
MEMPLEX: A Memory System with Replication and Migration of
Data for Multi-Chiplet NUMA Architectures

Neethu Bal Mallya
Department of Computer Science

and Engineering
Chalmers University of

Technology and University of
Gothenburg

Gothenburg, Sweden
neethub@chalmers.se

Bhavishya Goel
Department of Computer Science

and Engineering
Chalmers University of

Technology and University of
Gothenburg

Gothenburg, Sweden
goelb@chalmers.se

Ioannis Sourdis
Department of Computer Science

and Engineering
Chalmers University of

Technology and University of
Gothenburg

Gothenburg, Sweden
sourdis@chalmers.se

Abstract
As the semiconductor industry struggles with the diminish-
ing returns of Moore’s law and explores innovative solutions
for integrating more resources on a chip, multi-chiplet chips
offer a cost-efficient alternative to large monolithic chips due
to their higher yield. However, chiplet-based systems inher-
ently exhibit Non-Uniform Memory Access (NUMA) char-
acteristics and, therefore, suffer from slow remote accesses.
Although data placement in multi-chiplet NUMA systems
can be optimized in software, currently, there are no hard-
ware mechanisms to dynamically improve data placement
in DRAM distributed across chiplets. Our experiments show
that this leads to wasting a significant fraction of system per-
formance compared to a hypothetical system with ideal data
placement. Our work addresses this problem by introducing
MEMPLEX, a novel memory system for multi-chiplet NUMA
architectures, which offers data replication and migration
in the memory nodes of a multi-chiplet system. MEMPLEX
allocates a small fraction of each memory node to construct a
DRAM cache and offers their remaining capacity to a shared
flat address space with hardware migration. In a nutshell,
MEMPLEX DRAM cache attracts data of the working set to
the local memory node and decides whether to migrate them
upon eviction based on their usage in the cache. Thereby,
MEMPLEX improves data locality, regains a large fraction
of the above performance overhead, and offers substantial
energy savings.

CCS Concepts
• Computer systems organization→Multicore archi-
tectures.

This work is licensed under Creative Commons Attribution 4.0 International.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725776

Keywords
Chiplets, Non-Uniform Memory Access, Caching, Migration

ACM Reference Format:
Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis. 2025.
MEMPLEX: A Memory System with Replication and Migration of
Data for Multi-Chiplet NUMA Architectures. In 2025 International
Conference on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake
City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3721145.3725776

1 Introduction
Fitting more resources onto a chip has always been a key
aspect of enhancing the performance of processor chips.
This became more critical in the multicore era after Den-
nard scaling could no longer deliver higher frequencies due
to power limitations. However, with Moore’s law running
out of steam, technology scaling is increasingly challeng-
ing, and integrating more resources on a single monolithic
chip has become too expensive. Building larger chips out of
multiple smaller chiplets offers higher yield and is thus a
lower cost alternative [10, 19]; however, compared to their
monolithic counterparts, chiplet-based chips have significant
performance overheads [31].

Multi-chip integration technologieswere initially employed
to build High Bandwidth Memory (HBM) and position it
closer to a processing die, such as a GPU [4] or a vector
engine [36]. It was soon expanded to disintegrate processors
to multiple chiplets, as seen in AMD’s EPYC and RYZEN ar-
chitectures, providing access to multiple memory nodes with
non-uniform access latencies that vary by tens of nanosec-
onds [33]. Currently, multi-chiplet chips, such as AMDMI300
[1] and Intel Sapphire Rapids [35], integrate multiple CPU
and/or GPU chiplets along with HBM nodes, forming part
of a complex and less uniform memory system.
Non-uniform Memory Access (NUMA) machines entail

the performance pitfall of long latency remote accesses, but
also offer opportunities for performance optimizations, if

https://orcid.org/0009-0001-6104-3739
https://orcid.org/0000-0001-9878-4509
https://orcid.org/0000-0002-0452-3664
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721145.3725776
https://doi.org/10.1145/3721145.3725776
https://doi.org/10.1145/3721145.3725776

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

data locality is maximized. In the 1990s, Cache Only Mem-
ory Architectures (COMA) [8] and Cache Coherent NUMA
(CC-NUMA) [55] memory systems improved data locality
and, consequently, the performance of NUMA multi-socket
machines by replicating (caching) and/or migrating data
close to the processor chip. More recently, hybrid memory
systems composed of nodes with heterogeneous characteris-
tics, such as smaller HBM and larger but lower bandwidth
external DRAM, have employed similar techniques to re-
duce memory access times, including, DRAM caching [5, 14–
17, 24, 28, 29, 41, 50], data migration [20, 21, 32, 40, 42, 45, 51],
or a combination of both [52].
The focus of this work is on NUMA architectures com-

posed of multiple CPU chiplets and HBM nodes, such as
the AMD MI300 [1] or Intel Sapphire Rapids [35]. Currently,
such systems use HBM as part of a flat address space and
rely on Operating System (OS) support or user optimizations
to place data closer to the processing chiplet, or they use the
entire HBM as a DRAM cache of an external DDR memory,
thereby wasting valuable main memory capacity [35]. This
paper demonstrates that even when memory allocation is
NUMA-aware, placing data in the closest available memory
node relative to the processing node, system performance is
still significantly reduced compared to an ideal system that
always finds data in its local memory node. Our aim is to
alleviate this performance loss by reducing remote memory
accesses.

To this end, we propose MEMPLEX, a novel memory sys-
tem that offers replication and migration of data across the
memory nodes of a multi-chiplet chip in order to enhance
data locality. As a result, the number of accesses to the clos-
est memory node for each processing chiplet is increased,
while accesses to the remote memory nodes are minimized.
This reduces the average memory access time, thereby im-
proving system performance. The proposed memory system
uses a small fraction of each HBM node as a DRAM cache
and decides whether to migrate data upon eviction from that
cache based on the usage of the evicted blocks. Concisely,
this paper makes the following contributions:

• Investigates the performance bottlenecks in amulti-chiplet
NUMA system revealing a performance loss of 26% and
31% in 4- and 16-chiplet configurations, respectively, com-
pared to an ideal system.

• Introduces MEMPLEX, the first multi-chiplet NUMA ar-
chitecture that combines replication andmigration of data
across multiple memory nodes, offering:
– Most of the HBM capacity as a shared flat address space,
unlike designs that use it entirely as a DRAM cache.

– Superior performance to existing software solutions of-
fering NUMA-aware data placement and designs using
HBM exclusively as a cache.

• EvaluatesMEMPLEX onmulti-programmedmixes of work-
loads from different benchmark suites (detailed in Sec-
tion 4.3), and shows that, compared to a multi-chiplet
system with NUMA-aware data placement and no sup-
port for DRAM caching or migration, MEMPLEX:
– Eliminates 80% of the remote memory traffic, resulting
in a 44% reduction in dynamic memory energy con-
sumption in a 4-chiplet system.

– Achieves up to 7% speedup (5% on average) when 1
16 of

each HBM is dedicated for caching in a 4-chiplet system,
with performance gains increasing up to 15% (10% on
average) in 16-chiplet systems.

The remainder of this paper is organized as follows: Section 2
discusses related work, Section 3 presents the MEMPLEX ar-
chitecture, Section 4 outlines our experimental setup, Section
5 presents our evaluation results, and Section 6 concludes
with a summary of our findings.

2 Related Work
This section reviews prior work on data replication and mi-
gration in memory systems, focusing on: (i) traditional multi-
socket NUMA systems, (ii) hybrid memory systems combin-
ing HBM and off-chip DRAM, and (iii) software support for
NUMA architectures.
2.1 Non-Uniform Memory Access in Shared

Memory Systems
Distributed shared memory (DSM) systems inherently deal
with the problem of incurring higher delays when retriev-
ing data mapped to a remote memory node compared to
its local memory, resulting in non-uniform memory access.
Optimizing latency for remote data access in DSMs has been
an extensive topic of research in computer architecture for
many decades. Cache-Coherent NUMA (ccNUMA) machines
address this challenge by allowing the remote data to be
cached in the local node’s cache hierarchy [23, 25, 30, 55].
References to the remote data that miss the local node’s cache
hierarchy are sent to the home node of the referenced page.
The home node is responsible for the initial allocation of the
page and is in charge of maintaining the consistency and
coherence of that page across the system.
Due to the relatively smaller size of the remote cache,

the ccNUMA systems exhibit high sensitivity to data place-
ment. This sensitivity can be mitigated to some extent by
strategies such as caching remote data on DRAM [6, 13] or
leveraging OS support for dynamic page migration to local
memory [53]. Cache-only memory architecture (COMA) ma-
chines address this problem by allowing the remote pages
to be freely migrated to the local memory, improving the
chances of the referenced data being available locally. Since
there is no concept of a home node in traditional COMA sys-
tems, block localization in case of a miss in the local memory

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

can be challenging and time-consuming. FLAT-COMA [46]
resolves this problem by assigning a fixed home node for
each page. In this scheme, the pages are free to migrate to
remote nodes, but the location of the directory remains fixed.
COMA systems implement block replacement and relocation
mechanisms in hardware, resulting in increased hardware
complexity. Simple-COMA (S-COMA) [11] systems simplify
the hardware implementation by offloading some of this
complexity to the operating system. When a remote page
is first referenced, it results in a page fault. The operating
system allocates a page frame in the local memory for the
remote page and fetches the remote block into this newly al-
located page frame. Subsequent references to the same block
get mapped directly to the local memory. Since the physical
addresses in the local memory are handled independently by
the local MMU, identical blocks residing in different nodes
can have different physical addresses. Consequently, nodes
need a global identifier for migrated pages for inter-node
communication. Hence, each node maintains a translation
table responsible for converting local addresses to global
addresses and vice versa.
Reactive NUMA (R-NUMA) [9] aims to combine the per-

formance benefits of ccNUMA and S-COMA. This scheme
initially allocates the remote block in the remote cache to
achieve a low initial overhead cost of ccNUMA. The system
keeps track of block refetching due to conflict and capacity
misses to remote cache and initiates S-COMA page allocation
process when refetch count exceeds a certain threshold.

2.2 Hybrid Memory Systems
DRAM-based hybrid memory systems combine two types
of memory to balance performance and capacity. The first
type is High Bandwidth Memory (HBM), which offers high
data transfer rates but has limited capacity due to heat dis-
sipation issues, increased cost, and stacking efficiency. To
complement the HBM, conventional lower-bandwidth exter-
nal DRAM is used to expand the system’s overall memory
capacity. Ideally, the goal is to design a memory system that
seamlessly integrates the high bandwidth of HBM with the
larger capacity of off-chip external DRAM, providing an effi-
cient balance of both performance and storage.

Currently, there are two primary approaches for organiz-
ing hybrid memory systems. The first approach is to use
HBM and off-chip DRAM as part of the same main mem-
ory, with a migration mechanism that brings the “hottest"
data to the high-bandwidth 3D-stacked DRAM [20, 21, 32,
40, 42, 45, 51]. Some of these designs rely on OS to select
and migrate data [32] and, although simpler, have a slow
response to working set changes. Other data migration solu-
tions are implemented in hardware, offering a faster response,
but need to handle address remapping and keep it transpar-
ent to the OS [20, 21, 40, 42, 45, 51]. The second approach

uses HBM as a DRAM cache of the external DRAM [5, 14–
17, 24, 28, 29, 41, 50], with the primary challenge being the
overheads associated with metadata management (tags).

A hybrid of these two approaches has also been proposed
in the Hybrid2 design, which reserves a fraction of the HBM
for caching and offers its remaining capacity to the main
memory [52]. Hybrid2 targets systems with a single proces-
sor chip and 2-level hybrid memory, i.e. HBM and external
DDR. In contrast, MEMPLEX extends the concept of com-
bining replication and migration to chiplet-based systems
featuring multiple processing chiplets, multiple HBM nodes,
and external DDR. Unlike Hybrid2, MEMPLEX faces more
complex challenges, such as (i) the remap information needs
to be fragmented and scattered to the various NUMA nodes,
(ii) data allocation and migration decisions are intricate due
to the varying distances between memory nodes, and (iii)
introducing multiple DRAM caches (one per HBM node)
calls for compatibility with directory-based cache coherence
protocols [6]. MEMPLEX addresses these challenges and
provides an innovative solution that offers data replication
and migration in the memory system of a multi-chiplet pro-
cessor, improving the performance and energy efficiency
of chiplet-based systems and demonstrating scalability to
larger systems with more chiplets.
Existing commercial multi-chiplet processors with HBM,

such as Intel Sapphire Rapids [35], do not combine replica-
tion and migration. Their HBM nodes are either used entirely
as DRAM cache wasting capacity, or as part of a flat address
space with no hardware support for migration. In the lat-
ter case, software techniques can be employed to alleviate
NUMA overheads, as explained next.

2.3 Software support in NUMAmachines
Modern operating systems widely support NUMA archi-
tectures through various mechanisms. Operating systems
like Linux [44], Windows [2], and FreeBSD [3] implement
NUMA-aware scheduling algorithms to place processes and
threads closer to the memory nodes, minimizing access la-
tency. Additionally, operating systems allow user applica-
tions to discover NUMA topology, request memory from
specific nodes, and set process affinity through NUMA APIs.
In addition, Linux also facilitates manual page migration [22]
from the remote NUMA node to the one currently running
the process. The automatic NUMA balancing mechanism
in Linux [12] enables periodic unmapping of process mem-
ory, NUMA hinting faults, migration-on-fault, and automatic
placement of tasks closer to the memory. These operating
system features can make applications NUMA-aware and
improve performance on NUMA machines mostly by select-
ing a static mapping that places data close to the consuming
threads. However, even with dynamic migration support,
this approach often requires programmer intervention and

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

HBM

HBM

HBM

HBM

SRAM LLC

Cores and Private Caches

DRAM Cache Controller

Memory Controller
Migration Metadata

DRAM Cache Data and
part of Available Flat

Address Space

Remap Table
Inverted Remap Table

Free Memory Stack

DRAM Cache
Data

Cache
state

Access
Counter

Cache
Pointer

Memory
Pointer

Address
Translation

Migration
Decision

LRU Dirty flag vector
Valid flag vector

Tag

DRAM Cache Tag Array

Memory
Node ID

Processor Chiplet

HBM

Silicon Interposer

I/O
 C

hiplet

DDR NUMA Node = Processor Chiplet + HBM

Figure 1: MEMPLEX System Overview

has a slower response to working set changes compared to
hardware migration solutions [52]. In contrast, MEMPLEX
aims to transparently improve performance on NUMA sys-
tems without putting an additional burden on application
programmers.

3 MEMPLEX Design
MEMPLEX is a memory system for chiplet-based architec-
tures, comprising multiple processor chiplets and HBMs in-
tegrated on a silicon interposer as well as external DDR
memory accessed via an IO chiplet, as illustrated in Figure 1.
Without loss of generality, the system is organized in NUMA
nodes composed of a processor chiplet and anHBM. Each pro-
cessor chiplet has a high bandwidth connection to its nearby,
local HBM, henceforth denoted as Local Memory (LM), and
can gradually reach larger parts of the shared memory at the
cost of lower bandwidth, by connecting first to the remote
HBMs of other nodes on the chip and second to the off-chip
DDR, collectively referred to as Remote Memory (RM). On
a system with such trade-offs between memory bandwidth
and memory capacity, MEMPLEX improves data locality by
employing a DRAM cache and a migration scheme on the
shared flat address space. It allocates a small portion of each
HBM in the system as the data array of a sectored DRAM
cache, private to the node, and utilizes its remaining capacity,
together with the external DDR, to form a shared flat address
space offering hardware support for data migration across
the shared HBMs and the external DDR.

3.1 MEMPLEX System Overview
The MEMPLEX system combines data replication and migra-
tion across the HBMs of a multi-chiplet chip as well as the
external DDR. A fraction of each HBM is allocated to store
the data array of a sectored DRAM cache, which attracts data
frequently used by the cores on the local chiplet. The rest

of its capacity is part of the flat address space. The DRAM
Cache Tag Array (DCTA) is maintained in SRAM locally at
a reasonable cost. Migration decisions are made per sector
upon its eviction from the DRAM cache.
In MEMPLEX, the data management operates at distinct

granularities. The data blocks in the DRAM cache are fetched
at the cache line granularity (64 Bytes). The DRAM cache
tags are maintained at the sector granularity, which for sim-
plicity is equal to an OS page (4 KBytes). After a cache miss
in the SRAM LLC, DCTA is the first point of reference for
determining whether the requested cache line is available
within the DRAM cache. The requested cache line may reside
either in the LM or in RM. In the event of a tag array miss, a
new entry for the missing sector is allocated in the DCTA re-
gardless of where the requested cache line resides. However,
a new data array entry for the sector is allocated in LM only
if the requested cache line resides in the RM. Otherwise, if
the sector is already located in the main memory part of LM,
the added DCTA entry would point to the existing location
of the sector in LM and mark all cache lines as dirty to ensure
a writeback after eviction. Thereby, replication of data that
already reside in LM is avoided, while DCTA acts as a cache
of the address remap information.
An HBM is logically, rather than physically, partitioned

between the DRAM cache and the flat address space, and
the partitioning is facilitated by pointers maintained in the
DCTA. This allows for a seamless link of sectors already
present in the LM to the DRAM cache tags. Moreover, it
enables cached sectors from RM to be migrated into LM
without relocating the already fetched cache lines.

The sectored DRAM cache allows the tags to be kept en-
tirely on the processor chiplet without significant SRAM
cost due to its small size. This induces minimal latency to
the critical memory access path as all the memory requests
go through the DCTA. The tag array also contains additional
information to facilitate the data migration within the shared
memory. Besides the tag and cache state, each entry in the
on-chip tag array stores the remapped address of the sector,
serving as a cache of the migration metadata, which effec-
tively reduces the overhead of address remapping. Section 3.2
elaborates on the DCTA structure.

When a sector is evicted from the DRAM cache, the migra-
tion mechanism decides whether to migrate it to the LM or
evict it back to its current location in RM. The migration deci-
sion is based on the cost of migration in terms of the memory
traffic and the number of accesses to the sector while in the
DRAM cache. By deferring the migration decision until a
DRAM cache eviction, the management of migration-related
metadata is moved off the critical path, thereby minimizing
its impact on performance. Additionally, the RM traffic gen-
erated by migrations is dynamically adjusted according to
the workload behavior.

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Local Memory (MNID=i) Remote Memory (MNID=j)

LM Sector RM Sector

DRAM Cache Tag Array (Chiplet=i)

(a) Logical Address Space Layout of the Memory Nodes (Showing LM and RM)

(b) Example entries in the DRAM Cache Tag Array

Remap Table
Inverted Remap Table
Free Memory Stack

DRAM Cache Line (Valid)

DRAM Cache Line (Non-Valid)

Part of the Flat Address Space
Valid flag vector
Dirty flag vector

1

2

DRAM Cache Line (Valid and Dirty)

Figure 2: (a) Logical Address Space Layout of the Mem-
ory System and (b) Example entries in the DCTA

3.2 DRAM Cache Controller
Each processor chiplet in the system features a DRAM Cache
Controller (DCC) responsible for high-level block manage-
ment tasks. This includes handling requests from the pro-
cessor, accessing the on-chip tags, fetching cache blocks on
misses, evicting blocks, and generating writeback traffic to
the main memory for dirty blocks. Additionally, the DCC
manages sector migrations between the local and remote
memory. This involves translating the addresses of remapped
sectors, selecting sectors for migration to LM, and making
migration decisions based on data usage (while in DC) and
migration overhead considerations. Section 3.7 discusses how
DCC manages migrations. All memory requests go through
the DCC, which communicates with the memory controller
to access the HBMs and external DDR.
The DCC manages the DRAM Cache Tag Array (DCTA),

which stores all tags for the DRAM cache in SRAM on the
processor chiplet. DCTA is set-associative, with each set con-
taining entries for multiple sectors. Each entry in DCTA, as
depicted in Figure 1, comprises the sector tag, state bits for
each cache line in the sector (including valid and dirty bits),
an access counter, two pointers, and a node identifier. The
Access Counter (AC) monitors sector accesses and is used
upon DRAM cache eviction to decide whether to migrate
the sector to LM or evict it to RM. AC is incremented only
for non-migrated LM sectors to prevent potential starva-
tion within the cache set, ensuring LM sectors with frequent
accesses are not evicted from the DCTA. Additionally, we ig-
nore the sectors whose counters have reached the maximum
value to prevent starvation from RM sectors that remain
in the cache for prolonged periods. Pointers facilitate ad-
dress translation of processor physical addresses to sector

locations in the memory system. The Cache Pointer (CP)
decouples the set and way from the physical location of
data in the LM. This indirection allows our design for sector
migration to LM without the need to copy data from one
LM location to another. The Memory Pointer (MP) points
to sector physical locations in RM and helps avoid remap
table lookups. MP is same as CP for sectors that belong to
the LM or for sectors that have entirely migrated to the LM.
The Memory Node Identifier (MNID) is used to identify the
node where the cached sector is located in the main memory.
For the HBM address space, the MNID is the node ID where
the HBM is located. On the other hand, the external DDR
is divided into a number of regions equal to the number of
nodes in the system, so each region is assigned to a different
node, as illustrated in Figure 1. When the MNID matches the
self-ID of a node, it indicates that the respective node has the
sector in its flat address space, either as a result of migration
or as the original Home Node (HN) location determined by
the memory allocation.

3.3 Memory Layout & Metadata
Figure 2(a) illustrates the logical address space layout of the
memory system, depicting the HBM local to a processor
chiplet (LM) and another one that is remote (RM). The exter-
nal DDR memory is not illustrated as it only contains data
as part of the address space. On the contrary, each HBM
includes a reserved portion containing migration metadata
structures used in the MEMPLEX design. The non-reserved
portion of the HBM is logically partitioned between DRAM
cache data and the available flat address space across the
shared memory. This means that the sector corresponding
to a DCTA entry can be located anywhere across the flat
address space of its respective LM (shown by the lined area
in Figure 2(a)). DCC uses the pointers maintained in the
DCTA to track the location of sectors within its respective
LM. Sectors in LM may either fully reside in its DRAM cache
(with a corresponding DCTA entry) or not at all. Sectors in
RMmay be partially or fully cached in the DRAM cache, also
with corresponding DCTA entries.

Figure 2(b) demonstrates examples of DCTA entries. The
first entry (1 in Figure 2(b)) corresponds to a sector entirely
migrated to its respective LM, as indicated by CP specifying
its location. In this scenario, MP is the same as CP, MNID
is the node’s self ID, and as a convention, all valid and dirty
bits are set. The second entry (2 in Figure 2(b)) represents a
sector partially cached in the DRAM cache, indicating it has
not been migrated to the LM. Some cache lines of the sector
have been fetched to the LM, as indicated by the valid flag
vector of the DCTA entry. The dirty flag vector specifies the
cache lines of the sector that were writtenwhile in the DRAM
cache. The CP and MP pointers indicate the sector location
in the LM and RM corresponding to MNID, respectively.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

Migration Metadata Structures. Our design allows all-to-all
address remapping for pages across the flat address space
available in the HBMs and external DDR. To achieve this, we
maintain the following structures in each memory node:

• Remap Table: Each node in the system maintains a remap
table which stores mappings from the processor physical
address to the actual memory location of the sector in the
memory system. A remap table stores entries of sectors
(pages), which natively belong to its node and are migrated
elsewhere as well as sectors migrated to its local HBM from
other parts of the memory. Unlike the centralized remap
table in the Hybrid2 design, where all remap information
is stored in one location, our approach distributes remap
information across NUMA nodes. This fragmentation in-
troduces greater complexity in tracking data. To mitigate
this complexity, the remap table structure is optimized by
implementing it as a hash table that maintains an entry
for each of the native LM sectors that have migrated to
RMs and for the RM sectors that have migrated to the LM.
This means that if a native LM sector gets a miss in the
remap table, the sector is in its default, native location. The
structure is indexed by the processor physical address and
points to the memory location of the sector. On a sector
migration, the remap table is updated to reflect the new
address. It is worth noting that the DCTA serves as a cache
for remap table entries of sectors currently (partially or
fully) in the DRAM cache, facilitated by the pointers illus-
trated in Figure 2(b). This distributed yet optimized design
enables effective memory location tracking across NUMA
nodes.

• Inverted Remap Table: This table contains processor
physical addresses corresponding to all locations within
the respective memory node. The table also includes a bit
map representing the sharers of the address if the sector
is cached. This table is employed during the migration of
blocks out of the memory node. Further details on its usage
are provided in Section 3.5.

• Free Memory Stack: Each node maintains a stack of a
minimumnumber of its own free locations, which currently
hold no valid data and are available for use. A predefined
number of entries from this stack are given exclusively to
each other memory node for migrating data. Thus, in addi-
tion to its own free locations, each memory node maintains
a stack of free locations reserved for use on all other mem-
ory nodes. Furthermore, when a node exhausts its available
free locations, it requests additional entries to replenish its
stack. The stack size is bound to the number of sectors that
can fit within the DRAM cache. The stack pointer and a
set number of top entries of the stack per node are stored
on-chip within the DCC to minimize LM access.

YesSector in
DCTA?

Read remap table in LMi

Allocate an entry in DCTA

LLC Miss

1

Update DCTA entry for
the new Sector in DC

 Use CP to read CL from LMi

 Use CP to write CL to LMi

 Use MP to read CL from RM

2

CL in DC?

2a 2b

Sector in LMi?

1a 1b

Update inverted remap table in LMi and RM
Update DCTA entry for the new Sector in DC

Allocate a sector in LMi

Read CL from RM

Read remap table in HN

No

No

Yes

Yes

No

Sector in
ExtDDRi?

NoYes

Figure 3: Memory Access Path

MEMPLEX overheads are primarily related to (1) added
logic in the memory controller (for supporting migration
and DRAM caching), which is similar to the overheads im-
posed by existing hardware migration and DRAM caching
approaches, (2) SRAM cost for storing DCTA, and (3) DRAM
space for metadata. The space allocated for all the above
metadata is small (even when considering the full remap
table) and in our implementations constitutes only 0.5% of a
memory node capacity.

3.4 Memory Access Path
When a memory request arrives in the DCC of a requesting
node due to an LLC miss, the DCTA is indexed with the
(physical) address to determine if the requested sector and
the specific cache line is available within the DRAM cache.
This operation can result in one of four possible outcomes,
as illustrated in Figure 3.

1 DCTA Miss: In this scenario, the DCTA does not con-
tain an entry corresponding to the requested sector. The
requested sector may reside either in the LM or in any of the
RM locations. Regardless of where the requested sector re-
sides (LM or RM), an entry is allocated in the DCTA for that
sector. Section 3.6 elaborates on the allocation of a new entry
in the DCTA and the eviction process in the DRAM cache
if necessary during this allocation. The address remap table
in the LM is accessed using the sector’s physical address to
determine the sector’s location in the memory system. If the
remap table in LM does not contain the updated location
of the requested physical address, the system defaults to
accessing the remap table in the Home Node (HN), decoded
from the higher-order bits of the address. This is typical
for the first access to a sector allocated in any of the RMs.

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Subsequent requests from the same chiplet would be served
from its DCTA.

1a Requested Sector in LM: If the sector is located in the
LM, then all cache lines associated with that sector are
already present in the LM. Consequently, the entry in the
DCTA is updated accordingly. The CP and MP are set to
point to the LM location of the sector. Additionally, the
MNID is set to the self-ID, and all cache lines are flagged
as valid and dirty.

1b Requested Sector in RM: If the sector is not located in
the LM, but is in the region of external DDR that belongs
to the requesting node, then the location of the sector
is already known from step 1a . Otherwise, the remap
table in the RM node, i.e., the node of the physical address
is accessed to get the updated location of the requested
physical address. Next, space is allocated in the LM for
caching the new sector in the DC, and the requested cache
line needs to be fetched from RM to the newly allocated
location in LM. Section 3.5 elaborates on the allocation
process followed by a memory node. Subsequently, the
DCTA is updated with the new sector. The CP is set to
point to the newly allocated LM location of the sector. The
MP is set to the RM location of the sector, and the MNID is
assigned the ID of the RM node. The valid flag is set only
for the fetched cache line, while the dirty flag depends on
the request type. Additionally, the inverted remap table in
the requesting node is updated with the physical address
of the sector, even though this sector has not yet been
migrated to LM. This is done to ensure correctness during
LM allocation, as explained in Section 3.5.

2 DCTA Hit: In this scenario, the DCTA contains an entry
matching the requested sector. However, even though there
is an entry for the sector in the DCTA, the requested cache
line might be located in the LM or not.

2a Requested Cache Line not in DRAM Cache: In
this scenario, an entry for the sector exists in the DCTA,
but the specific cache line is not valid. This indicates
that the sector is located in the RM, and only certain
cache lines of the sector have been fetched to the DRAM
cache. Subsequently, the MP pointer is utilized to re-
trieve the requested cache line from the RM, while the
CP pointer is employed to write the cache line to the
appropriate location in the LM.

2b Requested Cache Line in DRAM Cache: In this
scenario, the requested cache line is located in the
DRAM Cache. The sector can be located either in the
LM or the RM. In either scenario, the requested cache
line is accessible in the LM through the CP pointer of
the DCTA entry.

Lookup inverted remap table in LM
Lookup DCTA

Increment LM Counter

In DRAM
Cache?

Pop from Free Memory Stack
Copy the victim from LM to RM

Update remap table in LM, RM and/or HN
Update inverted remap table in RM and/or HN

Yes No

Figure 4: Allocating a sector in Local Memory

3.5 Allocating a Sector in Local Memory
When aDCTAmiss occurs and is indicated that the requested
sector resides in any of the RM (1b in Figure 3), a new sector
must be allocated in LM. To make space for this new sector,
another sector must be migrated away to any RMs. When the
cache is initially empty at boot, we employ a simple counter
to allocate space for the cache within LM. Figure 4 illustrates
the sector allocation process in the LM. During this process,
the DCC (i) identifies the victim sector in the LM, (ii) locates
a free sector in the nearest RM for allocation from the Free
Memory Stack, (iii) copies the data from the victim sector
in the LM to the free sector in RM, and (iv) after the data
is copied, the mapping structures are updated to reflect the
new location of the sectors in the LM and RM.

3.5.1 Finding victim sector in LM. A FIFO policy is employed
to identify a victim sector in LM. A Local FIFO counter, wrap-
ping around all the available LM locations, is incremented
each time a new location in LM is needed. However, the sec-
tor corresponding to the counter may currently be assigned
to the DRAM cache (indicated by CP in the DCTA entry)
or cached in any of the RMs. To handle this, the inverted
remap table is indexed with the counter to obtain the sector’s
physical address. Then, look up the DCTA using the physical
address of the sector. If the sector is in the DCTA, we pro-
ceed to the next one until finding an available sector. This
ensures correctness, as a sector in the DRAM cache must
not be migrated to RM. Furthermore, this approach yields
a better replacement decision than FIFO alone, as sectors
frequently accessed are more likely to reside in the DRAM
cache and avoid migration to RM. To minimize the latency
of this step, which is in the critical path of an access, each
DCC maintains a buffer of a few (e.g., two) spare, unused DC
data entries ready to be used as victim sectors.

3.5.2 Finding free sector in RM. To locate a free sector in RM,
we utilize the free entries of RM stored in the Free Memory
Stack of the node. When a sector is migrated from RM to
LM, its original RM location is pushed onto the Free Memory
Stack of the RM, making it available to be overwritten.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

Assign DCTA entry for the new Sector

Find LRU victim

Sector in LM?

Fetch non-valid CLs from RM to LM Writeback dirty CLs from LM to RM

Update remap table in LM, RM and/or HN
Copy the victim from LM to RM

Migr. Traffic
Affordable?

Pop from Free Memory Stack

Update inverted remap table in RM and/or HN

Yes No

Yes No

1

2a 2b

2

Figure 5: Allocating an entry in DCTA

3.6 DRAM Cache Evictions
Figure 5 depicts the DRAM cache eviction logic, where the
DCC employs the LRU algorithm to determine which sector
to evict from the DRAM cache. The DRAM cache can contain
(i) Sectors already in the LM, (ii) Sectors that have migrated
to the LM, or (iii) Sectors located in the RM, with some or
all cache lines already fetched to the LM.

3.6.1 Evicting sectors already in LM. For sectors in cases (i)
and (ii) involving data already in the LM or migrated to it (1
in Figure 5), no data movement is necessary. The remap table
has been updated with the evicted sector’s location during
migration to LM, and the inverted remap table has been
updated with the physical address of the evicted sector when
first fetched in the DRAM cache. Thus, the corresponding
DCTA entry can be reassigned.

3.6.2 Evicting sectors located in RM. For sectors in case (iii)
located in any of the RMs, the DCC determines whether
to migrate the sector to the LM or evict it back to the RM.
Migration to LM (2a in Figure 5) involves fetching all non-
valid cache lines of the sector from the RM and updating
migration structures. In contrast, eviction (2b in Figure 5)
involves writing back all dirty cache lines of the sector to the
RM, and no remapping data structures need to be updated.
The algorithm for deciding between migration and eviction
is detailed in the following section (Section 3.7).

3.7 Migration Decision and Traffic
Regulation

This section discusses the mechanism employed to regulate
the migration traffic overheads and the process of deciding
between migration and eviction.

3.7.1 Migration Traffic Overheads. When evicting a sector
from the DRAM cache that has not been migrated to the LM,

DCC has two choices: Either (i) evict the sector back to the
RM, requiring the writeback of all the dirty cache lines (2b
in Figure 5), or (ii) migrate the sector to the LM by fetching
the non-valid cache lines of the sector from the RM (2a in
Figure 5). The choice between the two is made based on
the migration overhead, which is calculated in terms of the
number of RM accesses caused by a migration decision and,
in essence, indicate memory traffic cost. The number of RM
accesses depends on the number of valid and dirty cache
lines within the sector in the DRAM cache.

In the case of eviction, the RM accesses (𝐸RM) correspond
to the number of dirty cache lines (𝑁dirty) that must be writ-
ten back to RM. However, in the case of migration, the RM
accesses (𝑀RM) are determined by two factors: firstly, the
number of cache lines that need to be fetched from RM, calcu-
lated by subtracting the number of valid cache lines (𝑁valid)
already present in the sector from the total number of cache
lines per sector (𝑁all); and secondly, the cost of swapping out
the evicted sector from LM to accommodate the new one,
which necessitates 𝑁all writebacks to RM.

𝐸RM = 𝑁dirty (1)
𝑀RM = (𝑁all − 𝑁valid) + 𝑁all (2)

Thus, the overhead incurred in migrating a sector in terms
of RM accesses (𝑂m) is given by the equation:

𝑂m = 𝐸RM −𝑀RM + 1 = 2 × 𝑁all − 𝑁valid − 𝑁dirty + 1 (3)

where the constant “1” is added as a minimum overhead.
The𝑂m can range from 1, indicating all cache lines of a sector
are valid and dirty, to 2 × 𝑁all, which occurs when only one
cache line of a sector is valid and clean upon eviction from
the DRAM cache. Nevertheless, this latency overhead does
not impact the critical path of memory access, as migration
decisions are made only during evictions.

3.7.2 Balancing Migration and Processors Traffic. DCCmain-
tains a remote access counter to monitor RM accesses, dis-
tinguishing between migration and processor requests. The
counter is incremented for every DRAM cache miss that
must be fetched from the RM. When a sector is migrated,
the counter is decremented by its migration overhead (𝑂m).
Besides monitoring the RM accesses, DCC also checks the
number of sector accesses (The field AC in DCTA). If enabled,
this check ensures that the value of AC of a sector is greater
than AC of other sectors in the same cache set. The conjec-
ture is that if this check is successful, the sector is likely to
be reused again and thus worth keeping in LM.
When deciding on a sector for migration, its 𝑂m is com-

pared to the remote access counter. If 𝑂m is smaller and the

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

D+5
3

D

0

A+5

1

B+5

2

C+2

Free Memory Stack
RemoteLocal

A+4 C+9

D+3 B

D+5 D+3

D B+3

Address Remap Table

2

C+7

0

A+1

1

B+1

3

D+1

Free Memory Stack
RemoteLocal

A+1 C+9

D+3 C+3

B+3 C+4

Address Remap Table

1

B+6

0

A+6

2

C+6

3

D+2

Free Memory Stack
RemoteLocal

B D
B+1
B+2 B+2
B+3 D+5
B+4
B+5
B+6
B+7 B+7

C C
C+1 C+1
C+2
C+3 A+1
C+4 B+3
C+5
C+6
C+7

D
D+1
D+2
D+3 A+4
D+4 D+4
D+5
D+6 B+7
D+7

Node 1 Node 2 Node 3

B B

B+3 C+4

D+5 A+11

D B+3

Address Remap Table

B+n B+n C+n C+n D+n D+n

0

A+7

1

B+4

2

C+5

3

D+7

Free Memory Stack
RemoteLocal

A A
A+1
A+2 A+2
A+3 A+3
A+4 B+2
A+5
A+6
A+7

Node 0

Address Remap Table

A+4

A+1 A+11

B D+3

C+3

A+n A+n

X X : Main Memory Sector in its Home Location (AA=X) with PA=X
 e.g., A (PA) at A (AA)

X Y : Cached Sector at AA=X with PA=Y
 e.g., B+2 (PA) cached at A+4 (AA)

X : Free Sector at AA=X; e.g., A+7 (AA)

X X : Main Memory Sector in its Migrated Location (AA=X) with PA=X
 e.g., D+5 (PA) migrated to B+3 (AA)

X Y : Cached and Migrated Sector at AA=X with PA=Y
 e.g., D (PA) migrated to B (AA), and in DCTA

A+7 : Free Location A+7 (AA) in Node 0

A+1 C+3

B A+11

in Node 0: Local Sector with
 PA=A+1 mapped to AA=C+3

in Node 0: Remote Sector with
 PA=B mapped to AA=A+11

Address Remap Table

Free Memory Stack

Figure 6: Example snapshot of HBM contents andmeta-
data for a 4-node MEMPLEX system. The mapping of
sectors with physical addresses (PA - bold), to actual
addresses (AA - italics) of the machine is illustrated, as
well as the contents of the remap table and free mem-
ory stack for each node.

above check is met, the sector is considered for migration.
Essentially, the remote access counter acts as an upper bound
on the number of RM accesses for migration and is periodi-
cally reset (every 100K cycles) to adapt to workload phase
changes. The check on AC regulate eligible sectors for mi-
gration, striking a balance between data “hotness" (usage)
and migration cost to optimize system performance. These
checks occur during eviction and hence do not affect the
critical path of a memory access.

3.8 An Example Illustration
Figure 6 provides an illustrative example of how MEMPLEX
handles migration metadata. In this example, there are four
nodes in the system, each displaying certain memory entries,
a portion of the address remap table, and the free memory
stack. For simplicity, regions of external DDR are omitted.
The physical address of the sector is denoted by A (in bold),
and the actual address (location within the memory node) is
denoted by A (in italics). The entire address range includesA,
A+1, ...,A+n, B, ..., B+n,C, ...,C+n,D, ...,D+n, divided across
4 memory nodes. Node 0 is the Home Node for physical
addresses A to A+n, containing locations A to A+n, Node 1
for B to B+n, and so on for the remaining nodes. If the sector
migrates from its Home Node, it will have an Owner Node
where the sector currently resides.

Various scenarios of sector placement and migration are
shown: (i) Sectors placed in their native location, e.g., sec-
tor with physical address PA=A placed in its actual address
AA=A; (ii) Cached sectors, e.g., sector with PA=B+2 from
Node 1 cached in AA=A+4 of Node 0 while maintaining its
data in AA=B+2 of Node 1. The corresponding entry for this
cached sector would be in the DCTA (not shown) of Node
0; (iii) Migrated sectors, e.g., sector with PA=D from Node
3 migrated to location AA=B in Node 1. The address remap
tables in Node 1 and Node 3 reflect this migration, and the
entry is also in the DCTA (not shown) of Node 1. Since loca-
tion D has been migrated out of Node 3, it is now available
and added to the Free Memory Stack.
An interesting scenario involves sectors with PA=C and

PA=C+1, which are placed in their native location in Node 2
and are cached in the DRAM cache of the same node as they
are used by the respective processor chiplet. Another notable
scenario occurs when Node 0 misses in its DRAM cache for
a line in sector D+5. Since the sector is not found in Node 0’s
remap table, it must consult the remap table of sector D+5’s
home node, i.e., Node 3. The Node 3 remap table indicates
that the sector has migrated to Node 1, at AA=B+3, where
the requested line is found after adding the line offset.

3.9 Cache Coherence
In MEMPLEX, each processor chiplet is paired with a mem-
ory node, which allocates a portion of its memory as a private
DRAM cache. This DRAM cache can store pages from both
local and remote memory nodes. Since a page may reside
in multiple DRAM caches simultaneously, a cache coher-
ence protocol is necessary to ensure coherence across the
different memory nodes. While the specific cache coherence
mechanism for DRAM caches is not detailed in this pro-
posal—leaving room for future optimizations—MEMPLEX is
designed to be compatible with a directory-based protocol,
such as the one described in CANDY [6].

The home node of a cache line can either be statically as-
signed or dynamically determined by consulting the remap
table, which locates the current placement of a sector. The
coherence directory is stored in DRAM within each memory
node to mitigate the SRAM storage overhead. Additionally,
an SRAM cache of the directory is maintained on the pro-
cessor chiplet to store recently accessed entries. This hybrid
approach helps reduce both the substantial storage overhead
and the access latency typically associated with coherence
directories in the memory nodes. However, the migration
policy for shared sectors warrants reconsideration, as sec-
tor usage in a single DRAM cache may not provide enough
data for optimal decision-making and could conflict with
the migration policies of other nodes. Leveraging the sec-
tor’s directory to collect information from all sharers could
facilitate more efficient migration decisions.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

The cache coherence optimizations and their evaluation
with multi-threaded workloads are left for future work. Nev-
ertheless, even multi-programmed workloads show a sig-
nificant reduction in remote traffic, noticeable performance
gain, and substantial energy gains, as detailed in Section 5.

4 Experimental Setup
4.1 System Configuration
Our microarchitectural simulation offers detailed modeling
of the memory and interconnects, as outlined in Section
4.2, making it computationally intensive for large systems.
To keep the simulation times of our experiments within
affordable bounds (tens of hours per simulation point), the
modeled systems are scaled down to a quarter of a real one. A
full-scale AMD Zen4C chiplet consists of 16 cores; therefore,
our performance analysis focuses on chiplets scaled to one-
quarter of the AMD Zen4C or Intel Sapphire Rapids chiplets.
Consequently, these scaled-down chiplets contain only a
quarter of the number of cores and connect to a quarter
of the HBM channels, as detailed in Table 1. Additionally,
the L2 and L3 caches are undersized to put more pressure
on the memory system and increase LLC misses per kilo
instructions (MPKI), which is otherwise difficult to achieve
when simulating systems for only a few billion instructions.

Based on the scaled down chiplet size (16.5mm2)1 the
microbump budget is calculated to be proportional to the
number of cores it includes. In addition, the following pa-
rameters were used for calculating the microbump budget:
(i) a microbump pitch of 45 µm, (ii) reserving 40% of the
microbumps for power. Then, the number of microbumps
available for data were allocated for (i) connecting to the
HBM channels, (ii) one bidirectional link to the IO chiplet,
(iii) multiple bidirectional links to the other CPU chiplets.
Then the width of the links to IO and CPU chiplets, as well
as the total number of links to other CPU chiplets were ad-
justed to fit the microbump budget. Finally, the latency of the
inter-chiplet links was measured to be 2 or 3 (NoC) cycles
according to the chiplet’s dimensions and the latency of the
links on a passive silicon interposer similar to [7, 47].
To motivate the use of chiplet-based architectures, we

measured the costs of 4, 8, and 16 16-core chiplets, i.e., full
scale, with the above configuration compared to their equiv-
alent hypothetical monolithic chips using the chiplet actuary
model by Feng and Ma [10]. We considered (i) processor
chiplets of size 66mm2 manufactured at 5 nm, (ii) a 400mm2

IO chiplet at 14 nm, and (iii) passive interposer in 65 nm tech-
nology. The analysis showed that the recurring engineering
cost of chiplet-based systemswere 52-55% of their monolithic
counterparts[31].
1Calculated based on Zen4 after scaling down L2 and L3 sizes proportional
to the capacity indicated in Table 1.

Table 1: System Configuration1

System
Chiplets 4 chiplets1

Cores and Caches
Cores 4 cores1 / chiplet, out-of-order, 3.2 GHz
TLB I-TLB: 512-entry, 4-way, 1 cycle latency

D-TLB: 512-entry, 4-way, 1 cycle latency
L1 Cache L1-I: Private, 32KB, 4-way, 2 cycle access latency

L1-D: Private, 32KB, 4-way, 2 cycle access latency
L2 Cache Private, 256KB, 8-way, 4 cycle access latency
L3 Cache Shared, 1MB/core, 16-way, 12 cycle access latency2

Main Memory
HBM2 1GB/chiplet, 2 GHz, 4 channels, 128 bits per channel, tCAS-tRCD-

tRP: 14-14-14 ns, RD/WR+I/O Energy = 6.4 pJ/bit
DDR4 4GB, 3.2GHz, 1 channel, 64 bits per channel, tCAS-tRCD-tRP: 22-

22-22 ns, RD/WR+I/O Energy = 33 pJ/bit
Network

Intra-
chiplet

2 GHz, 3-stage router (VA/SA, ST, LT), 2x3 Mesh, 4 VCs per port,
credit-based flow control, 256 bit link for data, 154 bit link for
control (coherence) traffic, 5 flit buffers, XY Routing

Inter-
chiplet

2 GHz, 3-stage router (VA/SA, ST, LT), 2x2Mesh, passive interposer,
2 to 3 cycle link latency3, 7 to 9 flit buffers 3

1 This configuration is the default setting. The parameter adjustments are detailed in
the respective evaluation sections of the sensitivity studies.

2 L3 access latency is 8 cycles for 2MB, 12 for 4MB, and 15 for 8MB.
3 Depending on the maximum inter-chiplet link length [47].

4.2 Simulation Setup
MEMPLEX is evaluated using BZSim [48], which has been
extended to model the memory system and interconnects
of chiplet-based chips. BZSim is based on the ZSim simula-
tor [43] integrated with BookSim2 [18] for cycle-accurate
intra- and inter-chiplet network modeling, enhanced with a
technique to detect and skip simulation of low contention
traffic to speedup simulation times [48]. BZSim offers mi-
croarchitectural simulations with detailed (cycle-accurate)
interconnect modeling at an order of magnitude faster simu-
lation speeds compared to GEM5, enabling multi-billion in-
struction experiments within reasonable times [48]. DRAM-
Sim3 [26] was used for cycle-accurate DRAM modeling and
CACTI [54] for estimating cache access times.
The system treats all HBM and external DDR memory

as part of a unified flat address space. The virtual memory
system was implemented based on HSCC [27]. The cores are
configurable with translation lookaside buffers (TLBs) for
both instructions and data, as well as with page table walkers
(PTWs). Additionally, the memory management modules
include a NUMA-aware (distance-aware) allocation policy.
This policy allocates pages to the HBM in the chiplet where
they are first accessed. If space is not available in the nearest
HBM, they are allocated in the next neighboring HBM or in
the external DDR.

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 2: Workload Characteristics

Benchmark Label Input
LLC
MPKI

Footprint
(GB)

Assigned to Mixes
mix-id#𝑜 𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

LLC MPKI 20-40
pageRank2 PRL2 LDBC (100k) 37.41 0.84 13,23,32,43,53,63,71
mcf1 MCF Default 34.01 0.45 22,53,72
graphColoring2 GCL2 LDBC (100k) 30.70 0.45 11,21,41,61,72
graphColoring2 GCL3 LDBC (10k) 21.26 0.09 12,21,32,52,71
Random
Access
Workload3

RAND N=30, M=1000,
chunk=1024

20.83 0.70 11,23,31,42,52,61,71

LLC MPKI 10-20
connectedComp2 CCL3 LDBC (10k) 19.33 0.09 13,22,31,43,52,62,71
lbm1 LBM Default 18.19 0.40 31,62,71
BFS2 BFSCR CA RoadNet 17.25 0.64 11,21,31,42,62,71
fotonik3d1 FOTO Default 17.07 0.59 11,41
pageRank2 PRL3 LDBC (10k) 13.96 0.09 21,41
xalancbmk1 XAL Default 13.62 0.16 11,21,32,41,52,63,71
blender1 BLEN Default 12.78 0.08 21,41
shortestPath2 SPCR CA RoadNet 12.30 0.64 11,32,61,71
XSBench4 XSB XXL 11.11 0.37 71
graphColoring2 GCCR CA RoadNet 10.69 0.63 11,31,51,71

LLC MPKI 0-10
parest1 PAR Default 8.54 0.05 31
roms1 ROMS Default 7.58 0.25 71
triangleCount2 TCL2 LDBC (100k) 6.24 0.55 51,71
graphColoring2 GCL1 LDBC (1000k) 5.92 0.29 11,41,61
pageRank2 PRKR Knowledge

Repo
4.56 0.30 31

BFS2 BFSL1 LDBC (1000k) 2.71 0.98 31
1 SPEC CPU 2017 [37], 2 GraphBIG [34], 3 GUPS [39], 4 XSBench [49]

4.3 Workloads

Multi-programmed workloads are used in our experiments
from the SPEC CPU2017 benchmark suite [37] (the seven
with highest MPKI), GraphBIG [34], Random access work-
load from the GUPS suite [39] and XSBench [49]. For the
SPEC CPU2017 and GraphBIG benchmarks, we use Sim-
points [38] to select a representative slice of one billion in-
structions. We have chosen 21 different workloads, detailed
in Table 2, and created random multi-programmed mixes
mapping one benchmark to each core. Each mix of applica-
tions has a minimum total memory footprint of 7GB and
a geometric mean LLC MPKI of at least 11. To scale these
mixes for systems with 32 or 64 cores, we replicate the 16-
application mix twice for the 32-core system and four times
for the 64-core system. All experiments run with an average
of 125 million instructions per core warm-up period, where
memory allocation is enabled, followed by an average of 250
million instructions per core of detailed simulation.

4.4 Evaluated Systems

In the evaluation, we consider four distinct systems that
offer unique approaches to managing memory resources in
a NUMA multi-chiplet architecture.
(1) Baseline (BS): A multi-chiplet system with private LLC,

NUMA-aware data placement and no support for DRAM
caching or migration. The default configuration (depicted
in Table 1) includes 4 chiplets, each with 4 cores and

private LLC, integrated on a passive interposer with 256
bit NoC data-links, 4 HBM channels per chiplet, 1 link to
IO chiplet, and 1 channel to external DDR.

(2) DRAM Cache-Only (CO): A multi-chiplet system in
which each chiplet uses its entire local HBM as a private
DRAM cache. The workload mixes are calibrated to fit
within a main memory that combines the capacities of
HBMs and external DDR. To ensure a fair comparison, the
external DDR size in theCO is increased to accommodate
the workload mix.

(3) MEMPLEX (MP): A multi-chiplet system with NUMA-
aware data placement, where a fraction of the HBM is
used as a private DRAM cache for each chiplet, while the
remaining portion serves as part of the main memory,
with data migration support.

(4) Ideal (IL): A multi-chiplet system that operates under
the ideal scenario in which an LLC miss is always re-
solved by the nearest HBM channel, assuming infinite
capacity of the local HBM. This setup allows memory
allocation solely within the local HBM, ensuring that all
memory requests remain local to the chiplet and eliminat-
ing the latency associated with accessing remote HBM
or external DDR.

5 Evaluation
5.1 Performance
We evaluate the system performance using Instructions Per
Cycle (IPC) as the primary metric. Additionally, Average
Memory Access Time (AMAT) is measured and broken down
to: (i) the access time for each cache level, (ii) the Network-on-
Chip (NoC) latency between each level (L2-L3 and L3-MEM),
and (iii) the DRAM access time. Furthermore, the percentage
of accesses to local and remote HBM nodes, as well as to
external DDR are reported.
Figure 7 illustrates, for each workload mix, the perfor-

mance speedup (in terms of IPC), the average memory access
time, and the distribution of DRAM accesses. These metrics
are presented for the default configuration of a 4-chiplet sys-
tem (BS), a DRAM cache-only design (CO), the MEMPLEX
design with a 1:16 DRAM cache to Main Memory ratio (MP),
and an ideal system (IL). The MEMPLEX system improves
baseline performance by 3-7%, with an average improvement
of 5%, as shown in Figure 7(a). The DRAM cache-only design
exhibits a mixed trend across the analyzed workload mixes,
with an average performance improvement of 1% over the
baseline. This variation is attributed to the differing number
of requests, and thus remote traffic to the external DDR for
fetching cache lines into the DRAM cache, which is also
reflected in the AMAT numbers. In comparison, the ideal
system—26% faster than the baseline—achieves this by al-
ways directing LLC misses to the nearest HBM. However,

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

1.
00
1.
01 1.
05 1
.2
6

0

0.5

1

1.5

mix1 mix2 mix3 mix4 mix5 mix6 mix7 Geomean

Sp
ee
du
p

BASELINE (BS) CACHE ONLY (CO) MEMPLEX (MP) IDEAL (IL)

(a) IPC (Normalized to Baseline)

1.
00

0.
85 0.
92

0.
71

1.
00

0.
89

0.
88

0.
70

1.
00

0.
90
0.
91

0.
73

1.
00

0.
92

0.
89

0.
75

1.
00

0.
90

0.
88

0.
71

1.
00

0.
97

0.
92

0.
76

1.
00
1.
00

0.
90

0.
82 1.
00

0.
92

0.
90

0.
74

0.0

0.5

1.0

1.5

B
S

C
O

M
P IL B
S

C
O

M
P IL B
S

C
O

M
P IL B
S

C
O

M
P IL B
S

C
O

M
P IL B
S

C
O

M
P IL B
S

C
O

M
P IL B
S

C
O

M
P IL

mix1 mix2 mix3 mix4 mix5 mix6 mix7 Average

Av
er

ag
e

M
em

or
y

A
cc

es
s T

im
e L1 L2 L2-L3 NoC L3 L3-MEM NoC HBM ExtDDR

(b) Average Memory Access Time (AMAT) (Normalized to Baseline)

0%

20%

40%

60%

80%

100%

B
S

C
O
M
P IL B
S

C
O
M
P IL B
S

C
O
M
P IL B
S

C
O
M
P IL B
S

C
O
M
P IL B
S

C
O
M
P IL B
S

C
O
M
P IL B
S

C
O
M
P IL

mix1 mix2 mix3 mix4 mix5 mix6 mix7 Average

%
 o

f M
em

or
y

A
cc

es
se

s

LocalHBM RemoteHBM ExtDDR

(c) Distribution of Memory Accesses

Figure 7: Performance, AMAT and distribution ofmem-
ory access comparison between Baseline, DRAM cache-
only, MEMPLEX and Ideal designs.

MEMPLEX, while 17% slower than the ideal system, still
represents a significant improvement over the baseline, ef-
fectively reducing the impact of remote requests that are
inherent in multi-chiplet NUMA architectures. This posi-
tions MEMPLEX as a more efficient alternative, narrowing
the performance gap toward ideal scenarios.

The speedup achieved by MEMPLEX over the baseline is
in line with the decrease in AMAT which is on average 10%,
as shown in Figure 7(b). A closer look reveals that the main
source of performance overhead in the chiplet-based system
is the significant portion of data accesses placed remotely. As
illustrated in Figure 7(c), the baseline system experiences an
average of 39% of remote data accesses, comprising 10% to
remote HBM and 29% to external DDR. Both types of remote
accesses involve slow inter-chiplet communication due to
limited bandwidth and higher latency. When the entire HBM
is dedicated to caching, the DRAM cache-only design reduces
remote accesses to just 14%, all of which are directed to
external DDR. Meanwhile, MEMPLEX effectively addresses
this challenge by bringing 90% of the data within the local
HBM, leaving only 10% requiring access to remote memory,
thereby significantly reducing the performance impact of
remote memory accesses.

1.
00
1.
55 1.
58 1.
86

0

1

2

mix1 mix2 mix3 mix4 mix5 mix6 mix7 Geomean

L
oc

al
 T

ra
ff

ic

BASELINE (BS) CACHE ONLY (CO) MEMPLEX (MP) IDEAL (IL)

(a) Local Traffic (Normalized to Baseline)

1.
00

0.
38

0.
20

0.
00

0

0.5

1

mix1 mix2 mix3 mix4 mix5 mix6 mix7 Geomean

R
em

ot
e

Tr
af

fic

BASELINE (BS) CACHE ONLY (CO) MEMPLEX (MP) IDEAL (IL)

(b) Remote Traffic (Normalized to Baseline)

1.
00

0.
77

0.
56

0.
49

0

1

mix1 mix2 mix3 mix4 mix5 mix6 mix7 Geomean

D
yn

am
ic

 M
em

or
y

E
ne

rg
y

BASELINE (BS) CACHE ONLY (CO) MEMPLEX (MP) IDEAL (IL)

(c) Dynamic Memory Energy (Normalized to Baseline)

Figure 8: Local and Remote Memory Traffic, and Dy-
namic Memory Energy Consumption normalized to
the Baseline.

5.2 Memory Traffic
Figure 8(a) and Figure 8(b) show the local and remote mem-
ory traffic normalized to the the baseline multi-chiplet sys-
tem for all workload mixes. The remote memory traffic in-
cludes both remote HBM and external DDR accesses. The
DRAM cache-only design increases local memory traffic by
55% compared to the baseline. However, this benefit is off-
set by a 62% decrease in remote traffic to the external DDR,
highlighting a trade-off that limits its overall performance. In
contrast, MEMPLEX delivers a more balanced and effective
solution. It generates more local memory traffic compared
to the baseline system, with 58% more requests being served
from the local HBM. This increase in local traffic is bolstered
by an impressive 80% reduction in remote memory traffic,
which outperforms the 62% reduction achieved by DRAM
cache-only design.
Thus, MEMPLEX effectively combines DRAM caching

and data migration to achieve a notable reduction in remote
traffic, translating to improved performance and energy sav-
ings, as described next. However, the performance gains
are not fully maximized, as the MEMPLEX design still in-
volves accesses to the external DDR. Furthermore, unlike
the DRAM cache-only design, which dedicates the entire
HBM for caching, MEMPLEX sacrifices only 1

16 of the HBM
capacity, demonstrating a far greater resource efficiency.

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

5.3 Energy Consumption
Figure 8(c) presents the dynamic memory system energy con-
sumption normalized to the baseline multi-chiplet system for
all workload mixes. The DRAM cache-only design exhibits
a 23% reduction in dynamic energy consumption compared
to the baseline system. This improvement stems primarily
from caching, which significantly reduces remote accesses
to external DDR—a major source of energy consumption in
the baseline architecture. In comparison, MEMPLEX deliv-
ers a remarkable 44% reduction in dynamic memory energy
consumption relative to the baseline system. This significant
decrease is primarily attributed to lower accesses to remote
HBM and external DDR, effectively minimizing high-energy
operations and leveraging efficient local memory access. Pro-
cessor energy and static memory energy (refresh energy) are
not reported as these are largely proportional to runtime.

5.4 Sensitivity analysis on System Size
An important focus of sensitivity analysis is the effect of sys-
tem size. Chiplet-based designs are expected to scale more
cost-effectively; however, it is still uncertain how their per-
formance overheads change as the system size increases
while keeping the number of cores per chiplet constant. To
investigate this, in addition to the above evaluated 4-chiplet
MEMPLEX system (16-core system), the performance of a
16-chiplet system, which corresponds to 64 cores, is assessed
as shown in Figure 9(a). As observed above, in a 4-chiplet
system, the ideal design would offer 26% higher performance
than the baseline and MEMPLEX delivers on average 5% of
that speedup and up to 7% for a single mix. As expected, on a
16-chiplet system, the NUMA overheads increase, and so do
the MEMPLEX gains. In this case, the ideal design would per-
form 31% better than the baseline, and MEMPLEX speedup
is up to 15% for a single mix and 10% on average.

5.5 Sensitivity analysis on DRAM Cache
Size

MEMPLEX can be configured with various DRAM cache
sizes, and this design choice significantly influences both the
performance and the size of the DCTA. Figure 9(b) presents
the results of a sensitivity analysis exploring different DRAM
Cache to Main Memory ratios (1:8, 1:16, 1:32) in comparison
to the baseline system without MEMPLEX. In terms of area
overhead, the DCTA requires 512 kB, 1 MB, or 2 MB for these
respective ratios, assuming an 8-byte entry size. The average
performance improvements for the 1:8, 1:16, and 1:32 ratios
are 8%, 5%, and 4%, respectively. Notably, the 1:8 ratio can
achieve up to a 10% speedup in specific scenarios.

0.00

1.00

0.00

1.00

IP
C

N

o
rm

a
li

ze
d

 t
o

 B
a
se

li
n

e

(a) System Size

4chiplets 16chiplets

A
M

A
T

N

o
rm

a
li

ze
d

 t
o

B
a
se

li
n

e

(b) DRAM Cache Size

1
.0

5

1
.2

6

1
.1

0

1
.3

1

C
O

M
P

0
.7

4

0
.9

0

IL

0
.9

2

B
S

1
.0

0

C
O

M
P

0
.7

6

0
.9

4

IL

0
.9

5

B
S

1
.0

0

1
.0

4

1
.0

1

C
O

1
:8

0
.9

0

0
.8

8

1
:1

6

0
.9

2

B
S

1
.0

0

1
:3

2
0
.9

2

1
.0

1

1
.0

8

1
.0

5

1
.0

4

4chiplets

IP
C

N

o
rm

a
li

ze
d

 t
o

 B
a
se

li
n

e
A

M
A

T

N
o

rm
a
li

ze
d

 t
o

B
a
se

li
n

e

Figure 9: Sensitivity analysis on system size and DRAM
cache size. All values are the geometric mean of all
workload mixes normalized to the Baseline.

6 Conclusion
Multi-chiplet chips provide a cost-effective solution by deliv-
ering higher manufacturing yields. However, they encounter
performance challenges due to the NUMA memory archi-
tecture and inter-chiplet communication bottlenecks. In this
study, we analyzed these overheads, showing that an ideal 4-
and 16-chiplet system would offer 26% and 31% higher per-
formance, respectively, compared to a baseline with NUMA-
aware data placement. To address these challenges, we pro-
posed MEMPLEX, a novel architecture that enables data
replication and migration across multiple memory nodes
within a multi-chiplet system. MEMPLEX efficiently dedi-
cates a portion of each memory node for a DRAM cache,
while the remaining capacity is utilized as a shared flat ad-
dress space with hardware migration. Thereby, MEMPLEX
enhances data locality, bringing frequently accessed data
closer to the processor and managing migration based on us-
age patterns. As a result, MEMPLEX reduces remote memory
traffic by 80%, leading to a significant 44% dynamic mem-
ory energy consumption. In a 4-chiplet system, MEMPLEX
achieves up to 7% speedup and an average of 5% when ded-
icating 1

16 of each HBM for caching. When 1
8 of the HBM

capacity is used for caching, the performance gain increases
to up to 10%, with an average of 8%. Finally, the performance
benefits of MEMPLEX performance are more pronounced in
larger systems, with the average speedup improving from
5% to 10% as the system size increases from 4 to 16 chiplets.

Acknowledgments
This work was supported by the Swedish Foundation for
Strategic Research (contract number CHI19-0048) under the
PRIDE project. We also express our gratitude to the anony-
mous reviewers for their valuable comments.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Neethu Bal Mallya, Bhavishya Goel, and Ioannis Sourdis

References
[1] Advanced Micro Devices, Inc. 2023. AMD CDNA™ 3 Architecture.

Retrieved 7 Feb 2025 from https://www.amd.com/content/dam/amd/
en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-
paper.pdf

[2] Karl Bridge. 2022. NUMA Support - Win32 Apps. Retrieved 7 Feb 2025
from https://learn.microsoft.com/en-us/windows/win32/procthread/
numa-support

[3] Adrian Chadd. 2018. FreeBSD Manual Pages. Retrieved 7 Feb 2025
from https://man.freebsd.org/cgi/man.cgi?query=numa&sektion=4&
manpath=FreeBSD%2B14.0-RELEASE%2Band%2BPorts

[4] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and
RonnyKrashinsky. 2021. NVIDIAA100 Tensor Core GPU: Performance
and Innovation. IEEE Micro 41, 2 (Mar 2021), 29–35. https://doi.org/
10.1109/MM.2021.3061394

[5] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2015. BEAR:
Techniques forMitigating Bandwidth Bloat in Gigascale DRAMCaches.
In 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). 198–210. https://doi.org/10.1145/2749469.2750387

[6] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2016.
CANDY: Enabling Coherent DRAM Caches for Multi-Node Systems.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783738

[7] Ayse Coskun, Furkan Eris, Ajay Joshi, Andrew B. Kahng, Yenai Ma,
and Vaishnav Srinivas. 2018. A Cross-Layer Methodology for Design
and Optimization of Networks in 2.5D Systems. In 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1–8.
https://doi.org/10.1145/3240765.3240768

[8] Fredrik Dahlgren and Josep Torrellas. 1999. Cache-Only Memory
Architectures. Computer 32, 6 (Jun 1999), 72–79. https://doi.org/10.
1109/2.769448

[9] Babak Falsafi and David A. Wood. 1997. Reactive NUMA: A Design
For Unifying S-COMA And CC-NUMA. In 24th Annual International
Symposium on Computer Architecture (ISCA). 229–240. https://doi.org/
10.1145/264107.264205

[10] Yinxiao Feng and Kaisheng Ma. 2022. Chiplet Actuary: A Quantitative
Cost Model and Multi-Chiplet Architecture Exploration. In Proceedings
of the 59th ACM/IEEE Design Automation Conference (DAC). 121–126.
https://doi.org/10.1145/3489517.3530428

[11] Erik Hagersten, Ashley Saulsbury, and Anders Landin. 1994. Simple
COMA Node Implementations. In 1994 Proceedings of the Twenty-
Seventh Hawaii International Conference on System Sciences (HICSS),
Vol. 1. 522–533. https://doi.org/10.1109/HICSS.1994.323136

[12] Jiri Herrmann. 2019. Automatic NUMA Balancing Red
Hat Enterprise Linux 7. Retrieved 7 Feb 2025 from
https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/7/html/virtualization_tuning_and_optimization_guide/sect-
virtualization_tuning_optimization_guide-numa-auto_numa_
balancing

[13] Cheng-Chieh Huang, Rakesh Kumar, Marco Elver, Boris Grot, and
Vijay Nagarajan. 2016. C3D: Mitigating the NUMA Bottleneck via
Coherent DRAM Caches. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1–12. https://doi.org/10.
1109/MICRO.2016.7783739

[14] Cheng-Chieh Huang and Vijay Nagarajan. 2014. ATCache: Reducing
DRAM Cache Latency via a Small SRAM Tag Cache. In 2014 23rd Inter-
national Conference on Parallel Architecture and Compilation Techniques
(PACT). 51–60. https://doi.org/10.1145/2628071.2628089

[15] Hakbeom Jang, Yongjun Lee, Jongwon Kim, Youngsok Kim, Jangwoo
Kim, Jinkyu Jeong, and Jae W. Lee. 2016. Efficient Footprint Caching
for Tagless DRAM Caches. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 237–248. https:

//doi.org/10.1109/HPCA.2016.7446068
[16] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi.

2014. Unison Cache: A Scalable and Effective Die-Stacked DRAM
Cache. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 25–37. https://doi.org/10.1109/MICRO.
2014.51

[17] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-stacked
DRAM Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It
All with Footprint Cache. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA) (Tel-Aviv, Israel).
404–415. https://doi.org/10.1145/2485922.2485957

[18] Nan Jiang, Daniel U. Becker, George Michelogiannakis, James Balfour,
Brian Towles, D. E. Shaw, John Kim, and William J. Dally. 2013. A
Detailed and Flexible Cycle-accurate Network-on-Chip Simulator. In
2013 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). 86–96. https://doi.org/10.1109/ISPASS.2013.
6557149

[19] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh. 2015.
Enabling Interposer-based Disintegration of Multi-core Processors. In
2015 48th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 546–558. https://doi.org/10.1145/2830772.2830808

[20] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. 2019. Page-
Seer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Sys-
tems. In 2019 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 596–608. https://doi.org/10.1109/HPCA.
2019.00012

[21] Jagadish B. Kotra, Haibo Zhang, Alaa R. Alameldeen, Chris Wilker-
son, and Mahmut T. Kandemir. 2018. CHAMELEON: A Dynamically
Reconfigurable Heterogeneous Memory System. In 2018 51st Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). 533–
545. https://doi.org/10.1109/MICRO.2018.00050

[22] Christoph Lameter and Minchan Kim. 2016. Page Migration. Re-
trieved 7 Feb 2025 from https://www.kernel.org/doc/Documentation/
vm/page_migration

[23] James Laudon and Daniel Lenoski. 1997. The SGI Origin: A ccNUMA
Highly Scalable Server. In 24th International Symposium on Computer
Architecture (ISCA). 241–251. https://doi.org/10.1145/384286.264206

[24] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jang-
woo Kim, Jinkyu Jeong, and Jae W. Lee. 2015. A Fully Associa-
tive, Tagless DRAM Cache. In 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on Computer Architecture (ISCA). 211–222. https:
//doi.org/10.1145/2749469.2750383

[25] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, W-D Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam.
1992. The Stanford Dash Multiprocessor. Computer 25, 3 (Apr 1992),
63–79. https://doi.org/10.1109/2.121510

[26] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce
Jacob. 2020. DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM
Simulator. IEEE Computer Architecture Letters (CAL) 19, 2 (Jul 2020),
106–109. https://doi.org/10.1109/LCA.2020.2973991

[27] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long
Zheng, and Rentong Guo. 2017. Hardware/Software Cooperative
Caching for Hybrid DRAM/NVM Memory Architectures. In Proceed-
ings of the International Conference on Supercomputing (ICS). 26:1–26:10.
https://doi.org/10.1145/3079079.3079089

[28] Gabriel Loh and Mark D. Hill. 2012. Supporting Very Large DRAM
Caches with Compound-Access Scheduling and MissMap. IEEE Micro
32, 3 (May 2012), 70–78. https://doi.org/10.1109/MM.2012.25

[29] Gabriel H. Loh and Mark D. Hill. 2011. Efficiently Enabling Conven-
tional Block Sizes for Very Large Die-stacked DRAM Caches. In 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 454–464. https://doi.org/10.1145/2155620.2155673

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://learn.microsoft.com/en-us/windows/win32/procthread/numa-support
https://learn.microsoft.com/en-us/windows/win32/procthread/numa-support
https://man.freebsd.org/cgi/man.cgi?query=numa&sektion=4&manpath=FreeBSD%2B14.0-RELEASE%2Band%2BPorts
https://man.freebsd.org/cgi/man.cgi?query=numa&sektion=4&manpath=FreeBSD%2B14.0-RELEASE%2Band%2BPorts
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1145/2749469.2750387
https://doi.org/10.1109/MICRO.2016.7783738
https://doi.org/10.1145/3240765.3240768
https://doi.org/10.1109/2.769448
https://doi.org/10.1109/2.769448
https://doi.org/10.1145/264107.264205
https://doi.org/10.1145/264107.264205
https://doi.org/10.1145/3489517.3530428
https://doi.org/10.1109/HICSS.1994.323136
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://doi.org/10.1109/MICRO.2016.7783739
https://doi.org/10.1109/MICRO.2016.7783739
https://doi.org/10.1145/2628071.2628089
https://doi.org/10.1109/HPCA.2016.7446068
https://doi.org/10.1109/HPCA.2016.7446068
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1145/2485922.2485957
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1109/HPCA.2019.00012
https://doi.org/10.1109/HPCA.2019.00012
https://doi.org/10.1109/MICRO.2018.00050
https://www.kernel.org/doc/Documentation/vm/page_migration
https://www.kernel.org/doc/Documentation/vm/page_migration
https://doi.org/10.1145/384286.264206
https://doi.org/10.1145/2749469.2750383
https://doi.org/10.1145/2749469.2750383
https://doi.org/10.1109/2.121510
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1145/3079079.3079089
https://doi.org/10.1109/MM.2012.25
https://doi.org/10.1145/2155620.2155673

MEMPLEX ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[30] Tom Lovett and Russell Clapp. 1996. STiNG: A CC-NUMA Computer
System for the Commercial Marketplace. In 23rd Annual International
Symposium on Computer Architecture (ISCA). 308–317. https://doi.org/
10.1145/232973.233006

[31] Neethu Bal Mallya, Panagiotis Strikos, Bhavishya Goel, Ahsen Ejaz,
and Ioannis Sourdis. 2025. A Performance Analysis of Chiplet-Based
Systems. In Design, Automation and Test in Europe Conference (DATE).
1–7. https://doi.org/10.23919/DATE64628.2025.10992969

[32] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice,
Mike Ignatowski, and Gabriel H. Loh. 2015. Heterogeneous Memory
Architectures: A HW/SW Approach for Mixing Die-stacked and Off-
package Memories. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). 126–136. https://doi.org/
10.1109/HPCA.2015.7056027

[33] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H.
Loh, Mahesh Subramony, and Sean White. 2021. Pioneering Chiplet
Technology and Design for the AMD EPYC™ and Ryzen™ Processor
Families : Industrial Product. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA). 57–70. https:
//doi.org/10.1109/ISCA52012.2021.00014

[34] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-
Yung Lin. 2015. GraphBIG: Understanding Graph Computing in the
Context of Industrial Solutions. In SC ’15: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis. 1–12. https://doi.org/10.1145/2807591.2807626

[35] Nevine Nassif, Ashley O. Munch, Carleton L. Molnar, Gerald Pasdast,
Sitaraman V. Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikr-
ishnan Venkataraman, Sireesha Kandula, Rafi Marom, Alexandra M.
Kern, Bill Bowhill, David R. Mulvihill, Srikanth Nimmagadda, Varma
Kalidindi, Jonathan Krause, Mohammad M. Haq, Roopali Sharma,
and Kevin Duda. 2022. Sapphire Rapids: The Next-Generation Intel
Xeon Scalable Processor. In 2022 IEEE International Solid-State Circuits
Conference (ISSCC). 44–46. https://doi.org/10.1109/ISSCC42614.2022.
9731107

[36] NEC CORPORATION. 2018. SX-Aurora TSUBASA Architecture Guide
Revision 1.1. Retrieved 7 Feb 2025 from https://sxauroratsubasa.
sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf

[37] Reena Panda, Shuang Song, Joseph Dean, and Lizy K. John. 2018. Wait
of a Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?.
In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 271–282. https://doi.org/10.1109/HPCA.2018.
00032

[38] Erez Perelman, Greg Hamerly, and Brad Calder. 2003. Picking Statis-
tically Valid and Early Simulation Points. In 2003 12th International
Conference on Parallel Architectures and Compilation Techniques (PACT).
244–255. https://doi.org/10.1109/PACT.2003.1238020

[39] Steven J. Plimpton, Ron Brightwell, Courtenay Vaughan, Keith Un-
derwood, and Mike Davis. 2006. A Simple Synchronous Distributed-
Memory Algorithm for the HPCC RandomAccess Benchmark. In IEEE
International Conference on Cluster Computing (Cluster 2006). 1–7.
https://doi.org/10.1109/CLUSTR.2006.311859

[40] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh,
and Dean M. Tullsen. 2017. MemPod: A Clustered Architecture for
Efficient and ScalableMigration in Flat Address SpaceMulti-level Mem-
ories. In 2017 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 433–444. https://doi.org/10.1109/HPCA.
2017.39

[41] Moinuddin K. Qureshi and Gabe H. Loh. 2012. Fundamental Latency
Trade-off in Architecting DRAM Caches: Outperforming Impractical
SRAM-Tags with a Simple and Practical Design. In 2012 45th Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). 235–
246. https://doi.org/10.1109/MICRO.2012.30

[42] Jee Ho Ryoo, Mitesh R. Meswani, Andreas Prodromou, and Lizy K.
John. 2017. SILC-FM: Subblocked InterLeaved Cache-Like Flat Memory
Organization. In 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 349–360. https://doi.org/10.
1109/HPCA.2017.20

[43] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Ac-
curate Microarchitectural Simulation of Thousand-core Systems. In
Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA). 475–486. https://doi.org/10.1145/2485922.2485963

[44] Kanoj Sarcar. 1999. What is NUMA? Retrieved 7 Feb 2025 from
https://www.kernel.org/doc/html/v5.4/vm/numa.html

[45] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris Wilk-
erson, and Hyesoon Kim. 2014. Transparent Hardware Manage-
ment of Stacked DRAM as Part of Memory. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 13–
24. https://doi.org/10.1109/MICRO.2014.56

[46] Per Stenstrom, Truman Joe, and Anoop Gupta. 1992. Comparative
Performance Evaluation of Cache-Coherent NUMA and COMA Ar-
chitectures. In Proceedings the 19th Annual International Symposium
on Computer Architecture (ISCA). 80–91. https://doi.org/10.1109/ISCA.
1992.753306

[47] Dylan Stow, Yuan Xie, Taniya Siddiqua, and Gabriel H. Loh. 2017. Cost-
Effective Design of Scalable High-performance Systems Using Active
and Passive Interposers. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 728–735. https://doi.org/10.1109/
ICCAD.2017.8203849

[48] Panagiotis Strikos, Ahsen Ejaz, and Ioannis Sourdis. 2024. BZSim:
Fast, Large-Scale Microarchitectural Simulation with Detailed Inter-
connect Modeling. In 2024 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 167–178. https:
//doi.org/10.1109/ISPASS61541.2024.00025

[49] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
2014. XSBench - The Development and Verification of a Performance
Abstraction for Monte Carlo Reactor Analysis. In Proceedings of the
International Conference on Physics of Reactors (PHYSOR 2014).

[50] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and
Ioannis Sourdis. 2019. Decoupled Fused Cache: Fusing a Decou-
pled LLC with a DRAM Cache. ACM Transactions on Architecture
and Code Optimization (TACO) 15, 4, Article 65 (Jan 2019), 23 pages.
https://doi.org/10.1145/3293447

[51] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and Ioan-
nis Sourdis. 2019. LLC-Guided Data Migration in Hybrid Memory Sys-
tems. In 2019 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). 932–942. https://doi.org/10.1109/IPDPS.2019.00101

[52] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and
Ioannis Sourdis. 2020. Hybrid2: Combining Caching and Migra-
tion in Hybrid Memory Systems. In 2020 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). 649–662.
https://doi.org/10.1109/HPCA47549.2020.00059

[53] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.
1996. Operating System Support for Improving Data Locality on
CC-NUMA Compute Servers. In Proceedings of the Seventh Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (Cambridge, Massachusetts, USA).
279–289. https://doi.org/10.1145/237090.237205

[54] Steven J.E. Wilton and Norman P. Jouppi. 1996. CACTI: An Enhanced
Cache Access and Cycle Time Model. IEEE Journal of Solid-State
Circuits (JSSC) 31, 5 (1996), 677–688. https://doi.org/10.1109/4.509850

[55] Zheng Zhang and Josep Torrellas. 1997. Reducing Remote Conflict
Misses: NUMAwith Remote Cache versus COMA. In Proceedings Third
International Symposium on High-Performance Computer Architecture
(HPCA). 272–281. https://doi.org/10.1109/HPCA.1997.569686

https://doi.org/10.1145/232973.233006
https://doi.org/10.1145/232973.233006
https://doi.org/10.23919/DATE64628.2025.10992969
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/ISCA52012.2021.00014
https://doi.org/10.1109/ISCA52012.2021.00014
https://doi.org/10.1145/2807591.2807626
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://doi.org/10.1109/HPCA.2018.00032
https://doi.org/10.1109/HPCA.2018.00032
https://doi.org/10.1109/PACT.2003.1238020
https://doi.org/10.1109/CLUSTR.2006.311859
https://doi.org/10.1109/HPCA.2017.39
https://doi.org/10.1109/HPCA.2017.39
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/HPCA.2017.20
https://doi.org/10.1109/HPCA.2017.20
https://doi.org/10.1145/2485922.2485963
https://www.kernel.org/doc/html/v5.4/vm/numa.html
https://doi.org/10.1109/MICRO.2014.56
https://doi.org/10.1109/ISCA.1992.753306
https://doi.org/10.1109/ISCA.1992.753306
https://doi.org/10.1109/ICCAD.2017.8203849
https://doi.org/10.1109/ICCAD.2017.8203849
https://doi.org/10.1109/ISPASS61541.2024.00025
https://doi.org/10.1109/ISPASS61541.2024.00025
https://doi.org/10.1145/3293447
https://doi.org/10.1109/IPDPS.2019.00101
https://doi.org/10.1109/HPCA47549.2020.00059
https://doi.org/10.1145/237090.237205
https://doi.org/10.1109/4.509850
https://doi.org/10.1109/HPCA.1997.569686

	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-Uniform Memory Access in Shared Memory Systems
	2.2 Hybrid Memory Systems
	2.3 Software support in NUMA machines

	3 MEMPLEX Design
	3.1 MEMPLEX System Overview
	3.2 DRAM Cache Controller
	3.3 Memory Layout & Metadata
	3.4 Memory Access Path
	3.5 Allocating a Sector in Local Memory
	3.6 DRAM Cache Evictions
	3.7 Migration Decision and Traffic Regulation
	3.8 An Example Illustration
	3.9 Cache Coherence

	4 Experimental Setup
	4.1 System Configuration
	4.2 Simulation Setup
	4.3 Workloads
	4.4 Evaluated Systems

	5 Evaluation
	5.1 Performance
	5.2 Memory Traffic
	5.3 Energy Consumption
	5.4 Sensitivity analysis on System Size
	5.5 Sensitivity analysis on DRAM Cache Size

	6 Conclusion
	Acknowledgments
	References

