
TMModel: Modeling Texture Memory and Mobile GPU
Performance to Accelerate DNN Computations
Jiexiong Guan∗

University of Thessaly
Volos, Greece

William & Mary
Williamsburg, VA, USA

jguan@uth.gr

Zhenqing Hu
William & Mary

Williamsburg, VA, USA
zhu05@wm.edu

Christos D. Antonopoulos
University of Thessaly

Volos, Greece
cda@uth.gr

Nikolaos Bellas
University of Thessaly

Volos, Greece
nbellas@uth.gr

Spyros Lalis
University of Thessaly

Volos, Greece
lalis@uth.gr

Evgenia Smirni
William & Mary

Williamsburg, VA, USA
esmirni@cs.wm.edu

Gang Zhou
William & Mary

Williamsburg, VA, USA
gzhou@wm.edu

Gagan Agrawal
University of Georgia
Athens, GA, USA
gagrawal@uga.edu

Bin Ren
William & Mary

Williamsburg, VA, USA
bren@wm.edu

Abstract
The demand for Deep Neural Network (DNN) execution
(including both inference and training) on mobile system-on-
a-chip (SoCs) has surged, driven by factors like the need for
real-time latency, privacy, and reducing vendors’ costs. Main-
stream mobile GPUs (e.g., Qualcomm Adreno GPUs) usually
have a 2.5D L1 texture cache that offers throughput superior
to that of on-chip memory. However, to date, there is limited
understanding of the performance features of such a 2.5D
cache, which limits the optimization potential. This paper
introduces TMModel, a framework with three components: 1)
a set of micro-benchmarks and a novel performance assess-
ment methodology to characterize a non-well-documented
architecture with 2D memory, 2) a complete analytical per-
formance model configurable for different data access pat-
tern(s), tiling size(s), and other GPU execution parameters
for a given operator (and associated size and shape), and
3) a compilation framework incorporating this model and
generating optimized code with low overhead. TMModel is

∗Ph.D. candidate at William & Mary. This work was completed while the
author was a researcher at University of Thessaly.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725774

validated both on a set of DNN kernels and for training com-
plete models on mobile GPU, and compared against both
popular mobile DNN frameworks and another GPU perfor-
mance model. Evaluation results demonstrate that TMModel
outperforms all baselines, achieving 1.48− 3.61× speedup on
individual kernels and 1.83 − 66.1× speedup for end-to-end
on-device training with only 0.25% − 18.5% the tuning cost
of the baselines.

CCS Concepts
•Computingmethodologies→Neural networks; Paral-
lel computing methodologies; • General and reference
→ Performance; •Human-centered computing→ Ubiq-
uitous and mobile computing systems and tools; • Software
and its engineering → Source code generation.

Keywords
Texture Memory, Performance Modeling, Architecture Pro-
filing, Automatic Code Generation, On-device Training

ACM Reference Format:
Jiexiong Guan, Zhenqing Hu, Christos D. Antonopoulos, Nikolaos
Bellas, Spyros Lalis, Evgenia Smirni, Gang Zhou, Gagan Agrawal,
and Bin Ren. 2025. TMModel: Modeling Texture Memory and Mo-
bile GPU Performance to Accelerate DNN Computations. In 2025
International Conference on Supercomputing (ICS ’25), June 08–11,
2025, Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3721145.3725774

https://orcid.org/0000-0001-5274-9169
https://orcid.org/0009-0007-4892-755X
https://orcid.org/0000-0002-6486-062X
https://orcid.org/0000-0002-9522-9136
https://orcid.org/0000-0003-2232-3559
https://orcid.org/0000-0001-8754-581X
https://orcid.org/0000-0002-4425-9837
https://orcid.org/0000-0002-2609-1428
https://orcid.org/0000-0002-4116-5237
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3725774
https://doi.org/10.1145/3721145.3725774

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

1 Introduction
Mobile system-on-a-chip (SoC) has become an indispens-
able platform for executing powerful compute- and memory-
intensive applications. Prominent among these are deep
learning (DL) neural network execution tasks [10, 30] that
support applications related to speech, image, and text recog-
nition, or even Generative AI. Execution on a mobile device
itself, as compared to themobile device serving as a front-end
to cloud-based servers, has several advantages like service
continuity or lower latency of applications with no or lim-
ited internet availability, and better privacy, among others.
However, execution on mobile devices is challenging given
the constantly increasing size of DL models and the limited
resources of mobile devices.

Performance models, especially those related to memory/-
cache, have long played a crucial role in guiding performance
tuning of applications [8, 24, 69, 77, 78, 81]. Modeling on-
chip cache behaviors has been extensively explored in both
sequential [14, 25] and parallel processors [3, 4, 12, 32, 33,
50, 53, 62, 63, 66]. A prevalent approach involves extract-
ing memory traces and calculating the data reuse distance
metric. In developing performance models for mobile pro-
cessors, there are significant new considerations. For exam-
ple, the latest Adreno and Mali GPUs are equipped with
specialized L1 texture cache, offering notable performance
advantages over other on-chip memory types (e.g., local and
constant memory [39]). The existing performance modeling
approaches, including the notion of data reuse distance, do
not directly apply to the texture cache, which is designed for
two-dimensional spatial locality. An additional complication
is that the texture representation (i.e., the storage mapping
in memory) is patented and obscure to developers.

Based on thismotivation, this paper proposes TMModel, the
first performance model and associated compiler designed to
address the following question: “how to analytically choose
between different implementations of a single NN operator for a
given input and output shape – specifically, making selections
considering data access pattern(s), tile sizes, and other GPU
execution parameters – to obtain the best performance”. This
performance model needs to capture (i) the spatial locality
of a single thread with texture memory, (ii) the cross-thread
spatial and temporal locality, and (iii) the interplay with
other GPU factors like occupancy.

The design and implementation of TMModel comprises sev-
eral steps. First, we develop a set of micro-benchmarks to
demystify the black-box micro-architecture and introduce
novel approaches to characterize performance. One of the
key ideas we introduce is cross-block stride, designed to cap-
ture spatial locality in 2D memory. The insights from micro-
benchmarks lead to a performance model, integrating the

factors listed above into one unified cost expression. Further-
more, the performance model is incorporated into a compiler
that can generate efficient code efficiently (i.e., without high
performance tuning costs that many other systems require).

Overall, this paper makes the following contributions:
• We introduce a series of micro-benchmarks to understand
several aspects of the target architecture – including the
impact of spatial and temporal locality of the texture mem-
ory; the work-group size, warp shape, and the occupancy,
on the performance. Themethodology and the set of micro-
benchmarks is designed to be applicable to other architec-
tures as well.

• We propose an automatic way to predict the latency for a
given data access pattern on 2D texture memory space.

• We introduce a full performance model, capturing the im-
pacts of memory and occupancy across threads in a warp,
warps in a work group, and the full kernel.

• We develop a complete system prototype for code opti-
mization for both kernels and full DL model training on a
mobile architecture.
TMModel is extensively evaluated on both individual ker-

nels and end-to-end on-device DNN training by comparing
with four state-of-the-art mainstream product-level mobile
DNN frameworks and their associated performance mod-
eling/tuning methods (MNN [30], CLML [1], TFLite [2], and
TVM [9]) and a more general-purpose GPU performance mod-
eling method (PPT-GPU [3]). The evaluation results demon-
strate that TMModel achieves an average speedup of 1.48 −
3.61× on individual kernels and a speedup of 1.83 − 66.1×
for end-to-end DNN on-device training. TMModel achieves
similar performance to the brute-force search (with an aver-
age variation of 1%), with only 0.25% - 18.5% tuning cost vs
the baseline frameworks. TMModel is also characterized by
high prediction accuracy and good portability.

2 Background
This section provides an overview of mobile GPU architec-
tures, starting with details of the OpenCL programming
model, which is a popular way to program these GPUs. To
provide additional context for the entire paper, this section
also compares OpenCL with CUDA terminology.
OpenCL Programming Model. OpenCL, like CUDA, em-
ploys the SIMT (Single Instruction Multiple Threads) execu-
tion model, where a kernel specifies the computation logic
for one thread. The data index space associated with this
execution is divided into work groups (i.e., thread blocks in
CUDA) based on the specified work-group size. Each work
group is assigned to a shader core (equivalent to a streaming
multiprocessor in CUDA). A work group consists of multiple
work items, which are software threads mapped to hardware
threads for execution on ALUs within the shader core. The

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

fundamental execution unit in a shader core is the warp, a
group of hardware threads that execute the same instruction
simultaneously. Consequently, the work items within a work
group are partitioned into warps for execution. The launch
order of warps or work groups is not defined, so programs
should not assume any specific execution sequence across
them [55].
Mobile GPU Architecture and 2D Texture Cache. Fig. 1
shows a high-level overview 1 of the mainstream Adreno
mobile GPU architecture by Qualcomm [55]. Different gen-
erations of Adreno GPUs or other mobile GPUs (e.g. Mali
series) may have different implementations with respect to
parameters such as the number of shader cores (#SP) or the
capacity of different caches, and other factors [5, 39, 55].
2D texture memory. System memory supports two types

of data storage: buffer and image. The former stores data
in 1-dimension continuously as in CPU memory and reads
and writes data via L2 cache. The latter allows data storage
as images in 1-/2-/3-dimensional entities called image ob-
jects, with each data element (called pixel) capable of storing
four channels (RGBA). Usually, mobile GPUs accelerate data
reads of image objects by a special two-dimensional or 2D L1
cache hardware called texture cache2. Although the read-only
L1 texture cache is small (usually 1KB) and shared among
all threads on a shader core, it offers much higher reading
throughput than other memory (e.g., 2× over L2 and 7× over
main memory [39, 55]). Exploiting 2D data locality turns out
to be critical for performance optimization on mobile GPUs.
Differences between Mobile and Desktop GPUs. Mobile
and desktop GPUs differ significantly in their memory hi-
erarchy and memory access speed. On desktop GPUs, the
access latency of shared memory (or L1 cache) is 1.47× to
6.87× faster than that of the texture cache – as observed
across multiple generations of GPU microarchitectures [18,
35, 41, 44, 51, 70]. In contrast, on mobile GPUs, the texture
cache offers twice the throughput of shared memory [39].

On Nvidia GPUs, achieving high memory bandwidth pri-
marily depends on coalescing accesses and minimizing bank
conflicts from shared memory. In contrast, mobile GPUs ben-
efit more from vectorized memory access and coalesced ac-
cesses are not effective [55]. To further explain the difference,
coalesced accesses involve threads in a warp collectively ac-
cessing contiguous, aligned addresses, whereas vectorized
access allows a single thread to load/store multiple consecu-
tive elements in one operation [55, 71]. Moreover, efficiently
leveraging the on-chip texture L1 cache, with its limited 1KB
capacity, is crucial for high performance.3

1Graphics-only hardware modules are omitted because this paper focuses
on general-purpose computing on mobile GPUs.
2Also referred to as 2.5D as each point in the 2D space is a vector.
3In comparison, sharedmemory/L1 size on latest server GPUs is 256 KB [52].

Figure 1: High-level overview of Adreno GPUs.

3 Demystify a System with 2D Cache
Understanding texture cache in-depth is necessary in order
to build an analytical performance model for applications on
a system using such a cache. However, this is challenging
because of two key design features (texture representation
and cache organization) of mobile texture cache [15, 22, 26]
are patented and obscure to end-users [55]. Texture repre-
sentation refers to the two-dimensional texture objects’ data
storage in memory. This further includes the data unit (e.g.,
2D data block), their organization (e.g., hierarchical blocked
storage), and the data storage order in memory within and
among the data units (e.g., row, column, zigzag, or Hilbert
order). Cache organization defines the data read between the
2D texture cache and the main memory including data map-
ping, cache line replacement/eviction, and other features.
Previous methods [44, 70] focused solely on using 1D image
data (Image1D) to analyze the texture cache organization,
leaving the analysis of texture representation, 2D data local-
ity, and their impact on performance unclear. With Image2D
outperforming Image1D by a factor of 2 in terms of through-
put, it is clearly important to focus on the former. Our work
introduces a general empirical approach for studying the
relationship between data access patterns and the resulting
memory performance. This is accomplished in two steps:
considering texture representation and 2D data locality for
a single thread (Section 3.1), and extending this study by
considering GPU’s SIMT parallel programming (Section 3.2).

3.1 Single-Thread Performance with 2D
Cache

This empirical study leverages a set of micro-benchmarks in-
volving random accesses to unveil the relationship between
data access patterns and 2D texture object memory latency
for a single thread. As noted above, the goal is to achieve
this without necessarily knowing the concrete texture repre-
sentation and 2D cache organization. The outcome of this
study is a machine learning regression model that can predict
the expected memory latency for any given data access pat-
tern. Figure 2 illustrates the overview of this study which
consists of four main steps outlined below. Constrained by

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

3

3

1

2x2 block4x4 block
Texture memory

2x2 4x4

+1
+1

+1

Step I :Random

strides generation

Step III: cross-block stride

feature extraction

Step IV: Regression model

fitting and analysis

1 2 3 4

0.20.3
0.4

0.1

Draw strides

from) … …

…

… …

3

3

1

Map to GPU Measured latency *

Memory

trace

Randomized array

Cross-block strides

histogram H 4x42x2x y x y
x y x y

0.2 0.2 0.5 0.2

Unseen access pattern
Trained regression model

Predicted latency

Weights
,

Step II: 2-dimentional
pointer-chasing benchmarking

Figure 2: Overview of the empirical study for single-thread data access pattern and 2D texture cache performance.
Step I generates a random stride list of (1, 2, 3, 4) with a possibility of (0.2, 0.3, 0.4, 0.1) in a multinomial distribution. Step II
conducts a 2D pointer-chasing benchmarking using random strides and generates a memory trace. Step III extracts cross-block
strides and creates a histogram as a regression model feature. This example assumes 2 block shapes, 2 × 2 and 4 × 4, counts
cross-block strides along both x- and y-directions for both cases, and creates a cross-block strides histogram w/ four bars. Step
IV runs multiple repetitions of the first three steps and trains a regression model w/ multiple cross-block stride histograms
and the corresponding measured latency, which can predict the access latency for arbitrary data access patterns later.

space, please find a complete algorithm from our anonymous
Supplementary Material (Sec. I) online 4.
Step I: Offline multinomial distribution-based random strides
generation. Inspired by pointer-chasing benchmarking [65],
this step generates random access indices offline, thus elimi-
nating the overhead of online index generation and memory
trace collection, and mitigating their impact on benchmark-
ing accuracy. Unlike existing efforts [39, 44, 65, 70] that gen-
erate 1D uniform strides, TMModel is novel in generating 2D
random strides (along horizontal and vertical directions) to
study the 2D texture object access. This step takes a list of
possible strides (𝑆) as input and constructs a multinomial
distribution M for 𝑆 . Each benchmark execution assumes a
different multinomial distribution M to ensure randomness.
Step II: On-device 2D Random-strided pointer-chasing bench-
marking. After generating random strides, TMModel employs
a newly designed micro-benchmark kernel to measure mem-
ory latency values for a set of random strides. This micro-
benchmark kernel runs in a pointer-chasing style, i.e., fetches
a pixel and uses its value as 2D strides for subsequent access.
Step III: Cross-block stride feature extraction. In a 2D texture
cache, data is typically organized in 2D blocks enabling data
locality along both the width and height dimensions [15].
Due to this blocked data organization, data elements that
look continuous from the logical (image) view may be stored
far from each other in the physical memory if they belong to
different data blocks. We can assume that accessing elements
across blocks results in longer latency than accessing data
within each block. Based on this assumption, we can build a
machine-learning model to predict the relationship between
data access patterns and access latency. We introduce the
term cross-block stride for this machine learning model.
It is defined as a function of the shape and size of the data

4https://drive.google.com/file/d/1UYV8sxYRVa1EhSad3qp6U8Od-
YWb9kiq

block, and is the stride that goes across distinct data blocks
(under the assumed shape and size of the block). Our bench-
marking collects the cross-block strides for various assumed
data block shapes/sizes and the execution latency for each
run. This information is used as the input feature of our
subsequent machine-learning model.
Step IV: ML regression model fitting and analysis. Steps I-III
are repeated multiple times to construct the training data
(𝐻, 𝐿), where 𝐻 is the histogram of cross-block strides for
assumed data block shapes/sizes and 𝐿 is the profiled latency
for each run. The collected training data are fed into an ML
regression model based on the least squares method. For
a given computation kernel and its associated data access
pattern, we can first calculate the histogram of cross-stride
accesses, and then use the model to predict the access latency.

3.2 Extension to Parallel Execution
As stated previously, multiple threads share the 2D cache.
This section extends the previous benchmarking to a set of
threads at both the warp and work-group levels.

3.2.1 Intra-warp spatial locality. This section studies the
impact of threads within each warp on spatial data locality.
Empirical study settings. This experiment uses a single warp
with varying numbers of threads – ranging from 1 to the
maximum number supported (e.g., 64 on the mobile Adreno
GPU). Each thread reads different data sections in a stream-
ing manner. The entire data footprint is larger than the last
level (L2) cache to rule out the impact of temporal data lo-
cality. This experiment is conducted on 4 kernels with rep-
resentative data access patterns (as shown in Fig. 3). From
the cache line reuse perspective, these kernels represent 4
cases with increasing reuse distances. Specifically, they are:
❶ Column major coalesced access: each thread reads data in
column-major fashion and the threads collectively consume

https://drive.google.com/file/d/1UYV8sxYRVa1EhSad3qp6U8Od-YWb9kiq
https://drive.google.com/file/d/1UYV8sxYRVa1EhSad3qp6U8Od-YWb9kiq

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

❶ Column major ❷ Row major ❸ Block-2 major ❹ Block-4 major

Cachelines Thread-0 Thread-1

Figure 3: 4 different access patterns: with increasing
cache line reuse distance from 0 to 4. In this example, each
yellow block is a pixel, and two horizontal pixels occupy a
cache line. Each thread consumes one pixel at a time.

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264

 100x

50x

Warp size

Th
ro

ug
hp

ut
 sc

al
ab

ili
ty

1x 1.35x1.08x

L1 cache thrashing

1.79x

❶ Column major ❷ Row major ❸ Block-2 ❹ Block-4

Figure 4: Scalability of each access pattern: restricted by
reuse-distance. Black Line: perfect scalability for compari-
son. All results are normalized by 1 thread of Column major.
For 1 thread, Row major, Block-2, and Block-4 outperform
Column major by 1.08×, 1.35×, and 1.79×, respectively.

a full cache line immediately (cache line reuse distance of
each thread is treated as 0), ❷ Row major: each thread reads
each row or each cache line sequentially (cache line reuse
distance being 1), ❸ Block-2 major: each thread reads data
in a 2-row block manner (cache line reuse distance being
2), and ❹ Block-4 major: each thread reads data in a 4-row
block manner (cache line reuse distance being 4). Each kernel
runs 10 times and average memory throughput is measured.
Results Analysis. Figure 4 shows the benchmarking results,
where the x-axis corresponds to the number of threads in the
warp, and the y-axis shows the measured memory through-
put compared with perfect scalability (shown by black lines,
calculated by 1_𝑡ℎ𝑟𝑒𝑎𝑑_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡×#𝑡ℎ𝑟𝑒𝑎𝑑𝑠). These results
unveil two key findings: 1) With respect to single-thread
throughput, Block access patterns (e.g., ❸ and ❹) achieve
better performance because they are more consistent with
the 2D texture memory block representation, i.e., result in
fewer cross-block strides. 2) Regarding scalability, the perfor-
mance of Block access patterns (e.g., ❸ and ❹) deteriorates
quicker as the thread count increases. This is because Block
results in larger cache line reuse distances, requiring more
simultaneously active cache lines within a specific time win-
dow. It increases memory bandwidth utilization with a small
number of threads as there are more concurrent memory
requests. However, this leads to severe cache thrashing and
contention when the number of threads increases.

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
0

50

100

150

200

00.69

6.25

 3.15

Warps

La
te

nc
y

(m
s)

L1 m
iss rate [%

]

unroll=1 unroll=4 unroll=8 unroll=16
occupancy=14 occupancy=8 occupancy=6 occupancy=4

Figure 5: Intra-work-group temporal locality: Lines rep-
resent L1 miss rate using the right y-axis; Bars represent
execution latency using the left y-axis.

We can observe that Block access patterns (e.g., ❸ and
❹) are friendly for low warp size scenarios; data access pat-
terns with smaller cache line reuse distances (e.g., ❶ and
❷) have the potential to achieve better performance as the
thread count grows. A likely consequence is that for larger
input shapes – where it is more likely that more threads
are deployed – performance will be better with data access
patterns that scale to a larger number of threads (e.g., ❶ and
❷). Conversely, with smaller input shapes, where the code
is likely to use few threads, an access pattern with higher
single-thread performance (e.g., ❸ and ❹) is preferred.
Next, transitioning to a coarser-grained perspective, we

study temporal data locality among threads (at intra-warp,
inter-warp/intra-work-group, and inter-work-group levels).
Due to limited space, we only describe experiments related to
intra-work-group studies. Others are captured in our afore-
mentioned online Supplementary Material (Sec. II).

3.2.2 Intra-work-group temporal locality and occupancy. This
study aims to confirm that temporal data locality among
warps within each work group can also help improve perfor-
mance. Additionally, by analyzing execution latency results,
this study identifies critical factors for mobile GPU occu-
pancy modeling with varying work-group sizes.
Empirical study settings. This experiment uses a single work
group, varying its size from 1 warp (64 threads) to 16 warps
(1024 threads). All threads read the same data in a row-major
pattern, exceeding the L2 cache capacity in all cases. An
expensive function (e.g., log) is applied to the data read, with
loop unrolling used to vary register pressure. Increased
register usage reduces the number of concurrently executed
warps, known as occupancy [64]. Unroll factors from 1 to
16 are tested, with occupancy ranging from 14 to 4. This
experiment was repeated with other data access patterns,
but each yielded similar conclusions.
Results Analysis. Fig. 5 shows the experimental results, where
x-axis shows the work-group size in warps with all 4 different
unrolling factors, the right y-axis shows the L1 texture cache
miss rate, and the left y-axis shows the execution latency.
For each unrolling case, the L1 miss rate decreases linearly
when the work-group size is smaller than the occupancy, as

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

all threads read the same data. When the work-group size
exceeds the occupancy limit, the L1 miss rate exhibits an
intriguing pattern: it initially increases, then drops to its low-
est point, forming a recurring wave-like curve. We define
occupancy group as a set of active warps that collectively fit
within the available hardware resources (e.g., registers, and
execution units) of a GPU’s streaming multiprocessor (SM).
This chronic wave behavior is observed for occupancy group.
This indicates that warps within the same work group but
in different occupancy groups cannot share data in the L1
cache. Additionally, even though the L1 cache miss rates
are the same for different numbers of work groups, the la-
tency values increase linearly with occupancy, resulting in a
stepped latency curve. This leads to a conclusion that warps
in the same occupancy group execute concurrently, while those
in different groups operate serially.
Moreover, comparing execution latency among all un-

rolling cases, particularly between 𝑢𝑛𝑟𝑜𝑙𝑙 = 1 and 𝑢𝑛𝑟𝑜𝑙𝑙 =
16, with identical numbers of thread warps, reveals a trade-
off between single-warp performance and occupancy. Both
factors together influence overall performance. While un-
rolling uses more registers and improves performance per
thread, it can reduce overall kernel performance by decreas-
ing occupancy and increasing context switching overhead
as the work-group size increases.

We now summarize the various observations. First, intra-
work-group temporal locality exists, offering more opportu-
nities for using Block access patterns (e.g., ❸ and ❹). Second,
kernels with different input/output shapes/sizes may prefer
different sizes of work groups due to occupancy consider-
ations. For smaller data sizes, kernels favor smaller work
groups with unrolling for improved single-thread perfor-
mance. For larger ones, kernels prefer larger work groups
without unrolling to maximize occupancy.

4 Performance model
Based on the benchmarking studies of the mobile GPU archi-
tecture introduced above, we developed an analytical model
for performance prediction. The goal of this model is to en-
able (memory-related) performance optimizations and/or
selection of better versions of code.

Fig. 6 summarizes the basic idea of this model and Table 1
summarizes all its parameters. The static information input
to the model, which is independent of the program being ex-
ecuted, includes cache capacity (number of lines C) and the
number of streaming processors (SPs). Parameters specific to
the kernel but independent of the implementation include op-
erator types (OP) and output shapes (O). The parameters that
can varywith implementation include the data access pattern
(A), the work-group size G = 𝑏𝑥 ×𝑏𝑦 ×𝑏𝑧 (𝑥,𝑦, 𝑧 are three di-
mensions of the work group), and the thread-level tiling size

Table 1: TMModel parameters.Var.: variable, Con.: constant.

Var.
A, H,
𝑠

Access pattern, cross-block strides histogram,
reuse-distance

G,W Work-group size, warp shape
T Tiling/unrolling

Con.
OP, O Operator type, output shape
SPs, R #Shader cores, #Registers per core
C, 𝛽 #Cache lines, LR modeled texture represent

Programming space

Warp-level

Hardware space

Texture
memory

Texture
cache

Warp
scheduler

Tile sizeAccess
pattern

Work-group
size

Thread-level

Operator
type

Output
shape

𝐇 Cross-block
 histogram

𝛽 Texture
 representation

spatial

𝒔

spatial temporal

𝒲

Work-group-level
occupancy

Workload
partition

cost
Overall

Shader
core

𝒜

OOP 𝒯

𝐒𝐏𝐬

𝒢

ℒ! ℒ" ℒ#

Reuse-distance

#CachelinesC

Warp

𝐑	 #Registers#shader cores

Figure 6: Performance model overview. The model is
built from left to right by taking corresponding parameters.

(T) which is equivalent to the unrolling factors men-
tioned in Section 3.2 5. Specifically, each warp (W) contains
a fixed number of threads (64 on Adreno GPUs), with associ-
ated work-group size and shape G. This performance model
enumerates all possible combinations of implementation-
dependent factors, calculates the execution cost (cost) for
each of them, and chooses the combination with the mini-
mum cost. As we will describe in the next section, this perfor-
mance model, though broader in its applicability, has already
been integrated with a compiler that generates code parame-
terized with these parameters. Thus, by choosing parameters,
the model enables optimized code for each kernel.

More specifically, the performance model consists of four
components: 1) at the thread level, it models the texture mem-
ory latency for varied access patterns – it utilizes the re-
sults of the cross-block stride study from Section 3.1;
2) at the warp level, it models how texture memory latency
changes for different access patterns as threads count grows
– this component utilizes the scalability study from Sec-
tion 3.2.1; 3) at the work-group level, it models the impact of
occupancy and thread workload partitioning on parallelism
within each work group and across work groups based on the
study from Section 3.2.2; and 4) the final level, where the data
access latency (first 2 components) and parallelism model
(third level) are integrated to predict the execution cost of a
given kernel. Please note: computation-related aspects (e.g.,
5Our implementations empirically unroll all the tiling loops, hence tiling
size equals the unrolling size.

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

arithmetic intensity) are not considered in this model since
our goal is to choose between different implementations of
one operation – these implementations are expected to be
identical with respect to these parameters.
Thread-level. At the thread-level, the cross-block stride
information obtained earlier is summarized as a histogram
H capturing the frequency of strides across various block
sizes. Our performance model takes as input the histogram
and applies the fitted linear regression model introduced in
Section 3.1 to predict texture memory access latency L𝑡 (H).
Specifically, the machine learning model described in the
previous section results in a vector 𝛽 of the same length,
and each value is a weight that is to be multiplied by the
corresponding element in the access pattern vector H (i.e. a
dot product is performed). Thus, the predicted thread-level
latency is given by:

L𝑡 (H) = ⟨𝛽,H⟩. (1)
Warp-level. The warp-level step maps the thread-level data
access latency L𝑡 computed above to the warp-level data
access latency L𝑤 . This calculation should consider differ-
ent warp shapes, marked as W = (𝑤𝑥 ,𝑤𝑦), and warp size,
marked as |W| = min(𝑤𝑥 ×𝑤𝑦, 64). The𝑤𝑥 and𝑤𝑦 are con-
figurable and subject to the work group size [61]. A detailed
description of warp shape and thread mapping is in our on-
line Supplementary Material (Sec. III). If there is no resource
contention, L𝑤 = L𝑡 . However, as discussed in Section 3.2.1,
the warp-level performance is restricted by two key factors:
the texture cache capacity (i.e., the number of cache lines, de-
noted as𝐶), and intra-thread reuse distance (𝑠). The impact of
the latter is dependent on the data access pattern (as shown
in Fig. 4). When 𝑠 × |W| > 𝐶 , cache thrashing/contention
occurs, thus the memory latency will increase. The effect of
cache thrashing on increased latency is denoted by 𝐷 . Then,
the predicted texture memory access latency is:

L𝑤 (W,H, 𝑠) = L𝑡 (H) × 𝐷 ⌈ (|W|×𝑠−𝐶)
𝐶

⌉ . (2)
Intuitively, if |W| × 𝑠 ≤ 𝐶 , ⌈ (|W|×𝑠−𝐶)

𝐶
⌉ equals to zero

and cache thrashing decay rate is set to one (i.e. there is
no cache thrashing). However, when the value is higher,
the exponential term captures the slowdown observed. In
further explaining this, if we take log on both sides, we
get logL𝑤 − logL𝑡 = ⌈ (|W|×𝑠−𝐶)

𝐶
⌉ log𝐷 . The expression is

derived by collecting data access latency values with different
warp shape and applying the least squares method to solve
for log𝐷 . The value of 𝐷 remains constant for each mobile
GPU and does not vary per application, ensuring stability
across different workloads.

For operators with a single input (e.g., SoftMax) the above
formula is sufficient to calculate the warp-level texture mem-
ory access latency6. For operators with more than one input

62D texture memory is read-only, so output write latency is not considered.

(e.g., MatMul), the memory access latency for each input ten-
sor needs to be accumulated, as the contention for cache
may be across different input tensors. Assuming we have 𝑖
inputs, the general formula is:

L𝑤 (W,H, 𝑠) =
∑︁
𝑖

L𝑡 (H𝑖) × 𝐷 ⌈ (∑𝑖 W𝑖 ×𝑠𝑖 −𝐶)
𝐶

⌉ . (3)

Work-group-level.As discussed, thework-group-level com-
ponent of our cost model considers two key factors affecting
execution cost: occupancy and workload partitioning.

Occupancy refers to the maximum number of warps that
can be concurrently executed by each stream processor [64],
as also discussed in Section 3.2.2. For example, each work-
group on an Adreno GPU logically consists of up to 1024
threads, which is equivalent to 16 warps. Each work-group is
exclusively assigned to one shader core, where registers are
allocated for each thread for private usage. Hence, occupancy
may vary depending on the register usage of each thread
and overall register resources. Exceeding the occupancy over
what can ensure sufficient register resources results in serial
execution. The occupancy can be calculated as:

Occupancy = R/Register Footprint (T), (4)
where Register Footprint depends on the computation ker-

nel and thread-level tiling size (T), a factor that is indepen-
dent of the input size. Elaborating on this, as also discussed
in Section 3.2.2, unrolling (or tile size) affects the register
usage of each thread. Increasing the tile size leads to higher
register usage per thread, which improves individual thread
performance but decreases occupancy. The register footprint
can be profiled offline with negligible overhead [54].
Workload partition refers to partitioning of the entire

computation to each thread (in most implementations it is
based on the output shape). We calculate the number of work
groups (WGs) as follows:

WGs =
∏
𝑗

⌈
O𝑗

T𝑗 · G𝑗

⌉
. (5)

Here, 𝑗 is the index of the output dimension, O𝑗 is the cor-
responding dimension size, T𝑗 and G𝑗 are the thread-level tile
size and work-group size on the 𝑗th dimension, respectively.

As demonstrated in Sec. 3.2.2, the concurrency capability
at thewarp level is determined by both the occupancy and the
number of streaming processors. To model this, we calculate
the total number of occupancy group across all streaming
processors, denoted as L𝑔:

L𝑔 (T ,G) =
⌈

WGs
SPs × occupancy

⌉
. (6)

Integration. The overall performance model for a kernel is
expressed as L = L𝑤 · L𝑔, encompassing both warp-level
and work-group-level factors. Specifically, we define it as:∑︁

𝑖

L𝑡 (H𝑖) × 𝐷

⌈
(∑𝑖 W𝑖 ×𝑠𝑖 −𝐶)

𝐶

⌉
·
⌈ ∏

𝑗

⌈ O𝑗

T𝑗 ·G𝑗

⌉
SPs × occupancy

⌉
. (7)

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

Applicability and extensibility. TMModel is broadly appli-
cable across diverse scenarios. Given its lightweight design
and analytical modeling approach, we discuss its potential
extensions to two other cases: dynamic shapes and irregular
workloads.

Dynamic shapes. TMModel explicitly accounts for input
shapes, enabling it to handle dynamic input variables effec-
tively. Owing to its analytical formulation and low overhead,
TMModel offers a greater advantage over existing methods
such as auto-tuning (e.g., Table 5). It can adapt to dynamic
input shapes by efficiently recomputing predictions at run-
time.

Irregular workloads. Our current work focuses on opti-
mizing dense and regular kernels, which are predominant
in modern DNNs. Extending precise occupancy modeling to
irregular workloads is part of our future work. This is a fun-
damentally challenging task due to data-dependent access
patterns (e.g., sparse matrices) and additional complexity
from unpredictable thread block scheduling. Notably, vendor
documentation [55] states: “For Adreno GPUs, developers
cannot assume the launch order of workgroups or warps in
SPs.”

5 Model-based Code Optimization
We implement the cost model as a performance modeling
module and integrate it with a state-of-the-art DNN com-
pilation and acceleration framework (DNNFusion [47]) for
mobile. Similar to other DNN compilation frameworks [9, 21],
DNNFusion leverages a tensor-based DSL [48] and com-
pute/schedule separation principle as Halide [57] to generate
multi-versions of kernel codes in OpenCL. Halide [57] is a
domain-specific language for image and tensor computations
whose core design separates algorithm specification (what
to compute) from scheduling (how to compute). We follow
a similar design principle, allowing developers to explore
diverse code transformations—such as loop tiling, unrolling,
and memory layout changes—without modifying the under-
lying computation logic. To support data access patterns
previously discussed, we extend DNNFusion by adding nec-
essary schedules, data storage, and assisted code templates.
We also extend DNNFusion to support backward propaga-
tion, thus supporting on-device DNN training.

The cost model can help identify the optimal combination
of data access pattern (and its corresponding memory allo-
cation), output tile size (or loop unrolling factor), and thread
configuration (including warp shape and work-group shape).
The first two are implementation factors and will be used by
our compiler to generate the corresponding schedule and
kernel code. The third is a configuration factor and will be
passed to the generated kernel code as a parameter.

Hardware features
Cores, cache

𝑆𝑃𝑠, 𝑅, 𝐶, 𝛽

Opeartor Info
𝑶𝑷Type = MatMul
𝑶utShape = (𝑀, 𝑁)

Tensor Info
Tensor A: Shape = (M, K)
Logical Pattern = Row-major

Tensor B: Shape = (K, N)
Logical Pattern = Col-major

TMModel
ArgMin

𝒜, 𝒯, 𝒢
ℒ = ℒ𝑡 × ℒ𝑤 × ℒ𝑔

+ data access code lowering

read_image(r_idx / 4,
w_idx * 4 + r_idx % 4)

read_image(
 h_idx, r_idx)

+ thread map, tile/unroll, vectorization,
 compute/write pattern, strength reduction

+ memory layout transform
A.permute(1, 0)

B.reshape(1, 0).transpose()

Tensor A : Column major

Tensor B = Block-4 major

Tensor B : Block-4 major

B = (K, N//4, 4)
.reshape(4, K/4, N).transpose(2, 0, 1).reshape(N*4, K/4)

B.reshape(4, K / 4, N)
 .permute(2, 0, 1)
 .reshape(N * 4, K / 4)

𝒜

𝒯

Figure 7: Compiler workflow.A MatMul example that gen-
erates two data access patterns: Column and Block-4 major.
Both data access pattern and memory layout transformation
are needed. Other optimizations happen subsequently.

1 __constant sampler_t sampler =
2 CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP |

CLK_FILTER_NEAREST;
3
4 __kernel void matmul(
5 __read_only image2d_t A,
6 __read_only image2d_t B,
7 __write_only image2d_t C) {
8 // thread mapping
9 const int w_idx = get_global_id (0);
10 const int h_idx = get_global_id (1);
11
12 float4 c = 0;
13 // REDUCE_SIZE is determined by the tile/unroll schedule
14 for(short r_idx =0; r_idx <{{ REDUCE_SIZE }}; r_idx ++) {
15 float4 a = read_imagef(
16 A, sampler , (int2)(h_idx , r_idx));
17 float4 b = read_imagef(
18 B, sampler , (int2)(r_idx/4, w_idx *4+ r_idx %4));
19
20 // Compute pattern is determined by vectorize schedule
21 c = mad(a.x, b, c);
22 c = mad(a.y, b, c);
23 c = mad(a.w, b, c);
24 c = mad(a.z, b, c);
25 }
26 // OUT_IDX is determined by the write pattern
27 // schedule , which defines the output tensor layout
28 // optimized for downstream consumers.
29 write_imagef(
30 C, (int2)({{ OUT_IDX(w_idx , h_idx)}}), c);
31 }

Listing 1: MatMul Kernel Example. This kernel is
generated after applying the data access pattern schedule.
Highlighted placeholders (e.g., REDUCE_SIZE, OUT_IDX) are
determined by subsequent schedules such as tiling, unrolling,
and write pattern.

It is worth noting that althoughwe have deployed TMModel
for code generation and optimization inDNNFusion, it equally
applies to both other DNN compilation frameworks like
TVM [9] for code generation and library-based DNN accelera-
tion frameworks like MNN [30] for kernel selection on mobile
GPUs with 2D memory.
Figure 7 shows an indicative workflow of using TMModel

to optimize MatMul. This example also shows more details

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

about the schedule and code lowering for several data access
patterns. These schedules are also supported by Halide [57],
specifically involving the design of appropriate domain orders
(and loop transformations) described in Section 3.2 of [57].
The correctness of these schedules is guaranteed because
the change in data access pattern and data storage order still
maintains the original logical data access order. The schedule
describing the data access pattern is decided before all other
schedules (e.g., tiling and unrolling) and supports individ-
ual kernel and fused kernel in DNNFusion [47]. Listing 1
presents the corresponding lowered OpenCL code, illustrat-
ing the impact of different access patterns on the generated
kernel. This example omits subsequent schedules (e.g., tiling)
as they are natively supported by Halide.

6 Evaluation
This section assesses the efficacy of TMModel by compar-
ing it with four state-of-the-art mainstream product-level
mobile DNN acceleration frameworks (and their associated
performance modeling/tuning methods): MNN [30], CLML [1],
TFLite [2], and TVM [9]. We also compare against a more
general-purpose GPU performance modeling method (PPT-
GPU [3]). Both individual kernels and end-to-end on-device
DNN training are used as target workloads. More specifically,
the evaluation objectives are as follows: 1) demonstrating that
TMModel can lead to better kernel performance, outperform-
ing all baseline methods (Section 6.2); 2) showing the efficacy
of TMModel in end-to-end full on-device DNN training (Sec-
tion 6.3); 3) performing an ablation study, i.e., understanding
the effectiveness of different components of our cost model,
including verifying the model’s prediction accuracy at each
level (Section 6.4); 4) verifying the cost of TMModel-based
code optimization by comparing with other baselines, vali-
dating the portability and generality of TMModel by showing
its performance on different mobile GPUs, and evaluating
its inference speed against other inference frameworks (Sec-
tion 6.5).

6.1 Experiment Settings
Baselines. Table 2 summarizes they key aspects of five base-
lines used in our evaluation. Particularly, MNN, CLML, and
TFLite explore different work-group sizes using brute-force
search and select the best one. The work-group size (G) con-
figuration is independent of kernel implementations, but it
is important for achieving optimal performance. TVM’s auto-
tuning approach predicts kernel latency by an ML-based cost
model and searches optimization factors (e.g., tile sizes) by
generating code and profiling. TFLite performs heuristic
kernel selection based on input shapes. TMModel is also com-
pared with a general GPGPU memory modeling approach
(originally for NVIDIA GPUs), PPT-GPU [3] that calculates

Table 2: Baselines characterization.A: data access pattern;
T: thread tile; W: Warp shape; G: Work-group size.

Framework MNN CLML TVM TFLITE PPT-GPU TMModel

Perf. model searching searching ML-Based searching analytical analytical
Opt. target G G T, G T, G A A, T, W, G
m-GPU train Yes Yes No No No Yes

cache miss rates given the memory trace/data access order.
Cache miss rate is directly related to the warp shape (tem-
poral locality), so PPT-GPU implicitly searches warp shape.
Compared to TMModel, PPT-GPU does not target 2D texture
memory, it requires extensive knowledge of GPU hardware
parameters (e.g., the cache associativity), and relies on mem-
ory trace to calculate reuse distance. On a mobile GPU hard-
ware parameters are not documented, and no tracing tools
are available to extract address information. To overcome
this, we follow the process outlined in earlier work [62] to
generate memory traces, in addition to using the information
on associativity collected in our experiments [59, 70].
Workloads. TMModel is evaluated on representative individ-
ual DNN operators and end-to-end DNN on-device training:
Individual kernels/operators. The evaluated kernels include
Matrix Multiplication (MatMul), 2D Convolution with strides
of 1 (Conv2Ds1) and 2 (Conv2Ds2), 2D DeConvolution with
strides of 1 (DeConv2Ds1) and 2 DeConv2Ds2, 3D Convolu-
tion (Conv3D), 2D Depthwidth Convolution (DwConv2D),
SoftMax, and LayerNorm. Their typical application DNNs
and ranges of input sizes for our evaluation are summarized
in the left half of Table 3. To optimize these kernels, TMModel
explores the best access patterns among five pre-defined ones
(as shown in Fig. 3) independently for each input: Column-
major, Row-major, and three Block-major ones with reuse
distance of 2, 4, and 8. Furthermore, varying tiling sizes are
considered for each pattern.
On-device training. Training of four representative DNNmod-
els is also used for TMModel’s evaluation: we use three classic
Convolutional Neural Networks with different major ker-
nels, i.e., MobileNet [60] with DwConv2D, ResNet-18 [23]
with Conv2D, and Fsrcnn [16] with DeConv2D, and a popular
vision transformer Vit [17] with MatMul. We use on-device
training for our full application evaluation because: 1) it
becomes increasingly important for up/downstream applica-
tions such as federated learning [42]; 2) it is more challenging
than inference – specifically, the forward-backward compu-
tational graph has more shape variations and more complex
data dependencies; 3) its execution on mobile GPUs remains
an open challenge [13, 73]. Our evaluation focuses on the
kernel optimization aspects of on-device training without
resorting to algorithm optimizations (e.g. the ones that may
sacrifice numerical precision [36] or memory space [37]) –
these optimizations are orthogonal to TMModel.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

Table 3: Individual kernel performance improvements over baselines. Numbers outside and within parentheses denote
the average and peak (tagged w/ ↑) speedup over baseline, respectively. ’-’ means this framework does not support this kernel
on mobile GPU. The third column specifies the input size range of each input: MatMul has two inputs, each with each dimension
size ranging 24-212 (double every time). For Conv, two sets are for input matrix and kernel size of weight matrix, respectively.

Kernels Typical applications Shape range Avg. speedup over
MNN CLML TVM TFLite PPT-GPU

MatMul Transformers 24−12 2.57 (3.73 ↑) 6.04 (9.17 ↑) 5.34 (11.9 ↑) 1.20 (3.22 ↑) 1.47 (2.78 ↑)
Conv2Ds1 CNNs 24−9, 3 − 7 1.35 (1.57 ↑) 2.06 (2.55 ↑) 1.18 (1.80 ↑) 1.12 (1.53 ↑) 1.07 (1.38 ↑)
Conv2Ds2 Downsample 24−9, 3 − 7 1.19 (1.82 ↑) 1.42 (2.49 ↑) 1.42 (4.36 ↑) 1.20 (1.63 ↑) 1.16 (1.81 ↑)
DeConv2Ds1 Conv backward 24−9, 3 − 7 2.16 (2.41 ↑) 2.32 (2.70 ↑) 1.71 (4.13 ↑) 1.45 (3.49 ↑) 1.79 (2.41 ↑)
DeConv2Ds2 Upsample 24−9, 3 − 7 2.18 (2.42 ↑) 6.57 (7.45 ↑) 3.96 (8.60 ↑) 1.20 (2.53 ↑) 1.27 (2.42 ↑)
Conv3D Action recognition 24−9, 3 − 7 – – 6.62 (8.67 ↑) – 4.47 (8.67 ↑)
DwConv2D CNN 24−9, 3 − 7 2.49 (3.41 ↑) 1.62 (4.11 ↑) 2.10 (4.85 ↑) 1.76 (3.24 ↑) 2.13 (3.41 ↑)
SoftMax Transformers 24−12 4.85 (8.88 ↑) 3.62 (12.5 ↑) 2.32 (4.36 ↑) 1.31 (8.83 ↑) 2.28 (8.88 ↑)
LayerNorm Transformers 24−12 3.43 (4.34 ↑) – 7.77 (18.2 ↑) 3.64 (14.1 ↑) 2.53 (4.34 ↑)

Geometric Mean 2.31 (3.08↑) 2.86 (4.82↑) 2.91 (6.06↑) 1.48 (3.61↑) 1.83 (3.30↑)

(a) SoftMax (b) MatMul (d) DwConv2D(c) Conv2Ds1

Block-4 ColumnBlock-8

Figure 8: Output shape impacts kernel selection. Circle colors represent different implementations. Circle sizes represent
the speed improvements over the base implementation which is a vanilla version without tiling or data access pattern
optimizations, but with fine-tuned work-group size. The x- and y-axis denote the height and width of output geometry.

Evaluation environment. Evaluations are carried out on
the Qualcomm Snapdragon 8 Gen 2 SoC (SND Gen2) [56]
with a Qualcomm Adreno 740 GPU, and version 3.0 of the
OpenCL driver. Additionally, MediaTek D1100 [43] SoC with
Mali G77 GPU is used to demonstrate portability. For indi-
vidual DNN kernels, each experiment was run 10 times, with
the ‘warm-up’ run excluded, and the average execution time
of other runs is reported. The confidence interval is omitted
for readability, as the variations were low. For the on-device
training experiments, a consistent configuration is applied
for each framework and test model: the batch size is set to
one, and Stochastic Gradient Descent (SGD) is used to update
model parameters once every 32 batches. This approach is
commonly used [58, 68] to save memory space while main-
taining the same training effectiveness as a standard batch
size of 32. The reported latency is the average execution time
for one batch, calculated over 32 batches. To maintain train-
ing accuracy, floating-point 32 is used for on-device training
evaluation (as well as for individual kernel evaluation).

6.2 Overall Performance
Table 3 summarizes the generated code speedup enabled by
TMModel over all five baselines. The numbers outside and
inside parentheses denote the average and peak speedup
respectively of TMModel over the corresponding baseline
across all input sizes for each kernel. For example, for MatMul,
TMModel achieves an average speedup of 2.57× and a peak
speedup of 3.73× over MNN across all input sizes (size of each
dimension ranges from 24 to 212). For all individual kernels,
the geometric means of the average speedups of TMModel
over MNN, CLML, TVM, TFLite, and PPT-GPU are 2.31×, 2.86×,
2.91×, 1.48×, and 1.83×, respectively, and the geometric
means of the peak speedups are 3.08×, 4.82×, 6.06×, 3.61×,
and 3.30×, respectively, demonstrating TMModel’s efficacy.

TMModel outperforms other frameworks for two main rea-
sons: First, it systematically considers multiple optimization
factors (data access patterns, thread-level tiling, and warp
and work-group level thread mapping) simultaneously, while
others mainly focus on one or two of them (see Table 2). For

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 4: On-device training performance comparison.

Models Major Kernels Latency (ms)
MNN DNNF TMModel

MobileNetV2 [60] DwConv2D 1916 41 29
ResNet-18 [23] Conv2D 88 66 48
Fsrcnn [16] DeConv2D 921 57 32
ViT [17] MatMul 2105 1224 575

example, MNN only supports work-group fine-tuning with-
out exploring kernel implementation options. Second, and
more importantly, TMModel takes into account the 2D tex-
ture memory (and cache) and couples it with thread mapping
and occupancy considerations. Examining results from other
frameworks – although PPT-GPU models cache behavior, it
does not take texture representation, occupancy, or output
shape into account for memory access and thread mapping
optimizations. TFLite selects different implementations for
specific input/output shapes, so it performs the best among
all baselines. However, it also misses to consider texture
representation and occupancy in a nuanced manner. CLML
searches only a limited set of candidates and misses many
optimization opportunities. Finally, TVM lacks specialized
templates for many kernels on mobile GPUs and fallbacks
to using a generic template.
Output shapes impact kernel configuration selection.
An advantage of TMModel is the consideration of output
shape. Fig. 8 verifies this by showing the distribution of
best-performing implementations for four representative ker-
nels - SoftMax, MatMul, Conv2Ds1, and DwConv2D7. For ex-
ample, for SoftMax and MatMul, with small input shapes and
low parallelism, Block-major access is preferable to achieve
low single-thread data access latency (L𝑡). However, as the
input size increases, using Block-major (with large 𝑠) and
more threads (larger W) would cause cache thrashing, re-
sulting in degraded performance (increased L𝑤 thus L𝑔).
For DwConv2D and Conv2D, Block-major access still results
in ideal performance as their input sizes grow because their
input of theWeightmatrix has high data reuse (and temporal
locality), effectively reducing cache thrashing as thread count
grows. For readability, Fig. 8 only shows the selection of data
access patterns, omitting the tiling factor determination.

6.3 End-to-End DNN On-Device Training
Among all five baselines, MNN is the state-of-the-art frame-
work to support end-to-end DNN on-device training on mo-
bile GPUs. Table 4 compares TMModel with MNN on four rep-
resentative DNNmodels with varied major kernels. TMModel
achieves 1.83−66.1× speedup over MNN for two main reasons:
First, TMModel is built on DNNFusion [47] (with the latest

7Other kernels show similar trends.

5x

3x

1x
 Base TMM-T ExhasutiveTMM

SoftMax MatMul Conv2Ds1 DwConv2D

Figure 9: Performance breakdown with varied model
outputs. TMM refers to TMModel and TMM-T uses predicted
tiling factor only for code opt. Base is a vanilla version as
Fig 8 while Exhaustive refers to a fully optimized version
with exhaustive search. y-axis is the speedup over Base.

1.0

Misspred. perf. Pred. Accuracy

SoftMax MatMul Conv2Ds1 DwConv2D

Figure 10: Prediction accuracy and average latency for
all miss-prediction cases with each level of TMModel
for four kernels. The bars of each group from left to right
represent thread-/warp-/integrated-level of TMModel.

memory optimization [49]), which has more advanced oper-
ator fusion and memory operation elimination than MNN. Sec-
ond, TMModel further optimizes DNNFusion with the newly
designed 2D texture-aware analytic model to generate more
efficient operators (or kernels), with a nuanced selection of
data access patterns, tiling, and other GPU configuration pa-
rameters. Table 4 also compares TMModel with DNNFusion,
showing 1.38 − 2.53× speedup on these four DNN models.

6.4 Performance Understanding
To further understand TMModel’s performance, this section
reports an ablation study on the four representative kernels
we previously used for the detailed evaluation.
Breakdown of performance improvement with varied
model outputs. Fig. 9 shows a performance breakdownwith
varied model outputs: Base is a vanilla version w/o tiling or
data access pattern optimizations, but w/ fine-tuned work-
group size. TMM-T uses predicted tiling sizes from TMModel
only for code optimizations. TMM uses both predicted tiling
and data access patterns from TMModel. Exhaustive shows
the upper bound achieved by exhaustively exploring the
search space (A, T, W, G). This study shows that both the ac-
cess pattern and tiling are essential factors for performance
tuning on mobile GPUs and TMModel can achieve perfor-
mance close (within around 1%) to that of exhaustive search.
Model prediction accuracy study. We focus on 1) the pre-
diction accuracy of TMModel, and 2) what happens when
TMModel produces inaccurate configurations. Fig. 10 sum-
marizes the prediction accuracy of each level of TMModel

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

Table 5: Tuning latency comparison. The tuning latency
is the total time for finding the best configurations for
Conv2Ds1 with all input sizes in Table 3.

Framework MNN CLML TVM TFLite PPT-GPU TMModel

Tuning Lat. (s) 73.4 10.4 234 552 771 1.92

for these four kernels8, and the average latency of the miss-
predicted cases by normalizing it to the latency of the best
configuration with exhaustive search. These prediction ac-
curacy results indicate that as more and more factors in
TMModel are considered, its prediction accuracy improves,
achieving 94.1% accuracy on average for these four operators
when the entire performance model is used, demonstrating
TMModel’s efficacy, and the necessity of each of its compo-
nents. The miss-prediction performance demonstrates that
for certain cases, even if TMModel produces a wrong pre-
diction, the predicted configuration achieves performance
similar (within 83.8% − 98.4%) to the correct one.

6.5 Other Experiments
Tuning Latency. Table 5 compares the total tuning latency
of TMModel and all five baselines. We identify the best config-
urations for Conv2Ds1 with all input sizes (shown earlier in
Table 3). Compared with all baselines, TMModel accelerates
the tuning stage by 5.42 − 402×. MNN, CLML, and TFLite are
slower because of the exhaustive search and execution of the
code candidates. TVM’s latency is also high because it itera-
tively profiles generated code on the mobile device and trains
ML models. Although TMModel also needs a benchmarking
stage with a regression model (as described in Section 3), this
is performed once for each architecture, rather than for each
kernel (like TVM). PPT-GPU, even though being an analytical
performance model, is slow because it calculates the reuse
distance with an expensive analysis of memory traces [46].

Table 6: Portability study

Models Latency (ms)
MNN TMModel

MobileNetV2 4060 59
ViT 5987 1936

Portability Study. Ta-
ble 6 compares the on-
device training latency of
MNN and TMModel on an-
other GPU architecture,
Mali G77, with one CNN
(MobileNetV2) and one
Transformer (ViT). Other
DNN models show similar trends. The Mali GPU family dif-
fers significantly from Adreno GPUs – it has a smaller warp
size (32 threads), a larger texture size (8KB), more shader
cores (9), a distinct texture representation, and features sep-
arate on-chip texture and data caches. With these critical
differences, targeting this device demonstrates the portability

8A more detailed study is presented in our online Supplementary Material,
Sec. IV.B, specifically, Fig.13 due to limited space.

Table 7: Inference performance comparison. All frame-
works use FP16 precision and run on a Snapdragon 8 Gen 2
platform with an Adreno 740 GPU.

Models Latency (ms)
MNN DNNF TMModel

ViT 533 277 88
ResNet-18 10.9 10.1 8.6

of TMModel. To maximize the utilization of both data paths,
we empirically employ a mixed-use approach where tensor
inputs and outputs are handled with Image2D objects, while
model weights are stored in Buffer objects. The evaluation
results show that TMModel outperforms MNN by 68.8× and
3.09× on MobileNetV2 and ViT, respectively.
Inference Latency. TMModel is a general-purpose perfor-
mance model applicable to both inference and training work-
loads. To evaluate its effectiveness for inference, Table 7
presents latency results on ViT and ResNet-18. TMModel
achieves significant improvements, outperforming MNN by
6.06× on ViT and 1.27× on ResNet-18, and surpassing DNNF
by 3.15× and 1.17×, respectively.

7 Related Work
Texture memory and micro-benchmarks. Texture cache
was originally developed for faster rendering on graphic pro-
cessors [15, 22, 26]. There have been severalmicro-benchmark-
ing studies to understand the performance of systems with
such a cache. The work byWong et al. [70] and Mei et al. [44]
only used 1D data (Image1D) to dissect texture cache orga-
nization – generalizability to Image2D was left unclear. Ro-
mou [39] profiled cache hierarchy on mobile SoCs, however,
the 2D spacial locality of texture memory was not studied.
Our work distinguishes itself by studying texture represen-
tation and its impact on both spatial and temporal locality.
Cache and locality analysis for 1D memory. Reuse dis-
tance [14, 31] is a well-known metric to model cache behav-
ior, and is studied based on an ordered memory access trace.
Nugteren et al. [50] extends reuse distance to GPU cache
sets by modeling GPU’s parallel execution paradigm and
predicting cache miss rates. PPT-GPU-Mem [3], on the other
hand, leverages a binary instrumentation tool NVBIT [63]
to provide a reliable memory access trace to calculate reuse
distance. Applying reuse distance to mobile platforms with
texture cache is not straightforward, because no trace tools
are available and the texture data representation is patented.
Cost models and tensor computing. Models of perfor-
mance execution are designed for numerous objectives. Roof-
line model [69] identifies the bottleneck of hardware re-
sources. Gables [24] retargets the Roofline model to model
each accelerator on a SoC, apportions work concurrently

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

among different accelerators, and calculates a SoC perfor-
mance upper bound. Li et al. [38] extract features from the
architecture and the program to train a generalizable cost
model. MAESTRO [34] models DNN accelerators and esti-
mates execution latency for a given the DNNmodel. Inspired
by TVM [9] and Ansor [78], several works employ machine
learning methods to predict inference latency and auto-tune
DNN kernels [75, 77, 81]. TSM2 [8] designs a cost model to
optimize tiling parameters for matrix multiplications with
tall-and-skinny inputs. Babalad et al. [6] train machine learn-
ing models to select tile sizes and loop orders for CPUs.
Jang et al. [29] optimize memory type selection by analyz-
ing data access patterns in existing code. In contrast, our
work focuses on generating kernels with efficient data ac-
cess patterns tailored to the tensor shape and leveraging the
2D spatial locality of texture memory.
On-device training. There is a significant amount of work
on DNN training on desktop GPUs [7, 11, 19, 74, 79], or
other processors [27, 28, 72] – however, the challenges asso-
ciated with distinctive features and resource limitations of
mobile chips are not handled there. On the other hand, pre-
vious research on mobile devices has focused on optimizing
on-device training performance through sparsification [76]
and quantization [40, 73, 80]. Unlike these approaches, our
methods do not compromise model accuracy. Additionally, a
separate line of research primarily targets the orthogonal di-
rection of memory consumption reduction [20, 40, 45, 67, 68].

8 Conclusion and Future Work
This paper presented a new performance modeling and op-
timization approach called TMModel for mobile GPUs that
takes 2D texture memory into account. TMModel consists
of three advances: 1) a micro-benchmarking and machine
learning-based approach on top of a new concept (cross-block
stride) to understand 2D spatial locality and analyze the
impact of factors like warp size/shape, occupancy, and work-
group size; 2) a comprehensive analytic model for choosing
factors like data access pattern(s) and tile size(s) for a given
kernel (and associated size/shapes), and 3) a complete system
prototype that supports code optimization for both kernels
and full DNN on-device training. TMModel is extensively eval-
uated by comparing with four state-of-the-art mobile DNN
frameworks and a general-purpose GPU performance model,
achieving up to 3.61× speedup on individual kernels and
66.1× speedup for end-to-end DNN on-device training with
as low as 0.25% tuning cost.

Based on TMModel, our future work includes: 1) designing
more advanced data layouts, and access patterns, 2) global
layout selection, transformation, and memory elimination
for DNN training, and 3) supporting irregular kernels (e.g.,
on sparse matrices or tensors).

Acknowledgments
The authors would like to thank the anonymous review-
ers for their insightful and detailed comments. Their con-
structive suggestions significantly improved the quality of
this paper. This work was supported in part by the U.S. Na-
tional Science Foundation (NSF) under awards CCF-2047516
(CAREER), CCF-2146873, CNS-2230944, OAC-2403088, CCF-
2428108, CNS-2341378, OAC-2333899, CCF-2333895, andCCF-
2334273. It was also supported in part by the Horizon Europe
research and innovation programme of the European Union
under grant agreement No. 101092912 (project MLSysOps).
Evgenia Smirni is partially supported by NSF under grant No.
2402942 and by the Commonwealth Cyber Initiative (CCI)
under grant No. HC-3Q24-047. Any opinions, findings, or
errors expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF, Horizon
Europe, or CCI. The authors also acknowledge William &
Mary Research Computing for providing the computational
resources used in this study.

References
[1] 2022. Adreno OpenCL Machine Learning SDK v3.0.

https://developer.qualcomm.com/downloads/adreno-opencl-
machine-learning-sdk-v30.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In OSDI 2016.
USENIX Association, USA, 265–283.

[3] Yehia Arafa, Abdel-Hameed Badawy, Gopinath Chennupati, Atanu
Barai, Nandakishore Santhi, and Stephan Eidenbenz. 2020. Fast, accu-
rate, and scalable memory modeling of GPGPUs using reuse profiles.
In Proceedings of the 34th ACM International Conference on Supercom-
puting. 1–12.

[4] Yehia Arafa, Abdel-Hameed Badawy, Ammar ElWazir, Atanu Barai,
Ali Eker, Gopinath Chennupati, Nandakishore Santhi, and Stephan
Eidenbenz. 2021. Hybrid, scalable, trace-driven performance modeling
of GPGPUs. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–15.

[5] ARM. 2024. Arm Immortalis and Mali GPU OpenCL Developer Guide.
(2024).

[6] Shilpa Babalad, Shirish Shevade, Matthew Jacob Thazhuthaveetil, and
R Govindarajan. 2024. Tile Size and Loop Order Selection using Ma-
chine Learning for Multi-/Many-Core Architectures. In Proceedings of
the 38th ACM International Conference on Supercomputing. 388–399.

[7] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong, Feng Yan,
Ruichuan Chen, and Yinlong Xu. 2021. Gradient compression super-
charged high-performance data parallel dnn training. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
359–375.

[8] Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaiming
Ouyang, Kai Zhao, Nathan DeBardeleben, Qiang Guan, and Zizhong
Chen. 2019. TSM2: optimizing tall-and-skinny matrix-matrix multipli-
cation on GPUs. In Proceedings of the ACM International Conference on
Supercomputing. 106–116.

https://developer.qualcomm.com/downloads/adreno-opencl-machine-learning-sdk-v30
https://developer.qualcomm.com/downloads/adreno-opencl-machine-learning-sdk-v30

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

[9] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. 2018. {TVM}: An auto-
mated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 578–594.

[10] Yu-Hui Chen, Raman Sarokin, Juhyun Lee, Jiuqiang Tang, Chuo-Ling
Chang, Andrei Kulik, and Matthias Grundmann. 2023. Speed is all you
need: On-device acceleration of large diffusion models via gpu-aware
optimizations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 4650–4654.

[11] Zhaodong Chen, Andrew Kerr, Richard Cai, Jack Kosaian, Haicheng
Wu, Yufei Ding, and Yuan Xie. 2024. EVT: Accelerating Deep Learning
Training with Epilogue Visitor Tree. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 301–316.

[12] Thanh Tuan Dao, Jungwon Kim, Sangmin Seo, Bernhard Egger, and
Jaejin Lee. 2014. A performance model for GPUs with caches. IEEE
Transactions on Parallel and Distributed Systems 26, 7 (2014), 1800–
1813.

[13] Anish Das, Young D Kwon, Jagmohan Chauhan, and Cecilia Mascolo.
2022. Enabling on-device smartphone GPU based training: Lessons
learned. In 2022 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom
Workshops). IEEE, 533–538.

[14] Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality
through reuse distance analysis. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation.
245–257.

[15] Michael Doggett. 2012. Texture caches. IEEE Micro 32, 3 (2012), 136–
141.

[16] Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerat-
ing the super-resolution convolutional neural network. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part II 14. Springer, 391–407.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[18] Minquan Fang, Jianbin Fang, Weimin Zhang, Haifang Zhou, Jianxing
Liao, and Yuangang Wang. 2018. Benchmarking the GPU memory at
the warp level. Parallel Comput. 71 (2018), 23–41.

[19] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. 2023.
Megablocks: Efficient sparse training with mixture-of-experts. Pro-
ceedings of Machine Learning and Systems 5 (2023), 288–304.

[20] In Gim and JeongGil Ko. 2022. Memory-efficient DNN training on mo-
bile devices. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services. 464–476.

[21] Google. 2023. Tensorflow XLA. https://www.tensorflow.org/xla.
[22] Ziyad S Hakura and Anoop Gupta. 1997. The design and analysis of

a cache architecture for texture mapping. In Proceedings of the 24th
annual international symposium on Computer architecture. 108–120.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[24] Mark Hill and Vijay Janapa Reddi. 2019. Gables: A roofline model for
mobile socs. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 317–330.

[25] Mark D Hill and Alan Jay Smith. 1989. Evaluating associativity in CPU
caches. IEEE Trans. Comput. 38, 12 (1989), 1612–1630.

[26] Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot. 1998. Prefetch-
ing in a texture cache architecture. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware. 133–ff.

[27] Vahid Janfaza, Shantanu Mandal, Farabi Mahmud, and Abdullah Muza-
hid. 2023. ADA-GP: Accelerating DNN Training By Adaptive Gradient
Prediction. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture. 1092–1105.

[28] Vahid Janfaza, Kevin Weston, Moein Razavi, Shantanu Mandal, Farabi
Mahmud, Alex Hilty, and Abdullah Muzahid. 2023. Mercury: Ac-
celerating dnn training by exploiting input similarity. In 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 638–650.

[29] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. 2010.
Exploiting memory access patterns to improve memory performance
in data-parallel architectures. IEEE Transactions on Parallel and Dis-
tributed Systems 22, 1 (2010), 105–118.

[30] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin
Zou, Yafeng Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lv,
and ZhihuaWu. 2020. MNN: A universal and efficient inference engine.
Proceedings of Machine Learning and Systems 2 (2020), 1–13.

[31] Yunlian Jiang, Eddy Z Zhang, Kai Tian, and Xipeng Shen. 2010. Is reuse
distance applicable to data locality analysis on chip multiprocessors?.
In Compiler Construction: 19th International Conference, CC 2010, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings
19. Springer, 264–282.

[32] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G
Rogers. 2020. Accel-Sim: An extensible simulation framework for
validated GPU modeling. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 473–486.

[33] Mohsen Kiani and Amir Rajabzadeh. 2018. Efficient cache performance
modeling in GPUs using reuse distance analysis. ACM Transactions on
Architecture and Code Optimization (TACO) 15, 4 (2018), 1–24.

[34] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. 2019. Understanding
reuse, performance, and hardware cost of dnn dataflow: A data-centric
approach. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 754–768.

[35] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin
Herbordt. 2014. An investigation of unified memory access perfor-
mance in cuda. In 2014 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–6.

[36] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4013–4021.

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278–2324.

[38] Lingda Li, Thomas Flynn, and Adolfy Hoisie. 2024. Learning Gener-
alizable Program and Architecture Representations for Performance
Modeling. In SC24: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 1–15.

[39] Rendong Liang, Ting Cao, Jicheng Wen, Manni Wang, Yang Wang,
Jianhua Zou, and Yunxin Liu. 2022. Romou: Rapidly generate high-
performance tensor kernels for mobile gpus. In Proceedings of the 28th
Annual International Conference on Mobile Computing And Networking.
487–500.

[40] Ji Lin, Ligeng Zhu,Wei-Ming Chen,Wei-ChenWang, Chuang Gan, and
Song Han. 2022. On-device training under 256kb memory. Advances
in Neural Information Processing Systems 35 (2022), 22941–22954.

[41] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen
Chu. 2024. Benchmarking and dissecting the nvidia hopper gpu archi-
tecture. arXiv preprint arXiv:2402.13499 (2024).

https://www.tensorflow.org/xla

TMModel: Modeling Texture Memory and Mobile GPU Performance to Accelerate DNN Computations ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[42] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS),
Vol. 54. 1273–1282.

[43] MediaTek. 2023. MediaTek Dimensity 1100. https://www.mediatek.
com/products/tablets/mediatek-dimensity-1100.

[44] Xinxin Mei and Xiaowen Chu. 2016. Dissecting GPU memory hierar-
chy through microbenchmarking. IEEE Transactions on Parallel and
Distributed Systems 28, 1 (2016), 72–86.

[45] Ji Joong Moon, Parichay Kapoor, Ji Hoon Lee, Myung Joo Ham, and
Hyun Suk Lee. 2022. NNTrainer: Light-weight on-device training
framework. arXiv preprint arXiv:2206.04688 (2022).

[46] QingpengNiu, JamesDinan, Qingda Lu, and Ponnuswamy Sadayappan.
2012. PARDA: A fast parallel reuse distance analysis algorithm. In 2012
IEEE 26th International Parallel and Distributed Processing Symposium.
IEEE, 1284–1294.

[47] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.
2021. DNNFusion: accelerating deep neural networks execution with
advanced operator fusion. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation. 883–898.

[48] Wei Niu, Zhengang Li, Xiaolong Ma, Peiyan Dong, Gang Zhou, Xuehai
Qian, Xue Lin, Yanzhi Wang, and Bin Ren. 2021. Grim: A general, real-
time deep learning inference framework for mobile devices based on
fine-grained structured weight sparsity. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 10 (2021), 6224–6239.

[49] Wei Niu, Md Musfiqur Rahman Sanim, Zhihao Shu, Jiexiong Guan,
Xipeng Shen, Miao Yin, Gagan Agrawal, and Bin Ren. 2024. SmartMem:
Layout Transformation Elimination and Adaptation for Efficient DNN
Execution on Mobile. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. 916–931.

[50] Cedric Nugteren, Gert-Jan Van den Braak, Henk Corporaal, and Henri
Bal. 2014. A detailed GPU cache model based on reuse distance the-
ory. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 37–48.

[51] Nvidia. 2024. CUDA C++ Programming Guide. (2024).
[52] Nvidia. 2024. Hopper Tuning Guide. (2024).
[53] Reena Panda, Xinnian Zheng, Jiajun Wang, Andreas Gerstlauer, and

Lizy K John. 2017. Statistical pattern based modeling of GPU memory
access streams. In Proceedings of the 54th Annual Design Automation
Conference 2017. 1–6.

[54] Qualcomm. 2016. Snapdragon Profiler. https://developer.qualcomm.
com/software/snapdragon-profiler.

[55] Qualcomm. 2023. Qualcomm Snapdragon Mobile Platform OpenCL
General Programming and Optimization. (2023).

[56] Qualcomm. 2023. Snapdragon Gen2. https://en.wikipedia.org/wiki/
List_of_Qualcomm_Snapdragon_systems_on_chips.

[57] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. In PLDI 2013 (Seattle, Wash-
ington, USA). Association for Computing Machinery, New York, NY,
USA, 519–530.

[58] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks
in C. http://pjreddie.com/darknet/.

[59] Rafael H Saavedra and Alan Jay Smith. 1995. Measuring cache and
TLB performance and their effect on benchmark runtimes. IEEE Trans.
Comput. 44, 10 (1995), 1223–1235.

[60] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and

linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4510–4520.

[61] Yuki Sugimoto, Fumihiko Ino, and Kenichi Hagihara. 2014. Improving
cache locality for GPU-based volume rendering. Parallel Comput. 40,
5-6 (2014), 59–69.

[62] Tao Tang, Xuejun Yang, and Yisong Lin. 2011. Cache miss analysis for
gpu programs based on stack distance profile. In 2011 31st International
Conference on Distributed Computing Systems. IEEE, 623–634.

[63] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keck-
ler. 2019. Nvbit: A dynamic binary instrumentation framework for
nvidia gpus. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 372–383.

[64] Vasily Volkov. 2016. Understanding latency hiding on GPUs. University
of California, Berkeley.

[65] Vasily Volkov and James W Demmel. 2008. Benchmarking GPUs to
tune dense linear algebra. In SC’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE, 1–11.

[66] Lu Wang, Magnus Jahre, Almutaz Adileho, and Lieven Eeckhout.
2020. MDM: The GPU memory divergence model. In 2020 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1009–1021.

[67] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dy-
namic GPU memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN symposium on principles and
practice of parallel programming. 41–53.

[68] QipengWang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin
Jin, Gang Huang, Yunxin Liu, and Xuanzhe Liu. 2022. Melon: Breaking
the memory wall for resource-efficient on-device machine learning.
In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services. 450–463.

[69] Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: an insightful visual performance model for multicore ar-
chitectures. Commun. ACM 52, 4 (2009), 65–76.

[70] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi,
and Andreas Moshovos. 2010. Demystifying GPU microarchitecture
through microbenchmarking. In 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS). IEEE, 235–246.

[71] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng
Shen. 2013. Complexity analysis and algorithm design for reorganiz-
ing data to minimize non-coalesced memory accesses on gpu. ACM
SIGPLAN Notices 48, 8 (2013), 57–68.

[72] Zhen Xie, Murali Emani, Xiaodong Yu, Dingwen Tao, Xin He, Pengfei
Su, Keren Zhou, and Venkatram Vishwanath. 2024. Centimani: En-
abling Fast {AI} Accelerator Selection for {DNN} Training with a
Novel Performance Predictor. In 2024 USENIX Annual Technical Con-
ference (USENIX ATC 24). 1203–1221.

[73] Daliang Xu, Mengwei Xu, Qipeng Wang, Shangguang Wang, Yun Ma,
Kang Huang, Gang Huang, Xin Jin, and Xuanzhe Liu. 2022. Mand-
heling: Mixed-precision on-device dnn training with dsp offloading.
In Proceedings of the 28th Annual International Conference on Mobile
Computing And Networking. 214–227.

[74] Lang Xu, Quentin Anthony, Qinghua Zhou, Nawras Alnaasan, Radha
Gulhane, Aamir Shafi, Hari Subramoni, and Dhabaleswar K DK Panda.
2024. Accelerating Large Language Model Training with Hybrid GPU-
based Compression. In 2024 IEEE 24th International Symposium on
Cluster, Cloud and Internet Computing (CCGrid). IEEE, 196–205.

[75] Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P Sadayappan, and
Aravind Sukumaran-Rajam. 2022. Effective Performance Modeling
and Domain-Specific Compiler Optimization of CNNs for GPUs. In
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques. 252–264.

https://www.mediatek.com/products/tablets/mediatek-dimensity-1100
https://www.mediatek.com/products/tablets/mediatek-dimensity-1100
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems_on_chips
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems_on_chips
http://pjreddie.com/darknet/

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jiexiong Guan et al.

[76] Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning
Liu, Yifan Gong, Zheng Zhan, Chaoyang He, Qing Jin, et al. 2021. Mest:
Accurate and fast memory-economic sparse training framework on
the edge. Advances in Neural Information Processing Systems 34 (2021),
20838–20850.

[77] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao,
Yuqing Yang, and Yunxin Liu. 2021. Nn-meter: Towards accurate
latency prediction of deep-learning model inference on diverse edge
devices. In Proceedings of the 19th Annual International Conference on
Mobile Systems, Applications, and Services. 81–93.

[78] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating {High-
Performance} tensor programs for deep learning. In 14th USENIX
symposium on operating systems design and implementation (OSDI 20).
863–879.

[79] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu,
Feiwen Zhu, Wenyi Zhao, Xiaoyong Liu, Jun Yang, Jidong Zhai, Shuai-
wen Leon Song, and Wei Lin. 2022. AStitch: enabling a new multi-
dimensional optimization space for memory-intensive ML training
and inference on modern SIMT architectures. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 359–373.

[80] Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei
Zhang, Tao Guo, Boyuan Luo, and Jingren Zhou. 2021. Octo:{INT8}
training with loss-aware compensation and backward quantization for
tiny on-device learning. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 177–191.

[81] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen
Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, Fan Yang, Mao
Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. 2022.
{ROLLER}: Fast and efficient tensor compilation for deep learning. In
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). 233–248.

	Abstract
	1 Introduction
	2 Background
	3 Demystify a System with 2D Cache
	3.1 Single-Thread Performance with 2D Cache
	3.2 Extension to Parallel Execution

	4 Performance model
	5 Model-based Code Optimization
	6 Evaluation
	6.1 Experiment Settings
	6.2 Overall Performance
	6.3 End-to-End DNN On-Device Training
	6.4 Performance Understanding
	6.5 Other Experiments

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

