
CTCCL: Cost-Efficient Joint Device-Network Load
Balancing for LLM Training in RoCE-based Intelligent

Computing Network
Zhuotong Li
State Cloud

China Telecom
Shanghai, China

lizt20@chinatelecom.cn

Liang Xu
State Cloud

China Telecom
Shanghai, China

xul13@chinatelecom.cn

Ziqi Huang
State Cloud

China Telecom
Shanghai, China

huangzq31@chinatelecom.cn

Shuyun Qian
State Cloud

China Telecom
Shanghai, China

qiansy@chinatelecom.cn

Hongwei Bu
State Cloud

China Telecom
Shanghai, China

buhw@chinatelecom.cn

Ming Yang
State Cloud

China Telecom
Shanghai, China

yangm37@chinatelecom.cn

Mengyun Luan
State Cloud

China Telecom
Shanghai, China

luanmy@chinatelecom.cn

Weiguo Chen
State Cloud

China Telecom
Shanghai, China

chenwg6@chinatelecom.cn

Xu Wen
State Cloud

China Telecom
Shanghai, China

wenxu@chinatelecom.cn

Abstract
Pre-training large language models (LLMs) in data centers
(DCs) is a complex yet essential task that requires vast com-
putational resources and carefully designed infrastructures
to enable efficient, large-scale distributed learning. However,
without effective load balancing in RDMA over Converged
Ethernet (RoCE) networks, network congestion and latency
can create significant bottlenecks, disrupting data transmis-
sion, reducing resource utilization, and prolonging training
times, ultimately compromising the scalability and perfor-
mance of LLM training. To address these challenges, we
propose and develop an innovative and cost-effective joint
Device-Network Load Balancing (DNLB) approach. Built on
our custom collective communication library, CTCCL, DNLB

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725772

coordinates device-side flow optimization with network-side
switch configuration to mitigate hash collisions and allevi-
ate congestion. By managing UDP source port numbers and
distributing traffic uniformly across multiple paths, DNLB
achieves efficient load balancing without requiring hardware
modifications. Moreover, DNLB demonstrates exceptional
adaptability and fault tolerance, ensuring compatibility with
diverse network architectures, task modes, and device de-
ployments. Even in the event of uplink failures, it main-
tains robust network load balancing. Experiments conducted
in real-world intelligent computing DCs demonstrate that
DNLB improves communication efficiency by up to 40% and
enhances overall pre-training efficiency of LLMs by 7%, of-
fering a practical, scalable solution for modern LLM training.

CCS Concepts
• Computing methodologies → Distributed comput-
ing methodologies; Distributed artificial intelligence; •
Networks→ Network algorithms.

Keywords
LLMs, RoCE, Collective Communication Library, Load Bal-
ancing
ACM Reference Format:
Zhuotong Li, Liang Xu, Ziqi Huang, Shuyun Qian, Hongwei Bu,
Ming Yang, Mengyun Luan, Weiguo Chen, and Xu Wen. 2025.

https://orcid.org/0000-0001-5182-0453
https://orcid.org/0009-0006-7558-8787
https://orcid.org/0009-0009-1186-6225
https://orcid.org/0009-0006-5941-0153
https://orcid.org/0009-0001-9118-8883
https://orcid.org/0000-0003-2756-8264
https://orcid.org/0009-0008-4078-1696
https://orcid.org/0009-0009-1172-944X
https://orcid.org/0009-0000-8087-7088
https://doi.org/10.1145/3721145.3725772

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Li et al.

CTCCL: Cost-Efficient Joint Device-Network Load Balancing for
LLM Training in RoCE-based Intelligent Computing Network. In
2025 International Conference on Supercomputing (ICS ’25), June
08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3721145.3725772

1 Introduction
Since 2022, the demand for Large Language Models (LLMs)
such as GPT [28], Gemini [30], and Llama [7] has reached
unprecedented levels, driving transformative changes across
various industries. These models, known for their excep-
tional ability to understand and generate human-like text,
have become central to a wide range of applications, in-
cluding chatbots, AI assistants, content creation tools, and
beyond. As industries increasingly recognize their value, in-
vestments in LLM development and deployment have surged
dramatically. Market projections highlight the remarkable
trajectory of this technology, estimating that the global LLM
market will grow from $1.59 billion in 2023 to a staggering
$259.8 billion by 2030 [32]. This rapid growth is mirrored by
a surge in demand for computational infrastructure capable
of supporting LLM pre-training and deployment.

The exponential expansion of the LLM market places im-
mense pressure on DC infrastructure, which must keep pace
with this technological evolution. Advanced intelligent com-
puting DCs equipped with ten of thousands of GPUs have
become the backbone of LLM development, yet they face
mounting challenges in meeting the resource-intensive re-
quirements of these models. Unlike traditional distributed
AI models, LLMs operate on an immense scale, compris-
ing millions—and in some instances, billions—of parame-
ters. This unparalleled complexity demands vast computa-
tional and network resources, particularly during the pre-
training phase. LLM pre-training generates unique network
traffic patterns characterized by low entropy, high bursti-
ness, and the prevalence of elephant flows. These patterns
exacerbate resource contention within DCs, where synchro-
nization among GPUs relies heavily on collective communi-
cation. This communication process, although periodic and
predictable, can drive data transmission to the line rate of Net-
work Interface Cards (NICs) almost instantaneously, creating
a highly dynamic and demanding network environment. As a
result, bottlenecks in data transmission can critically hinder
the training performance of LLMs, underscoring the need for
innovative solutions in network optimization. Addressing
these challenges is essential for maximizing efficiency and
scalability in LLM training and ensuring that DCs can keep
pace with the exponential growth of AI workloads.
Remote Direct Memory Access (RDMA) plays a pivotal

role in accelerating data transfer rates for computationally
intensive workloads like LLM pre-training. By bypassing
the CPU and enabling direct memory access between nodes,

RDMA significantly reduces latency and enhances overall
efficiency. Historically, InfiniBand (IB) has been the gold stan-
dard for RDMA, offering unparalleled performance. However,
its high cost has made it less feasible for widespread adop-
tion in modern DCs. In recent years, RDMA over Converged
Ethernet (RoCE) has emerged as a compelling alternative,
especially in intelligent computing DCs focused on LLM pre-
training [12, 34]. RoCE delivers comparable performance to
IB while utilizing existing Ethernet infrastructure, making it
a more cost-effective and scalable choice.

Despite its advantages, RoCE faces challenges when han-
dling the demanding traffic patterns associated with LLM
workloads. The prevalence of bursty, high-bandwidth ele-
phant flows can lead to single-point congestion, undermin-
ing the overall effectiveness of the training process. Such
bottlenecks emphasize the critical need for advanced load
balancing mechanisms. One commonly employed strategy in
general DCs is Equal-Cost Multi-Path (ECMP), a technique
that effectively distributes network flows across multiple
paths of equal cost. ECMP determines the optimal path for
each flow by hashing its five-tuple attributes, including the
source IP address, destination IP address, source port, desti-
nation port, and transport protocol. While this approach is
computationally efficient and widely adopted, its static hash-
based algorithm poses inherent limitations. In low-entropy
flow scenarios, as commonly observed during LLM training,
these limitations become particularly pronounced. Flows are
frequently initiated in close temporal proximity and tend
to have similar sizes, increasing the likelihood of hash colli-
sions. When multiple flows are mapped to the same path, it
leads to uneven load distribution and localized congestion,
negating the benefits of ECMP [36].
To mitigate the challenges posed by low flow entropy,

numerous load balancing strategies have been developed,
particularly focusing on enabling RDMA multi-path trans-
mission. Among these, techniques like fine-grained packet
spraying [1] and MP-RDMA [3, 16] achieve load balancing
by segmenting large elephant flows at the packet level and
distributing them across multiple network paths. While ef-
fective in balancing the load, these methods frequently lead
to packet out-of-order (OoO), necessitating the use of special-
ized hardware, such as NVIDIA’s BlueField-3 DPU, to reorder
packets [4, 11]. This hardware dependency introduces ad-
ditional processing overhead and can degrade transmission
efficiency, particularly in latency-sensitive environments.
Meta initially attempted to deploy a path-pinning scheme,
routing packets to specific paths based on destination slices
[8]. However, this approach lacked adaptability and failed to
ensure load balancing under differentiated parallel tasks or
failure scenarios. Some alternative approaches [17, 31, 38]
involve leveraging multi-Queue Pair (QP) transmission at
the traffic source, a method commonly adopted in collective

https://doi.org/10.1145/3721145.3725772

CTCCL: Cost-Efficient Load Balancing for LLM Training in RoCE Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

communication libraries for distributed training. By ensur-
ing that traffic originating from different QPs is transmit-
ted along distinct network paths, this technique minimizes
contention and congestion. However, implementing such a
solution usually requires secondary development or adap-
tation and deployment of heterogeneous network devices,
including modifications to RDMA NICs, switches, or the in-
tegration of dedicated traffic controllers to achieve precise
distribution of flows in multi-QPs. While effective, these in-
tricate designs substantially increase both the complexity
and cost of equipment development and deployment, pre-
senting a barrier to widespread adoption in cost-sensitive
environments.

Therefore, we designed and implemented a cost-effective
and efficient solution, joint Device-Network Load Balancing
(DNLB). Efficient load balancing is realized through the coor-
dination of UDP source port number control in CTCCL and
policy-based routing (PBR) in network switches. Unlike ex-
isting approaches, DNLB seamlessly integrates into existing
infrastructure with minimal additional cost. It offers strong
compatibility with various networks and concurrent training
tasks while maintaining effective load balancing even in the
presence of failures. Our key contributions are summarized
as follows:

• We developed DNLB, a cost-effective, highly adapt-
able and fault-tolerant load balancing solution imple-
mented through our custom collective communica-
tion library, CTCCL. Combined with straightforward
switch configurations, DNLB efficiently disperses low-
entropy flows across multiple physical links, making
it effective for RoCE-based intelligent computing net-
works.

• We designed a UDP port segmentation algorithm for
LLM pre-training flows. This algorithm, characterized
by its adaptability, matches UDP source ports with PBR
rules in switches, achieving balanced flow distribution
and ensuring effective load balancing across diverse
scenarios and network environments.

• We constructed an experimental testbed with stan-
dard GPUs and RoCE-based networking to evaluate
CTCCL and DNLB. Results demonstrated state-of-the-
art improvements in collective communication effi-
ciency and LLM pre-training performance even after
failures, offering valuable insights for large-scale dis-
tributed AI training in the industry.

The remainder of this paper is structured as follows. Sec-
tion 2 delves into the background and motivation that under-
pin our work, providing the necessary context and highlight-
ing the challenges addressed. Section 3 offers a comprehen-
sive overview of the proposed DNLB approach, which is built
upon our custom collective communication library, CTCCL.

This section also introduces the innovative UDP source port
number calculation algorithm, detailing its implementation
on both the device and network sides. Evaluation results are
shown and discussed in Section 4, which is followed by a
summary of related work in Section 5. Section 6 concludes
this paper.

2 Background and Motivation
2.1 LLM, RoCE and Collective

Communication
Pre-training LLMs is highly resource intensive, often involv-
ing models with parameter counts ranging from billions to
trillions, which imposes significant challenges on memory
and computational resources. In addition to the immense
processing power required, it typically necessitates the in-
tegration of efficient parallel strategies across distributed
computing environments. To address these demands, frame-
works for Data Parallelism (DP), Pipeline Parallelism
(PP), and Tensor Parallelism (TP) have been developed,
each leveraging distinct aspects of hardware resources to
facilitate the efficient training of LLMs.

Figure 1: Distributed training collective communica-
tion operators and LLM parallelism.

In Data Parallelism (DP), training data is distributed
across multiple devices, each with a full replica of the model.
Gradients computed on each device are averaged and syn-
chronized using collective communication operations such
as all-reduce, a process that ensuresmodel consistency across
devices while balancing the computational load. Pipeline
Parallelism (PP), on the other hand, partitions the model
itself across multiple devices, enabling sequential process-
ing through each model segment. While this approach helps
distribute memory requirements, it may lead to suboptimal
resource utilization, as devices can experience idle times
while waiting for data from previous stages. Lastly, Tensor

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Li et al.

Parallelism (TP) further divides the model’s tensor com-
putations across multiple devices, allowing each device to
compute a part of the larger model tensor—a strategy critical
for handling exceedingly large model architectures where
single-device memory is insufficient. Some state-of-the-art
frameworks, such as Megatron-LM [29], DeepSpeed [27],
and Alpa [40], support the use of these parallelism strategies,
as well as the 3D parallelism strategy that integrates all three
types, enabling large-scale training of standard LLMs.
To synchronize the vast amounts of data required for 3D

parallelism, collective communication plays a fundamental
role. Collective operations such as AllReduce (used for ag-
gregating gradients), AlltoAll (facilitating data sharing
across all devices), Broadcast (disseminating data from
a central source to multiple devices) and ReduceScatter
(aggregate data from all processes and distribute it to
each device) enable these distributed frameworks to oper-
ate cohesively. Figure 1 illustrates the principles of various
collective communication operators and highlights the key
operators commonly used in different parallel frameworks.
Several high-performance libraries have been developed to
implement these operations, each tailored to maximize ef-
ficiency under different conditions. Notable among these
are NCCL (NVIDIA Collective Communication Library) [21],
ACCL (Alibaba Collective Communication Library) [5], and
Gloo (Meta’s communication library) [18], which optimize
communication patterns based on hardware architecture and
load conditions.
RDMA significantly enhances the efficiency of collective

communication operations by enabling direct access to re-
mote memory through zero-copy and kernel bypass mecha-
nisms. This reduces latency, improves throughput, and max-
imizes bandwidth utilization, making it ideal for large-scale
distributed training environments. However, the Go-back-N
mechanism inherent to RDMA makes it sensitive to packet
loss and OoO delivery, which can substantially degrade per-
formance [20]. Leading collective communication libraries
like NCCL offer configurable environment variables to opti-
mize RDMA features on IB or RoCE networks. For instance,
Adaptive Routing (AR) in IB helps dynamically alleviate link
congestion while maintaining packet order [35]. RoCE, in
contrast, has gained popularity due to its cost efficiency and
ability to operate on Ethernet infrastructure, although it
faces greater challenges related to congestion, packet loss,
and OoO delivery due to Ethernet’s non-lossless nature. As a
result, RoCE development in industries has diverged into two
distinct paths: 1)lossless RoCE, which ensures zero packet
loss through flow control mechanisms like Priority Flow Con-
trol (PFC) and Explicit Congestion Notification (ECN)-based
congestion management, and 2)lossy RoCE, which employs
techniques such as dynamic congestion control to tolerate
packet loss while balancing performance [6].

2.2 Load Balancing Challenges
Both lossless and lossy RoCE rely heavily on congestion
control and load balancing mechanisms to enhance network
performance. Distributed training paradigms such as 3D par-
allelism involve frequent collective operations like AllReduce,
AllGather and ReduceScatter. These operations, critical for
synchronizing gradients and parameters across devices, often
result in many-to-many and one-to-many data exchanges.
Consequently, they lead to bandwidth spikes and highly vari-
able, bursty traffic patterns, as shown in Fig. 2(a). During the
backpropagation (BP) in each mini-batch of 3D parallelism,
multiple DP, TP, and PP gradient synchronization processes
are involved. This periodic low-entropy traffic poses sub-
stantial challenges to traditional load-balancing strategies,
particularly ECMP.

Figure 2: LLM pre-training: (a) Periodic traffic patterns
in 3D parallel training (DP, TP, PP); (b) Challenges of
ECMP.

ECMP, a widely adopted routing mechanism in Ethernet-
based DCs, balances traffic across multiple equal-cost paths
by employing a hash-based flow allocation mechanism. This
mechanism typically leverages a five-tuple (source IP, des-
tination IP, source port, destination port, and protocol) to
uniquely identify flows. By hashing these fields, ECMP dis-
tributes flows across paths, achieving effective load balanc-
ing under diverse, high-entropy traffic conditions. However,
during LLM pretraining, the low-entropy traffic patterns gen-
erated by collective communication often result in dispro-
portionate hash value clustering, leading to hash collisions
[37]. These collisions cause severe congestion on specific
paths while leaving others underutilized (shown in Fig. 2(b)),

CTCCL: Cost-Efficient Load Balancing for LLM Training in RoCE Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

thereby degrading network throughput and significantly in-
creasing the latency of collective communication operations.

To address the challenge of low flow entropy, fine-grained
packet spraying has emerged as a principal load balancing
technique in DCs [4]. This method distributes data pack-
ets randomly across multiple equal-cost paths, thereby in-
creasing flow entropy and mitigating the load imposed by
low-entropy elephant flows. Similarly, MP-RDMA regulates
transmission paths by specifying UDP source ports within
data packets [31]. However, both approaches are subject to
unavoidable processing overhead resulting from OoO pack-
ets. The path-pinning scheme initially implemented by Meta
was discontinued due to its limited adaptability to a variety
of concurrent tasks and network failures within a single rack,
coupled with its failure to ensure uniform traffic distribution
[8].
Collective communication libraries provide fine-grained

control over network parameters to address congestion. For
example, enabling multi-QP transmission enhances path di-
versity and mitigates single-flow bottlenecks. By splitting
data across multiple QPs, RoCE-based systems achieve multi-
path routing while maintaining flow order—a critical require-
ment for ensuring performance in congested environments.
Leading companies such as Meta [8], Alibaba [5, 24] and Ten-
cent [15] have implemented solutions that either optimize
ECMP/Enhanced ECMP(E-ECMP) or develop advanced rout-
ing control algorithms to manage and distribute QP flows
effectively.

However, cost considerations remain a critical constraint,
particularly in industrial applications and cloud deployments.
In real-world scenarios, achieving homogeneous network
device configurations, especially for switches, is often im-
practical within a single AI cluster. Commercial and technical
constraints frequently necessitate deploying heterogeneous
infrastructures comprising switches, GPUs, and NICs from
multiple vendors [10]. Modifying ECMP algorithms, switch
routing policies, or NIC hardware for large-scale, heteroge-
neous deployments significantly increases R&D, operational,
and commercial costs. Consequently, general-purpose
software-based solutions that require minimal hard-
waremodifications and ensure broad compatibility and
fault tolerance are often preferred. Developing a cost-
efficient load-balancing strategy tailored to the unique traffic
patterns of LLM pretraining remains an urgent and essential
research challenge.

3 Joint Device-Network Load Balancing
(DNLB)

3.1 Overview of DNLB
In practice, the structure of intelligent computing networks
is intentionally designed to remain stable and predictable

Table 1: Our Notation

Variable Description

𝑁𝑖, 𝑗 𝑖-th NIC on device 𝑗

𝑛𝑞𝑝per_conn Total number of QPs on each connection,
obtained from the environment variable
NCCL_IB_QPS_PER_CONNECTION

𝑞
𝑁𝑖,𝑗

Index of QP in a single connection on the
𝑗-th NIC of the device 𝑖 , 𝑞

𝑁𝑖,𝑗
≤ 𝑛𝑞𝑝per_conn

𝑛𝑙𝑖𝑛𝑘up Number of uplink ports on each Leaf
switch

𝑛𝑙𝑖𝑛𝑘down Number of downlink ports on each Leaf
switch

𝑖𝑛𝑑𝑒𝑥
𝑁𝑖,𝑗

Index of the 𝑗-th network card on device 𝑖
𝑛𝑁 𝐼𝐶Leaf Number of NICs connected to the same

Leaf
𝑠𝑡𝑒𝑝 Step size for adjusting the UDP source port

between different QPs
𝑠𝑝𝑜𝑟𝑡UDP

𝑁𝑖,𝑗 ,𝑞𝑁𝑖,𝑗

UDP source port number of the flow in the
𝑞
𝑁𝑖,𝑗

-th QP of a single connection on the
𝑗-th network card of device 𝑖

during normal operations. These networks typically rely
on fixed, well-defined topologies, such as Clos or Fat-Tree,
which are specifically chosen to ensure consistent perfor-
mance and simplify network management. The traffic pat-
terns within these networks tend to be relatively uniform,
with steady-state behavior prevailing under normal condi-
tions. Adjustments to the network topology or alterations
in traffic patterns are infrequent and generally occur only
in response to unforeseen disruptions, such as hardware
failures or link outages. Given this inherent stability, target-
ing load balancing through the static pre-configuration of
collective communication traffic patterns—whether during
normal steady-state operations or following recovery from
failures—proves to be a more cost-effective strategy than
relying on dynamic traffic adjustments. The latter would
often necessitate extensive and costly network hardware up-
grades or complex optimizations, making static configuration
a more practical and scalable solution for most intelligent
computing environments.

To address load balancing challenges, we propose a simpli-
fied and cost-effective DNLB scheme that utilizes multi-QP
transmission within the collective communication library on
the device side, coupled with minimal and simple network
switch configurations. This solution effectively splits the
transmission of elephant flows across multiple switch up-
links to evenly distribute the load. The streamlined pipeline
of DNLB is illustrated in Fig. 3.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Li et al.

Figure 3: Cost-efficient Joint Device-Network Load Bal-
ancing (DNLB) approach.

On the device side, we have developed a custom collective
communication library, CTCCL, building upon the founda-
tion of NCCL. Within CTCCL, we introduced a specialized
flow control module that manages the UDP source port of
transmission flows when initializing QPs. This module en-
sures that each QP’s flows on every NIC within the server
is assigned continuous, unique UDP source ports. When
enabled, this module also assigns a specific Differentiated
Services Code Point (DSCP) to the flows, allowing the large
model training traffic to be explicitly forwarded by DNLB.
Flows with other DSCP values, typically those not associ-
ated with LLM training, are forwarded using standard ECMP
routing. Additionally, we have implemented a fault avoid-
ance mechanism in CTCCL that monitors and detects the
status of QP communication. In the event of uplink failures
on leaf switches, CTCCL redistributes the collective com-
munication data to the functioning QPs, ensuring that load
balancing is maintained across the operational uplinks. On
the network side, Leaf switches are configured with access
control lists (ACL) and PBR rules that match the DSCP values
of the incoming traffic. These rules divide the full range of
UDP source port numbers and map them to upstream for-
warding links, directing flows with specific source ports to
distinct upstream links leading to the Spine switches. Addi-
tionally, Spine switches can implement virtual routing and
forwarding (VRF) as required, enabling the creation of virtual
subnets to isolate and segregate different types of traffic. By
carefully controlling the UDP source port numbers and ap-
plying ACL/PBR rules to the flows, the DNLB scheme ensures
that all QP traffic from every NIC connected to a single Leaf
switch is evenly distributed across the available uplinks. This
approach not only achieves effective network load balancing

but also prevents congestion that could arise from hash con-
flicts, thereby enhancing overall system performance and
scalability.

3.2 Segmentation of UDP Source Port
RoCE specifies that the valid range of UDP source port num-
bers for flows lies between [0xC000, 0xFFFF]. The fundamen-
tal mechanism of DNLB revolves around achieving effective
load balancing by selecting UDP source port numbers within
this range in an even and discrete manner. These carefully as-
signed port numbers ensure that flows are distributed across
multiple uplinks, thereby mitigating congestion and improv-
ing network efficiency. The notation used in this work is
summarized in Table 1.

In our approach, each QP on a NIC connected to the same
Leaf switch is treated as the minimum discrete unit of granu-
larity for flow segmentation. Consequently, the incremental
step size for UDP source port numbers assigned to flows
transmitted by adjacent QPs is defined as:

𝑠𝑡𝑒𝑝 =
0xFFFF − 0xC000 + 1

𝑛𝑙𝑖𝑛𝑘up
(1)

On the network side, the ACLs configured on the Leaf
switches should evenly partition the total range of UDP
source port numbers into 𝑛𝑙𝑖𝑛𝑘up segments. Each ACL divi-
sion interval is defined as:

[0xC000 + 𝑛 ∗ 𝑠𝑡𝑒𝑝, 0xC000 + (𝑛 + 1) ∗ 𝑠𝑡𝑒𝑝] (2)
where 𝑛 ∈ [0, 𝑛𝑙𝑖𝑛𝑘up − 1].

Correspondingly, PBR rules are applied to ensure that
flows with UDP source port numbers within a specific range
are forwarded to their designated uplink ports.

On the device side, the UDP source port numbers for flows
transmitted by each QP are calculated within CTCCL based
on the NIC index and the QP number, which ensures a sys-
tematic and distributed assignment of source port numbers,
enabling balanced traffic distribution across network links:

𝑠𝑝𝑜𝑟𝑡UDP =0xC000 +
(
𝑖𝑛𝑑𝑒𝑥𝑁𝑖,𝑗

∗ 𝑛𝑞𝑝per_conn + 𝑞𝑁𝑖,𝑗

)
∗ 𝑠𝑡𝑒𝑝% (0xFFFF − 0xC000 + 1)

(3)

where 𝑖𝑛𝑑𝑒𝑥
𝑁𝑖,𝑗

could be the host number of the IP address
of the 𝑗-th NIC on device 𝑖 .

3.3 Adaptability and Fault Tolerance
DNLB exhibits excellent compatibility, enabling seamless in-
tegration with various intelligent computing network archi-
tectures and deployment scenarios. To achieve optimal load
balancing, it is essential that the product of the number of
NICs connected to the same Leaf switch on the selected train-
ing host/task and the number of QPs configured in CTCCL

CTCCL: Cost-Efficient Load Balancing for LLM Training in RoCE Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 4: Adaptability of DNLB under single/multi-rail GPU clusters.

meets or exceeds the number of uplink ports on the Leaf. This
requirement is typically straightforward to satisfy in most
large-scale LLM training tasks, given the resource-intensive
nature of these workloads and their associated complex hard-
ware configurations:

𝑛𝑁𝐼𝐶Leaf ∗ 𝑛𝑞𝑝per_conn ≥ 𝑛𝑙𝑖𝑛𝑘up (4)

Given this constraint, DNLB ensures consistent uplink
traffic even with multiple concurrent training tasks, where
some tasks require uplink resources while others do not. Un-
like Meta’s path-pinning solution, DNLB effectively avoids
uneven uplink traffic resulting from differing task require-
ments on Spine.
Another significant advantage of DNLB lies in its flex-

ibility with respect to NIC indexing. It only requires that
the indices of the multiple NICs connected to the same Leaf
switch form a continuously increasing sequence. This holds
true regardless of whether the network utilizes a single-
rail or multi-rail (rail-optimized) structure, as illustrated in
Fig. 4. While many contemporary GPU clusters implement
rail-optimized networking to enhance performance, certain
deployments still rely on single-rail configurations due to
the unique requirements of specific GPU models. A practical
method for fulfilling this indexing requirement is by utilizing
the host portion of the NIC’s IP address. In the initial setup of
intelligent computing networks, NICs connected to the same
Leaf switch are typically assigned sequential IP addresses,
making this approach both efficient and easy to implement.

Also, DNLB is designed as a minimalist and cost-effective
solution, ensuring its broad applicability and resilience across
diverse server deployments. It remains unaffected by vari-
ables such as GPU types (e.g., A100, H100, or L40S), the pres-
ence of NvLink, or the number of NICs per server. Further-
more, DNLB eliminates the need to account for the number of

ranks/tasks concurrently engaged in computation and data
transmission within the actual network deployment. This in-
herent versatility guarantees that DNLB can be deployed in a
wide array of intelligent computing environments, making it
a reliable choice for optimizing load balancing and enhancing
the overall efficiency of large-scale computational systems.
Moreover, DNLB demonstrates robust fault tolerance. In

the event of uplink failures, CTCCL detects the status of the
affected QPs and reroutes the failed transmission data to
other available, functional QPs, while preserving the UDP
source port of flows in the operational QPs. Consequently,
load balancing across the operational uplinks is maintained.

4 Evaluation
4.1 Experimental Testbed
In this work, we present a comprehensive performance com-
parison between the proposed CTCCL-based DNLB and the
widely used NCCL (version: 2.19.4) combined ECMP, evaluat-
ing performance across multiple dimensions. These include
collective communication benchmarks conducted using the
NCCL-Tests tool, as well as LLM pre-training. As illustrated
in Fig. 5(a), our experimental setup consists of a cluster of
eight GPU servers, each configured with two Non-Uniform
Memory Access (NUMA) structures. Each NUMA structure is
equipped with one CPU, four L40S GPUs, and one Mellanox
NIC (CX-7/BF3 operating at 400 Gbps).

Within each L40S server, internal communication between
components within the same NUMA is facilitated via PCIe
Gen 4, ensuring high-speed, low-latency data transfer. The
servers are connected to the network through two NICs,
each linked to a pair of Leaf switches via multi-rail, with
switch ports operating at 400 Gbps. These Leaf switches
aggregate the server traffic, with each Leaf switch provid-
ing eight uplink ports that are divided into two groups of

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Li et al.

Figure 5: Experimental testbed: (a) physical network
structure; (b) logical network structure.

four. The uplink ports are connected to two Spine switches
(FHGigabitEthernet0/51-54, FHGigabitEthernet0/59-62), es-
tablishing a scalable, high-throughput network topology.
When DNLB is enabled, the ACL rules and PBR configured
on each Leaf switch divide the total range of UDP port num-
bers [0xC000, 0xFFFF] into eight equal segments. These rules
ensure that traffic flows with DSCP values matching the
DNLB configuration, and UDP port numbers falling within
a specific segment, are selectively allowed to pass through.
The matching flow is then forwarded to one of the eight
corresponding uplink ports on the Leaf switch. By mapping
DSCP-tagged flows to specific port ranges and uplinks, the
system creates a predictable and manageable routing pattern,
making the configuration suitable for large-scale distributed
training environments. The following example shows partial
ACL and PBR on a Leaf switch:
<ACL>
ip access-list extended udf1
10 permit udp any range 49152 51199 any eq 4791

ip access-list extended udf2
10 permit udp any range 51200 53247 any eq 4791

...
ip access-list extended udf8
10 permit udp any range 63488 65535 any eq 4791

<PBR>
route-map udf permit 10

match ip address udf 1
set ip next-hop 100.98.0.10

!
route-map udf permit 20

match ip address udf 2
set ip next-hop 100.98.0.14

!
...
route-map udf permit 80

match ip address udf 8
set ip next-hop 100.98.0.54

!

At the Spine switch layer, VRF is configured to isolate
subnets, effectively dividing the two physical Spine switches
into eight logically distinct virtual Spine switches, as shown
in Fig. 5(b).

4.2 Evaluation of collective operations
We evaluated the collective communication performance of
NCCL with ECMP and CTCCL integrated with DNLB using
the NCCL-Tests, as illustrated in Fig. 6. NCCL-Tests provides
critical performance metrics for collective operations, mak-
ing it an essential tool for optimizing and understanding
multi-GPU communication patterns. In our testbed, a mis-
match exists between the PCIe 4.0 bandwidth within a node
and the NIC/switch bandwidth between nodes. The maxi-
mum theoretical bandwidth of PCIe 4.0 is 32 GB/s, which
is lower than the bandwidth of the NIC and switch ports
(400 Gbps). As a result, a single NCCL-test task cannot gen-
erate significant network load or congestion. To address this,
we concurrently ran two NCCL-Tests tasks to saturate the
NIC traffic. Each task uses 4 GPUs per node, with the GPUs
evenly distributed across two NUMA, that is, two GPUs in
each Numa used by one task, which will be equivalent to
the original node structure. We adopt the inherent bus band-
width (busbw) metric introduced by NCCL-Tests, which re-
flects the communication speed between GPUs and identifies
hardware bottlenecks (e.g., NVLink, PCIe, QPI, or network).
The computation formula varies depending on the specific
collective operation [22].
Figure 6(a) presents busbw and collective communica-

tion time for the AllReduce operation between 8 nodes with
varying message sizes (QP=8), both averaged over two con-
current tasks. For large message transmissions, a notable
performance gap emerges between NCCL (with ECMP) and
CTCCL (with DNLB). Specifically, in our testbed, ECMP hash
conflicts lead to network congestion, limiting NCCL’s max-
imum busbw to only 16.1 GB/s. In contrast, CTCCL with
DNLB effectively distributes the network load evenly, signif-
icantly reducing the likelihood of congestion and achieving
a peak bandwidth of 22.6 GB/s. The impact of these differ-
ences can be observed in Fig. 6(b), which display the load
distribution across the eight Leaf switch ports connected
to the Spine during the execution of AllReduce in trans-
miting 8 GB messages. With ECMP, some ports experience

CTCCL: Cost-Efficient Load Balancing for LLM Training in RoCE Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 6: 1.Collective communication performance with (a) different message sizes; (c) different scale; (d) different
operators; (e) different numbers of QPs; 2.(b) bandwidth usages of each port of Leaf.

severe congestion, slowing down the overall AllReduce per-
formance. Conversely, DNLB ensures balanced utilization
of all ports and links, maximizing resource usage and en-
hancing communication efficiency. Furthermore, Fig. 6(a)
also presents CTCCL integrated with DNLB demonstrates
clear advantages in the average execution time of collective
communication, particularly when handling a higher vol-
ume of messages. Compared to NCCL combined with ECMP,
DNLB significantly shortens the AllReduce execution time,
reducing it from approximately 1 s to 700 ms.
Figure 6(b) and (c) provide additional insights into how

network load (determined by the number of nodes and QPs)
affects collective communication performance. We analyzed
the network load and the corresponding performance of
AllReduce in transmitting 8GB messages under various con-
figurations, including tests involving 2 nodes, 4 nodes, and
8 nodes participating in collective communication with dif-
ferent numbers of QPs. The results indicate a significant
imbalance in network load when NCCL is paired with ECMP,
a problem that becomes increasingly pronounced as the num-
ber of nodes and QPs grows. In the case of 8 nodes, hash

conflicts result in single-port congestion, leading to a no-
ticeable degradation in overall busbw performance. For ex-
ample, with 8 nodes and QP=8, the variance in load across
the 8 switch ports is 92.22. In contrast, CTCCL integrated
with DNLB ensures balanced load distribution across switch
ports, reducing the variance in port bandwidth utilization
to 0.06 at 8 nodes with QP=8—substantially lower than that
of NCCL(ECMP)—thereby enhancing network resource uti-
lization. This balance enables the AllReduce operation to
consistently achieve performance levels of approximately
22 GB/s, even under high-demand conditions. It is worth
noting that in scenarios with limited node or QP configu-
rations, such as 2 nodes with QP=1 or 2, and 4 nodes with
QP=1, Formula (4) is not satisfied, which prevents optimal
utilization of network resources. However, this limitation
has minimal practical impact, as the pre-training of LLMs
typically involves configurations with a higher number of
GPU nodes and QPs for parallel transmission.
Figure 6(d) provides a comprehensive comparison of the

performance of NCCL (using ECMP) and CTCCL (using
DNLB) when transmitting 8GB messages across various
collective operations between 8 nodes with QP=8. The re-
sults clearly highlight significant performance improvements

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Li et al.

when CTCCL is integrated with DNLB. Notably, operations
such as AllGather, AllReduce, Broadcast, Reduce, and Re-
duceScatter benefit substantially from this approach, with
the busbw for AllReduce increasing by approximately 40%.
However, for other operators, the performance differences
are less significant, as the network load and congestion re-
main relatively low, even with parallel execution of two tasks,
thereby reducing the impact of load-balancing mechanisms.

Additionally, Fig. 6(e) illustrates the performance trends of
NCCL and CTCCL under varying QP numbers when trans-
miting 8 GB messages between 8 nodes. For both AllGather
and AllReduce operations, the performance exhibits a slight
peak as the QP count increases but begins to decline once
the number of QPs exceeds 16. The observed performance
degradation is attributed to the growing overhead associated
with managing a larger number of QPs. As the QP config-
uration scales, the system incurs additional costs related
to the coordination of parallel transmissions and the man-
agement of multiple communication paths. These factors
collectively impact the overall efficiency of collective oper-
ations, underscoring the trade-offs involved in configuring
higher numbers of QPs.
The fault avoidance mechanism of CTCCL (DNLB) was

also evaluated. During the execution of the collective com-
munication, we triggered an uplink (FHGigabitEthernet0/51)
failure on one Leaf switch (FHGigabitEthernet0/1-8 are down-
link port of the leaf switch). As shown in Fig. 7, after the fail-
ure, traffic was effectively redistributed to other functional
ports, maintaining excellent load balancing and overcoming
the limitations of the path-pinning scheme, thus highlighting
DNLB’s robust fault tolerance.

4.3 Evaluation of LLM pre-training
performance

To further evaluate the performance advantages of the col-
lective communication library integrated with DNLB, we
conducted pre-training experiments using Llama2-7B [19]
with 3D parallelism on the same test platform. In the collec-
tive communication library, the number of QPs is configured
to 8. The Megatron [29] pre-training framework is utilized
to design parallelization strategies, while DeepSpeed [27] is
employed to accelerate model training. The global batch size
is set to 32, with a micro-batch size of 1. Figure 8(a) illustrates
the iteration time progression over the first 250 iterations
in an 8-node, 8-GPU per node configuration, where DP, TP
and PP were set to 32, 2, and 1 respectivly. The product of
the three values should equal the total number of GPUs. Ex-
cluding the first iteration, which involves model cold start
processes such as data preprocessing, resource initialization
and allocation, and delayed initialization, the iteration time
stabilized at approximately 1.67 seconds when using NCCL

Figure 7: Traffic variation of switch ports before and
after failures under DNLB.

(ECMP) for computational graph construction and operator
execution. In contrast, enabling CTCCL (DNLB) reduced the
iteration time to approximately 1.54 seconds, representing
an significant 7% improvement in training efficiency. This
result aligns with the collective communication performance
assessments presented earlier, given that collective commu-
nication typically accounts for 15-30% of the total iteration
time in large-scale model training [26, 29]. The performance
gain underscores the effectiveness of DNLB in alleviating net-
work congestion and optimizing resource utilization during
distributed training, demonstrating its potential to accelerate
large-scale model training workflows.

Further results under different 3D parallel configurations
are presented in Fig. 8(b), which reports the average iter-
ation time for each setting. For CTCCL (DNLB), the most
significant improvements over NCCL (ECMP) were observed
when the parallelism strategy (DP,TP, PP) was set to (32,2,1)
or(16,4,1), where performance improved by approximately
7%. However, as DP decreases further, the performance gains
diminish. A reduction in DP scale, which involves fewer de-
vices in data parallelism, leads to lower inter-node communi-
cation traffic, thereby limiting the effectiveness of network
load optimization techniques like DNLB. While TP/PP pri-
marily involves intra-node communication, and PP typically
relies on Send/Recv operations, which involves smaller data

CTCCL: Cost-Efficient Load Balancing for LLM Training in RoCE Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

volumes. In such scenarios, addressing congestion at the de-
vice level, NIC level, or within nodes may be a more effective
strategy for improving performance.

Figure 8: Performance of LLM pretraining: (a) elapsed
time of the first 250 iterations; (b) average elapsed time
under different 3D parallelism setup.

5 Related Work
Increasing flow entropy is the key for addressing the chal-
lenges posed by ECMP in mitigating the hash collisions low-
entropy flows during LLM pre-training. Various approaches
have been developed to tackle load-balancing challenges in
large-scale GPU clusters, which can be broadly categorized
into three classes based on the granularity of load distribu-
tion control.

The first category, as mentioned earlier, involves increas-
ing flow entropy by controlling and forwarding data at the

packet level, although this approach incurs additional over-
head formanagingOoO packets. Packet spraying splits traffic
into packets that are randomly sprayed across all available
parallel links [4]. DRILL employs a per-packet decision and
randomization algorithm at each switch, guided by local
queue occupancy, to allocate load [9]. Microsoft’s MP-RDMA
represents the first RDMA transport method to supportmulti-
path routing [31]. MP-RDMAnot only controls paths by spec-
ifying UDP source ports but also selectively drops slower
paths to minimize reordering overhead. Furthermore, MP-
RDMA synchronizes receiver-side delays to optimize mem-
ory usage for OoO handling. Nvidia’s Spectrum technology
leverages tight integration between network switches and
DPUs to enable real-time dynamic monitoring of ECMP link
bandwidth and port congestion [23]. This ensures precise
traffic distribution and efficient data transfer.
The second category encompasses flowlet-based routing

schemes, such as Conga [2], which decompose flows into
smaller flowlets based on inactivity thresholds to mitigate
OoO packet challenges [14, 25, 33]. This approach lever-
ages the intermittent nature of TCP traffic, where natural
transmission gaps provide opportunities for effective flowlet
segmentation. However, RDMA traffic, particularly RoCE,
is characterized by continuous, high-throughput communi-
cation with minimal idle periods, rendering flowlet-based
methods less effective in this context.

The third category diverges from logically splitting flows
at the protocol level by fully utilizing multi-QP transmission
at the traffic source. This approach divides flows into mul-
tiple streams while maintaining packet order. For instance,
Ethereal [1] demonstrated that greedily assigning paths to
flows in LLM training traffic can achieve uniform load distri-
bution across all network paths, effectively resolving ECMP
hash collisions. However, this method requires modifications
to both NICs and switches, as well as adjustments to how
path IDs are identified within packet headers.
Alternatively, control over QPs in collective communica-

tion libraries has drawn increasing attention and also rep-
resent a key area of focus in this work. Beside the path-
pinning scheme, Meta also tried to integrate QP extension
with E-ECMP by using user-defined fields (UDF) to incorpo-
rate destination QP numbers into the hashing process [8].
Meta reported a 40% improvement in AllReduce collective
performance through two extension methods—splitting and
cycling. Alibaba’s high-performance network (HPN) deploys
host switches that enable its collective communication li-
brary to control the UDP source port of each flow, thereby
balancing traffic across all available paths [5, 24]. Addition-
ally, Alibaba introduced a Relative Path Control (RePaC)
scheme [39], which uses deterministic mappings between
header changes and path alterations to facilitate on-demand
flowmigration for load balancing. However, both approaches

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Li et al.

necessitate switch modifications, which can increase costs.
Similarly, Tencent explored a related approach by optimizing
its TCCL library and injecting traffic routing through a net-
work controller to achieve load balancing [15]. Compared
to these, our solution stands out for its ease of implementa-
tion and deployment and fault tolerance, combined with a
notably lower cost.
Beyond these methods, MegaScale has shown that topol-

ogy optimization at the orbit level can also alleviate ECMP
hash collision issues [13].

6 Conclusion
This paper presents an innovative Joint Device-Network
Load Balancing (DNLB) solution that addresses key chal-
lenges in LLM pre-training within RoCE networks. DNLB
controls UDP source ports through our custom collective
communication library CTCCL and coordinates switch con-
figuration with PBR to enhance network load distribution by
mitigating hash collisions and flow congestion. The proposed
approach offers a cost-effective, scalable load-balancing so-
lution for distributed training without requiring significant
hardware modifications. It is adaptable to various network
architectures and task scenarios while providing fault avoid-
ance capabilities. Our evaluation demonstrates that DNLB
can improve communication efficiency by up to 40% and
boost overall LLM training performance by 7% in real-world
intelligent computing DC environments, all while maintain-
ing excellent performance under network failures. Future
research could explore DNLB’s performance on test plat-
forms equipped with NVLink and investigate its scalability
for larger dynamic and heterogeneous network conditions,
further enhancing its cost-effective load-balancing efficiency
across diverse distributed training environments.

References
[1] Vamsi Addanki, Prateesh Goyal, and Ilias Marinos. 2024. Challenging

the Need for Packet Spraying in Large-Scale Distributed Training.
arXiv:2407.00550 [cs.NI] https://arxiv.org/abs/2407.00550

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:
distributed congestion-aware load balancing for datacenters. 44, 4
(Aug. 2014), 503–514. doi:10.1145/2740070.2626316

[3] Guo Chen, Yuanwei Lu, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, and Thomas Moscibroda. 2019. Mp-rdma:
enabling rdma with multi-path transport in datacenters. IEEE/ACM
Transactions on Networking 27, 6 (2019), 2308–2323.

[4] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella.
2013. On the impact of packet spraying in data center networks. In
2013 Proceedings IEEE INFOCOM. 2130–2138. doi:10.1109/INFCOM.
2013.6567015

[5] Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng Cao, Heng Pan,
Lingbo Tang, Pengcheng Li, Hao Li, Qianyuan Ran, Yiqun Guo,
Shanyuan Gao, Xin Long, Jie Zhang, Yong Li, Zhisheng Xia, Liuyi-
han Song, Yingya Zhang, Pan Pan, Guohui Wang, and Xiaowei Jiang.

2021. ACCL: Architecting Highly Scalable Distributed Training Sys-
tems With Highly Efficient Collective Communication Library. IEEE
Micro 41, 5 (2021), 85–92. doi:10.1109/MM.2021.3091475

[6] Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang, Wenwen Qu,
Qinghao Hu, Guoteng Wang, Qizhen Weng, Hang Yan, Xingcheng
Zhang, XipengQiu, Dahua Lin, YonggangWen, Xin Jin, Tianwei Zhang,
and Peng Sun. 2024. Efficient Training of Large Language Models
on Distributed Infrastructures: A Survey. arXiv:2407.20018 [cs.DC]
https://arxiv.org/abs/2407.20018

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[8] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,
Ashmitha Jeevaraj Shetty, Jingyi Yang, Shuqiang Zhang, Mikel Jimenez
Fernandez, Shashidhar Gandham, and Hongyi Zeng. 2024. RDMA over
Ethernet for Distributed Training at Meta Scale (ACM SIGCOMM ’24).
Association for Computing Machinery, New York, NY, USA, 57–70.
doi:10.1145/3651890.3672233

[9] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali,
and Amin Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-
latency Data Center Networks. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (Los Angeles, CA,
USA) (SIGCOMM ’17). Association for Computing Machinery, New
York, NY, USA, 225–238. doi:10.1145/3098822.3098839

[10] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel.
2009. The cost of a cloud: research problems in data center networks.
SIGCOMM Comput. Commun. Rev. 39, 1 (Dec. 2009), 68–73. doi:10.
1145/1496091.1496103

[11] Taylor Groves, Damian Hazen, Glenn Lockwood, and Nicholas J
Wright. 2021. Use It or Lose It: Cheap Compute Everywhere. In
Smoky Mountains Computational Sciences and Engineering Conference.
Springer, 280–298.

[12] Jinbin Hu, Houqiang Shen, Xuchong Liu, and Jin Wang. 2024. RDMA
Transports in Datacenter Networks: Survey. IEEE Network (2024).

[13] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al.
2024. {MegaScale}: Scaling large language model training to more
than 10,000 {GPUs}. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). 745–760.

[14] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. Hula: Scalable load balancing using pro-
grammable data planes. In Proceedings of the Symposium on SDN Re-
search. 1–12.

[15] Baojia Li, Xiaoliang Wang, Jingzhu Wang, Yifan Liu, Yuanyuan Gong,
Hao Lu, Weizhen Dang, Weifeng Zhang, Xiaojie Huang, Mingzhuo
Chen, Jie Chen, Chunzhi He, Yadong Liu, Xiaoyuan Hu, Chen Liu,
Xuefeng Ji, Yinben Xia, Xiang Li, Zekun He, Yachen Wang, and Xian-
neng Zou. 2024. TCCL: Co-optimizing Collective Communication and
Traffic Routing for GPU-centric Clusters. In Proceedings of the 2024
SIGCOMM Workshop on Networks for AI Computing (Sydney, NSW,
Australia) (NAIC ’24). Association for Computing Machinery, New
York, NY, USA, 48–53. doi:10.1145/3672198.3673799

[16] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. 2018.
Multi-Path Transport for RDMA in Datacenters. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 357–371. https://www.usenix.org/
conference/nsdi18/presentation/lu

[17] Huimin Luo, Jiao Zhang, Mingxuan Yu, Yongchen Pan, Tian Pan, and
Tao Huang. 2024. SeqBalance: Congestion-Aware Load Balancing with

https://arxiv.org/abs/2407.00550
https://arxiv.org/abs/2407.00550
https://doi.org/10.1145/2740070.2626316
https://doi.org/10.1109/INFCOM.2013.6567015
https://doi.org/10.1109/INFCOM.2013.6567015
https://doi.org/10.1109/MM.2021.3091475
https://arxiv.org/abs/2407.20018
https://arxiv.org/abs/2407.20018
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/3672198.3673799
https://www.usenix.org/conference/nsdi18/presentation/lu
https://www.usenix.org/conference/nsdi18/presentation/lu

CTCCL: Cost-Efficient Load Balancing for LLM Training in RoCE Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

no Reordering for RoCE. arXiv:2407.09808 [cs.NI] https://arxiv.org/
abs/2407.09808

[18] Meta. [n. d.]. Gloo: Collective communications library with var-
ious primitives for multi-machine training. https://github.com/
facebookincubator/gloo?tab=readme-ov-file

[19] Meta. 2024. Llama 2. Retrieved January 15, 2025 from https://
huggingface.co/meta-llama/Llama-2-7b "

[20] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018.
Revisiting network support for RDMA. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Ma-
chinery, New York, NY, USA, 313–326. doi:10.1145/3230543.3230557

[21] Nvidia. 2016. NVIDIA Collective Communications Library (NCCL).
Retrieved January 15, 2025 from https://developer.nvidia.com/nccl

[22] Nvidia. 2017. NCCL-Tests. Retrieved January 15, 2025
from https://github.com/NVIDIA/nccl-tests/blob/master/doc/
PERFORMANCE.md

[23] Nvidia. 2023. NVIDIA Spectrum-X Networking Platform. Retrieved
January 15, 2025 from https://www.nvidia.com/en-us/networking/
spectrumx/

[24] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng
Wang, Pengcheng Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao, En-
nan Zhai, and Dennis Cai. 2024. Alibaba HPN: A Data Center Network
for Large Language Model Training. In Proceedings of the ACM SIG-
COMM 2024 Conference (Sydney, NSW, Australia) (ACM SIGCOMM ’24).
Association for Computing Machinery, New York, NY, USA, 691–706.
doi:10.1145/3651890.3672265

[25] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu,
Gautam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David
Wetherall, and Abdul Kabbani. 2022. PLB: congestion signals are simple
and effective for network load balancing. In Proceedings of the ACM
SIGCOMM 2022 Conference. 207–218.

[26] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang,
Reza Yazdani Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yux-
iong He. 2022. Deepspeed-moe: Advancing mixture-of-experts infer-
ence and training to power next-generation ai scale. In International
conference on machine learning. PMLR, 18332–18346.

[27] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong
He. 2020. DeepSpeed: System Optimizations Enable Training Deep
Learning Models with Over 100 Billion Parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 3505–3506.
doi:10.1145/3394486.3406703

[28] Katharine Sanderson. 2023. GPT-4 is here: what scientists think. Nature
615, 7954 (2023), 773.

[29] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2020. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv:1909.08053 [cs.CL] https://arxiv.org/abs/1909.08053

[30] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
Katie Millican, et al. 2024. Gemini: A Family of Highly Capable Multi-
modal Models. arXiv:2312.11805 [cs.CL] https://arxiv.org/abs/2312.
11805

[31] Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu, and Zhi-Li
Zhang. 2021. Accelerating Distributed Deep Learning using Multi-
Path RDMA in Data Center Networks. In Proceedings of the ACM
SIGCOMM Symposium on SDN Research (SOSR) (Virtual Event, USA)
(SOSR ’21). Association for Computing Machinery, New York, NY, USA,

88–100. doi:10.1145/3482898.3483363
[32] Serhii Uspenskyi. 2024. Large Language Model Statistics And Numbers

(2024). https://springsapps.com/knowledge/large-language-model-
statistics-and-numbers-2024#

[33] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. 2017. Let it flow: Resilient asymmetric load balancing with
flowlet switching. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 407–420.

[34] Manoj Wadekar. 2013. InfiniBand, iWARP, and RoCE. In Handbook of
Fiber Optic Data Communication. Elsevier, 267–287.

[35] Ruolan Wu, Wei Wan, and Junhong Li. 2024. Research and simula-
tion of adaptive routing mechanism in InfiniBand network. In Third
International Conference on Advanced Manufacturing Technology and
Manufacturing Systems (ICAMTMS 2024), Vol. 13226. SPIE, 1315–1327.

[36] Yunhong Xu, Keqiang He, Rui Wang, Minlan Yu, Nick Duffield, Hassan
Wassel, Shidong Zhang, Leon Poutievski, Junlan Zhou, and Amin
Vahdat. 2022. Hashing Design in Modern Networks: Challenges and
Mitigation Techniques. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). 805–818.

[37] Yunhong Xu, Keqiang He, Rui Wang, Minlan Yu, Nick Duffield, Hassan
Wassel, Shidong Zhang, Leon Poutievski, Junlan Zhou, and Amin
Vahdat. 2022. Hashing Design in Modern Networks: Challenges and
Mitigation Techniques. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). USENIX Association, Carlsbad, CA, 805–818. https:
//www.usenix.org/conference/atc22/presentation/xu

[38] Ling Zhang, Xuefei Yang, Zhenlong Wan, Hang Liu, Wei Gu, Pingjing
Liu, Qilin Dai, Shanwei Ye, and Yingcheng Lin. 2024. A High-
Performance RDMA NIC With Ultra-Highly Scalable Connections.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2024), 1–1. doi:10.1109/TCAD.2024.3514782

[39] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen
Qi, Xuemei Shi, and Guohui Wang. 2021. Hashing linearity enables
relative path control in data centers. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 855–862.

[40] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Au-
tomating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 559–
578. https://www.usenix.org/conference/osdi22/presentation/zheng-
lianmin

https://arxiv.org/abs/2407.09808
https://arxiv.org/abs/2407.09808
https://arxiv.org/abs/2407.09808
https://github.com/facebookincubator/gloo?tab=readme-ov-file
https://github.com/facebookincubator/gloo?tab=readme-ov-file
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://doi.org/10.1145/3230543.3230557
https://developer.nvidia.com/nccl
https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
https://www.nvidia.com/en-us/networking/spectrumx/
https://www.nvidia.com/en-us/networking/spectrumx/
https://doi.org/10.1145/3651890.3672265
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.1145/3482898.3483363
https://springsapps.com/knowledge/large-language-model-statistics-and-numbers-2024#
https://springsapps.com/knowledge/large-language-model-statistics-and-numbers-2024#
https://www.usenix.org/conference/atc22/presentation/xu
https://www.usenix.org/conference/atc22/presentation/xu
https://doi.org/10.1109/TCAD.2024.3514782
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LLM, RoCE and Collective Communication
	2.2 Load Balancing Challenges

	3 Joint Device-Network Load Balancing (DNLB)
	3.1 Overview of DNLB
	3.2 Segmentation of UDP Source Port
	3.3 Adaptability and Fault Tolerance

	4 Evaluation
	4.1 Experimental Testbed
	4.2 Evaluation of collective operations
	4.3 Evaluation of LLM pre-training performance

	5 Related Work
	6 Conclusion
	References

