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Abstract

Recent quantum software engineering efforts have made significant
progress in testing and debugging quantum algorithms – however,
providing confidentiality and privacy to quantum software in the
cloud remains an unexplored critical area. OpaQue is the first so-
lution to obfuscate quantum software and output to prevent the
leaking of confidential information over the cloud. OpaQue imple-
ments a lightweight, scalable, and effective solution based on the
unique principles of quantum computing to achieve this task.
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1 Introduction

Quantum computing is an emerging technology that has the poten-
tial to accelerate and make possible the execution of many large-
scale scientific, optimization, and machine-learning tasks [7, 25].
As quantum computing technology advances, multiple cloud-based
quantum computing platforms are leveraged to develop and execute
classically infeasible mission-critical tasks by government agencies
and industry partners [13, 14, 27]. The solutions to these tasks are
often business-sensitive and should be protected (e.g., the solution
to a classically infeasible problem relevant to a defense program).
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Due to the nascent stage of quantum cloud computing, the cloud
computing providers have full access to the end users’ mission-
sensitive programs and the output of such programs [24, 28]. Some
prior art has recognized the importance of security and privacy
for quantum software and focused on this challenge, although not
solving the same problem as this work (protecting and providing
confidentiality to the output of quantum software programs).

In particular, prior software engineering relevant efforts have
primarily focused on testing and debugging quantum circuits [22,
34, 36] instead of providing confidentiality and privacy to quan-
tum software. Prior works related to encrypting quantum informa-
tion over networks [4, 35, 37] and securing third-party quantum
compilers [29, 32] assume that the cloud hardware provider is an
uncompromised entity that does not have intentional or uninten-
tional snoopers on the quantum cloud platform that can analyze
the output of quantum software. Even if the cloud provider is un-
compromised, organizations may not want to disclose their tasks,
proprietary quantum software code, and program solutions to the
cloud provider. Protecting this information from the cloud provider
is a non-trivial challenge as the user is essentially asking the hard-
ware provider to run the “wrong” code and observe the “wrong”
output but be able to recover the “correct” quantum output from
the “wrong” output on the user’s end. To achieve this, we propose
OpaQue.

In the near term, it is anticipated that only a few entities in
the world may have access to powerful quantum computers, and
these quantum computers will be used to solve previously unsolved
large-scale optimization problems, possibly without an explicit trust
model between the cloud service provider and the user. Therefore,
the solutions to such large-scale optimization problems will be con-
sidered sensitive and must be protected. OpaQue takes the first
few steps toward preparing us for that future – by developing a
novel software engineering solution for providing confidentiality
and protection to quantum software programs (open-sourced) –
further advancing the recent progress of quantum software engi-
neering [22, 34, 36] that the community can build upon. We first
provide a primer on relevant quantum computing concepts to help
readers better contextualize the contributions of this work.

Quantum Computing: Brief Background. Qubits, Quantum

Gates, and Circuits. The fundamental unit of quantum computing
is the qubit, which is capable of representing a superposition (linear
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Figure 1: An example circuit representation of a quantum

algorithm. The horizontal lines represent qubits with gates

being applied to them in order from left to right.
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Figure 2: A quantumalgorithm’s execution consists of several

steps on the user’s and cloud’s sides.

combination) of two orthogonal basis states. This is represented
as |Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are the complex amplitudes of
the constituent basis states. Upon measurement, this superposition
collapses such that the probability of measuring the state |0⟩ is
∥𝛼 ∥2 and ∥𝛽 ∥2 for measuring the |1⟩ state. A general system of 𝑛
entangled qubits is represented as a superposition of 2𝑛 basis states:
|𝜓 ⟩ = ∑𝑘=2𝑛−1

𝑘=0 𝛼𝑘 |𝑘⟩. As with one qubit, when the multi-qubit state
is measured, it manifests as a projection to one of the basis states
(where now the basis state is a state of 𝑛 qubits). The probability of
measuring state |𝑘⟩ is ∥𝛼𝑘 ∥2.

Quantum gates are applied to manipulate the qubit state. For
example, the gates on IBM quantum computers consist of the CX, SX,
X, and RZ gates [1]. SX, X, and RZ gates are one-qubit gates. In the
Bloch-sphere representation, where a qubit’s superposition state
is represented on the surface of a sphere, one-qubit gates are cate-
gorized by the axis around which the rotation takes place and the
rotation angle. The generalized rotation gate RZ(𝜃 ) rotates the qubit
state about the z-axis by angle 𝜃 . Similarly, the generalized RX(𝛽)
gate performs a rotation about the x-axis by angle 𝛽 . The general-
ized RX gate is decomposed into the basis gates before execution
on the IBM platform. Note that X= 𝑖RX(𝜋) and SX= 𝑒𝑖

𝜋
4 RX( 𝜋2 ). The

CX (controlled-X) gate is a two-qubit entanglement gate and applies
the X gate to the “target” qubit only when the “control” qubit is |1⟩.
All the gates can be represented using unitary matrices. A unitary
matrix is a matrix 𝑈 such that 𝑈 †𝑈 = 𝐼 , where 𝑈 † is the complex
conjugate transpose of𝑈 and 𝐼 is the identity matrix.

A quantum software program comprises a sequence of one- and
multi-qubit gates, as shown in Fig. 1. The sequence is referred to as
a quantum circuit. A quantum circuit also has a unitary matrix rep-
resentation,𝑈 . At the end of the sequence, the qubits are measured
to get the output (solution to the problem). This circuit must be pre-
pared and measured multiple times to get a probability distribution
over its basis states. This probability distribution is the output of the

quantum program, referred to as program output (solution).

Quantum Computing Hardware and Noise.While OpaQue is
generally applicable to any technology, in this paper, we evaluate
it on IBM’s superconducting-qubit computers as they have the
advantage of being relatively easy to fabricate and operate, making
them a popular choice [4, 18, 23].

A challenge in executing programs on real quantum computers
is hardware noise effects. These noise effects include the state prepa-
ration and measurement (SPAM) errors, which cause the qubit to
be incorrectly initialized and measured, the gate errors, which refer
to the qubit state being incorrectly modified, and the decoherence
errors, which refer to the loss of the coherence of a qubit’s state.
These errors are an order of magnitude higher for the CX gates
than the X and SX gates; RZ gates do not have any error as they
are implemented virtually using change of reference. The impact
of hardware noise on program output adds challenge for OpaQue
as it cannot apply obfuscation techniques that would increase the
effects of hardware noise; the quality of the recovered “correct”
program output should not be worse than what the user would
have observed if the output was not obfuscated. A useful quantum

computing software engineering solution must demonstrate its effec-

tiveness on current noise-prone quantum computers – this is why

OpaQue is designed for and evaluated on real quantum hardware

available on current quantum clouds.

Quantum ExecutionWorkflow. Fig. 2 shows the execution work-
flow of a quantum computing workload. The user writes the code
and transpiles the circuit on their end. Then, the code is sent to the
cloud, where the mapping and routing operations are performed to
convert the circuit to a format that can be executed on the qubit
connectivity of the selected quantum computer. Note that these
steps can also be performed on the user’s end, in which case the
hardware provider simply runs the circuit.Where exactly these steps

are performed is not of consequence to OpaQue, as OpaQue is applied

before these steps are run. Then, the compiled circuit is run on the
hardware, and the output is measured and returned to the user,
who can then analyze the results.

Limitations of Existing Work. Previous works, as described be-
low, are useful, but these approaches do not address the problem
solved by OpaQue and cannot be modified to achieve OpaQue’s
goals. Their threat model is unrealistic, and the domain is limited
to networks or compilers only – unlike OpaQue that targets the
quantum software program itself (the first quantum software engi-
neering toolkit of its kind).

Quantum Encryption for Communication Networks. Some
previous works have focused on private quantum network proto-
cols [4, 35, 37]. As an instance, Balaji et al. [4] implement a lattice
cryptographic technique for post-quantum encryption with robust-
ness against the Man-In-The-Middle and Sybil attacks. By the same
token, Xu et al. [35] propose a system to solve the issue of hiding
preambles via random repetition and nested hash coding to en-
crypt network data in a post-quantum manner. These works require
that the cloud provider is trusted (unlike OpaQue) as the code/data

transferred over the network needs to be decrypted before the code is

executed on the quantum computer.
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Protection from Third-Party Software. Some previous works
have also focused on protecting quantum code from third-party
compilers [24, 28, 29, 32]. For example, Suresh et al. [32] attempt
to confuse the compiler by adding CX gates, which are removed
after compilation and before hardware execution to get the correct
output. Consistent with the above paper, Saki et al. [29] propose a
split compilation approach where different code sections are sent to
different compilers so that no one compiler has access to the whole
code. The code is stitched back together before hardware execution.
On the other hand, Phalak et al. [24] propose verification tech-
niques to validate that third-party vendors are indeed dedicating
the promised resources to the quantum code. These works also do
not obfuscate the output from the hardware as the circuits are decoded

pre-execution and, hence, do not provide any privacy guarantee or

confidentiality from the cloud hardware providers.

OpaQue: Approach and Contributions.OpaQue is a simple yet
effective obfuscation technique to obfuscate the quantum program
output (and its circuit structure) of quantum software. OpaQue’s
simplicity lies in its approach to randomly inject X gates (similar
to classical NOT gates) at the end of the quantum circuit. The loca-
tion of X gate injection becomes the key – there are 2𝑛 different
permutations of injection sites, where 𝑛 is the number of qubits in
the quantum program. This approach allows the program output
to become scrambled so it can only be decoded by the user (who
holds the decoding key) but not the cloud provider.

While promising, as our evaluation demonstrates (Sec. 4), only
injecting X gates does not provide significant structural divergence
despite leveraging quantum circuit synthesis to “pull” back the ap-
pended X gates and merge them in the inner layers of the circuit. To
mitigate this challenge, OpaQue demonstrates how to intelligently
inject RX pairs and design a novel quantum circuit synthesis pass
that strategically decomposes the new “X gates and RX pairs added”
circuit into multiple blocks, transforms them in semantically equiv-
alent but structurally different blocks, and then, combines them
together – the resultant software circuit, by design, successfully
obfuscates the location of added X gate and RX gate.

OpaQue’s design demonstrates (a) how to exploit the reversibil-
ity property of quantum gates to obfuscate the output yet ensure
that the injected gates do not alter the original program logic,
(b) how to design its gate injection and circuit synthesis proce-
dure such that the resulting obfuscated circuit does not become
more sensitive to quantum hardware errors due to addition of new
gates (Sec 2). Obfuscating circuit output and structure is naturally
likely to increase gate count and depth (as a side effect) – but
OpaQue demonstrates how its impact can be mitigated on real
quantum hardware. OpaQue’s data and software are available at:

https:// zenodo.org/doi/10.5281/zenodo.10896069.

OpaQue’s Contributions:

• OpaQue presents the first approach to obfuscate quantum
software circuits and outputs in quantum cloud environ-
ments – to ensure that quantum cloud providers cannot
infer the solutions to previously unsolved, classically infeasi-
ble, large-scale optimization problems that can be business-
sensitive and need to be protected in the client-side quantum
software.

• OpaQue presents a design and implementation of a simple
yet effective software framework for achieving its goal by
(a) an intelligent combination of X gate and RX gate injec-
tions and (b) a novel quantum circuit synthesis procedure.
OpaQue obfuscates the circuit output successfully. Despite
the injection of additional quantum gates, OpaQue main-
tains the same solution quality as the original un-obfuscated
quantum circuit – even in the presence of hardware errors.

• Our real-hardware and simulation evaluation of a diverse set
of algorithms (up to 128 qubits) demonstrates that OpaQue
successfully hides the program output, solution states, and

circuit structures, using probability distribution distance and
circuit structure distance metrics, while maintaining low
compilation times and program output error.

Scope, Threat Model, and Threats to Validity. All prior works
assume that quantum cloud hardware providers are trusted and
are not snooping on the solutions to the quantum programs they
execute on their hardware. In contrast, OpaQue assumes that only
the user’s local system is trusted. All other components involved in
executing quantum code, including third-party compilers, networks,
software stack on the quantum cloud, and hardware, are assumed
to be open to snooping – hence, this threat model is more realistic
and wider than prior works. We note that OpaQue is applicable to
all types of quantum applications and hardware technologies, as it
works at the level of the logical quantum circuit.

We recognize that all scientific works have limitations or threats
to validity – OpaQue is not an exception. OpaQue’s novel obfusca-
tion and circuit synthesis components increase the confidentiality
on the client side but may make the software maintenance, De-
vOps, and program comprehension more challenging if the original
circuit is not shared. We are hopeful that OpaQue’s novel obfusca-
tion and circuit synthesis contributions may open future avenues
for programming, testing, debugging, and repairing in quantum
software engineering.

We note that although OpaQue obfuscates a quantum program’s
circuit structure as a side-benefit to make the obfuscation of the cir-
cuit output more effective, OpaQue does not make any theoretical
claims about privatizing or hiding parts of the original quantum
algorithm. Empirically, we demonstrate that OpaQue significantly
obfuscates a quantum program’s circuit structure using graph-based
distances (Sec. 4), although this is not OpaQue’s primary goal.

We note that while it is tempting, classical code obfuscation tech-

niques are unsuitable to be applied in the quantum computing do-

main because of differences in computing models and observability.

Quantum computing fundamentally relies on entanglement and
superposition principles to perform computation; therefore, any
classical method to inject randomness or obfuscation cannot be
“disentangled” without destroying the quantum state and collapsing
the computation.

2 OpaQue: Design and Implementation

We begin this section by providing an overview of OpaQue’s design
and then delve into the design details of each step implemented by
OpaQue.

https://zenodo.org/doi/10.5281/zenodo.10896069
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Figure 3: OpaQue’s encoding and decoding procedures. All of OpaQue’s steps are run entirely on the user side.

2.1 Overview of OpaQue’s Design

Fig. 3 shows the execution workflow of a quantum program with
OpaQue’s steps included. OpaQue’s encoding process consists of
four steps. First, to hide the output, OpaQue randomly selects
qubits and injects X gates at the end of the quantum circuits. This
gives 2𝑛 different permutations of X-gate injections, where 𝑛 is the
number of qubits in the quantum program. The chosen permutation
becomes the decoding key when the output is returned after circuit
execution. Second, to obfuscate the structure of the circuit, OpaQue
injects RX gates with random rotations throughout the circuit.

As the third and fourth steps, to obfuscate the location of where
the RX and X gates are inserted, OpaQue divides the circuit into
two-qubit blocks and synthesizes them into a different gate struc-
ture that is mathematically equivalent to the original logic. At the
end of these four steps, OpaQue-generated code has a significantly
different circuit structure and program output distribution com-
pared to the original code – this OpaQue-generated code is sent to
be executed on the quantum cloud. OpaQue’s decoder is a simple,
one-step procedure. Post execution, when the program output is
returned to the user, the bits in the output state need to be flipped
in accordance with the key generated during the encoding process.
Once this is done, the correct output is obtained, which only the
user can access. Next, we describe the X-gate injection step.

2.2 Output Obfuscation using X-Gates
Injecting X gates at the end of the circuit (after all other gates in the
original circuit logic have been executed) performs the function of
flipping the output state bits. For example, consider a two-qubit
program output with the following output probability distribution:
𝑝 ( |00⟩) = 0.6, 𝑝 ( |01⟩) = 0.1, 𝑝 ( |10⟩) = 0.1, and 𝑝 ( |11⟩) = 0.2. Let us
set our key to be 01, i.e., we insert an X gate on and flip the first qubit
(the least significant digit), and we do not insert an X gate on the
second qubit (the most significant digit). This key will perform the
following transformation: |00⟩ → |01⟩, |01⟩ → |00⟩, |10⟩ → |11⟩,
and |11⟩ → |10⟩. Post the X-gate injection, the output probability
distribution becomes: 𝑝 ( |00⟩) = 0.1, 𝑝 ( |01⟩) = 0.6, 𝑝 ( |10⟩) = 0.2,
and 𝑝 ( |11⟩) = 0.1. This output probability distribution is different
from the output distribution of the original distribution. In fact,
the highest probability state, which is usually the most important
state for most quantum algorithms, shifts from |00⟩ to |01⟩. Thus, it
cannot be identified correctly post-obfuscation. OpaQue specifically
chooses X gates for injection because X gates serve as pure inverters,
which makes it possible to decode the output with the key. Inject-

ing any other quantum gate with arbitrary angles would require

high-overhead and impractical tomography procedures to decode the

original program output.

The X-gate injection is shown visually in Fig. 4 (Step 1 ). While
the injected X gates are operationally the same as the other X gates
in the circuit, we label them with a “X” for visualization purposes.
In the above two-qubit example, the key is a randomly selected per-
mutation from a uniform distribution of four possible permutations.
Thus, it may appear that it can be guessed. However, in general, for
an𝑛-qubit output, the key is selected from 2𝑛 possible permutations.
Thus, it quickly becomes untenable to guess the key for realistic
quantum algorithms. For example, a 32-qubit algorithm has over
one billion different permutations, and a 128-qubit algorithm has
over one hundred trillion trillion trillion different permutations.
We study algorithms of both of these sizes in the evaluation section
(Sec. 4). However, while it is not possible to surmise this key for
realistic medium-to-large quantum algorithms in a brute-force man-
ner, an adversary may still be able to inspect the circuit structure
and identify where the X gates are injected as they have access to
the circuit. We will see later in this section how OpaQue hides the
injected X gates. Before that, we go over how OpaQue obfuscates
the entire circuit structure using RX-gate injections.

2.3 Structure Obfuscation using RX-Gates
While the X gates obfuscate the output, the rest of the circuit struc-
ture can still be inspected by the adversary to extract the locations
of X gate injection. Using circuit synthesis, one can “pull” X gates
injected at the end of the circuits in the inner layers of the circuits to
achieve partial structural obfuscation. While useful, our evaluation
(Sec. 4) shows that such an approach is not as effective as desired –
that is, it does not yield sufficient structural obfuscation.

Additionally, structural obfuscation for quantum circuits is useful
for other purposes, too – for example, it prevents the adversary
from learning about the functionality of the circuit. It is also useful
to obfuscate sub-regions within a quantum circuit as those sub-
regions may consist of full quantum algorithms by themselves.
As an instance, the Quantum Fourier Transform (QFT) [21] logic
frequently shows up in other quantum algorithm circuits. Thus, an
adversarymight be able to identify the region of the quantum circuit
that forms the QFT logic if that region is not obfuscated. As another
example, the inputs to quantum algorithms are always supplied as

circuit gates (e.g., parameterized rotation angles). Therefore, it is
essential to obfuscate the circuit structure to obfuscate any inputs
as well. To facilitate obfuscation throughout the circuit, OpaQue
injects RX-gate pairs with random angles throughout the circuit, as
shown in Fig. 4 (Step 2 ).

A pair consists of an RX gate with a randomly chosen angle
and its inverse, an RX gate with the negative of the first angle,
injected on the same qubit in direct sequence. We form pairs to
ensure that whatever computational logic is inserted is immediately
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reverted and has no impact on the original program semantics –
we only want the X-gate injections at the circuit end to affect the
output as we can control its effect by decoding using the key. We
choose the RX gate instead of other rotation gates as it provides
sufficient diversity in terms of obfuscation because it decomposes
into multiple hardware basis gates (RZ, SX, and X), allowing for
diverse obfuscation patterns. One may ask how inserting pairs
of RX gates obfuscates the structure since it does not affect the
computation at all. We explain this next, along with how we choose
the circuit locations to inject the RX gates.

2.4 Circuit Block Formation for Synthesis

We want to be able to hide the injected RX gates by generating new
circuit logic. The way to achieve this is by using the process of
synthesis. Synthesis takes a unitary matrix 𝑈 corresponding to a
circuit 𝐶 and generates a new circuit 𝐶 such that 𝐶’s unitary repre-
sentation is also𝑈 . However, this procedure scales exponentially in
the number of qubits as the unitary dimensions are 2𝑛 × 2𝑛 for an
𝑛-qubit circuit. Therefore, to perform this operation in a scalable
manner, we must divide the circuit into manageable blocks such
that each block can be separately synthesized, and the synthesized
blocks can then be put back together to form the full quantum
circuit. OpaQue restricts the size of the blocks to two qubits as
the small size allows for scalable and exact synthesis [17] — the
synthesis of bigger sized blocks may be accelerated by generating
approximate solutions; however, we want to restrict our synthesis

to exact solutions so as not to add unnecessary error to the original
program output.

Fig. 4 (Step 3 ) provides a visual example of how these blocks are
formed. In the example, we form three two-qubit blocks. Note that
the injected X gates at the end can be absorbed into the last-most
block for their respective qubits. The example also shows how the

RX gates are injected at the edges of the blocks. This allows for one

gate from each pair to get absorbed into two separate blocks. This
means that each block now represents a different quantum logic
than it would in the original circuit without the RX-gate injection.
For example, the unitary representing block 3 would be different
if it did not have the RX(−𝜃 ) gate on qubit 2 and RX(−𝜙) gate on
qubit 3. When these blocks are now synthesized, they will generate
very different logic compared to if they did not have the RX gates
(depicted in Fig. 5). Thus, if one were to remove any given block or
a region consisting of multiple blocks from the circuit, it obfuscates
the logic. In fact, even if they executed that region, the circuit
would generate meaningless output as the logic of the sub-regions
is altered by RX gate injections. As a note, there is no benefit to
having full pairs within a block as the computation cancels itself
and will have no impact on the synthesis of that block. Note also
that these RX-gate injections have no impact on the overall circuit
output, even though they scramble the structure and block/sub-
region outputs.

Algorithm 1 shows the pseudo-code for how these blocks are
formed for a quantum circuit. The circuit gates are processed one by
one in topological order – which is the order of the gates from the
left to the right of the circuit – and assigned to different blocks. A
block continues to be formed until a two-qubit gate is encountered
that has one qubit in one block and the second qubit in another
block or the circuit end is reached. The complexity of this algorithm
is 𝑂 (𝑔), where 𝑔 is the number of gates in the circuit as it has to
go through each gate only once. While there are other methods of
forming these blocks (e.g., greedy heuristics to form deeper blocks),
we chose this method due to its speed and result quality (Sec. 4).
Once the blocks are formed, the RX gates are injected at the edges.
An adversary cannot identify their edges and injection locations as
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Algorithm 1 Algorithm for dividing the circuit into blocks.
1: 𝐺 ← All of the circuit gates in topological order
2: 𝐵 ← {∅} ⊲ Set of all blocks, each block is a set of gates
3: for 𝑔 in 𝐺 do

4: if 𝑔 is a one-qubit gate then
5: 𝑞 ← The qubit that 𝑔 runs on
6: if 𝑏 includes 𝑞 for any 𝑏 ∈ 𝐵 then add 𝑔 to 𝑏
7: else create a new 𝑘 ∈ 𝐵 and add 𝑔 to 𝑘
8: else if 𝑔 is a two-qubit gate then
9: 𝑞1, 𝑞2← The two qubits that 𝑔 runs on
10: if 𝑏 includes 𝑞1, 𝑞2 for any 𝑏 ∈ 𝐵 then add 𝑔 to 𝑏
11: else if 𝑏 includes one of 𝑞1, 𝑞2 for any 𝑏 ∈ 𝐵 then

12: Complete block 𝑏, create a 𝑘 ∈ 𝐵, and add 𝑔 to 𝑘
13: else create a new 𝑘 ∈ 𝐵 and add 𝑔 to 𝑘
14: return 𝐵

the logic gets altered by synthesis, and the block boundaries do not
persist in the final full circuit.

2.5 Synthesis to Generate the Final Circuit

As mentioned earlier, there are a large number of different ways of
realizing the same quantum logic. That means that a given unitary
matrix, 𝑈 , can be realized using many different circuit structures.
We use synthesis to take a unitary matrix 𝑈 corresponding to a
block circuit 𝐶 and generate a new circuit 𝐶 such that 𝐶’s unitary
representation is also𝑈 . The𝑈 matrix for a block is simply calcu-
lated by multiplying the matrices (Kronecker product) of all the
gates within the block. While there are many different ways of
synthesizing a 𝑈 , we use KAK decomposition [17] to construct the
new circuit gate by gate, as it is an efficient method to synthesize
two-qubit unitaries exactly.We generate 𝑘 circuits for the same block

such that the generated circuits have the same number of two-qubit

gates as the original block circuit because two-qubit gates tend to

be highly noisy and can degrade the output quality. Note that just
because the synthesized circuit has the same number of two-qubit
gates as the original circuit does not imply that those gates will be
in the same position and orientation, which adds to the obfuscation.

On the other hand, we allow leeway in terms of the number
of one-qubit physical (SX+X) and virtual (RZ) gates as these gates
have little-to-none error effects and, therefore, can be of help for
obfuscation. A naïve approach would call for selecting the circuit
with the least number of SX+X gates out of the 𝑘 generated circuits
as that would have the least noise effects. However, OpaQue also
considers the difference in the structure of the generated block and
the original block for the purpose of obfuscation. To compare the
structures of two circuits, it converts them into Directed Acyclic
Graphs (DAGs) and uses the NetLSD divergence [5, 33] metric to
assess their degree of similarity. NetLSD is calculated by computing
the spectra of the normalized Laplacian matrices corresponding to
the two DAGs and comparing their spectral node signature distri-
butions. Thus, out of the generated 𝑘 circuits, OpaQue takes the
top circuits with the fewest SX+X gates, and out of these circuits,
it selects the one with the highest NetLSD divergence to the orig-
inal block circuit (Fig. 6). This ensures that OpaQue achieves a
balance between gate count minimization and structural difference
maximization.

Q1

Q2

Synthesis
1 SX+X 1 SX+X

2 SX+X 3 SX+X

Select the one 
with higher 

NetLSD 
divergence

Figure 6: OpaQue selects the circuit with the lowest number

of SX+X gates and the highest structural difference to the

original circuit.
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Figure 7: An illustration of how the probability distribu-

tion gets shifted during the encoding procedure and can be

revered back using the key using the decoding procedure.

Fig. 4 (Step 4 ) shows three aspects of note. First, the synthesized
blocks have the same number of CX gates as the original blocks, but
the gates are at different positions and have different orientations.
Second, the synthesized blocks can have more or less one-qubit
gates than the original circuit, and these gates can be in completely
different positions structurally. Generally, the synthesized block
has more one-qubit gates than the original block for stronger obfus-
cation, as we demonstrate in the evaluation (Sec. 4). Last, the figure
shows the final fully encoded circuit is structurally completely dif-
ferent than the initial (original) circuit, with all traces of X-gate and
RX-gate injections and block boundaries erased (as we evaluate in
Sec. 4 using a structural distance metric). If an adversary were to
separate any region of the circuit and inspect it, they would ob-
serve a completely different structure and output than they would
have otherwise. In fact, it is not possible to perform one-to-one
correspondence of any region in the original and encoded circuits
due to gate injections and synthesis. Next, we discuss how the user
can decode the output.

2.6 Output Recovery Using OpaQue

As Fig. 7 shows, OpaQue’s decoding is a quick step that is performed
on the user side using classical resources. As the user has access to
the encoding key, they can simply flip the bits in the output states in
accordance with the key. As the figure shows, the user receives the
encoded output in which probabilities of all the states are scrambled.
If we consider the two states with the highest probabilities, |0111⟩
and |1000⟩, and apply the key 1101, we get |0111⟩ → |1010⟩ and
|1000⟩ → |0101⟩. Similarly, all the states can be decoded to get the
complete output distribution.
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Table 1: Quantum software benchmarks.

Algorithm Description

ADD Quantum Adder Circuit [10]
ADV Google’s Quantum Advantage Algorithm [3]
DNN Deep Quantum Neutral Network [30]
HLF Hidden Linear Function Circuit [8]
MULT Quantum Multiplier Circuit [16]
QAOA Quantum Alternating Operator Ansatz [11]
QFT Quantum Fourier Transform [21]
SAT Quantum Boolean Satisfiability Algorithm [31]
TFIM Transverse Field Ising Model [6]
VQE Variational Quantum Eigensolver [20]
WSTATE W-State Preparation/Assessment Circuit [12]
XY XY Quantum Heisenberg Model Circuit [6]

We note that OpaQue ensures that the obfuscated circuit main-
tains correctness. The synthesis process maintains functional equiv-
alence, and the injected X gates only modify the final measurement
outcomes in a controlled manner. As a result, the original quantum
computation remains intact, and only the client can decode the cor-
rect output. On the other hand, an adversary aware of OpaQue’s
approach might attempt to isolate RX gates, but OpaQue mitigates
this risk through (1) synthesis, where RX gates are absorbed into cir-
cuit logic, preventing straightforward reversal. And, (2) block-wise
transformations, where two-qubit block synthesis generates alter-
native circuit representations, making recovery exponentially diffi-
cult. OpaQue’s synthesis procedure also ensures that the injected
OpaQue gates are merged within the circuit structure, making
pattern-based attacks challenging. Further, because the hardware
provider does not recieve the original circuit when OpaQue is em-
ployed, hardware-based side channel attacks for fingerprinting are
also difficult.

That concludes the discussion of OpaQue’s design. Next, we
present its evaluation methodology.

3 OpaQue’s Evaluation Methodology

Experimental Setup. We evaluate OpaQue using IBM’s quan-
tum computing cloud platform [9]. This platform provides support
for ideal quantum simulation, noisy quantum simulation, and real
hardware execution. To implement and evaluate OpaQue on the
client side, we used Qiskit [2] (version 0.36.0), which is a Python-
based (version 3.9.7) programming framework that implements
a wide range of quantum computing features. We used Qiskit’s
Aer library (version 0.10.4) to convert blocks into unitary matrices
for synthesis. The Qiskit transpiler was used to synthesize blocks
into gate logic using KAK decomposition [17], convert circuits into
IBM-compatible basis gates, and run optimization passes during
compilation. We set the number of circuits generated for each block
to select from to be 3 (𝑘 = 3) as we observe diminishing returns
beyond that point. Qiskit converters were used to convert circuits
into NetworkX [15] (version 2.6.3) graph representations, and the
NetRD [19] library (version 0.3.0) was used to calculate distances
between two graphs to assess the similarity of two circuits. All of
the above steps were run entirely on the client side. To run quantum
simulations and real-hardware executions on the IBM cloud, we
used Qiskit’s IBMQ Provider library (version 0.19.0).

Quantum Software Circuits and Benchmarks. Table 1 lists the
quantum software benchmarks used to evaluate OpaQue, represent-
ing a wide variety of quantum algorithms in terms of algorithmic
domain and circuit properties.

TFIM and XY are Hamiltonian evolution algorithms for mate-
rial simulations. ADD and MULT carry out quantum arithmetic
operations. HLF is a search algorithm to find likely solution states.
QFT is a quantum benchmark with an equal output distribution
for all states. ADV is the algorithm used to establish a quantum
advantage over classical computing. WSTATE describes the entan-
glement property of an 𝑛-qubit system. DNN is a quantum neural
network design. QAOA is a general variational optimization algo-
rithm. SAT uses Grover’s search technique to solve the boolean
satisfiability problem. Lastly, VQE is the algorithm used to optimize
for the ground state energy of a molecule group.

Real-System Quantum Cloud Platform.We used the IBM quan-
tum cloud as the quantum hardware provider to perform our ex-
perimental campaign. We used three IBM quantum computers

for real-hardware algorithm executions chosen based on al-

gorithm sizes. We used the 127-qubit Washington computer (the
largest available) to run circuits larger than 27 qubits. It was not
possible to run the 128-qubit circuit as computers of that size are
not yet available and larger circuits sizes would face a high degree
of noise, making output uninterpretable. We used IBM’s 27-qubit
Toronto computer to run circuits of size 8-27 qubits. We used IBM’s
seven-qubit Lagos computer to perform real-hardware executions
for circuits of size seven qubits or less. We ran 32, 000 shots per cir-
cuit, as it is the maximum allowed. The four hardware-compatible
basis gates on the IBM computers are CX, SX, X, and RZ. Therefore,
all of our analysis is with respect to these gates. But, OpaQue is
compatible with any other basis gate set.

We also used IBM’s validated QASM simulator to perform ideal
simulations (i.e., no noise) to produce the ideal circuit outputs
– needed for comparison with the ground truth to demonstrate
OpaQue’s effectiveness. We ran 100, 000 shots per circuit. This is
the number of times a circuit is prepared, run, and measured to
generate the output distribution. A circuit has to be run multiple
times because each run only produces one output state (bit string).
We simulate circuits up to 32 qubits in size, as it is not possible to
simulate circuits beyond that size due to the exponential scaling
requirements of simulating quantum algorithms. For larger algo-
rithms, we show the circuit characteristics as they can be compiled
and synthesized but not run or simulated.

EvaluationMetrics. To assess the quality of the output, we use two
metrics: (a) Total Variation Distance (TVD), and (b) Dominant

State Percentile.
The Total Variation Distance (TVD) is used to quantify the

difference between two output probability distributions. The TVD
of two outputs is calculated as 1

2
∑2𝑛
𝑘=1 |𝑝1 (𝑘) − 𝑝2 (𝑘) |, where 𝑝1 (𝑘)

is the probability of state 𝑘 in the first output and 𝑝2 (𝑘) is the
probability of state 𝑘 in the second output. The closer the TVD is to
1, the bigger the difference between the two output distributions;
the closer it is to 0, the smaller the difference. The TVD is used to
compare OpaQue’s output to the baseline circuit’s output and the
ideal output.



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Tirthak Patel, et al.

The Dominant State Percentile is used to quantify how close
a technique is to identifying the true dominant or winner solution
state, i.e., the state with the highest probability. Many quantum
algorithms have one solution that needs to be identified. If that state
is the one with the highest probability, then it is in the 100th per-
centile. The lower the percentile, the more difficult it is to identify
the dominant state. However, a value of less than 100th percentile,
no matter how close it is to the 100th percentile, indicates that the
technique has failed to identify the dominant state.

To assess the structural similarities of any two circuits, we con-
vert them into Directed Acyclic Graphs (DAGs) and use a widely-
used graph distance metric, NetLSD, to examine their differences.
The NetLSD divergence [5, 33] is calculated by computing the
spectra of the normalized Laplacian matrices corresponding to the
two DAGs and comparing their spectral node signature distribu-
tions, i.e., the heat signatures. A value greater than 102 indicates
reasonably high dissimilarity [33].

We also consider and quantify circuit properties such as the
number of CX gates (two-qubit gates), the number of SX+X gates
(one-qubit physical gates), and the number of RZ gates (one-qubit
virtual gates). These metrics help analyze how much the circuit size
increases due to OpaQue’s obfuscation process. We also look at
the circuit depth, which is the number of CX gates in the circuit’s
critical path.

Comparisons.We compare OpaQue to the baseline technique,
which performs no output or structural obfuscation but benefits
from all the optimizations supported by the Qiskit compiler, includ-
ing synthesis for gate count reduction. This allows us to compare
OpaQue w.r.t. circuit characteristics (e.g., increase in the number
of quantum gates and structure of the circuit) and solution quality
(e.g., identification of dominant solution state, program output error
in terms of TVD). We note that currently, there are no other solu-
tions that provide obfuscation of quantum circuit outputs. We also
compare OpaQue to the uncorrected output, i.e., when OpaQue’s
decoder is not deployed, to demonstrate the strength of OpaQue’s
obfuscation. We also investigate the strength of the two obfusca-
tion techniques employed by OpaQue on their own by comparing
to versions of OpaQue that only implement circuit-end X-gate
injections or throughout-circuit RX-gate injections.

4 OpaQue’s Evaluation and Analysis

RQ1. How well does OpaQue obfuscate the program output of the

quantum circuits?

We first analyze OpaQue’s effectiveness to obfuscate the program
output of the quantum circuits. Fig. 8 shows the total variation
distance (TVD) between the output produced by the baseline circuit
and the output produced by OpaQue’s obfuscated circuit, but not
corrected by the OpaQue decoder. The bars representing this TVD
are labeled as “Uncorrected”. Recall that the baseline circuit does
not employ any obfuscation. If OpaQue is entirely ineffective, then
the OpaQue without the decoder (“Uncorrected”) bars would result
in almost zero TVD – that is, despite the obfuscation, one does
not need to decode the output as the uncorrected output is already
the same as the baseline circuit without obfuscation. However, we
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Figure 9: For algorithms with a dominant output state (all but

QFT), the uncorrected output cannot identify it for any of

the algorithms, while the output corrected with the OpaQue

decoder can identify the dominant state for all algorithms.

observed this is indeed not the case. In most cases (Fig. 8), the TVD
bars for the “Uncorrected” case are almost close to one, as desired.

Next, we observe that Fig. 8 shows another set of bars after the
OpaQue decoder is applied, and the output is corrected on the
client side(labeled as “Corrected”). Once the OpaQue decoder is
applied, the TVD between OpaQue’s output and the baseline output
is reduced to a negligible amount (<0.05 across all algorithms). This
indicates that the corrected OpaQue output is very similar to the
original output, demonstrating the effectiveness of the OpaQue. As
a note, two QFT circuits of different sizes show low TVD for the
“Uncorrected” case because the QFT program scrambles the input
and generates an equal probability for all states. In this case, even if
OpaQue scrambles and shifts the probabilities of the output states,
all states still have similar probabilities.

While the TVD results are promising, another important metric
is the ability to identify the dominant state in the output of the
quantum algorithm. Fig. 9 shows the percentile at which the actual
dominant state (i.e., the dominant state in the output of the baseline
circuit) falls in the uncorrected output as well as the corrected
output. Ideally, this should be 100%. The uncorrected output is
not able to identify the dominant state for any of the algorithms.
In fact, across all algorithms, the dominant state falls in the 75𝑡ℎ

percentile or less. For most algorithms, it is in the 0𝑡ℎ percentile.
This means that the dominant state is not even close to being the
highest probability state in the uncorrected output for any of the
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algorithms. Thus, an adversary with access to the obfuscated output
cannot identify the dominant state of the algorithm without the
key to decode the output. On the other hand, when the output is
corrected by the OpaQue decoder, the dominant state is identified
by OpaQue across all algorithms with a dominant state (which
are all algorithms except for QFT). Recall that in the case of QFT,
while there is no dominant state in the ideal scenario because the
simulation has statistical variability and generates one state with a
slightly higher probability than others in the baseline circuit output,
the results simply indicate the ability of OpaQue to match that
state.

Answer to RQ1. OpaQue successfully obfuscates the output prob-

ability distribution and the dominant state from an adversary.

Moreover, it can also recover the output locally on the user’s end

when it is returned by the hardware provider and decoded using

the key.

RQ2. Does OpaQue produce a significantly different quantum

circuit structure than the original quantum circuit provided by the

user?

The purpose of this evaluation is to show that OpaQue produces
a significantly different circuit structure than the original circuit
with the help of RZ-gate pair injection.

Fig. 10 shows the NetLSD divergence metric to compare the
structures of the OpaQue-generated circuits to the baseline circuits.
The figure also shows the distance of the baseline circuit to the
circuit with only synthesized X-gate injections at the end, the circuit
with only synthesized RZ-gate injections throughout the circuit,
and the combined effect (OpaQue).

The circuit-end X-gate injections obfuscate the output effectively,
but we observe that the circuit-end X-gate injections have a limited
impact on obfuscating the circuit structure (Fig. 10). This is because
synthesizing the X gates into the circuit only modifies the circuit
structure at the end of the circuit, but the rest of the circuit structure
would remain the same as the baseline (original) circuit. Thus, while
X gate injection is an effective technique to obfuscate the output, it
is not sufficient to obfuscate the circuit structure – motivating our
design element to inject RX gates throughout the circuit. Indeed,
injecting the RX gates throughout the circuit, dividing them into
disjoint blocks, and synthesizing the blocks show promising re-
sults. Recall: injecting only the RX gates does obfuscate the output;
RX gates are injected in pairs to ensure that the program’s intent
remains intact.

Fig. 10 shows that for all of the algorithms, the structural ob-
fuscation that injecting the RX gates provides is orders of magni-
tudes greater than structural obfuscation facilitated by the circuit-
end X-gate injections. As an instance, for the MULT 10 algorithm,
the NetLSD divergence with only circuit-end X-gate injections is
1.7×102, with only throughout-circuit RX-gate injections is 1.4×103,
and with both (OpaQue) is also 1.4 × 103. The trend is similar for
other algorithms; they all have a divergence of > 102 with OpaQue.

Answer to RQ2. Our experimental results confirm that OpaQue’s

combination of X-gate and RX-pair injection is effective to achieve

both desired outcomes: output obfuscation and structural obfusca-

tion (producing the NetLSD divergence of > 102).

RQ3. Does OpaQue increase the count of quantum gates and im-

pact the program output?



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Tirthak Patel, et al.

Table 2: Compilation times of the algorithms in seconds.

Algorithm Baseline OpaQue Algorithm Baseline OpaQue

ADD 4 2.4 4.1 QAOA 10 6.3 12.0
VQE 4 4.0 8.0 QFT 10 15.0 32.8
QAOA 5 2.4 4.0 SAT 11 8.6 22.9
QFT 5 2.4 3.9 DNN 16 6.1 11.4
MULT 5 2.2 3.2 TFIM 16 10.0 20.6
ADD 9 6.9 13.5 WSTATE 27 5.3 10.3
ADV 9 3.3 8.0 TFIM 32 27.6 54.9
HLF 10 3.7 7.0 XY 32 33.3 93.2
MULT 10 11.7 24.1 TFIM 128 80.0 230.4

OpaQue injects different types of gates to achieve program out-
put obfuscation. Unfortunately, such injections can increase the
gate count and circuit depth, which can have side effects on the
solution quality produced by OpaQue on real noisy quantum hard-
ware (i.e., OpaQue’s circuit producing higher TVD than the original
unobfuscated circuit).

First, we compare the number of CX gates in the OpaQue-
generated circuits and the corresponding baseline circuits. We do
not plot this result as across all algorithms, the number of CX gates

remains the exact same as the baseline circuit. This is by design,
as OpaQue ensures during the block synthesis process that the
number of CX gates are not increased to avoid the impact of their
high error rates on the program output on noisy quantum comput-
ers. This enables OpaQue not to increase the output error, as we
see in the next subsection. Note also that because of the CX count
remaining the same and the synthesis procedure only being applied
to two-qubit blocks, OpaQue also does not incur any increase in
circuit depth (number of CX gates on the critical path). We do not
show this result to avoid repetition, as all algorithms incur a 0%
increase in circuit depth.

Second, we compare the number of SX+X gates in the OpaQue-
generated circuits to the number of SX+X gates in the baseline
circuits in Fig. 11. Even though these two one-qubit gates are dif-
ferent in terms of their impact on the quantum state, we group the
two together because they have the same error rates as far as the
hardware noise effects are concerned. On average, the number of
SX+X gates is increased by 13.6%, and the number of RZ gates is
increased by 11.6% (not shown for brevity; RZ gates are virtual gates
and have no contribution to the error effects). While the increases
are non-negligible, they do not have much impact on the output
noise – as we will observe in the next part of the evaluation where
we demonstrate real-hardware results – due to the little-to-none
error impact of the one-qubit gates.

Answer to RQ3. OpaQue does not increase the two-qubit CX gate

count (by design) – CX gates have the highest error rate on real

machines and, hence, impact the program output on real machines.

On average, the number of single-qubit SX+X gates is increased by

13.6%, but as shown next, this magnitude of increase has negligible

impact on the program output.

RQ4. What is the compilation overhead of OpaQue?

Analytically examining the compilation overhead and complex-
ity of OpaQue is challenging, as the overhead of synthesis can
vary from algorithm to algorithm based on the intricacies of the
circuit structure. Nonetheless, we empirically analyze the compila-
tion overhead of OpaQue. Table 2 shows the compilation times of
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Figure 12: Execution on real quantum hardware shows that

OpaQue’s corrected output is able to achieve a similar TVD

to the ideal output as the baseline output.
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Figure 13: The TVD difference between the baseline and

OpaQue outputs does not increase with increase in the per-

cent of SX+X gates in the circuit (relative to SX+X+CX).

all the algorithms for the baseline circuit and OpaQue-generated
circuit. The table shows that the compilation times with OpaQue
increase by 2 × on average over the baseline compilation times.
These increases are negligible compared to the queue wait times
on quantum cloud, which tend to be in the order of hours [26]. We
also note that decoding in OpaQue is a simple classical bit-flipping
operation that does not introduce meaningful computational over-
head. In the worst case, this would involve flipping the qubits of
each shot if each shot produces a different state. Thus, it scales
linearly with the number of shots.

Answer to RQ4. OpaQue’s compilation overhead is low and prac-

tical – often orders of magnitude lower than the queue wait times

on quantum cloud platforms.

RQ5. Is OpaQue effective on real quantum machines?

We now examine OpaQue’s performance on real quantum com-
puters for algorithms up to 32 qubits. The noise levels only impact
the output and not the circuit structure; therefore, we only analyze
the output metrics.

Fig. 12 shows the difference between the TVD of the baseline
output on noisy IBM computers (relative to the ideal simulation
output) and the TVD of OpaQue’s output on noisy IBM computers
(also relative to the ideal simulation output). When this metric is
positive, it indicates that the baseline has a higher error, and when
it is negative, it indicates that OpaQue has a lower error. The figure
shows that both TVDs are largely similar (maximum difference
of 0.05 or 5%). That is, the hardware noise similarly impacts both
techniques – this is primarily due to OpaQue’s design element that
enforces the CX gate count in the obfuscated circuit to be the same as
the baseline circuit. In fact, as Fig. 13 shows, the difference between
the baseline’s TVD and OpaQue’s TVD remains low even if SX+X
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Figure 14: Variational quantum algorithms like QAOA follow

a hybrid quantum-classical approach to iteratively optimize

the parameters of a circuit to achieve a specific objective.

OpaQue works to obfuscate each iteration.

gates form a large percent (> 75%) of all the physical gates in the
circuit (each point in the figure corresponds to one real-hardware-
evaluated algorithm). Thus, the additional one-qubit physical gates
added by OpaQue do not have a major impact on the output error
in noisy environments, as CX gates largely dominate the errors.

We also note that due to the high noise level, the baseline output
is also not able to identify the dominant state correctly in many
cases. Nonetheless, OpaQue is able to identify the dominant state
whenever the baseline does (not shown in a figure). These results
demonstrate how OpaQue successfully scrambles the output and
decodes it in a high-noise setting.

Answer to RQ5. OpaQue’s remains effective on real quantum

hardware and does not increase the output error – OpaQue’s cor-

rected output is able to achieve a similar TVD to the ideal output

as the baseline output.

4.1 Case Study: Iterative Optimization of a

Variational Algorithm using OpaQue

We now perform a case study of a variational algorithm using the
4-qubit QAOA MaxCut problem. In a variational algorithm, the
circuit gate angles are treated as parameters, and these parameters
are tuned to optimize for a specific objective. Thus, many machine
learning or optimization problems fall under the domain of varia-
tional algorithms [20]. We perform this case study for a variational
algorithm because it involves iteratively running the same parame-
terized circuit with different parameters. Thus, it can be argued that
the optimizer can converge to a sub-optimal solution or take longer
to converge if OpaQue obfuscates the circuit for each iteration.
Our experimental results demonstrate that OpaQue continues to
be effective for iterative variational algorithms – the optimization
quality and time to convergence are not impacted by OpaQue’s
obfuscation.

Fig. 14 shows the iterative structure that a variational algorithm
follows with OpaQue. Before shipping out the quantum circuit
to the cloud for execution at each iteration, OpaQue decodes the
resulting output from the previous iteration before the output is
fed to the optimizer, and then, OpaQue obfuscates the circuit in
preparation for the next round of optimization. We focus on the
4-qubit QAOA MaxCut problem, as QAOA provides a specific cir-
cuit template suitable for many variational problems. The MaxCut
problem involves dividing the nodes of a graph into two sets such
that the number of edges between the two sets is maximized.

In our case, the graph has four nodes connected to form a rec-
tangle. Therefore, the problem has two solutions, “1010” and “0101”,

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(a) Baseline

(b) OPAQUE

RZ

SX

X

Measure

CX

Figure 15: Visual circuit structure comparison of the baseline

circuit and the OpaQue-generated circuit for the last itera-

tion shows how different the two circuits are with all traces

of X- and RX-gate injections being erased.
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Figure 16: The loss curve with OpaQue’s corrected output

traces the baseline loss curve. However, when the output is

not corrected, the variational algorithm cannot be optimized

due to the scrambled results.

where 0 and 1 are labels for the two sets, and the bitstring indicates
the set that the nodes belong to in order from 1 to 4. The goal of the
optimizer is to adjust the parameters such that these two solutions
have the highest probabilities and can be successfully identified.
We chose this small problem so that we can investigate it visually.

We first visually examine how the OpaQue generated circuit
differs from the baseline circuit in this case. Fig. 15 shows the two
circuits during the last optimization iteration. Note also that the
circuit structure for each iteration varies because the synthesis
step generates different circuit structures (the parameterized angles
vary from one iteration to another). Thus, there is no concern of
an adversary being able to infer information about the algorithm –
the concern would be present if the circuit structure remains the
same throughout iterations. In the figure, we only show the last-
iteration circuits for brevity. The two circuits look substantially
different (NetLSD is 2.3 × 102) in terms of the number of gates and
the gate placement within the circuits. In addition, the RZ gates in
both circuits have very different angles (not shown here for clarity).
Thus, the structure is successfully obfuscated.

Next, we assess the success of OpaQue’s output obfuscation
when run on a real quantum computer (IBM Lagos). Fig. 16 shows
the loss curves over the optimization iterations for three cases:
baseline (no obfuscation), uncorrected (OpaQue encoder is applied,
but the decoder is not, i.e., the perspective of the adversary), and
corrected (both OpaQue encoder and decoder are applied). We
make several observations. First, we observe that the loss curve of
OpaQue closely follows the loss curve of the baseline circuit. This
means that while OpaQue successfully obfuscates every iteration, it
is still able to optimize variational algorithms just as efficiently and
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Figure 17: The output corrected with OpaQue’s decoder can achieve an output distribution similar to the original circuit’s

baseline output. It is thus able to identify the two solution states for the QAOAMaxCut problemwith the dominant probabilities.

The obfuscated uncorrected output is not able to identify these states.

effectively as the baseline technique – in other words, the solution
quality and time to convergence are not affected.

Second, when the output is not corrected with the OpaQue
decoder, but the circuit remains obfuscated, the optimizer is not
able to make any progress toward minimizing the loss as each
iteration generates scrambled outputs of different types, which
cannot be used toward the optimization of a specific objective.
This indicates that the cloud provider, which has access to only
uncorrected output, cannot make forward progress in an iterative
optimization problem. Third, Fig. 17 shows that OpaQue maintains
the solution quality. The corrected OpaQue output distribution
over all the states closely resembles the baseline output distribution.
Both techniques are able to identify the two solution states as they
have the dominant probabilities. On the other hand, the circuit
optimized using the uncorrected output has a completely different
distribution, where the two states with the highest probabilities
are non-solution states. Thus, an adversary that tries to optimize

this problem using the uncorrected output will neither be able to

identify the original circuit structure nor the correct solution. This

demonstrates the applicability of OpaQue to variational algorithms.

5 Conclusion

This work introduces OpaQue to protect quantum code and output
from adversarial snooping in the quantum cloud. OpaQue leverages
circuit-end X-gate injections for output obfuscation and throughout-
circuit RX-gate injections for structural obfuscation. Through exten-
sive simulations and real-hardware evaluations, we demonstrate
the effectiveness of OpaQue in obfuscating circuit structure and
output while maintaining the output fidelity of the algorithm.
Data Availability: https://zenodo.org/doi/10.5281/zenodo.
10896069.
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