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Abstract
High-order epistasis detection is challenging, making it im-
portant to efficiently leverage today’s supercomputers. The
fastest approaches are those relying on binary precision ten-
sorized operations on modern GPUs. This paper presents a
novel approach that significantly surpasses the state-of-the-
art in high-order epistasis detection by leveraging previously
unexplored domain-specific features on the genotype distri-
bution patterns in the dataset. It accelerates time-to-solution
with a computational step that reduces the volume of data
that needs to be processed to count genotypes. The proposed
approach achieves 4× higher performance on a A100 GPU
than the previously fastest approach when processing bal-
anced genotype distributions. Evaluation on datasets with
unbalanced genotype distributions, which is something that
is bound to happen in real datasets, results in significantly
higher performance. The proposed accelerating scheme ex-
hibits high scalability. Epistasis detection searches on the
MeluXina supercomputer with 32 A100 GPUs resulted in a
speedup of up to 30× in comparison to a single GPU, and in
achieving a performance scaled to sample size of up to 13
Peta SNP combinations per second for the genotype distribu-
tion most unfavorable to the proposed accelerating scheme.
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1 Introduction
Motivation. Epistasis detection is a bioinformatics applica-
tion focused on finding combinations of single nucleotide
polymorphisms (SNPs) that are associated with a given con-
dition or trait [22]. SNPs can interact non-additively. As a
result, considering epistasis (i.e. interactions between SNPs)
allows to identify genotype-to-phenotype correlations that
are not found considering only individual SNPs. Knowledge
about novel associations can have several practical applica-
tions related to personalized treatment, such as identification
of risk factors [33] and predicting drug [14] or infection re-
sponse [13]. Epistasis searches have enabled finding gene in-
teractions correlated to complex diseases, such as rheumatoid
arthritis [11], bipolar disorder [28] and type 1 diabetes [36].
Parallel computing with tensor cores. The large SNP

combination space to tackle has been addressed to a sig-
nificant extent through the innovative use of the parallel
computers’ capabilities. In particular, the highest performing
approaches for high-order epistasis detection map core epis-
tasis operations related to genotype counting – the hotspot
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of epistasis searches – to matrix operations on the tensor
core units (TCUs) of NVIDIA GPUs [16, 24, 25]. However,
even the fastest exhaustive methods can incur in a unrea-
sonably large exploration time. For example, considering
the fastest performance at third-order searches reported in
literature on a GPU (Titan RTX) [25], processing a dataset
with 100000 SNPs (≈ 166.7 trillion combinations) and 100000
samples would take around 305801 seconds (around 3 days
and a half) at the reported maximum performance of 54.5
tera sets processed per second scaled to sample size. Dou-
bling the amount of SNPs would result in a ≈ 8× increase in
execution time, in proportion to the growth in combinations.

Accuracy and time-to-solution trade-off.Non-exhaustive
methods have been proposed as a means to deal with the
huge solution space of high-order epistasis detection. These
include methods built around heuristics relying on optimiza-
tion strategies such as genetic algorithms [6] and ant colony
optimization [15], as well as filtering techniques [19] that re-
duce the amount of data to process. There is also literature on
methods using machine learning algorithms. Several of those
use deep neural network (DNN)-based methods [3, 5, 12, 20]
supported on machine learning software platforms such as
TensorFlow [1] or PyTorch [29]. Notice however, that while
non-exhaustive methods can perform searches at an arbi-
trary high-order, they do so at the cost of a loss in accuracy
that results from discarding most of the SNP combinations.
Proposed approach does not impact accuracy. Up

to now, unlike non-exhaustive approaches, the exhaustive
epistasis detection approaches proposed in the literature
(e.g. [2, 16, 23, 25, 30, 31]) are not impacted in terms of
performance by the particular genotypic data in the sam-
ples represented in the dataset being processed. For such
approaches, only the dataset dimensions have an impact
on execution time. For the first time, we are proposing an
exhaustive search method for epistasis detection that lever-
ages the genotypic features on the dataset for accelerating
time-to-solution. The method efficiently prunes the matrix
representation of the input dataset in intermediate stages of
computation. By design, it exploits the necessarily significant
amount of zeros that result from operating with matrices
representing genotypic data in a one-hot-encoding scheme
to reduce the computations to be performed on the TCUs.

Targeting challenging epistasis searches.We evaluate
the proposed method in third-order searches, which are chal-
lenging for today’s datasets, even when using large-scale
systems (e.g. supercomputers). As part of an effort to design
a high throughput solution, the proposed approach has been
carefully crafted to combine the aforementioned optimiza-
tion, which has been first explored in this paper, with the
adaptation of several other optimizations explored in other
approaches. To tackle the computational complexity of the

problem under study, the proposed approach has also been
developed to efficiently use multiple GPUs in multiple nodes.
As a result of the methods investigated and the devel-

opment undertaken, a new tool called EPIClear 1 has been
developed. This paper provides the following contributions:
(1) Novel method that uses domain-specific features to

accelerate epistasis detection computations on TCUs.
(2) Integration of the proposed method as part of a novel

epistasis detection tool targeting large-scale systems.
(3) Thorough evaluation considering datasets with differ-

ent characteristics on a state-of-the-art supercomputer.
Contribution (1) is focused on the proposal of a method

that reduces the amount of operations performed with no
impact on accuracy through leveraging information on the
dataset. Contribution (2) is concerned with developing a com-
plete approach built around the proposed method, and other
optimization techniques, and scaling it to the point of being
capable of making use of a state-of-the-art large-scale com-
puter system. Contribution (3) pertains with the evaluation
of the proposed approach with a set of different datasets on
the GPU partition of the MeluXina supercomputer [21].

Evaluation considered execution on a single GPU, the four
GPUs of a node, and multiple nodes, taking into account
datasets with different numbers of SNPs and samples, and
different genotype distributions. All in all, the proposed ap-
proach achieves significantly higher performance than other
exhaustive methods from literature, even when those are
rerun on the same hardware (MeluXina’s GPU partition).
The paper is structured as follows. Section 2 formulates

the problem. Section 3 presents background on TCU-based
epistasis detection and the main idea behind the proposed
approach. The latter is detailed in the context of a complete
approach in Section 4. Experimental results are presented
in Section 5. Section 6 positions EPIClear in the context of
existing approaches. Finally, Section 7 concludes the paper.

2 Problem Definition
Epistasis detection aims to identify sets of SNPs (genetic
markers that represent variation in a single nucleotide of a
DNA sequence) that are associated with an observable trait.
This analysis is carried out in a case-control dataset, 𝐴, of
size (𝑀 + 1) × 𝑁 , where 𝑀 is the number of SNPs and 𝑁
the number of samples. The entry 𝐴[𝑀 + 1, 𝑗] denotes the
phenotypic value for the 𝑗-th sample, which is 0 if it does
not exhibit the studied trait (control) or 1 otherwise (case).
The genotypic value for the 𝑖-th SNP in the 𝑗-th sample

is given by the entry 𝐴[𝑖, 𝑗], 𝑖 ∈ {1, 2, ..., 𝑀}, 𝑗 ∈ {1, 2, ..., 𝑁 }.
Each SNP takes one of three genotypic values that result from
the possible combinations between the major allele (most
frequent in a population) and the minor allele (less frequent
1Source code and datasets available at: https://github.com/hiperbio/EPIClear
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allele), i.e., homozygous major (genotype 0), heterozygous
(genotype 1) or homozygous minor (genotype 2).

State-of-the-art exhaustive methods often employ an inter-
nal representation where SNP information for a given sample
is represented using three bits. In such representation, which
has been first used in [34], the particular SNP genotype of
the sample is indicated by setting one (and only one) of those
bits. Each SNP can be represented by six bitvectors, half (i.e.
three) with as many bits as the number of controls and the
other half with a number of bits equal to the number of cases.
To efficiently evaluate an SNP combination, one can use

AND operations to combine the data of the involved SNPs,
and count the occurrences of the genotypes by applying the
POPC operation (population count), which counts the bits set
to 1. Fig 1 represents the baseline approach for constructing
a contingency table – pertaining to a combination including
SNPs 𝑋 , 𝑌 and 𝑍 – with one-hot-encoding of SNP data.
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AND
AND

cases

AND
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Figure 1: Third-order contingency table construction.

Given a case-control dataset with 𝑀 SNPs, 𝑁 samples,
and an interaction order 𝐾 , epistasis detection evaluates

𝑀!
𝐾 !(𝑀−𝐾 )! SNP sets, constructing a contingency table for each
set with size 2 × 3𝐾 to describe the count of each of the 3𝐾
possible genotypes in cases and in controls. Time-to-solution
increases exponentially with𝑀 and 𝐾 , and linearly with 𝑁 .
The objective function used to analyze sets of SNP is the

Bayesian K2 score [7]. This function can be described as:

𝐾2 =
𝐼∑︁
𝑖=1

(
𝑛𝑖+1∑︁
𝑏=1

𝑙𝑜𝑔(𝑏) −
𝐽∑︁
𝑗=1

𝑛𝑖 𝑗∑︁
𝑑=1

𝑙𝑜𝑔(𝑑)
)
, (1)

which calculates a score based on the occurrences (𝑛𝑖 ) of each
genotype (𝐼 = 3𝐾 ) in the samples (𝑛𝑖 𝑗 ) with each phenotype
(𝐽 = 2). The lower it is, the stronger the association between
the evaluated SNP combination and phenotype. Thus, epista-
sis detection aims at finding the combination that minimizes
the K2 score. If 𝐾 = 3, then 𝐼 = 33 = 27 and the contingency
table for a given SNP triplet will be of size 2 × 27 = 54.

3 Enhancing TCU-based Epistasis Detection
This section focuses on the core algorithmic contribution of
this paper. In particular, on the domain-specific method pro-
posed to reduce the operations performed on TCUs, which

is responsible for most of the performance improvements
achieved in comparison to the state-of-the-art approaches.

3.1 Core operations accelerated on TCUs
As any other exhaustive epistasis detection approach, EPIClear
performs searches by reading and combining data from the
dataset to perform a statistical test and assess genotype-
phenotype correlation. That involves the construction of one
contingency table representing genotype counts for each
combination of SNPs. A statistical test is performed on each
contingency table to produce a score (one per SNP combina-
tion). The scores of different SNP combinations are compared
to determine which is most statistically associated with the
phenotype represented in the processed dataset.

Most epistasis detection approaches are focused on accel-
erating the construction of contingency tables (i.e. genotype
counting), as it accounts for most of the hardware resources
used and time-to-solution. This is still the case even for ap-
proaches using TCUs. For example, performance has been
shown to be independent of using either K2 Bayesian score
or mutual information as the scoring function [25].
For epistasis detection, instructions performing bitwise

operations can be used to assess how many genotypes exist
of any given type for a combination of SNPs, regarding each
sample type. The two sample types – cases and controls – are
represented in individual matrices and processed separately.
This enables processing multiple samples at a time relying
on the direct use of bitwise AND and POPC operations.
Combining data (AND) and counting the occurrences of

genotypes (POPC) can be performed on CUDA/stream cores
(e.g. [26, 31]), and/or on the TCUs in GPUs (e.g. [23–25]).
TCUs target applications heavy on matrix multiplication. In
addition to fused multiply-add, some modern microarchitec-
tures also have support for tensorized fused bitwise opera-
tions such as XOR+POPC (introduced in Turing GPUs [8])
and AND+POPC (introduced in Ampere GPUs[9]).

Current state-of-the-art approaches for high-order searches
rely on precombining genotypic data through additional
AND operations on the GPU’s general purpose cores (i.e.,
CUDA cores on NVIDIA microarchitectures). For example,
in [23] and [25], third-order searches are accomplished by
performing a bitwise AND operation between the genotype
vectors of an SNP and those pertaining to a block of SNPs.
Then, the output of that operation (a binary matrix) is com-
bined with data from another block of SNPs (another binary
matrix) from the original internal dataset representation.
In this type of approach, which is that used in state-of-

the-art TCU-accelerated methods for exhaustive epistasis
detection, the amount of data processed is invariant in re-
lation to the genotypic patterns on the dataset to process.
Notice, however, that this does not need to be the case, as
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the processing of high-order combinations provides the op-
portunity of leveraging information from the input dataset.

3.2 Mitigation of redundant operations
In line with the state-of-the-art approaches from literature
for third-order searches (e.g. [23, 25]), EPIClear infers the
genotype counts for most genotypes (19 out of 27) relying on
partial third-order contingency tables and on contingency
tables for second-order interactions. For example, the counts
for the third-order genotype {𝑋0, 𝑌0, 𝑍2} – SNPs 𝑋 , 𝑌 and
𝑍 with base genotypes 0, 0 and 2 – can be inferred by sub-
tracting ({𝑋0, 𝑌0, 𝑍0} + {𝑋0, 𝑌0, 𝑍1}) to the occurrences of the
second-order genotype {𝑋0, 𝑌0}. Thus, as with other meth-
ods, only two out of three genotypes are represented in the
data processed by matrix operations. This allows to reduce
memory usage and to significantly speed up computations.
Fig. 2 depicts two TCU-based approaches side-by-side, a

state-of-the-art method (Tensor-Episdet [25]) and the pro-
posed method (EPIClear). Notice that Tensor-Episdet uses
XOR+POPC operations (instead of AND+POPC), the only 1-
bit operation on TCUs available at the time on GPU microar-
chitectures [25]. However, it efficiently derives the output
one would get with AND+POPC from XOR+POPC opera-
tions, relying on POPC(𝐴 · 𝐵) = POPC(𝐴)+POPC(𝐵)−POPC(𝐴⊕𝐵)

2 .
EPIClear does not rely solely on bitwise AND operations

as the core operation for preparing data for the TCUs. Instead,
both input matrices fed to the kernel using the TCUs are
compressed. The samples that will certainly not contribute
to the count of occurrences of the combined third-order
genotypes including a given genotype of SNP𝑋 are removed,
i.e. the samples with a 0 in the SNP 𝑋 bitvector representing
cases or controls, which are processed separately.
Both EPIClear and Tensor-Episdet use the same type of

interleaved binary representation – bitvectors for different
genotypes are stored one after the other – with different
SNPs represented in different rows and different samples in
different columns. As in [25], it is used to improve utilization
of the TCUs, with the input matrices to these units repre-
senting data from two genotypes of two blocks of SNPs (𝑌
and 𝑍 ). In Tensor-Episdet, the block of SNPs 𝑌 is combined
with two genotype bitvectors of an SNP 𝑋 , resulting in an
expanded matrix that is operated on TCUs with another ma-
trix representing SNPs 𝑍 . However, in EPIClear both SNPs 𝑌
and 𝑍 are preprocessed and only one genotype from a given
SNP (𝑋 ) is reflected in the input to TCUs at a given time.

For each SNP𝑋 , for a given genotype, only the bit columns
representing samples in blocks of data pertaining to SNPs
𝑌 and 𝑍 that intersect with a 1 in the bit row representing
that genotype (of SNP 𝑋 ) are kept. Thus, resulting in two
sets of two horizontally compressed bit matrices, which are
later to be combined on the TCUs at a significantly smaller
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Figure 2: Tensor-Episdet [25] (left) and EPIClear (right)
approaches preparing data to be processed on TCUs.

cost. In the example provided in Fig. 2, instead of processing
8 × 8 and 4 × 8 matrices (8 × 8 × 4, i.e. 256 AND+POPC), one
processes two 4 × 2 matrices (4 × 4 × 2, i.e. 32 AND+POPC)
and two 4 × 3 matrices (4 × 4 × 3, i.e. 48 AND+POPC).

To minimize the amount of computations, the pruning of
samples is performed relying on the two genotypes from
SNP 𝑋 with the lowest counts. If two or more genotypes of
a given SNP have an equal number of occurrences, the use
of the lowest index genotypes is prioritized (i.e. genotype
0 has priority over genotype 1, and the latter has priority
over genotype 2). Calling𝑋𝛼 and𝑋𝛽 the base genotypes from
an SNP 𝑋 used for compressing bit rows representing other
SNPs, the example showcased by Fig. 2 represents the situa-
tion where 𝑋𝛼 = 𝑋0 and 𝑋𝛽 = 𝑋1. Notice that the amount of
data to be sent to the TCUs for processing will always be re-
duced and the most challenging genotype distribution is that
with ≈ 33.3% occurrence for each of the three genotypes.

4 The EPIClear Approach
To achieve breakthrough levels of performance that are able
to significantly surpass the state-of-the-art, EPIClear had
to be developed to exploit parallelism at different scales.
With that goal in mind, this section explains not only how
operations are orchestrated to maximize the benefits of the
proposed data pruning method, but also other key aspects to
achieving high performance. This includes describing how
TCUs are leveraged, as well as the parallelization scheme
used to target GPUs in multiple nodes of a supercomputer.
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Algorithm 1: Pseudocode for the proposed approach
(host side) applied to third-order epistasis detection.
Data: 𝑑0, 𝑑1,𝑀 , 𝑁0|1, 𝑆 , 𝐵
Result: 𝑠

1 for SY𝑖 = 0; SY𝑖 < 𝑀 ; SY𝑖 += 𝑆 do
2 for SZ𝑖 = SY𝑖 ; SZ𝑖 < 𝑀 ; SZ𝑖 += 𝑆 do
3 𝑝𝑜𝑝𝑆𝑌𝑎𝑛𝑑𝑆𝑍0|1 = pairPop(𝑑0|1, SY𝑖 , SZ𝑖);
4 for 𝑋𝑖 = 0; 𝑋𝑖 < SY𝑖 + 𝑆 ; 𝑋𝑖 += 1 do
5 𝑝𝑆𝑢𝑚0|1 = countBitsPrefixSum(𝑑0|1, 𝑋𝑖);
6 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑌0|1 = compactBits(𝑑0|1, 𝑝𝑆𝑢𝑚0|1, 𝑋𝑖 , SY𝑖);
7 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑍0|1 = compactBits(𝑑0|1, 𝑝𝑆𝑢𝑚0|1, 𝑋𝑖 , SZ𝑖);
8 𝑝𝑜𝑝𝑋𝑎𝑛𝑑𝑆𝑌0|1 = pairPop(𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑌0|1, SY𝑖);
9 𝑝𝑜𝑝𝑋𝑎𝑛𝑑𝑆𝑍0|1 = pairPop(𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑍0|1, SZ𝑖);

10 for 𝑌𝑖 = MAX(SY𝑖 , ⌊ 𝑋𝑖
𝐵
⌋ · 𝐵); 𝑌𝑖 < SY𝑖 + 𝑆 ; 𝑌𝑖 += 𝐵 do

11 for 𝑍𝑖 = MAX(𝑌𝑖 , SZ𝑖); 𝑍𝑖 < SZ𝑖 + 𝑆 ; 𝑍𝑖 += 𝐵 do
12 𝑎𝑛𝑑𝑃𝑜𝑝0|1 = tensorPopAnd(𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑌0|1,

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑍0|1);
13 𝑠 = scoringFunction(𝑎𝑛𝑑𝑃𝑜𝑝0|1, 𝑝𝑜𝑝𝑆𝑌𝑎𝑛𝑑𝑆𝑍0|1,

𝑝𝑜𝑝𝑋𝑎𝑛𝑑𝑆𝑌0|1, 𝑝𝑜𝑝𝑋𝑎𝑛𝑑𝑆𝑍0|1);
14 end
15 end
16 end
17 end
18 end

4.1 Overview of the proposed method
The proposed pruning scheme has been integrated into a full
epistasis detection approach targeting modern GPUs with
TCUs. Overall, the host orchestrates computations, while
the GPU (or GPUs) performs the actual dataset processing
related to the search. One of the key aspects of the proposed
approach is that the dataset is subdivided at two different
levels, to which we call super-block (𝑆 SNPs) and block (𝐵
SNPs). Blocks determine the granularity at which the matrix
operations combining genotypic data are processed on TCUs,
i.e. the size of the matrices used as input to the GPU kernel
that uses these processing units. Super-blocks represent the
granularity at which most other auxiliary computations are
performed. This multilayered data organization is adopted to
achieve high utilization of the GPU resources while working
within the constraints imposed by the GPUmemory capacity.

Algorithm 1 represents the EPIClear approach at a high
level from the host (i.e. CPU) side, assuming the dataset is
already in GPU memory. It represents execution on a sin-
gle GPU, being its mapping to multiple GPUs and multiple
computer nodes explained in Section 4.4. Some input param-
eters are abstracted from the function calls, such as the 𝐵
(block) and 𝑆 (super-block) parameters. That is also the case
for those related to the dataset dimensions –𝑀 (number of
SNPs) and 𝑁0 / 𝑁1 (number of controls / cases) – which are
also used by most device functions of the proposed approach.
The algorithm receives as input the dataset that is to be

processed, represented by 𝑑0 (controls) and 𝑑1 (cases), the

number of SNPs (𝑀) and controls/cases (𝑁0 |1), and the super-
block (𝑆) and block (𝐵) sizes. Processing is divided into dif-
ferent phases. At the most fine-grained level – to which we
call an evaluation round – an SNP 𝑋 is combined with two
SNP blocks (𝑌𝑖 and 𝑍𝑖 ) from two super-blocks (SY 𝑖 and SZ𝑖 ).

To reduce redundant operations, the combination of blocks
from two super-blocks takes into account two different sce-
narios – the super-blocks can point to different data or to
the same data. For example, considering a super-block size
(𝑆) of 8192 and a block size (𝐵) of 512, when combining a
super-block with itself, there are up to 136 combinations of
blocks to evaluate – calculated with the combinations with
repetitions formula, choosing 2 at a time from 16 possibilities
(= 8192/512). This is different from combining two different
super-blocks, in which case there would be 256 combina-
tions to evaluate, as it entails combining each block from
one super-block with each block of the other super-block.
Contingency tables for second-order interactions are cal-

culated at the level of combinations between super-blocks
(line 3, Algorithm 1) to enable genotype inference from par-
tial third-order tables, allowing the input dataset to have an
arbitrarily large number of SNPs. The algorithm includes the
construction of pairwise contingency tables resulting from
combining a super-block with itself, as one also needs to
consider SNP pairings within a given super-block.

For each SNP𝑋 – from 0 to SY 𝑖+𝑆−1 – the binary matrices
representing controls (𝑑0) and cases (𝑑1) on super-blocks (SY 𝑖
and SZ𝑖 ) are compressed (lines 6-7). The compression needs
to be performed efficiently (see Section 4.2) to not represent
a significant overhead in relation to processing the resulting
SNP blocks in the TCUs. This is accomplished combining
efficient kernel code with high reuse of the pruned blocks
of data. The latter is improved adopting a super-block size
larger than the block size. At the output of this stage, the
horizontally compressed super-blocks of SNPs only represent
the samples that have the two processed base genotypes for
SNP 𝑋 (cases and controls processed separately).
The compression step involves reading bits representing

samples from super-blocks SY 𝑖 and SZ𝑖 and copying them
to a compacted representation. In the devised parallelization
scheme, each GPU thread processes the intersection between
32 consecutive bit columns – representing 32 samples in the
uncompressed representation – and bit rows pertaining to
multiple SNPs. In order for each GPU thread to know in
which position to write in an output array used for storing
the compressed representation in global memory, prior to
executing the devised compression kernel, we call two GPU
kernels in sequence for calculating the prefix sum, at a gran-
ularity of 32 bits, across the bit rows representing the two
base genotypes processed for a given SNP 𝑋 , for cases and
controls. These two GPU kernels are collectively represented
as countBitsPrefixSum in the pseudocode (line 5).
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The pairwise contingency tables for combinations be-
tween an SNP 𝑋 and super-blocks of SNPs (𝑌 and 𝑍 ) are
constructed counting the bits set in the bit rows represented
in the 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑌0 |1 and 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑍0 |1 matrices (lines 8-
9). Recall that as a result of compression, these only represent
the samples where SNP 𝑋 has a given genotype.

After the construction of the second-order tables, for each
combination of SNP blocks indexed by 𝑌𝑖 and 𝑍𝑖 , the corre-
sponding portions of pruned super-blocks are operated on
the TCUs (line 12). The same type of dataset representation
(SNP/genotype in rows and samples in columns) is used for
both inputs to the TCUs, interpreting one as transposed in
order to achieve the desired combination between samples of
different {SNP, genotype} tuples. Finally, the objective scoring
function is calculated (see Section 2) and scores are reduced.
Those steps, as well as the genotype inference, are abstracted
by the call to scoringFunction (line 13 of Algorithm 1).

Notice that in addition to processing for cases and controls
(represented by 0|1), the algorithm needs to account for the
first and second most frequent base genotypes of SNP𝑋 . The
pseudocode is abstracting the latter. Calls to routines in lines
5-9 are mapped to twice the amount of kernel calls and TCU
operations (line 12) consider eight third-order genotypes.

In order to accelerate the calculation of the objective scor-
ing function, a lookup table with values for lgamma(x) –
equivalent to the logarithm of (𝑥 − 1)! – is precomputed by
the host. Its size reflects the number of samples in the in-
put dataset. In order to minimize transfers during the actual
search, this table is transferred to GPU memory jointly with
the dataset at the start of the execution of the application.
At the start of the application, the host also performs a

quick scan over the dataset to determine, for each SNP, how
many samples have each of the base genotypes. The use of
the two base genotypes with lowest counts is implemented
reordering the dataset so that genotypes are ordered, indi-
vidually for each SNP, in increasing frequency. Notice the
calculation of the scoring function (see Section 2) is not influ-
enced by the order in which base genotypes are processed.

4.2 High-performance data pruning
The removal of complete bit columns – each representing a
different sample – frommatrices of genotypic data pertaining
to SNPs, effectively making them smaller prior to processing
on the TCUs, is at the core of the proposed approach. Thus,
it had to be developed targeting a highly efficient operation.
The kernel has been developed to scale with the number

of threads, leveraging fine-grained parallelism and efficient
memory access patterns. High throughput is achieved using
fast bitwise operations, shared memory for temporary stor-
age, and atomic operations for updates. The developed kernel
code, which targets modern GPUs, is depicted in Listing 1.

Listing 1: GPU kernel for compressing samples.
1 __global__ void compactBits(const unsigned int*

__restrict__ inMat , unsigned int* __restrict__
outMat , const int* __restrict__ pSum , int nElemsOrig
, int snpX , int nElemsComp , int firstSnp) {

2 __shared__ unsigned int sWriteBuf[TB_SIZE * 2];
3 __shared__ int sGlobalWriteStart , sExtraAlign;
4 int startSnpIdx = (firstSnp * 2) + (blockDim.x *

blockIdx.x + threadIdx.x) * SNPS_PER_THREAD;
5 int elemIdx = blockDim.y * blockIdx.y + threadIdx.y;
6 if (elemIdx < nElemsOrig) {
7 int firstBit = (elemIdx > 0) ? pSum[elemIdx - 1] : 0;
8 if(threadIdx.y == 0) {
9 int firstBitpack = firstBit / 32;
10 sGlobalWriteStart = (((int)(firstBitpack / TB_SIZE)

)) * TB_SIZE;
11 sExtraAlign = (( firstBitpack & (( TB_SIZE * 2) - 1))

>= TB_SIZE) ? 1 : 0;
12 }
13 unsigned int xCached = inMat[snpX * nElemsOrig +

elemIdx ];
14 __syncthreads ();
15 int globalWriteStart = sGlobalWriteStart;
16 int firstBitShared = (firstBit - (TB_SIZE * 32 *

sExtraAlign)) % (( TB_SIZE * 2) * 32);
17 for (int snpIdx = startSnpIdx; snpIdx < (startSnpIdx

+ SNPS_PER_THREAD); snpIdx += 1) {
18 sWriteBuf[threadIdx.y] = 0;
19 sWriteBuf[threadIdx.y + TB_SIZE] = 0;
20 __syncthreads ();
21 unsigned int x = xCached;
22 unsigned int y = inMat[snpIdx * nElemsOrig +

elemIdx ];
23 int currentBit = firstBitShared;
24 while (x != 0) {
25 int bitPos = currentBit & 31;
26 int sharedIndex = currentBit >> 5;
27 unsigned int leastSignificantBit = __ffs(x) - 1;
28 unsigned int y_and_one = (y >>

leastSignificantBit) & 1u;
29 atomicOr (& sWriteBuf[sharedIndex], y_and_one <<

bitPos);
30 currentBit ++;
31 x &= ~(1u << leastSignificantBit);
32 }
33 __syncthreads ();
34 atomicOr (& outMat[snpIdx * nElemsComp +

globalWriteStart + threadIdx.y], sWriteBuf[threadIdx
.y]);

35 atomicOr (& outMat[snpIdx * nElemsComp +
globalWriteStart + TB_SIZE + threadIdx.y], sWriteBuf
[TB_SIZE + threadIdx.y]);

36 }
37 }
38 }

The kernel processes a matrix (inMat) of bit-packs – each
represented as an unsigned int – and compacts it into
another matrix (outMat) using a prefix sum array (pSum)
for alignment and indexing. The latter array has as many
positions as the number of 32-bit bit-packs (nElemsOrig)
representing cases or controls (processed separately) in the
uncompressed dataset. The positions from where to extract
bits from inMat are those corresponding to 1’s in an {SNP,
genotype} bit row indexed by another kernel input (snpX).
The amount of bit-packs required to store bit rows of

samples after filtering (nElemsComp) is determined at the
start of the execution for the genotypes to be processed in
regard to each of the SNPs in the dataset. This incurs in small
overhead as it is first-order processing done once, while the
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search itself is performed in third-order. Furthermore, as this
kernel operates at the level of a super-block, it also receives
as input the index of the first SNP to process (firstSnp).
As hinted by its name, each position of pSum stores the

amount of set bits up to the corresponding bit-pack on the
unfiltered representation (inMat). Four of these arrays are
efficiently constructed before the calls to the filtering kernel
for a given SNP𝑋 , taking into account cases and controls and
two genotypes. Thus, resulting in 4 calls to the filtering ker-
nel. The construction of each prefix-sum array is performed
executing a CUDA kernel that counts the bits set on each bit-
pack followed by calling cub::DeviceScan::InclusiveSum
from the NVIDIA CUB library of GPU-accelerated primitives.
Each thread of the compression kernel starts by using

its global index in dimension 𝑥 of the CUDA grid to deter-
mine which SNP it starts processing from inMatrix into
outMatrix (line 4). The second dimension (i.e. y) of the
CUDA grid (and thread blocks) points to the different bit-
packs of the unfiltered dataset (inMat). In each thread, the
elemIdx variable (line 5) indexes a column of bit-packs of the
unfiltered dataset from where data pertaining to the multiple
SNPs (SNPS_PER_THREAD) being processed is to be read.

Coalesced accesses to and frommemory are achieved mak-
ing the second dimension of thread blocks the one that differs
between threads. The desired outcome is achieved with a
{1, TB_SIZE, 1} thread block since in the used representa-
tion bit-packs for a given SNP are contiguous in memory.

Each thread gets the index of the bit (firstBit) where to
store – in the bit rows of the compressed representation – the
information on the first sample it processes directly from the
prefix sum array (line 7). Then, where to the threads write
into global memory is determined by thread 0 – from the
index of the first compressed bit-pack (firstBitpack) (line
9) to be constructed – using sGlobalWriteStart (line 10) to
store the aligned starting index for global updates. The latter
is stored in shared memory and is later copied to a thread-
local variable following thread block level synchronization.
The compressed representation is efficiently constructed

relying on shared memory to reduce the amount of global
memory accesses. Furthermore, accesses to shared memory
are aligned in a way that enables coalesced global memory
updates – to make an efficient use of memory bandwidth
– when the threads in a thread block complete processing
assigned bit-packs from the uncompressed representation.

The efficient implementation of the used shared memory
buffering scheme relies on an array with as many elements
of type unsigned int (each corresponding to a bit-pack)
as twice the number of threads in a thread block (TB_SIZE).
This is to account for when a thread block needs to construct
a range of compressed bit-packs that crosses from one chunk
of TB_SIZE bit-packs to the next. Realignment of shared
accesses is conditionally performed to address that (line 11).

Since each thread compresses data pertaining to multiple
SNPs, the bit-pack from the uncompressed representation
pertaining to the SNP 𝑋 (and genotype) that is being pro-
cessed on a given thread is cached from global memory into
a variable (xCached) local to the thread (line 13). The latter is
used to create a copy (x) at the start of a for loop that iterates
through different SNPs (lines 17 to 36). Then, each thread
reads the bit-pack to be processed from the uncompressed
matrix (line 22), and instantiates an index (line 23) that serves
to keep track of the current shared memory array bit being
processed (currentBit) in a subsequent while loop (lines
24 to 32) that is responsible for the actual dataset filtering.
The while loop keeps executing until all bits in the bit-

pack from SNP 𝑋 being processed have been taken into
account. Variables bitPos and sharedIndex (lines 25 and 26,
both updated based on currentBit) represent the position
of the current bit inside (i.e. aligned to) a compressed bit-pack
and its position in the sWriteBuf shared memory array.

The efficient identification of set bits in the bit-packs of a
given SNP 𝑋 is a key factor in achieving a high throughput
implementation. This is accomplished using the __ffs(x)
CUDA intrinsic (line 27), which returns a value between 0 –
no bits are set – and 32 (inclusive) representing the position
of the first bit set. This circumvents having to iteratively go
through all the samples (cases or controls) when copying
data from the uncompressed dataset representation.

This kernel relies heavily on bit processing, which is also
used to extract the bit indexed by leastSignificantBit
from bit-pack y into y_and_one (line 28), as well as to write
it to the correct position (bitPos) on the bit-pack being
constructed at a given time in shared memory (line 29). Fi-
nally, each iteration of the while loop increases the value
of currentBit (line 30) and clears the bit processed from x,
indicating that it has already been handled (line 31).

Closing an iteration of the for loop are 2 aligned updates
from shared to global memory (lines 34 and 35), with a syn-
chronization (line 33) before to ensure all threads finished
updating shared memory. As with shared memory, updates
to global memory also rely on atomics (atomicOr) to pre-
vent race conditions. This ensures correctness when multiple
threads update the same position of the outMat array.
For the purpose of compressing a super-block, in regard

to cases or controls, the CUDA grid used for instantiating
the compression kernel is set as follows. Its first dimension is
double the super-block size – to account for two genotypes –
divided by the number of SNPs processed per thread, which is
a divisor of the super-block size. The second is the rounded
up division of the number of bit-packs to process by the
number of threads per thread block. The third dimension of
the grid is not used and is therefore assigned a value of 1.
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4.3 Efficient use of TCUs on modern GPUs
The only requirement to enable mapping to the TCUs of the
bitwise operations that construct contingency tables for SNP
interactions is to express the combination of SNP data as
matrix multiply operations (see Section 3.1). However, to
achieve high TCU usage requires addressing other aspects.

Since we are using the information on a given {SNP, geno-
type} tuple to remove redundant samples from two blocks
of SNP data, the two genotypes considered (out of the exist-
ing three) have to be processed separately. In comparison
to [25], not only both inputs to the TCU-accelerated kernel
are smaller in regard to the amount of samples represented
(i.e. columns), but the first input also has 2× fewer rows.

One way to address the possible loss of efficiency in the
use of TCUs is to adopt a larger SNP block size, i.e. number of
SNPs in the inputs to the TCU-accelerated kernel. However,
this must be done carefully, as it incurs in an increase of
repeated computations. Notice that combining SNPs that are
spatially close entails combining a block of SNP data with
itself and/or with data from an individual SNP included in it.
To improve hardware utilization without having to in-

crease as much the block size, we rely on batch processing.
It provides a means to perform concurrent matrix multipli-
cations, which individually are not able to saturate the GPU
compute resources. Batching these operations entails passing
to the function using the TCUs the pointers to several pairs
of input matrices and to the locations to store the output
matrices, i.e. as many pointers as three times the batch size.
We rely on the CUTLASS collection of CUDA C++ tem-

plate abstractions to implement the routine that combines
blocks of SNP data in TCUs using batched execution. CUT-
LASS supports many of the features in cuBLAS, while pro-
viding primitives that enable constructing customized matrix
multiplication routines with comparable performance. No-
tably, in contrast to cuBLAS, it offers support for tensorized
bitwise operations (fused AND+POPC), which is particularly
valuable for achieving high-throughput epistasis detection.

4.4 Targeting a multi-GPU platform
To process large challenging datasets, it is imperative tomake
use of the resources available on supercomputing platforms.
EPIClear uses the Message Passing Interface (MPI) de facto
approach to programming in a multi-node environment.

Achieving high scalability poses additional challenges on
how to implement epistasis detection algorithms. On one
side, it is important to have a sufficiently fine-grained dis-
tribution of work. For instance, if one simply distributed
different pairs of super-blocks to different MPI workers, then
one would have poor scalability if there is not a large number

of super-blocks. However, to have a large number of super-
blocks might require a small super-block size, which does
not promote high reuse of the output of compression.

An alternative would be to attribute to each GPU not only
two super-blocks, from which blocks of SNPs 𝑌 and 𝑍 are
gathered, but also an SNP 𝑋 . However, SNPs 𝑋 with large
indexes are paired with fewer combinations of blocks 𝑌 and
𝑍 , which could result in load balancing issues, increasing idle
time due to workloads having widely different durations.
We opted to rely on a fixed amount of rounds per work-

load unit. To that end, we rely on 𝐺 + 1 MPI processes: each
of the 𝐺 processes is attached to a different GPU, and the
remaining process distributes work to the former. Dynamic
scheduling and asynchronous computing with a parametriz-
able workload size ensure high utilization and load balance.

The used workload distribution scheme is represented in
Fig. 3. Since each work unit includes the processing of a fixed
amount of evaluation rounds, each MPI process attached to a
GPU – upon completion of the previous workload unit – only
needs to request the starting evaluation round configuration
(i.e. indexes of an SNP 𝑋 and of the start of SNPs 𝑌𝑖 and 𝑍𝑖 ).

MPI Process 1 ... GMPI Process 0

Generate next
round indexes 

Executes
evaluation rounds

Request for
more workload

Receive request
for more workload

Receives indexes
of starting round

Sends indexes of
starting round

Figure 3: Distribution of workload across processors.

Several optimizations integrated into EPIClear come from
the devised parallelization scheme. For example, we reuse the
second-order contingency tables that result from combining
the SNPs in two super-blocks when subsequent workloads
on an MPI worker involve the same pair of super-blocks.

5 Experimental Results
This section presents experimental results for several differ-
ent parametrizations of the proposed method, considering
synthetic and real genotype patterns. We also report a scala-
bility analysis conducted on datasets of different dimensions.
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5.1 Targeted system and metric
Experiments have been performed on the MeluXina Eu-
roHPC supercomputer. More specifically, on nodes of its
GPU-accelerated partition; each having two AMD EPYC
Rome 7452 CPUs and four A100 SXM4 40GB GPUs. The
CUDA Toolkit 12.2 and GPU driver 535.161.08 were used.

The kernel that uses the TCUs has been constructed using
CUTLASS 3.4.1. In all experiments, we use a matrix multiply-
add (MMA) shape of 16×8×256, a warp shape of 64×64×512
and a thread block shape of 128 × 256 × 512. These settings
have been experimentally found to achieve high throughput.
For all experiments herein presented, each thread of the

pruning kernel processes data for 8 SNPs, as part of a 256
threads thread block, and set the evaluation rounds per work-
load unit to 2048. Both values have been experimentally de-
termined to enable a good use of the GPUs and explore well
the potential of multi-GPU configurations. The block size (𝐵)
is set to 512 in all experiments, with the exception of those
in Section 6, which also include results with 𝐵 set to 256.
The main metric of interest is the amount of useful SNP

combinations processed per second scaled to the sample size.
Scaling to the sample size enables the direct comparison be-
tween runs performed for datasets that have different sample
sizes and with other methods from the state-of-the-art.

5.2 Datasets used
Experiments were performed with a wide selection of syn-
thetic datasets to show the behaviour of EPIClear under dif-
ferent scenarios. We first show the performance on datasets
with close to an even distribution between the three base
genotypes. We also consider other ranges of genotype dis-
tributions, showing the performance that can be achieved
under conditions that are more favorable to EPIClear. Re-
lying on variations with a resolution of ≈ 10%, we experi-
ment with datasets that closely follow the following distri-
butions: (10,10,80), (10,20,70), (10,30,60), (10,40,50), (20,20,60),
(20,30,50), (20,40,40) and (30,30,40) – least frequent to most
frequent genotype. Finally, we perform experiments with a
real Type I Diabetes dataset from the WTCCC1 study [35].

5.3 Effect of the batch size on performance
Batching multiple evaluation rounds into a single call to the
routine that uses TCUs provides a means to accelerate per-
formance while keeping GPU memory usage under control.
Fig. 4 shows the performance achieved for batch sizes of 1, 2,
4, 8, 16, 32, 64 and 128. The super-block size (𝑆) is set to the
number of SNPs (𝑀), since the considered amounts of SNPs
are not high enough to require the dataset to be split.
Overall, more samples and/or SNPs results in higher per-

formance. Higher sample sizes essentially allow to make a
better use of the TCUs, as it results in a larger input in the
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Figure 4: Performance for different numbers of SNPs
(𝑀) and samples (𝑁 ) under different batch sizes (𝐷).

inner dimension of the matrix-matrix operations. Handling
more SNPs improves the ratio of useful computations, as
fewer repeated combinations of SNPs are processed. Given
that the block size used is fixed (𝐵 = 512), an increase in the
amount of SNPs to process increases the ratio of useful com-
putations. Notice that, in terms of percentage, the amount of
instances of combining a block with itself (i.e. block 𝑌 point-
ing to the same SNPs as block 𝑍 ) is higher when processing
fewer SNPs. The other factor is that reuse of second-order
contingency tables and of the operations performed in the
pruning stage increases when using larger super-blocks.

5.4 Impact of different genotype patterns
EPIClear is expected to excel at processing datasets with
uneven base genotype distributions. Fig. 5 represents the
performance achieved on different genotype distributions,
accounting for all instances considering a resolution of 10%.

Processing the datasets with 16384 SNPs and 524288 sam-
ples, EPIClear attains an epistasis detection performance of
423.59 (30,30,40), 418.85 (20,40,40), 467.03 (20,30,50), 526.98
(20,20,60), 464.76 (10,40,50), 522.86 (10,30,60), 589.07 (10,20,70)
and 679.09 (10,10,80) tera sets / second scaled to sample size.

For the same number of SNPs and samples, the more com-
pressible genotypic distribution, i.e. (10,10,80), consistently
results in the highest performance. Notice also that process-
ing datasets with the (30,30,40) and (20,40,40) genotypic dis-
tributions results in a similar performance. The same is the
case as well for (20,30,50) and (10,40,50), and for (20,20,60)
and (10,30,60). This can be attributed to the fact that these
pairs entail the same amount of operations on the TCUs.

The effect of the reduction in calculations due to pruning
is larger for datasets with more samples. For 16384 SNPs,
when processing only 16384 samples, the most compressible
genotype distribution, i.e. (10,10,80), results in a performance
that is 1.078× (58.468/54.221) higher than that processing the
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Figure 5: Performance for different numbers of SNPs (𝑀) and samples (𝑁 ) under different genotype patterns.

(30,30,40) genotype distribution. However, when processing
524288 samples, the most compressible genotype distribution
results in 1.603× (679.09/423.59) higher performance. Part
of this difference is due to the scoring function calculations.
The latter involves a fixed cost in each evaluation round,
which becomes further amortized with more samples.

5.5 Scalability on multiple GPUs and nodes
Fig. 6 depicts the performance of EPIClear when different
numbers of GPUs are used. For these experiments we con-
sidered datasets with 16384, 32768 and 65536 SNPs. When
processing the datasets with 𝑀 = 32768 or 𝑀 = 65536, we
set 𝑆 (the super-block size) to half or to one quarter of 𝑀
(i.e. 𝑆 = 16384 in both cases). A single super-block covering
the complete dataset represents the ideal situation in regard
to maximizing the reuse of computations, but a super-block
with 32768 or 65536 SNPs would require too much memory.

The achieved results show that having a large sample
size is not a requirement for high scalability. In fact, when
the number of SNPs is small (which is not the case on real
datasets), higher scalability can be achieved with a small
amount of samples. For example, for 16384 (32768) SNPs, pro-
cessing 16384 samples results in a speedup of 29.6× (30.1×).

Having more SNPs to process increases scalability, as pro-
cessing more SNPs means more evaluation rounds to dis-
tribute to the targeted GPUs. On average, the performance
achieved using 32 GPUs is 1.65×, 1.85× or 1.93× higher than
that achieved with 16 GPUs, when processing 16384, 32768 or
65536 SNPs, respectively. Notice that datasets with real geno-
typic data often have many more SNPs than these datasets.

5.6 Profiling the GPU kernels
Table 1 shows the percentage of cycles the integer MMA
pipes are active across the TCUs on the first execution of the
kernel that constructs the partial third-order contingency
tables, when processing a dataset with 4096 SNPs (𝐵 = 512)

and a number of samples between 16384 and 2097152 (half
cases/controls). The considered genotype distributions in
these profiled runs are (33,33,33), (30,30,40), (20,20,60) and
(10,10,80). Since the particular kernel execution being ana-
lyzed is the first one, the volume of data processed on the
integer MMA pipes is determined by the most frequent geno-
type of the distribution (i.e. 33%, 30%, 20% and 10%).

Samples / Occurrence 33% 30% 20% 10%
16384 28.68 28.80 21.87 12.22
32768 44.83 40.37 35.00 21.77
65536 59.22 57.07 48.75 35.31
131072 73.37 71.60 62.84 48.08
262144 83.29 82.21 76.22 62.92
524288 89.61 88.72 85.35 76.26
1048576 93.03 92.55 90.67 85.55
2097152 94.51 94.44 93.49 90.66

Table 1: Percentage of cycles the TCUs are operating
to process 4096 SNPs and different sample sizes.

Compressing the matrices representing genotypic data
affects TCU utilization. For example, when dealing with a
genotype with occurrence rate of 10%, 90% of peak utilization
was only surpassed with 2097152 samples – recall that half
are cases/controls and each kind is processed separately by
the TCU-accelerated kernel. The efficiency in the use of
the TCUs is smaller when processing fewer samples as a
result of the matrix inputs to the CUTLASS kernel being also
smaller. Still, the lower performance at the TCUs is largely
compensated by processing significantly fewer samples.

Processing a given SNP 𝑋 in relation to two super-blocks
of SNPs entails counting the bits set in each of its bit-packs
(countSetBits), performing the prefix sum on the result-
ing array (DeviceScan, from the CUB library), compress-
ing samples based on the prefix sum array (compactBits),
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Figure 6: Performance for different numbers of SNPs (𝑀) and samples (𝑁 ) with 1, 2, 4, 8, 16 or 32 GPUs.

constructing second-order contingency tables from the com-
pressed genotype matrices (pairPop), performing batched
matrix multiplication (tensorPopAnd), and calculating the
association scores (scoringFunction). The countBits and
DeviceScan kernels are represented in the pseudocode of Al-
gorithm 1 by a call to countBitsPrefixSum (see Section 4.1).

Profiling the complete processing of the first SNP𝑋 from a
dataset with 4096 SNPs and 524288 sampleswith the (33,33,33)
genotype distribution, using 𝑆 = 𝑀 and 𝐷 = 32, resulted
in a total of 6.14 and 9.19 million clock cycles being used
to execute compactBits and tensorPopAnd. These results
indicate it payed off to apply the proposed technique, which
resulted in reducing the operations on TCUs by one third.
The next kernel with most weight is scoringFunction (2.26
million cycles). The remaining kernels take 0.65 (pairPop),
0.04 (DeviceScan) and 0.02 (countSetBits) million cycles.
Nsight Compute also reports a compute throughput of

87% for tensorPopAnd, at processing a full batch of matrix
operations, and of 84% for the compactBits kernel. The
former kernel is more affected by the sample size. On a run
with 4× the amount of samples (2097152), the throughput for
compactBits and tensorPopAnd is 85% and 91%. However, if
processing 131072 (16384) samples, the compute throughput
achieved for these kernels drops to 83% (65%) and 74% (33%).
Profiling a dataset with 8192 (16384) SNPs and 524288

samples results in compactBits and tensorPopAnd taking
12.29 (24.38) and 32.79 (126.03) million cycles to execute,
respectively. Notice that the super-block size is set to the
number of SNPs in the datset (i.e. 𝑆 = 𝑀), and that the block
size stayed the same (𝐵 = 512). Thus, the doubling of the
amount of SNPs in the dataset results in having many more
combinations of blocks of SNPs to process. For example, the
latter is 136 (= (16+1)×16

2 ) for 8192 SNPs – the value 16 comes
from the fact that the super-block (𝑆) is 16× larger than the
block size (𝐵) – and 36 for 4096 SNPs. Thus, resulting in 3.57×

the number of cycles for tensorPopAnd; while the cost of
compactBits is only 2× higher (12.29 vs. 6.14 million cycles).
Overall, the efficiency of compression in relation to the

other kernels increased when processing larger datasets. The
cost of compressing samples – including also the cost of
countSetBits and DeviceScan, which produce the prefix
sum array – in relation to that of all other kernels on the
profiled evaluation rounds represents 34%, 22% and 13%, on
the runs with 4096, 8192 and 16384 SNPs, respectively. Thus,
clearly showcasing the trend of the cost of the compression
kernel becoming smaller when using larger super-blocks.

5.7 Experiments with real data
As part of the experimental campaign, we aim to assess
the expected time-to-solution and the required hardware re-
sources for processing a dataset with real genotypic data. For
this purpose, we rely on data from the WTCCC1 study [35],
which is highly represented in the epistasis detection litera-
ture. The WTCCC1 study represents 500568 SNPs, making
it challenging to perform an exhaustive high-order search
as there are 20.1 Peta (i.e. ×1015) third-order combinations.
The WTCCC1 study represents seven diseases – coro-

nary artery disease (CAD), hypertension (HT), inflammatory
bowel disease (IBD), rheumatoid arthritis (RA), type-1 dia-
betes (T1D), type-2 diabetes (T2D) and bipolar disorder (BD).
We focus all our experiments on a dataset composed with
the WTCCC1 type-1 diabetes data (2000 cases) and the 3004
WTCCC1 shared controls from the 1958 British Birth Cohort
and UK National Blood Service datasets. As represented in
Table 2, which shows the ratio of occurrence of each of the
three base genotypes, the cases for the seven diseases in this
dataset collection display a similar genotype distribution.
Processing the first 16384 (32768) SNPs of the Type-1 di-

abetes dataset on a single A100 takes 205.203 (1522.954)
seconds, which represents a performance scaled to sample
size of 17.87 (19.27) tera sets per second. Since doubling the
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Dataset / Genotype 0 1 2
CAD 0.389 0.269 0.342
HT 0.388 0.270 0.341
IBD 0.372 0.271 0.357
RA 0.375 0.272 0.353
T1D 0.381 0.270 0.349
T2D 0.380 0.270 0.350
BP 0.393 0.265 0.342

Table 2: Distribution of base genotypes in WTCCC1.

amount of SNPs to process is expected to increase the explo-
ration time by ≈ 8×, processing all the 500568 SNPs, results
in having to process 3566×more combinations than for 32768
SNPs (although the amount of SNPs is only 15.277× more
SNPs than 32768). This would result in a time-to-solution of
≈ 2 months. The performance at processing the first 16384
(32768) SNPs decreases to 15.83 (16.97) if not selecting the
genotypes to operate for each SNP based on their frequency.
Due to the small amount of samples, WTCCC1 datasets

are particularly challenging for matrix-processing based
approaches, including others from the state-of-the-art (e.g.
Tensor-Episdet [25]). However, as previously pointed out, the
small number of samples is not an impediment for EPIClear
in achieving high scalability. Since EPIClear scales well with
large amounts of GPUs, a more manageable exploration time
may be possible, depending on the computing resources
available. Representing unprecedented performance at high-
order searches, it should be possible to process all datasets
resulting from combining the two sets of controls (3004 sam-
ples) with the cases for each of the 7 diseases (13795 samples)
represented in the WTCCC1 study in just under two weeks
((((3566×1522.954)×((3004×7)+13795)/5004)/32)/604800)
on the 32-GPU configuration considered in the experiments.
In addition to considering the original data, we also per-

form runs using a dataset constructed by replicating the
WTCCC1 type-1 diabetes cases and the shared controls by a
factor of 100×. This allows to assess the performance at pro-
cessing larger datasets with a similar genotype distribution.

EPIClear attains much higher performance scaled to sam-
ple size on the enlarged WTCCC1 dataset, having achieved
651.02 (317.80 if not fully leveraging genotype patterns) tera
SNP sets per second at processing the first 16384 SNPs. The
performance improvement from relying on the two geno-
types with lowest frequency for each SNP is much more
pronounced on the replicated dataset, as the impact of the
reduction in TCU operations does not get as much masked
by the other stages of the algorithm. On average, on the
cases, the two genotypes with lowest frequency (individu-
ally for each SNP) have an occurrence of 6.742% and 23.723%.
These represent 6.703% and 23.706% of the data for the first

controls dataset, and 6.762% and 23.724% for the second con-
trols dataset. The performance achieved is between that for
synthetic datasets with (10,10,80) and (10,20,70) distributions.

6 Related Work
Parallel processors have been used for a long time in epistasis
detection as a means to tackle the computational require-
ments of processing challenging datasets. Some approaches
target CPUs (e.g. [30]) for their higher interoperability and
ubiquitous presence in all systems. Specialized designs in
Field-Programmable Gate Arrays (FPGAs) have also been
proposed [17, 32]. However, GPUs are the preferred accelera-
tor type for high-throughput epistasis detection, due to com-
bining high availability with suitability for data-parallel pro-
cessing. In particular, the use of GPUs with TCUs have been
shown to achieve the highest performance [16, 23, 25, 31].

CoMet [16] was the first approach to use TCUs for epistasis
detection. It targeted the Volta GPUmicroarchitecture, which
was the first to include TCUs. CoMet also supports multiple
GPUs. On a node of the Summit supercomputer (each with
six V100 GPUs), it achieves a scaled performance of 18.66
tera SNP combinations processed per second on third-order
searches. In contrast, EPIClear achieved a performance of
1603.89 tera SNP combinations per second scaled to sample
size on a MeluXina GPU-accelerated node – each with four
A100 GPUs – at processing a dataset that is representative
of the most challenging type of genotype distribution to the
proposed compression method. This represents a baseline
performance that is, per node, 85.95× higher (128.93×, per
GPU) than reported in the CoMet paper [16]. Each V100 is
capable of 125 FP16 Tensor TFLOP/s (CoMet processes 0’s
and 1’s as 16-bit floating-point values with fused multiply-
add) while the A100 GPU is capable of 4992 INT1 Tensor
TOP/s (EPIClear processes 0’s and 1’s as individual bits with
fused AND+POPC). Thus, there is a 39.94× (4992/125) ratio
in peak throughput between GPUs at combining genotype
data (i.e. contingency table construction). Notice that both
methods have been effectively optimized to the targeted
GPUs (the CoMet paper reports achieving 82.4% of the peak
throughput in core epistasis detection operations per GPU),
being the observed performance of EPIClear much higher
than that ratio as a result of the employed pruning method.

Tensor-Episdet, first presented in [23] and later improved
in [25], was the first approach to use native 1-bit processing
capabilities on TCUs. Relying on the XOR+POPC operations
added to TCUs on the Turing architecture, it combines geno-
types more efficiently than CoMet [16]. As a result, a single
Titan RTX running Tensor-Episdet is 2.92× (= 54.54/18.66)
faster at third-order searches than a full Summit node (six
V100 GPUs) with the former approach. Tensor-Episdet pro-
cesses third-order combinations through precombining data
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on CUDA cores using the bitwise AND operation, using the
TCUs to achieve the final combination order. One of the two
matrices to be processed on TCUs, i.e. the one resulting from
precombining data, will necessarily have many zeros. Thus,
resulting in a significant waste of computation resources. In
contrast, the proposed approach eliminates the need of per-
forming AND operations on the CUDA cores to precombine
data, replacing that step with an efficient pruning stage.
Fig. 7 depicts the performance of Tensor-Episdet on the

same GPU used for EPIClear (A100), for datasets with up to
16384 SNPs and with genotypes approximating the (33,33,33)
distribution (i.e. evenly distributed). These experiments have
been performed on a single A100 GPU, as Tensor-Episdet
does not support multiple GPUs. For each of the codes con-
sidered, we performed two runs for each dataset, one with
an SNP block size set to 256 (the default of Tensor-Episdet)
and another with it set to 512. To show that the performance
of EPIClear does indeed come from pruning of data, Tensor-
Episdet has been ported to better exploit the Ampere archi-
tecture (Tensor-Episdet-A). This includes using AND+POPC
(instead of XOR+POPC) and relying on the same CUTLASS
parametrization as used in the proposed approach.
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Figure 7: EPIClear and Tensor-Episdet [25] at process-
ing different numbers of SNPs (𝑀) and samples (𝑁 ).

EPIClear achieves up to 352.06 tera sets per second scaled
to sample size at processing the dataset with 16384 SNPs and
524288 samples. Tensor-Episdet achieves a performance of
up to 91.39 on that dataset. Highest performance has been
achieved with 𝐵 = 512 due to improved hardware utilization.

Most of the 3.85× higher performance achieved with EPI-
Clear can be attributed to the pruning method. Notice that
in the case of the datasets used for these experiments, the
amount of data processed on TCUs is reduced to one third
as a result of the proposed scheme. Compared to the modi-
fied Tensor-Episdet version (Tensor-Episdet-A), the EPIClear
approach is 3.20× faster for the largest dataset in these ex-
periments (16384 SNPs and 524288 samples). The remaining

improvement achieved with EPIClear is due to optimization,
including a faster scoring function implementation.

The Tensor-Episdet tool does not natively support datasets
as small in regard to sample size as those fromWTCCC1 [35].
Using a block size of 512 SNPs – since as we previously
showed achieves higher performance than the default one
(𝐵 = 256) for 16384 SNPs – it achieved a performance of 85.01
tera sets processed per second computing the replicated type-
1 diabetes dataset. In comparison, EPIClear achieves 7.66×
higher performance (651.02), showing – with a genotype pat-
tern from a real dataset – that uneven genotype distributions
allow it to excel more in comparison to the state-of-the-art.

The proposed approach is built around a specialized mod-
ule implemented in software on the targeted parallel proces-
sors that leverages domain-specific information to reduce the
data processed on its TCUs, without any impact on the qual-
ity of the output. TCUs have successfully been used to accel-
erate combinatorial problems other than exhaustive epistasis
detection. This includes applications from domains such as
quantum circuit simulation [27], molecular dynamics simula-
tions [10], financial modeling [4] and climate clustering [18].
Thus, there might exist potential for extra performance on
some of these applications. In particular, those performing
high-order searches operating with highly sparse data.

7 Conclusions
This paper proposed an innovative method, based on domain-
specific data pruning, for accelerating genotype counting
in the context of high-order epistasis detection searches on
TCUs. The method was applied for designing the EPIClear
epistasis detection tool. The performance and scalability of
EPIClear was evaluated on an EuroHPC supercomputer with
NVIDIA A100 GPUs (MeluXina). Compared to a state-of-the-
art approach using 1-bit operations on TCUs, it achieved ap-
proximately 4× higher performance at processing challeng-
ing datasets with a balanced genotype distribution, having
potential for even higher speedups been shown processing
unbalanced datasets. As a result of the high scalability of the
proposed approach, a scaled performance of 13.132 Peta SNP
combinations per second has been achieved using 32 GPUs.
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