughput: Figure 8 (a) shows that SE-Opt, SM-Opt
(FCFS), SM-Opt (OoO), and PIM-CARE achieve throughput
improvements of 1.23x, 3.82x, 4.09x, and 5.49x over SE-Full,
respectively. In particular, PIM-CARE achieves significant
throughput improvements on all workload sets. These re-
sults prove that our solution is highly effective and generally
applicable across different application domains.
The throughput improvements are primarily achieved

through best resource allocation, spatial multitasking with
OoO scheduling, and availability awareness. Best resource
allocation primarily improves throughput by reducing the
execution time of each application with less resource con-
sumption. Figure 9 (b) indicates that SE-Opt achieves higher
throughput by reducing the overall execution time, despite
not fully utilizing all available resources. Spatial multitasking
can further improve throughput by utilizing the remaining
resources from the best resource allocation results. As shown
in Figure 9 (c), SM-Opt (FCFS) improves throughput by uti-
lizing idle resources by enabling spatial multitasking. SM-
Opt (OoO) achieves more throughput improvements than
SM-Opt (FCFS) for all workload sets except W5. This is be-
cause applications with lower resource requirements can,
in most cases, be allocated the best resources immediately
if resources are available. Therefore, for W5, OoO sched-
uling becomes less effective, although it incurs additional
scheduling overhead. Availability-aware dynamic resource
allocation maximizes throughput by allowing more applica-
tions to be spatially multi-tasked. The performance differ-
ence between SM-Opt (OoO) and PIM-CARE implies that
availability-aware resource allocation is critical to achieve

the best throughput. Similarly, there is no additional perfor-
mance improvement in W5 because resources are already
fully utilized, similar to SM-Opt (OoO).

Turnaround Time: Figure 8 (b) shows that SE-Opt, SM-
Opt (FCFS), SM-Opt (OoO), and PIM-CARE improve ATT by
1.25x, 3.85x, 5.45x, and 5.71x, respectively. These results indi-
cate that all the proposed techniques, including best resource
allocation, spatial multitasking, OoO policy, and availability-
aware resource allocation, are effective in reducing ATT.
More specifically, the performance difference between SE-
Opt and SM-Opt (FCFS) indicates that spatial multitasking
is more important in reducing ATT. The introduction of
availability-aware resource allocation was not effective in
W4. This is due to the loss of execution time for applica-
tions allocated insufficient resources is often greater than
the corresponding reduction in waiting time.

4.3 Extensibility
Figure 8 (c) shows the performance scalability of PIM-CARE
as the number of applications increases to 12, 24, and 36.
Each workload set was randomly generated for the given
number of applications, and the results were normalized to
SE-Full for each number of applications. In this scenario,
when all applications in the workload are launched, the total
resource requirements increase as the number of applica-
tions increases. As shown in the figure, PIM-CARE shows
improvements in throughput from 4.23x to 6.16x and in ATT
from 4.77x to 5.91x as the number of applications increases
from 12 to 36. However, under the same conditions, SM-
Opt shows scalable improvements only in ATT and not in
throughput. This result indicates that key techniques in PIM-
CARE are essential for achieving high throughput, especially
under heavy resource pressure. In summary, this experiment
proves that PIM-CARE offers scalable performance gains
with more applications, both for throughput and ATT.

4.4 Overhead Analysis
As described in Section 3.3, the runtime daemon is responsi-
ble for determining the amount of resources during dynamic
resource allocation, while each application is responsible for
the actual allocation and deallocation of resources with a
priority-based scheduling policy. Therefore, the only addi-
tional cost comes from inter-process communication (IPC)
with the daemon and its decision-making process. Figure 10
shows the overhead of PIM-CARE. Most of the overhead
comes from IPC access to POSIX shared memory for commu-
nication with the daemon, while the scheduling overhead is
negligible. PIM-CARE executes workloads natively without
any additional operations for data consistency or task man-
agement. Thus, unlike VirtualPIM, which incurs up to 7%
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Figure 8: The overall performance of PIM-CARE and other approaches: (a) throughput, (b) ATT, and (c) extensibility.

Figure 9: Scheduling timeline comparison for W3.

Figure 10: Overheads of PIM-CARE when performing dy-
namic resource allocation with OoO scheduling.

overhead depending on the workload, PIM-CARE maintains
a consistent overhead regardless of the workload or input.

4.5 Comparison with VirtualPIM
We use the VirtualPIM framework to perform a quantita-
tive comparison with PIM-CARE under the same conditions
described in the original paper (realistic scenario, 14 ranks,
VirtualPIM workload sets VW1–VW5 [21]). We compared
throughput and ATT with VirtualPIM using all of Virtu-
alPIM’s workload sets. For comparison, we implemented

Figure 11: Performance comparison with VirtualPIM.

three different policies within VirtualPIM: VirtPIM.Coarse,
VirtPIM.Fine, and VirtPIM.Co-op. VirtPIM.Coarse supports
spatial multitasking and optimizes the DPU occupancy time
of applications by deferring resource allocation through vir-
tualization. VirtPIM.Fine is similar to VirtPIM.Coarse, but
divides the workload into smaller units and schedules them
in a fine-grained manner to maximize resource utilization.
VirtPIM.Co-op adopts a cooperative policy to apply a dif-
ferent policy from Coarse and Fine to each PIM workload,
to maximize performance.
Figure 11 shows the throughput and ATT of PIM-CARE

and VirtualPIM. All the results are normalized to the geomet-
ric mean of VirtPIM.Coarse. Based on Figure 11, the result
shows that PIM-CARE is highly effective in all workload
sets except VW5@VirtPIM. This is because VW5@VirtPIM
consists only of workloads with significant host operations
throughout the entire PIM resource occupancy time, leading
to significant performance gains due to reduced resource
occupancy via the temporal optimization proposed in Virtu-
alPIM. Except for the VW5 case, PIM-CARE is more effective
for two main reasons: 1) better resource utilization with
the availability-aware resource allocation and 2) no virtu-
alization overheads with native execution support, such as
additional copy operations and control of virtual-to-physical
resource mapping.
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Table 3: Comparison of key aspects of VirtualPIM [21] and PIM-CARE
Framework Multitasking Resource Allocation Resource Opt. Scheduling Policy Primary Goal
VirtualPIM Spatial User-defined Temporal Fine-grained, FCFS To Maximize Total Resource Utilization
PIM-CARE Spatial Profile-guided Spatial Availability-aware, OoO Efficient Execution of Each Application

5 Related Works
Our prior work, VirtualPIM[21], is the first to efficiently sup-
port simultaneous execution of multiple applications on PIM.
Both PIM-CARE and VirtualPIM support spatial multitasking
to improve PIM resource utilization but provide different op-
timization techniques to achieve high performance as listed
in Table 3. VirtualPIM aims to maximize PIM resource utiliza-
tion through fine-grained scheduling and performs temporal
optimization to minimize PIM resource occupancy per ap-
plication. However, PIM-CARE determines the best amount
of resources for each application, which VirtualPIM cannot
do. Moreover, PIM-CARE dynamically allocates resources
via a priority-based workload scheduler that considers re-
source availability. As a result, VirtualPIM ensures that PIM
resources are fully utilized, but each application often exe-
cutes sub-optimally. In contrast, PIM-CARE not only utilizes
all resources, similar to VirtualPIM, but also ensures that
each application operates at its maximum achievable perfor-
mance.

vPIM [42] is a framework that leverages virtualization to
allocate virtual machines (VMs) to PIM applications instead
of physical resources, allowing them to access only the re-
sources they require. It enables the amount of PIM resources
used by each VM to change dynamically. However, it does
not consider workload characteristics in resource allocation,
and its virtualization overhead is relatively high (over 15%
of execution time) compared to PIM-CARE, which incurs
around 6%.
UPMEM PIM [7, 45], one of the well-known real-world

PIM architectures available, provides high programmabil-
ity and has inspired valuable research [11]. Similarly, sev-
eral semiconductor industries have also been developing
PIM architectures. Aquabolt-XL HBM2-PIM [23, 29] pro-
vides programmable in-memory processing and improves
the overall performance. AxDIMM also optimizes recom-
mendation frameworks using near-memory [19] scheme and
performs database scan operations [28] with high efficiency.
GDDR6-AiM [12, 27] accelerates matrix-vector operations
using lookup table. These works focus mainly on efficient
hardware development and application mapping. However,
PIM-CARE emphasizes versatile mapping of multiple PIM
applications across PIM hardware, making it applicable.

There have also been many studies on improving the per-
formance of PIM applications using software approaches.
SimplePIM [5] is a software framework that reduces lines
of code while improving performance by providing several

PIM APIs. Infinity-Stream [46] provides an intermediate rep-
resentation and just-in-time compiler to support in-/near-
memory fusion. CHOPPER [40] presents a compiler infras-
tructure that makes bit-serial processing-using-DRAM more
programmable. Cinnamon [20] is a compilation framework
that allows device-agnostic and device-aware optimizations
on PIM. However, these works provide different optimization
techniques for a single target application. Therefore, these
approaches are orthogonal to the PIM-CARE framework.

6 Conclusion
We introduce PIM-CARE, a novel framework for dynamic
resource allocation of PIM applications with compiler sup-
port on a real-world PIM system. PIM-CARE first determines
the optimal amount of resources for each application by
constructing performance tables. It then supports spatial
multitasking, allowing multiple PIM applications to run con-
currently with optimal resource allocation, while maximiz-
ing resource utilization through a priority-based workload
scheduling. PIM-CARE also provides availability-aware dy-
namic resource allocation that allows PIM resources to be
fully utilized. Experimental results show significant improve-
ments in throughput and turnaround time compared to the
baseline.
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