
HR-SpMM: Adaptive Row Partitioning and Hybrid
Kernel Design for Sparse Matrix Multiplication

Qi Wang
School of Computer Science and

Technology
Southwest University of Science

and Technology
Mianyang, Sichuan, China
qiwang0617@foxmail.com

Yaobin Wang
School of Computer Science and

Technology
Southwest University of Science

and Technology
Mianyang, Sichuan, China
wangyaobin@foxmail.com

Yi Luo
School of Computer Science and

Technology
Southwest University of Science

and Technology
Mianyang, Sichuan, China

yiluose@gmail.com

Rong Luo
School of Computer Science and

Technology
Southwest University of Science

and Technology
Mianyang, Sichuan, China
luorong@swust.edu.cn

Pingping Tang
School of Computer Science and

Technology
Southwest University of Science

and Technology
Mianyang, Sichuan, China
tangpingping@swust.edu.cn

Abstract
Sparse Matrix-Matrix Multiplication (SpMM) plays a critical
role in high-performance computing and applications like
Graph Neural Networks (GNNs). However, due to the spar-
sity and irregularity of real-world data, optimizing SpMM
performance on modern GPUs has remained a significant
challenge. Existing methods often involve trade-offs between
load balancing and hardware utilization, making it difficult
to efficiently handle both long and short rows in sparse ma-
trices.
To address these issues, we propose HR-SpMM, a light-

weight framework based on adaptive row partitioning and
hybrid kernel design. HR-SpMM divides sparse matrix rows
into two categories: long rows and short rows, leveraging
Tensor Cores and CUDA Cores, respectively, to optimize
computational efficiency. Long rows are further partitioned
into fixed-size blocks to fully align with the hardware char-
acteristics of Tensor Cores, while short rows adopt a flexible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725770

tiling strategy to maximize thread-level parallelism. Addi-
tionally, the framework introduces auxiliary arrays for effi-
cient indexing and offset management, significantly reducing
preprocessing overhead. We used the DLMC(Deep Learning
Matrix Collection) and SuiteSparse datasets, and compared
HR-SpMM with SOTA. Our method achieves an average
speedup of 2.05 times over cuSPARSE, 2 times over the latest
Tensor Core-based TC-GNN, and 1.25 times over Sputnik.
Additionally, while ensuring acceleration, we keep the pre-
processing overhead extremely low, averaging only 12% of
Sputnik’s preprocessing cost.

CCS Concepts
• Computer systems organization→ Single instruction,
multiple data.

Keywords
CUDA Cores, Tensor Cores, SpMM, Load Balancing

ACM Reference Format:
Qi Wang, Yaobin Wang, Yi Luo, Rong Luo, and Pingping Tang. 2025.
HR-SpMM: Adaptive Row Partitioning and Hybrid Kernel Design
for Sparse Matrix Multiplication. In 2025 International Conference
on Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3721145.3725770

1 Introduction
Sparse matrix-matrix multiplication (SpMM) [13] is a criti-
cal operation in various high-performance computing and
machine learning applications, particularly in graph neural

https://orcid.org/0009-0003-0204-6678
https://orcid.org/0009-0005-6602-9994
https://orcid.org/0009-0002-2800-6976
https://orcid.org/0009-0000-2307-7674
https://orcid.org/0000-0002-5888-975X
https://doi.org/10.1145/3721145.3725770
https://doi.org/10.1145/3721145.3725770
https://doi.org/10.1145/3721145.3725770


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Qi Wang et al.

networks (GNNs) [22]. In GNNs, SpMM dominates computa-
tional workloads during training and inference, especially
in the aggregation phase, where node features are propa-
gated and combined across graph structures [28]. Despite
its importance, SpMM remains challenging to optimize on
modern GPUs due to the inherent irregularity and sparsity
of real-world data. The uneven distribution of non-zero ele-
ments across rows and columns often leads to imbalanced
workloads, inefficient GPU resource utilization, and signifi-
cant performance bottlenecks [12, 24]. Optimizing SpMM is
thus key to improving computational throughput and mem-
ory efficiency, enabling faster data processing in resource-
constrained environments.

Modern GPUs provide two main computational resources:
CUDA cores [11, 14, 18], which are versatile and better
suited for sparse matrix computations, and Tensor Cores
[27], which deliver high throughput for dense matrix multi-
plication. While Tensor Cores have shown immense promise
in accelerating dense computations, their efficiency in sparse
workloads is significantly hindered by the need for uniform,
structured input data. This limitation creates a computational
gap when dealing with sparse matrices, where most of the
matrix elements are zeros, rendering Tensor Cores underuti-
lized. On the other hand, CUDA cores, while more flexible
for handling sparsity, often lack the computational density
to fully exploit the hardware throughput offered by GPUs
for larger, denser regions of data. Consequently, designing
an efficient SpMM framework capable of leveraging both
computational resources remains a pressing challenge.
In existing SpMM kernels, one row of a sparse matrix

is typically allocated to a warp (a group of 32 threads on
NVIDIA GPUs), with each non-zero element processed by
a single thread [4]. However, this approach encounters sig-
nificant inefficiencies due to the irregular distribution of
non-zero elements across rows.
We divide rows into two categories: short rows, which

contain fewer than 64 nonzero elements and are processed
by CUDA cores, and long rows, which contain 64 or more
nonzero elements and are processed by tensor cores.
We chose the threshold of 64 nonzero elements based

on the architectural characteristics of tensor cores and the
thread-level parallelism of GPUs. Tensor cores operate on
fixed-size input blocks, typically multiples of 8× 8× 8, which
makes 64 (i.e., 8 × 8) and its multiples a natural fit for split-
ting sparse rows. This choice ensures that long rows can be
efficiently processed in aligned blocks, fully utilizing the com-
putational density of tensor cores while minimizing padding
and fragmentation overhead. Additionally, the CUDA kernels
we use perform well on rows with fewer than 64 nonzero
elements.

Figure 1: Distribution of average Row Lengths and Row
Length in Sparse Matrices from DLMC and SuiteSparse
Datasets.

As shown in Figure 1 (left), we analyzed 1,000 randomly
selected matrices from the DLMC(Deep Learning Matrix Col-
lection) and SuiteSparse datasets. The results indicate that
most matrices have an average row length of fewer than 64,
with only a small portion exceeding this threshold. Figure 1
(right) shows that 89% of rows have fewer than 64 nonzero
elements, while the remaining rows exceed 64. Moreover,
rows with fewer than 32 nonzero elements account for 79%.
A large number of short rows reduce computational resource
utilization because hardware threads may remain idle for
extended periods when processing these rows, leading to sig-
nificant performance losses. Additionally, the small fraction
of long rows is another critical factor affecting performance.
Some of these rows even contain thousands of nonzero el-
ements, causing severe load imbalance among warps, as a
single warp is forced to process too many nonzero elements,
reducing parallel efficiency [4].
This analysis highlights that the uneven distribution of

nonzero elements across rows (characterized by the coex-
istence of extremely short and extremely long rows) is a
major factor limiting SpMM performance. Therefore, design-
ing more efficient SpMM kernels must prioritize addressing
the performance impact of both short and long rows.

To address these shortcomings, we propose HR-SpMM, a
hybrid SpMM framework that combines fine-grained row
partitioning with efficient GPU resource utilization. Sparse
rows are divided into two categories: long rows and short
rows. Long rows with 64 or more non-zero elements are
further subdivided into fixed-size segments of 64 non-zero
elements (and their multiples), ensuring an efficient match
with Tensor Core requirements. The remaining portion of
long rows is processed together with short rows using CUDA
Cores, employing a flexible tiling strategy to maximize warp-
level parallelism. This approach not only avoids fragmenta-
tion but also ensures a balanced workload between Tensor
Cores and CUDA Cores. Furthermore, HR-SpMM introduces
a lightweight preprocessing step using one auxiliary array
for indexing and offset management, significantly reducing
overhead compared to prior methods. By efficiently address-
ing both short and long rows, HR-SpMM achieves superior



HR-SpMM: Adaptive Row Partitioning and Hybrid Kernel Design for Sparse Matrix Multiplication ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

load balancing, minimizes resource underutilization, and
delivers enhanced performance for a wide range of sparse
matrix patterns.

2 Background
In this section, we present background information on sparse
matrices in Graph neural Networks (GNNS), computational
kernels, sparsematrixmultiplication (SpMM), the Compressed
Sparse Row (CSR) format for sparse matrix representation,
and recent advances in dealing with sparse matrices.

2.1 Sparse Matrix-Matrix Multiplication
(SpMM)

In deep learning and computer science, SpMM typically
refers to Sparse Matrix Multiplication [13]. Sparse Matrix
Multiplication is a crucial problem in computer science and
numerical computation, especially when dealing with large-
scale data and machine learning applications. SpMM algo-
rithms aim to improve the efficiency of sparse matrix multi-
plication by reducing unnecessary computations and focus-
ing only on non-zero elements, thereby optimizing the use
of computing resources. With the rapid development of big
data and artificial intelligence, there has been an increasing
demand across various fields for efficient sparse matrix multi-
plication. Therefore, the research and optimization of SpMM
algorithms have become important research directions.
Sparse matrix-matrix multiplication (SpMM) is a critical

operation in many high-performance computing and ma-
chine learning applications. It involves the multiplication of
a sparse matrix A with a dense matrix B, resulting in a dense
matrix C. While efficient on dense matrices, GPU accelera-
tion of SpMM is challenging due to the irregular distribution
of non-zero elements in sparse matrices, leading to imbal-
anced workloads and inefficient memory access patterns.
These issues significantly impact performance, especially in
graph-related tasks such as graph neural networks (GNNs),
where SpMM is a core operation.

Many researchers are dedicated to proposing more effi-
cient SpMM algorithms to address the computational chal-
lenges posed by large-scale sparse matrices. These algo-
rithms typically integrate hardware features, parallel comput-
ing, and optimization techniques to enhance computational
speed and efficiency. Many independent SpMM studies have
achieved better performance than cuSPARSE [18](NVIDIA’s
official math library), but they are not applicable to main-
streamGNN computing frameworks. ASpT [14] utilizes dense
matrix data and requires a special sparse format composed
of CSR and additional arrays to explicitly mark the positions
of locally-dense blocks explicitly. TLPGNN [10] divides GNN
computations into two levels, adopting a hybrid dynamic

load balancing method to address load imbalance issues. GE-
SpMM [15], based on GPU hardware, optimizes the reuse of
sparse row data in the row-partitioning algorithm through
shared memory, thereby improving parallel performance of
SpMM by reducing memory transactions [30].

2.2 Graph Neural Networks (GNNs)
Graph neural networks (GNNs) have emerged as a powerful
tool for learning from graph-structured data, with applica-
tions spanning recommendation systems, molecular prop-
erty prediction, and social network analysis [19, 25, 26]. A
key operation in GNNs is the aggregation of node features,
where information is propagated across graph edges to up-
date node embeddings [9, 16]. This process involves sparse
matrix-matrix multiplication (SpMM), where a sparse adja-
cency matrix A is multiplied by a dense feature matrix B to
generate the updated feature matrix C.

The efficiency of SpMM is crucial for GNNs, as it directly
impacts the computational cost of both training and infer-
ence [20, 27, 29]. However, the irregular sparsity patterns
of real-world graphs, such as power-law distributions of
node degrees, pose significant challenges for achieving high
parallel efficiency on modern GPUs.

2.3 GPU Computation Cores
CUDACores are the general-purpose compute units in NVIDIA
GPUs, designed to handle a wide range of arithmetic and
logical operations [1]. Each CUDA Core is a simple scalar
processor capable of executing individual threads in paral-
lel. On GPUs, threads are organized into warps, with each
warp consisting of 32 threads that execute instructions in
lockstep. This warp-based execution model allows CUDA
Cores to provide high parallelism and efficient utilization of
GPU resources for a variety of computational workloads.

Figure 2: Operations of SpMM in CUDA Cores and
GEMM in Tensor Cores.



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Qi Wang et al.

Figure 2 (left) shows the operations of SpMM in CUDA
Core. In sparse matrix-matrix multiplication (SpMM), CUDA
Cores play a critical role due to their flexibility in handling
irregular sparsity patterns. Typically, one row of a sparse
matrix is assigned to a warp, with each thread processing a
single non-zero element. This thread-to-element mapping
ensures that irregular data distributions in sparse matrices
can be processed efficiently, even if rows have varying num-
bers of non-zero elements. For rows with fewer non-zero
elements, CUDA Cores avoid the padding overhead that
Tensor Cores would require, making them better suited for
handling short rows or sparse regions of the matrix.

The strength of CUDACores lies in their ability to dynami-
cally adapt to varying sparsity levels and irregular data struc-
tures, which are common in real-world applications such
as graph neural networks (GNNs). CUDA Cores efficiently
manage the irregular computations that arise in SpMM op-
erations, ensuring balanced utilization of GPU hardware.
Tensor Cores are specialized computational units devel-

oped by NVIDIA, first introduced in the Volta GPU archi-
tecture, and subsequently included in Turing, Ampere, and
Hopper architectures [5, 17, 21]. These cores are designed
to accelerate matrix computations, which are critical for
applications in machine learning, deep learning, and scien-
tific computing. Figure 2 (right) illustrates the operations of
GEMM in Tensor Core. Tensor Cores operate on fixed-size
matrix fragments, such as 16×8×8 inmixed-precision formats,
performing fused multiply-add operations in the form D = A
× B + C [23]. They achieve high computational throughput by
combining multiple lower-precision arithmetic operations
into a single instruction cycle, allowing for efficient execu-
tion of matrix multiplication and accumulation tasks. Sup-
ported data types include FP16, BF16, TF32, and INT formats,
which balance precision and speed for tasks such as training
and inference in deep neural networks [8]. By working at
the warp level (32 threads), Tensor Cores deliver substantial
performance improvements over traditional CUDA cores,
particularly in dense matrix multiplication. However, their
efficiency relies on structured and aligned data, which makes
their use in irregular workloads like sparse matrix operations
challenging. Nonetheless, their ability to handle structured
fragments with minimal overhead has made them a critical
hardware feature for accelerating large-scale computations.

2.4 CSR
The sparse matrix representation is in COO format, but COO
format has certain limitations in terms of storage and compu-
tational efficiency in SpMM operations. Therefore, it is con-
verted to the CSR (Compressed Sparse Row) format, which
is widely adopted due to its compactness and efficiency [13].

Figure 3: The sparse matrix (left) and its CSR represen-
tation (right).

As shown in Figure 3, in the CSR format, three one-dimensional
arrays are used to represent a sparse matrix: 1. Row_Ptr: This
array contains the starting offset positions of the first ele-
ment of each row. 2. Col_Ind: This array contains the column
indices corresponding to the elements in the values array. 3.
Values array: This array contains all the non-zero elements
of the matrix.

3 Related Works And Motivation
Sparse matrix-matrix multiplication (SpMM) has been the
focus of extensive research due to its critical role in graph
neural networks (GNNs), scientific computing, and other do-
mains. Existing methods primarily address the challenges of
irregular sparsity, load imbalance, and efficient hardware uti-
lization by optimizing data representation, workload sched-
uling, and GPU kernel designs.

One line of work focuses on designing efficient data struc-
tures for sparsematrices, such as the Compressed Sparse Row
(CSR) format and its variants. While CSR is highly memory
efficient and widely used, it struggles to balance workloads
on GPUs due to the irregular distribution of non-zero ele-
ments across rows. To address this, formats like Compressed
Sparse Blocks (CSB) and Hybrid CSR-COO have been pro-
posed, which improve memory coalescing and hardware
efficiency [2, 3, 6, 7]. However, these methods often incur ad-
ditional preprocessing costs and lack flexibility in handling
both short and long rows effectively.

Another line of research emphasizes workload scheduling
to reduce load imbalance during SpMM execution [11]. For
example, Sputnik introduces the Row Offset Modification
Algorithm (ROMA) to redistribute computation by reorder-
ing sparse matrix rows, while dynamic row tiling assigns
rows with fewer non-zero elements to smaller thread groups.
Although these approaches effectively balance workloads
and improve CUDA core utilization, they often introduce
significant overhead for matrix reordering and fail to fully
leverage Tensor Cores for acceleration.

Recent work has also leveraged Tensor Cores to implement
SpMM. For instance, TC-GNN is the first and most recent
framework to adopt a Tensor Core strategy for SpMM [27].
It converts sparse matrices into dense submatrices to take
advantage of Tensor Core acceleration, achieving significant



HR-SpMM: Adaptive Row Partitioning and Hybrid Kernel Design for Sparse Matrix Multiplication ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

performance improvements in GNN training and inference.
However, the preprocessing overhead required to generate
dense submatrices and the padding needed to align rows
with fixed tile sizes remain major challenges.

While existing methods have made substantial progress,
they often fail to simultaneously address the combined chal-
lenges of irregular sparsity and load imbalance introduced
by short and long rows. To overcome these limitations, we
propose HR-SpMM, a lightweight hybrid framework that
divides sparse rows into short and long categories based
on their non-zero counts. By assigning long rows to Tensor
Cores and short rows to CUDA Cores, HR-SpMM achieves
a balanced workload distribution, minimizes preprocessing
overhead, and maximizes hardware utilization. Unlike pre-
vious approaches that rely on computationally expensive
preprocessing to densely pack non-zero elements from mul-
tiple rows, HR-SpMM transforms a single long row into a
matrix and directly assigns it to Tensor Cores, further reduc-
ing overhead and improving efficiency.

Our contribution is as follows:
1. Accelerated Performance: HR-SpMM achieves signifi-

cant performance improvements by utilizing a hybrid frame-
work that combines Tensor Cores for long rows (with 64 or
more non-zero elements) and CUDA Cores for short rows
(with fewer than 64 elements). This results in an average
speedup of 2.05x over cuSPARSE, 2x over TC-GNN, and
1.25x over Sputnik.

2. Hybrid Framework for Efficient GPU Utilization: The
framework efficiently divides sparse rows into two categories
(long and short rows) and assigns them to different compu-
tational units. Long rows are processed using Tensor Cores,
while short rows are processed by CUDA Cores. This im-
proves resource utilization and enhances computational effi-
ciency.
3. Optimized Memory and Computational Resource Uti-

lization: HR-SpMM also optimizes memory and computa-
tional resources by reducing unnecessary memory transfers
and latency. Through effective memory management tech-
niques such as shared memory and efficient data loading,
the framework reduces overhead and ensures better memory
bandwidth utilization.

4 HR-SpMM Design
HR-SpMM is a lightweight hybrid framework designed to ad-
dress the challenges of irregular sparsity and load imbalance
in sparse matrix-matrix multiplication (SpMM). The key idea
is to partition sparse rows into short rows and long rows
based on their non-zero counts, with long rows assigned
to Tensor Cores and short rows processed by CUDA Cores.
This design ensures efficient utilization of GPU hardware
resources while minimizing preprocessing overhead.

4.1 Row Partitioning
The first step in HR-SpMM is partitioning the sparse matrix
rows into two categories:

Figure 4: Sparse Matrix Row Partitioning: Long Rows
and Short Rows.

As shown in Figure 4, the original sparse matrix is divided
into two parts during preprocessing:
Long Rows: Rows containing 64 or more non-zero ele-

ments (aligned to multiples of 64). For example, in the figure,
rows with indices 0, 1, and 3 are classified as long rows,
where their non-zero elements are grouped into chunks of
64 or more. Notably, to achieve load balancing, we set the
maximum length of a long row to 256 non-zero elements. In
other words, if a long row contains 320 non-zero elements,
we divide it into two long rows: one with 256 non-zero ele-
ments and the other with 64 non-zero elements, and handle
them using atomic addition.

Short Rows: Rows containing fewer than 64 non-zero ele-
ments, such as the row with index 2, as well as the remain-
ing elements from long rows that do not form complete
64-element chunks, like the leftover elements from the row
with index 3.

After partitioning the sparse matrix into long rows and
short rows, an auxiliary array, New Row Index, is introduced
to efficiently manage the computation. This array maps the
original row indices to their corresponding positions in the
partitioned structure. For example:

In the figure 4, original row index 0 is mapped to new row
index 0 in the long rows. Row index 3 is split into two parts:
the long row part maps to new row index 3 in the long rows,
while the short row part maps to new row index 3 in the short
rows. The offsets for processing the non-zero elements are
not explicitly stored, as they can be inferred during runtime
based on the structure of the partitioned matrix.

As illustrated in Algorithm 1, the preprocessing is straight-
forward, with a time complexity of O(N), where N is the



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Qi Wang et al.

Figure 5: HR-SpMM Overview: Flowchart of Adaptive Row Partitioning and Hybrid Kernel Design for Sparse
Matrix Optimization.

number of rows in the matrix. This process involves ex-
tracting the necessary metadata and iterating through the
Row_Ptr array of the CSR format. During the calculation of
the New Row Index, the offsets for the partitioned rows are
also computed simultaneously. This lightweight preprocess-
ing ensures minimal overhead while effectively preparing
the matrix for efficient computation.

4.2 Design Overview of HR-SpMM
As shown in Figure 5, this is the overall design of our frame-
work. The sparse matrix A is preprocessed and partitioned
into two parts: long rows and short rows, which are handled
by different kernels.

4.2.1 Design for Long Rows. We first introduce the process-
ing of long rows. Due to image size constraints, 64 non-zero
elements are assigned to a single thread block for process-
ing, forming a matrix with 4 elements. Each sparse row is
transformed into a smaller dense matrix. Once the vectors
are transformed into matrices, these transformed matrices
are passed to the Tensor Core to perform accelerated GEMM
(General Matrix Multiplication) operations.

In our implementation, we utilize the 8 × 8 × 8 block size
as a logical unit of computation for Tensor Core operations.
While Tensor Cores on Ampere GPUs officially support a
minimum MAC(Matrix Multiply and Accumulate) instruc-
tion size of 16 × 8 × 8, the use of 8 × 8 × 8 arises from the
need to better align with the irregular sparsity patterns of
the input matrix. Specifically, when handling sparse rows
with uneven non-zero distributions, smaller block sizes such
as 8 × 8 × 8 allow for more fine-grained mapping of non-
zero elements to Tensor Core operations, minimizing the
computational waste caused by padding. At the same time,
we use shared memory to optimize global memory access
and reduce data movement overhead. This design choice
ensures efficient utilization of Tensor Core resources while
preserving compatibility with the underlying hardware’s
MAC instructions. Furthermore, the subdivision of larger
operations into smaller blocks facilitates parallelism within
thread blocks, enabling warps to collaborate effectively and
accumulate intermediate results for sparse matrix computa-
tions.



HR-SpMM: Adaptive Row Partitioning and Hybrid Kernel Design for Sparse Matrix Multiplication ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Algorithm 1: Parallel Preprocessing
1 Input: Row_Ptr
2 Output: New_Row_Index
3 target_row;
4 𝑛𝑛𝑧 =

𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 + 1] − 𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤];
5 𝑆ℎ𝑜𝑟𝑡_𝑅𝑜𝑤_𝐹𝑙𝑎𝑔 = (𝑛𝑛𝑧%64) > 0;
6 𝐿𝑜𝑛𝑔_𝑅𝑜𝑤_𝐹𝑙𝑎𝑔 = (𝑛𝑛𝑧 > 64);
7 𝑆ℎ𝑜𝑟𝑡_𝑅𝑜𝑤_𝑃𝑟𝑒 𝑓 𝑖𝑥_𝑆𝑢𝑚 =

𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑠𝑢𝑚(𝑆ℎ𝑜𝑟𝑡_𝑅𝑜𝑤_𝐹𝑙𝑎𝑔);
8 𝐿𝑜𝑛𝑔_𝑅𝑜𝑤_𝑃𝑟𝑒 𝑓 𝑖𝑥_𝑆𝑢𝑚 =

𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑠𝑢𝑚(𝐿𝑜𝑛𝑔_𝑅𝑜𝑤_𝐹𝑙𝑎𝑔);
9 if 𝑆ℎ𝑜𝑟𝑡_𝑅𝑜𝑤_𝐹𝑙𝑎𝑔 > 0 then

10

𝑁𝑒𝑤_𝑅𝑜𝑤_𝐼𝑛𝑑𝑒𝑥_𝑠ℎ𝑜𝑟𝑡 [𝑆ℎ𝑜𝑟𝑡_𝑅𝑜𝑤_𝑃𝑟𝑒 𝑓 𝑖𝑥_𝑆𝑢𝑚] =
𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 ;

11 end
12 if 𝐿𝑜𝑛𝑔_𝑅𝑜𝑤_𝐹𝑙𝑎𝑔 > 0 then
13

𝑁𝑒𝑤_𝑅𝑜𝑤_𝐼𝑛𝑑𝑒𝑥_𝑙𝑜𝑛𝑔[𝐿𝑜𝑛𝑔_𝑅𝑜𝑤_𝑃𝑟𝑒 𝑓 𝑖𝑥_𝑆𝑢𝑚] =
𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 ;

14 end

The SpMM algorithm processes a sparse row vector A[i:]
and a dense column vector B[:j]. These vectors are reshaped
into operand matrices: the sparse row becomes a row-major
matrix, and the dense column becomes a column-major ma-
trix. This transformation reformulates the dot product oper-
ation into blocked matrix-matrix multiplication. The Tensor
Core performs MAC (Matrix Multiply-Accumulate) instruc-
tions on these matrices, generating intermediate results in
the form of partial output matrices. The final result is ob-
tained by aggregating the diagonal elements of the output
matrices through a trace operation, optimized with warp
shuffle for parallel reduction.
To efficiently process rows, each thread block handles ei-

ther a full sparse row or a segment of it, depending on the row
length. Since we set the row length to 64 and its multiples,
long rows are split into segments of 64 non-zero elements,
and each segment is assigned to a thread block. All warps
within the block collaborate to execute MAC operations. The
sparse row segments are loaded from global memory in CSR
format and stored in shared memory, allowing fast access
by all warps in the block. Similarly, the dense column vec-
tors are compressed and stored in shared memory to reduce
memory access overhead.
As shown in Figure 5, the sparse row 0 contains 5 non-

zero elements. To better illustrate, we have assumed that a
block contains only 4 threads, so during the preprocessing
phase, we divide it into a long-row part and a short-row

part. The long-row part requires MAC (Matrix Multiply and
Accumulate) operations. The intermediate results are stored
in accumulator fragments and aggregated through tracking
operations to compute the final result. Then, the results are
merged in shared memory using Atomic Add with the cor-
responding results from the short-row part. The final result
is accumulated into global memory to ensure correctness
when merging outputs from multiple thread blocks. Sparse
row 4 already contains 4 non-zero elements, which can form
a matrix. Therefore, we directly perform the MAC operation
on it, and then use the same method to obtain the final result.
Of course, this operation is performed in parallel with row 0,
and it does not require Atomic Add.

Algorithm 2: Tensor Core Utilization in SpMM Ker-
nel

1 Input: Row_Ptr, New_Row_Index
2 Output: Dense Output Matrix C
3 𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 = New_Row_Index[𝑟𝑜𝑤_𝑖𝑑𝑥];
4 𝑟𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 = Row_Ptr[𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤];
5 𝑡𝑜𝑡𝑎𝑙_𝑛𝑛𝑧 = Row_Ptr[𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 + 1] − 𝑟𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 ;
6 𝑝𝑎𝑟𝑡_𝑛𝑛𝑧 = ⌊𝑡𝑜𝑡𝑎𝑙_𝑛𝑛𝑧/64⌋ × 64;
7 𝑛𝑛𝑧 = min(𝑝𝑎𝑟𝑡_𝑛𝑛𝑧, 256);
8 𝑟𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 = 𝑟𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 + (blockIdx.x

mod (𝑡𝑜𝑡𝑎𝑙_𝑛𝑛𝑧/64)) × 64;
9 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0;

10 𝑜𝑢𝑡𝑝𝑢𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 = output_col_start;
11 for 𝑡𝑖𝑙𝑒 = output_col_start to output_col_end − 1 by

tilewidth do
12 𝑐_𝑡𝑖𝑙𝑒 = 0;
13 // Load sparse row and dense matrix column into

shared memory
14 load.memory(𝑆, 𝐷, shared_memory);
15 𝑏_𝑡𝑖𝑙𝑒 = 𝐵.reshape_k8n8T;
16 for 𝑓 𝑟𝑎𝑔 = 0 to num_fragments − 1 do
17 𝑎_𝑡𝑖𝑙𝑒 = 𝐴[frag : frag + 1] [0 :

Block_Size − 1] .reshape_m16k8;
18 𝑐_𝑡𝑖𝑙𝑒 = 𝑐_𝑡𝑖𝑙𝑒 + 𝑎_𝑡𝑖𝑙𝑒 × 𝑏_𝑡𝑖𝑙𝑒;
19 end for
20 output_buffer[𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑜 𝑓 𝑓 𝑠𝑒𝑡] = trace(𝑐_𝑡𝑖𝑙𝑒);
21 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑜 𝑓 𝑓 𝑠𝑒𝑡 + tilewidth;
22 end for
23 AtomicAdd(𝐶 [target_row] [output_offset],
24 warp_reduce_sum(output_buffer));

4.2.2 Design for Short Rows. OurCUDAkernel design draws
inspiration from Sputnik’s subwarp tiling approach [11], en-
abling each warp to collaboratively process short rows or
multiple rows of the sparse matrix. By treating the warp as



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Qi Wang et al.

the basic computation unit, threads within the warp coop-
erate to load data, perform calculations, and optimize mem-
ory access patterns, reducing synchronization overhead and
maintaining load balance while fully utilizing GPU resources.
For short rows, we leverage a combination of subwarp tiling
and residue unroll techniques to achieve efficient computa-
tion and load balancing. Subwarp tiling divides a warp into
smaller subsets of threads, or subwarps, each responsible
for processing one or more short rows, ensuring that sparse
rows with fewer non-zero elements are efficiently distributed
across threads to avoid underutilization. For cases where non-
zero elements cannot be evenly divided among subwarps,
the residue unroll technique dynamically allocates threads to
process the remaining elements, minimizing branching over-
head and improving thread utilization. Intermediate results
are stored in shared memory to reduce latency, and the final
results for short rows are written directly to global memory.
For the remaining parts of long rows, Atomic Add is used to
accumulate intermediate results into global memory.

As shown in Figure 5, the remaining part of the long row
at index 0 is marked as a short row, and indices 0, 1, and 2
are assigned to a single thread block for processing. Since
we assume that a thread block contains only four threads,
index 3 is assigned to another thread block. The result of the
short row at index 0 is then accumulated with the result of
the long row at index 0 using an atomic addition. Although
the atomic addition introduces a certain amount of overhead,
our method effectively achieves load balancing.

4.3 HR-SpMM Kernel
As shown in Algorithm 2, the Long Row Algorithm is an op-
timized sparse matrix-dense matrix multiplication algorithm,
primarily designed for efficiently computing the matrix prod-
uct of long rows. First, the target row to be processed is
selected, and the number of non-zero elements in the row
is calculated using the row pointers and row indices from
the input sparse matrix. Then, the row is divided into multi-
ple blocks, with each block processed by a thread block to
ensure appropriate workload distribution. In lines 13 and
14, each thread block loads the sparse matrix row data and
the dense matrix column data into shared memory, utilizing
Tensor Cores for efficient matrix multiplication. Finally, the
computation results are stored in the local buffer in shared
memory, and after completion, the results are accumulated
into the global output matrix C at the corresponding posi-
tions using atomic add operations, ensuring data consistency
during parallel computations. The overhead of transforming
a row into a matrix is very small and can be neglected.

As shown in algorithm 3, since Sputnik’s method is partic-
ularly suitable for our method, we use its method to deal with
our rows part less than 64, the first 5 lines, we use ROMA

algorithm to compute the index and nnz, and then, in lines
6 through 12, using 1D Tiling technique and residue unroll,
Each thread block loads the relevant data of sparse matrix
A and dense matrix B into shared memory and computes
it to optimize memory access and improve computational
efficiency. Finally, for the remaining elements of the long
line, we use AtomicAdd in shared memory, and for the short
line, we write it directly into the output matrix C. Through
these techniques, the algorithm can significantly improve
the computational efficiency when dealing with sparse matri-
ces, especially in deep learning applications, and can greatly
improve the computational performance of sparse matrices.

Algorithm 3: Cuda Core Utilization in SpMM Kernel
1 Input: New_Row_Index, m_idx, Row_Ptr
2 Output: Dense Output Matrix C
3 𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 = 𝑁𝑒𝑤_𝑅𝑜𝑤_𝐼𝑛𝑑𝑒𝑥 [𝑚_𝑖𝑑𝑥];
4 𝑛𝑛𝑧 = (𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 + 1] −

𝑅𝑂𝑀𝐴(𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤]))%64;
5 𝑟𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 = 𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤 + 1] − 𝑛𝑛𝑧;
6 𝑐_𝑡𝑖𝑙𝑒 = Tile1D(init_to=0);
7 while 𝑛𝑛𝑧 > 0 do
8 𝑎_𝑡𝑖𝑙𝑒 = LoadTileShared(𝐴);
9 𝑏_𝑡𝑖𝑙𝑒 = LoadTileShared(𝐵);

10 𝑐_𝑡𝑖𝑙𝑒 = 𝑐_𝑡𝑖𝑙𝑒 + 𝑎_𝑡𝑖𝑙𝑒 × 𝑏_𝑡𝑖𝑙𝑒;
11 𝑛𝑛𝑧 = 𝑛𝑛𝑧 − 𝑘𝑈𝑛𝑟𝑜𝑙𝑙 ;
12 end while
13 if

𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤+1]−𝑅𝑜𝑤_𝑃𝑡𝑟 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤] ≥
64 then

14 AtomicAdd(𝐶 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤], 𝑐_𝑡𝑖𝑙𝑒);
15 else
16 Add(𝐶 [𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑜𝑤], 𝑐_𝑡𝑖𝑙𝑒);
17 end

5 Evaluation
5.1 Experiment Setup
Datasets:To comprehensively evaluate the proposed SpMM
kernel, we selected 388 datasets from the publicly available
Deep Learning Matrix Collection (DLMC) and SuiteSparse
datasets. These datasets exhibit significant differences in
size, sparsity, and structural characteristics, covering various
real-world application scenarios and effectively testing the
algorithm’s performance under different conditions.

The DLMC dataset includes sparse matrices collected from
deep neural networks, such as Transformer models. These
networks utilize various sparsification and pruning tech-
niques during training and inference to improve efficiency



HR-SpMM: Adaptive Row Partitioning and Hybrid Kernel Design for Sparse Matrix Multiplication ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 6: Comparison of HR-SpMM’s Overall Performance with cuSPARSE, TC-GNN, and Sputnik

and reduce computational overhead. The sparsification tech-
niques include: L0_regularization, Magnitude_pruning, Ran-
dom_pruning, Variational_dropout.

SuiteSparse is a widely-used collection of sparse matrices
from real-world applications, designed for benchmarking
and evaluating sparse matrix algorithms. It includes matri-
ces from diverse fields such as structural engineering, cir-
cuit simulation, image processing, optimization, and graph
analysis. The matrices vary significantly in size, sparsity,
and structural complexity, ranging from small-scale prob-
lems to large-scale ones with millions of rows. SuiteSparse
serves as a valuable resource for testing the performance
and scalability of algorithms like Sparse Matrix-Matrix Mul-
tiplication (SpMM), sparse linear solvers, and graph-based
computations. Its diversity and real-world relevance make
it an essential benchmark for researchers and developers
working on sparse matrix algorithms.

By conducting experiments on the DLMC and SuiteSparse
datasets, we effectively validated the performance and adapt-
ability of the SpMM kernel for handling sparse matrices and
graph data, providing critical insights for optimizing graph
neural networks and addressing sparsity challenges.

Baselines:We compared the performance of HR-SpMM
with state-of-the-art parallel SpMM implementations, includ-
ing Sputnik, cuSPARSE, and TC-GNN. Below is an introduc-
tion to these methods:
Sputnik (Sparse GPU Kernels for Deep Learning) [11]:

Sputnik focuses on the characteristics of sparse matrices in
deep learning and proposes an efficient method for sparse
matrix computations to accelerate deep neural network op-
erations on GPUs. The main contribution of Sputnik is the
development of two high-performance GPU kernels (SpMM
and SDDMM) that operate directly on the standard com-
pressed sparse row (CSR) format without imposing specific
constraints on the locations of non-zero values.

cuSPARSE [18]: cuSPARSE is a library provided byNVIDIA
as part of the CUDA toolkit. It offers a suite of highly opti-
mized sparse matrix operations, including SpMM. As one of
the most widely used GPU-accelerated libraries, cuSPARSE
serves as a benchmark for sparse matrix computations, pro-
viding efficient implementations for a wide range of sparsity
patterns.

TC-GNN [27]: TC-GNN is a framework designed to accel-
erate Graph Neural Network (GNN) computations on GPU
Tensor Cores (TCUs). The core idea is to leverage a "Sparse
Graph Translation" technique, which efficiently maps sparse
GNN computations onto the dense computation capabilities



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Qi Wang et al.

of Tensor Cores. Additionally, TC-GNN employs collabora-
tive optimization between CUDA cores and Tensor Cores to
further enhance performance.

By comparing HR-SpMM with these implementations, we
aim to demonstrate its competitive performance and high-
light its advantages across diverse sparsity levels, hardware
platforms, and application scenarios.
Platform:All experiments were conducted on Ubuntu

20.04, using an Intel Core i9-10900F CPU and an Nvidia RTX
3070 GPU, with CUDA version 11.6.

5.2 Performance Evaluation
In this subsection, we compare HR-SpMM with state-of-the-
art SpMM kernels and conduct comprehensive experiments
to evaluate the proposed optimization techniques.
Figure 6 presents the performance comparison of HR-

SpMM optimization against various parallel SpMM imple-
mentations, using cuSPARSE as the baseline. The execution
time was measured with nvprof, and we reported only the
SpMM kernel time, excluding preprocessing and PCIe trans-
fer overhead. The data transferred via PCIe included only the
dense matrix and the sparse matrix in CSR format. Due to
the significant difference in matrix sizes between the DLMC
and SuiteSparse datasets, we use the speedup ratio to rep-
resent our performance comparison. Our results show that
HR-SpMM achieves an average speedup of 2.05× compared
to cuSPARSE, 2× compared to TC-GNN, and 1.25× compared
to Sputnik. Additionally, to highlight the effectiveness of
the hybrid approach using Tensor Core and CUDA Core, we
also compared HR-SpMM with the PyTorch SpMM kernel
executed on a CPU, achieving an average speedup of 167.59×.

Figure 7: Preprocessing Overhead Comparison: HR-
SpMM vs. Sputnik

For TC-GNN, while preprocessing improves SpMM perfor-
mance by making the matrix denser, it introduces significant

overheads and it doesn’t work particularly well. In contrast,
our approach demonstrates that using a hybrid kernel is ef-
fective, even though HR-SpMM does not always outperform
Sputnik in speedup. However, as shown in Figure 7, Sputnik
involves much higher preprocessing overhead, whereas the
preprocessing time of HR-SpMM is only about 12% of that of
Sputnik. Overall, HR-SpMM achieves better speedups with
significantly lower preprocessing overhead. To illustrate the
validity of our method, we analyze their performance using
an unevenly distributed matrix with both long and short
rows, which represents the bulk of the sparse matrix. In
Table 1, we present the performance metrics of various ker-
nels, highlighting the differences between the cuSPARSE, TC-
GNN, Sputnik, and our HR-SpMM implementations, which
utilize both Tensor Cores and CUDA Cores.
Execution Time: Our HR-SpMM implementation using

Tensor Cores and CUDA Cores significantly reduces ex-
ecution time to just 585 microseconds, much faster than
cuSPARSE (1.8 milliseconds), TC-GNN (1.2 milliseconds),
and Sputnik (4.1 milliseconds). Memory Throughput (GB/s):
Memory throughput measures the amount of data trans-
ferred per second, which is crucial for GPU performance.
The HR-SpMM (Tensor Core) method achieves a memory
throughput of 196 GB/s, and the HR-SpMM (CUDA Core)
implementation reaches 283 GB/s, highlighting its ability
to efficiently handle large data volumes. These values are
much higher than TC-GNN (186 GB/s), Sputnik (32 GB/s),
and cuSPARSE (73 GB/s), showcasing the effective memory
management in our design. Warp Cycles Per Instruction:
This metric measures the number of cycles required to com-
plete one instruction, with lower values indicating better
efficiency. The number of warp cycles of the Tensor core in
our method is relatively smaller than that of the cuda core
because irregular short rows are handled by the cuda core.

In summary, HR-SpMM (Tensor Core) excels in both mem-
ory throughput and warp cycle efficiency, making it ideal for
handling long rows in sparse matrices. On the other hand,
HR-SpMM (CUDA Core) executes faster in terms of execu-
tion time, but it requires more warp cycles due to the need to
handle more irregular matrix rows. This trade-off highlights
how our hybrid approach optimizes performance depending
on the matrix’s characteristics, making HR-SpMM highly
adaptable and efficient for a range of sparse matrix compu-
tations.

6 Conclusion
This paper introduces HR-SpMM, a method that enhances
Sparse Matrix-Matrix Multiplication (SpMM) performance
through adaptive row partitioning and hybrid kernel design.
Our approach partitions sparse matrix rows into long and
short categories, leveraging Tensor Cores and CUDA Cores



HR-SpMM: Adaptive Row Partitioning and Hybrid Kernel Design for Sparse Matrix Multiplication ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Kernel Execution Time Memory Throughput (GB/s) Warp Cycles Per Instr
cuSPARSE 1.8 ms 73 GB/s 13.61
TC-GNN 1.2ms 186 GB/s 23.6
Sputnik 4.1 ms 32 GB/s 26.93
HR-SpMM (Tensor core) 512 us 196 GB/s 12.4
HR-SpMM (Cuda core) 73 us 283 GB/s 28.6

Table 1: Performance Metrics of Different Kernels

for efficient computation, thus maximizing hardware utiliza-
tion and achieving high computational efficiency.

Although the atomic addition overhead between the tensor
kernel and CUDA kernel is unavoidable, and the conversion
of long rows into matrices has some overhead, the overall
performance is still strong. In the future, we plan to integrate
HR-SpMM into the graph Neural network (GNN) framework
to further optimize sparse matrix operations in large-scale
graph data processing and promote efficient graph computa-
tion applications.

Acknowledgments
This work is financially supported by the SichuanNatural Sci-
ence Foundation for Distinguished Young Scholar (2023NS-
FSC1966), the National Natural Science Foundation of China
(61672438), and the Postgraduate Innovation Fund Project by
Southwest University of Science and Technology (24ycx1137).
Yaobin Wang is the corresponding author.

References
[1] [n. d.]. Nvidia cuda toolkit. https://docs.nvidia.com/cuda/index.html.
[2] Willow Ahrens and Erik G. Boman. 2020. On Optimal Partitioning For

Sparse Matrices In Variable Block Row Format. ArXiv abs/2005.12414
(2020). https://api.semanticscholar.org/CorpusID:218889474

[3] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang.
2014. Optimizing Sparse Matrix-Multiple Vectors Multiplication for
Nuclear Configuration Interaction Calculations. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. 1213–1222.
https://doi.org/10.1109/IPDPS.2014.125

[4] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-
vector multiplication on throughput-oriented processors. In Proceed-
ings of the conference on high performance computing networking, stor-
age and analysis. 1–11.

[5] Nvidia blocked-sparse api. [n. d.]. Nvidia. https://docs.nvidia.com/
cuda/cusparse/index.html..

[6] Jee W. Choi, Amik Singh, and Richard W. Vuduc. 2010. Model-driven
autotuning of sparse matrix-vector multiply on GPUs. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Bangalore, India) (PPoPP ’10). Association for
Computing Machinery, New York, NY, USA, 115–126. https://doi.org/
10.1145/1693453.1693471

[7] Jee W. Choi, Amik Singh, and Richard W. Vuduc. 2010. Model-driven
autotuning of sparse matrix-vector multiply on GPUs. SIGPLAN Not.
45, 5 (Jan. 2010), 115–126. https://doi.org/10.1145/1837853.1693471

[8] Nvshmem communication library. [n. d.]. NVIDIA. https://developer.
nvidia.com/nvshmem..

[9] Gunduz Vehbi Demirci, Aparajita Haldar, and Hakan Ferhatosmanoglu.
2022. Scalable Graph Convolutional Network Training on Distributed-
Memory Systems. Proceedings of the VLDB Endowment 16, 4 (1 Dec.
2022), 711–724. https://doi.org/10.14778/3574245.3574256 The 49th
International Conference on Very Large Data Bases, 2023, VLDB 2023
; Conference date: 28-08-2023 Through 01-09-2023.

[10] Qiang Fu, Yuede Ji, and HHowie Huang. 2022. TLPGNN: A lightweight
two-level parallelism paradigm for graph neural network computation
on GPU. In Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing. 122–134.

[11] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse
GPU Kernels for Deep Learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–14.
https://doi.org/10.1109/SC41405.2020.00021

[12] Mingfeng Guo, Yaobin Wang, Yajun Gu, Yufang Chen, Huan Liu,
Huarong Chen, Dongxuan Han, Hengyang Xu, Chunhua Deng, Ping-
ping Tang, et al. 2023. Bs-SpMM: Accelerate Sparse Matrix-Matrix
Multiplication by Balanced Split Strategy on the GPU. In IEEE INFO-
COM 2023-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 1–6.

[13] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay,
Jinsung Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Ümit V
Çatalyürek, Srinivasan Parthasarathy, and P Sadayappan. 2018. Effi-
cient sparse-matrix multi-vector product on gpus. In Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. 66–79.

[14] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,
and P Sadayappan. 2019. Adaptive sparse tiling for sparse matrix
multiplication. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming. 300–314.

[15] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-
spmm: General-purpose sparse matrix-matrix multiplication on gpus
for graph neural networks. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[16] Zhiyuan Li, Xun Jian 0001, Yue Wang, Yingxia Shao, and Lei Chen.
2024. DAHA: Accelerating GNN Training with Data and Hardware
Aware Execution Planning. PVLDB 17, 6 (February 2024), 1364–1376.
https://www.vldb.org/pvldb/vol17/p1364-li.pdf

[17] Warp matrix multiply accumulate(wmma). [n. d.]. Nvidia. https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html..

[18] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi.
2010. Cusparse library. In GPU Technology Conference, Vol. 12.

[19] Yingchen Song, Yaobin Wang, Chaoyu Xiong, Tianhai Wang, and
Pingping Tang. 2024. An Efficient Sampling-Based SpMM Kernel
for Balancing Accuracy and Speed in GNN Inference. In 2024 IEEE
International Symposium on Parallel and Distributed Processing with
Applications (ISPA). 468–475. https://doi.org/10.1109/ISPA63168.2024.
00066

[20] Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary, Sub-
ramanya R. Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi,

https://docs.nvidia.com/cuda/index.html
https://api.semanticscholar.org/CorpusID:218889474
https://doi.org/10.1109/IPDPS.2014.125
https://docs.nvidia.com/cuda/cusparse/index.html.
https://docs.nvidia.com/cuda/cusparse/index.html.
https://doi.org/10.1145/1693453.1693471
https://doi.org/10.1145/1693453.1693471
https://doi.org/10.1145/1837853.1693471
https://developer.nvidia.com/nvshmem.
https://developer.nvidia.com/nvshmem.
https://doi.org/10.14778/3574245.3574256
https://doi.org/10.1109/SC41405.2020.00021
https://www.vldb.org/pvldb/vol17/p1364-li.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
https://doi.org/10.1109/ISPA63168.2024.00066
https://doi.org/10.1109/ISPA63168.2024.00066


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Qi Wang et al.

Dipankar Das, and Pradeep K. Dubey. 2015. GraphMat: High perfor-
mance graph analytics made productive. ArXiv abs/1503.07241 (2015).
https://api.semanticscholar.org/CorpusID:8312489

[21] Improved tensor core operations. [n. d.]. NVIDIA. https://docs.nvidia.
com/cuda/ampere-tuning-guide/index.html.

[22] Kiran Koshy Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia
Li. 2018. Attention-based Graph Neural Network for Semi-supervised
Learning. ArXiv abs/1803.03735 (2018). https://api.semanticscholar.
org/CorpusID:3847272

[23] Vasily Volkov and James W. Demmel. 2008. Benchmarking GPUs to
tune dense linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. 1–11. https://doi.org/10.1109/SC.2008.
5214359

[24] Aristidis G. Vrahatis, Konstantinos Lazaros, and Sotiris Kotsiantis. 2024.
Graph Attention Networks: A Comprehensive Review of Methods and
Applications. Future Internet 16, 9 (2024). https://doi.org/10.3390/
fi16090318

[25] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep Graph
Library: Towards Efficient and Scalable Deep Learning on Graphs.
(2019).

[26] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan
Xie, and Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient
Runtime System for GNN Acceleration on GPUs. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, 515–531. https://www.usenix.org/conference/
osdi21/presentation/wang-yuke

[27] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei
Ding. 2023. TC-GNN: Bridging Sparse GNN Computation and Dense
Tensor Cores on GPUs. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, Boston, MA, 149–164. https:
//www.usenix.org/conference/atc23/presentation/wang-yuke

[28] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How
Powerful are Graph Neural Networks? ArXiv abs/1810.00826 (2018).
https://api.semanticscholar.org/CorpusID:52895589

[29] Carl Yang, Aydın Buluç, and John Douglas Owens. 2019. GraphBLAST:
A High-Performance Linear Algebra-based Graph Framework on the
GPU. ACM Transactions on Mathematical Software (TOMS) 48 (2019), 1
– 51. https://api.semanticscholar.org/CorpusID:198167536

[30] Yi Yang, Ping Xiang, Jingfei Kong, Mike Mantor, and Huiyang Zhou.
2012. A unified optimizing compiler framework for different GPGPU
architectures. ACM Transactions on Architecture and Code Optimization
(TACO) 9, 2 (2012), 1–33.

https://api.semanticscholar.org/CorpusID:8312489
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://api.semanticscholar.org/CorpusID:3847272
https://api.semanticscholar.org/CorpusID:3847272
https://doi.org/10.1109/SC.2008.5214359
https://doi.org/10.1109/SC.2008.5214359
https://doi.org/10.3390/fi16090318
https://doi.org/10.3390/fi16090318
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://www.usenix.org/conference/atc23/presentation/wang-yuke
https://api.semanticscholar.org/CorpusID:52895589
https://api.semanticscholar.org/CorpusID:198167536

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Matrix-Matrix Multiplication (SpMM)
	2.2 Graph Neural Networks (GNNs)
	2.3 GPU Computation Cores
	2.4 CSR

	3 Related Works And Motivation
	4 HR-SpMM Design
	4.1 Row Partitioning
	4.2 Design Overview of HR-SpMM
	4.3 HR-SpMM Kernel

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Evaluation

	6 Conclusion
	Acknowledgments
	References

