
WisIO: Automated I/O Bottleneck Detection with
Multi-Perspective Views for HPCWorkflows
Izzet Yildirim

Illinois Institute of Technology
Chicago, IL, USA

iyildirim@hawk.iit.edu

Hariharan Devarajan
Lawrence Livermore National

Laboratory
Livermore, CA, USA

hariharandev1@llnl.gov

Anthony Kougkas
Illinois Institute of Technology

Chicago, IL, USA
akougkas@iit.edu

Xian-He Sun
Illinois Institute of Technology

Chicago, IL, USA
sun@iit.edu

Kathryn Mohror
Lawrence Livermore National

Laboratory
Livermore, CA, USA
kathryn@llnl.gov

Abstract
Modern HPC workloads involve large data transfers that can
become bottlenecks. Existing analysis tools identify bottle-
necks from per-file performance data but have limitations in
parallelizability and rigid heuristic-based rules, necessitating
an automated, efficient, and multi-perspective solution. We
designed an automated tool, WisIO, that enables parallel
and distributed analysis of multi-terabyte-scale workflow
performance data. WisIO examines performance data from
multiple perspectives, uses metric-driven bottleneck classifi-
cation, and allows extensible mapping of bottlenecks to root
causes. Experimental results demonstrate that WisIO’s multi-
perspective views substantially improve bottleneck coverage,
showing an average increase of up to 805× when compared
to analyzing performance data from a single perspective.
In our performance evaluation, WisIO’s metric-driven
classification processed 340K bottlenecks per second, while
its reasoning engine handled around 35K bottlenecks per sec-
ond. In an analysis of five real-world HPC workloads, WisIO
demonstrated up to 11× faster analysis time and identified
up to 144× more bottlenecks compared to existing solutions.

CCS Concepts
• Information systems→ Information storage systems;
• General and reference→ Performance; • Software and
its engineering → Software libraries and repositories.

This work is licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725742

Keywords
HPC, Workflows, I/O Analysis, I/O Bottleneck Detection

ACM Reference Format:
Izzet Yildirim, Hariharan Devarajan, Anthony Kougkas, Xian-He
Sun, and Kathryn Mohror. 2025. WisIO: Automated I/O Bottleneck
Detection with Multi-Perspective Views for HPC Workflows. In
2025 International Conference on Supercomputing (ICS ’25), June
08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3721145.3725742

1 Introduction
Transferring large amounts of data is a common task within
modern scientific high-performance computing (HPC) work-
loads such as simulations, artificial intelligence (AI) applica-
tions, and workflows involving multiple cooperating appli-
cations [8, 20, 41]. Some examples of data transfers include
reading input files from storage systems at the start of an ap-
plication [38], transferring data between producers and con-
sumers, and checkpointing critical workload data for fault tol-
erance. These data transfers are crucial for enabling scientific
discoveries across many HPC workloads. However, the large
volume of these data transfers often lead to workloads spend-
ing significant time performing I/O [14, 16, 25, 29]. As a result,
tuning the performance of data transfers has become a rou-
tine task for application developers [19, 31, 36, 46]. This tun-
ing involves analysis of I/O performance data to extract criti-
cal paths for data transfer within the scientific workloads [9].
State-of-the-art tools for I/O analysis utilize I/O per-

formance data from I/O profilers and tracers such as
Darshan [33] and Recorder [43]. Popular I/O analysis
tools that work on single application performance data
include UMAMI [28], TOKIO [27], IOMiner [45], and
Drishti [3]. These tools utilize a serial pipeline using a
Pandas-like interface to perform analysis on per-file I/O

https://orcid.org/0000-0003-3513-0764
https://orcid.org/0000-0001-5625-3494
https://orcid.org/0000-0003-3943-663X
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1366-1655
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3721145.3725742
https://doi.org/10.1145/3721145.3725742


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

performance data [3, 28, 31, 44]. In a recent study on work-
flows, Devarajan et al. performed a manual I/O bottleneck
analysis to study different aspects of the workflow, such
as timeline (one-second intervals), processes, and files, to
visualize I/O behaviors [9]. The study demonstrated that
different aspects of the workflow can highlight different
I/O bottlenecks. Additionally, these tools employ rule-based
mechanisms, such as mathematical models [28, 45, 49, 50],
metrics [27, 28, 45, 49, 50], and heuristics [3, 9], to identify
certain I/O behaviors as bottlenecks. In general, these
solutions have demonstrated their capability to identify and
optimize I/O for individual workloads on HPC systems.
While state-of-the-art tools assist in I/O bottleneck

detection, they have several limitations. First, identifying
bottlenecks through serial analysis of performance data from
large-scale workflows is extremely time-consuming. For
instance, a serial pipeline analyzing a 400 GB trace data is 7×
slower than a parallel pipeline [48]. Second, identifying bot-
tlenecks in an isolated part of the workflow (e.g., performance
data from a single process) can miss performance problems
in other areas. For instance, analyzing CM1 (an atmospheric-
simulation workload) performance data using per-process
and per-file behaviors reveals different bottlenecks [9]. Third,
identifying bottlenecks using behavior-driven heuristics might
miss unseen behavior in new workloads. For instance, opening
multiple files from eight nodes simultaneously can lead to an
I/O bottleneck in GPFS [40] but not in Lustre [23], making
behavioral heuristics unreliable for bottleneck detection.
Finally, existing solutions attempt to explain a bottleneck
using a single heuristic, overlooking additional underlying
factors. For instance, within 1000 Genomes (a data-intensive
workflow to uncover potential disease-related mutations),
the mutation overlap application has both metadata and
small write issues on the same file. Therefore, we need a fully
automated bottleneck detection tool to analyze multiple per-
spectives, perform behavior-independent classifications, and
perform root-cause analysis for large-scale HPC workflows.
We introduce WisIO (Wisdom from I/O Behavior), an

automated bottleneck detection tool for large-scale HPC
workflows. WisIO creates a composable task graph for
identifying bottlenecks that can be efficiently pipelined and
parallelized over distributed resources. WisIO analyses the
trace data from large-scale workflows by partitioning it into
multiple chunks and operating on it in parallel across multi-
ple workers. This process uses the Dask parallel computing
library to manage the trace data in distributed memory
and apply analysis using composable tasks. As a part of the
composable analysis tasks, WisIO has three main stages.
In the first stage, WisIO utilizes multi-perspective views to
create multiple viewpoints, such as per-file, per-process, and
timeline, of the workflow’s trace data to extract different
workload behaviors for bottleneck discovery. In the second

stage, WisIO identifies the bottlenecks using a classification
algorithm that replaces behavior-specific heuristics with
metric-driven and relativistic severity calculation to classify
bottlenecks. Finally in the last stage, WisIO uses an
extensible rule engine that performs root cause analysis on
the classified bottlenecks by attaching one or more observed
behaviors as reasons. The evaluation results demonstrate
that WisIO is parallelizable across eight nodes and detects
144× more bottlenecks in 11× smaller analysis time for the
Montage workflow as compared to state-of-the-art analysis
solutions. The main contributions of this work are:

• Design of WisIO for efficiently analyzing multi-terabyte-
scale workflow performance data over distributed resources
• Design of multi-perspective views for building analysis-
driven perspectives of the same performance data to increase
the bottleneck classification coverage;
• Design of a metric-driven bottleneck classification algorithm
that decouples bottleneck detection from behavioral heuris-
tics to classify bottlenecks for unseen performance data;
• Design of a reasoning engine that performs root cause anal-
ysis on classified bottlenecks;
• Evaluation of WisIO with large-scale workflows demon-
strates WisIO can identify 144× more bottlenecks and in 11×
lower time as compared to state-of-the-art solutions.

2 Background & Related Work
Tuning I/O performance involves analysis of performance
data collected from scientific workloads. This analysis
is performed by HPC tools that can be categorized into
single-application and system-wide I/O analysis tools. The
single-applications tools such UMAMI [28], IOMiner [45],
Drishti [3], and AIIO [15] extract behavioral heuristics and
detect bottlenecks using workload’s performance data. In
contrast, TOKIO [27] is a system-wide tool that extracts
system-level behavioral heuristics and detects bottlenecks.
These analysis tools use performance data extracted by
collection tools such as I/O profilers [7, 22] that collect
aggregated performance counters and I/O tracers [11, 42, 47]
that collect event-level information. These tools facilitate
the understanding and tuning of scientific HPC workloads.
Using an in-memory analysis pipeline, existing analysis

tools detect I/O bottlenecks from a workload’s aggregated
performance data. In contrast, WisIO advocates using
detailed I/O traces with a loosely coupled staged analysis
pipeline that can efficiently work with large workflow traces.
Three main stages of WisIO which differentiate it from all
existing analysis tools are the creation of multi-perspective
views, metric-driven classification algorithm, and rule-based
reasoning engine.
Current bottleneck detection solutions use performance

data from I/O profilers to utilize per-file performance



WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

50

100

150

200

0

750

1500

2250

3000

HACC Ja
g

CM1

Mon
tag

e
# 

of
 B

ot
. D

et
ec

te
d

A
na

ly
si

s 
Ti

m
e 

(s
)

Workloads

Manual Time WisIO Time
Manual Bot. WisIO Bot.

1x 7x 4x

144x

(a) Manual analysis vs. WisIO.

Timeline
5K

2K
Per
file

4K
Per

process

22K
8K3K

12K

(b) Perspective bottlenecks.

Figure 1: (a) WisIO detects 144× more bottlenecks in
11× less time as compared to baseline. (b) Different bot-
tlenecks can be uncovered from different perspectives.

counters. For example, tools use Darshan counters like
POSIX_SIZE_READ_100K_1M to detect bottlenecks caused
by small read operations. However, in this work, the
multi-perspective views demonstrate that bottlenecks
caused by small reads may not always be evident from
the file-level data but may require application-level data
in certain cases. Other solutions, such as [4, 9, 30], use
the trace data to manually create per-process and timeline
aggregations to identify unique behaviors. However, WisIO
automates the multi-perspective views, allowing users to
dynamically specify these views as well as combines these
views to create complex views for bottleneck detection.

Existing solutions detect bottlenecks by coupling both
the behavior and the metric extracted for the workload. This
coupling reduces the bottleneck search space to a smaller set
of candidates based on historical knowledge. Subsequently,
the metrics are used to explain newly discovered behaviors.
In contrast, WisIO’s bottleneck classification algorithm
uses the metric to detect potentially problematic accesses
without considering the behavioral aspect of the workload.

Finally, existing solutions utilize a one-to-one mapping
to link each bottleneck with a specific explanation. For
instance, Drishti identifies small I/O accesses based on a
predefined threshold for access sizes (e.g., smaller than 100
KB or 1 MB) [3]. In contrast, WisIO’s rule-based reasoning
engine operates on the identified bottlenecks and performs
root cause analysis to find multiple potential reasons.

3 Motivation
State-of-the-art bottleneck detection solutions present three
challenges that motivated us to develop WisIO. First, these
solutions use a serial pipeline for bottleneck detection that
would be impractical with terabyte-scale traces [9]. To
illustrate the problem, we replicate the manual I/O analysis
performed by Devarajan et al. [9], where five bottleneck
detection queries are executed serially against four real HPC

Primary
Trace

Multi-Perspective Views Bottlenecks Reasoning

Rich Trace Rule Database

Classify 
bottlenecks

Associate reasons 
to bottlenecks

Trace Reasoned
Bottlenecks

Rule Database
Enrich trace data 
using rule fields

Secondary

Figure 2: High-level execution flow of WisIO, showcas-
ing individual stages and their parallel and pipelined
execution flow.

workloads (for more details see Table 2). We observe that
the serial pipeline is 11× slower and detects 144× less critical
bottlenecks compared to WisIO (Figure 1a). Second, current
tools rely on the singular per-file performance data provided
by I/O profilers [33, 47]. However, our initial analysis of
the Montage workflow’s performance data indicates that
focusing solely on a per-file perspective may not provide
a complete understanding of the workflow’s I/O issues. We
observe that 2K bottlenecks are detected using the per-file
perspective, whereas 5K bottlenecks are detected using the
timeline perspective (Figure 1b). Third, current solutions
map each bottleneck to a single reason which might miss
other potential root causes. For instance, WisIO detects
three different reasons (i.e., excessive metadata access,
operation imbalance, and size imbalance) for a critical
bottleneck during the 7th second of HACC’s data exchanges
(as shown in CR1 of Figure 17).

4 WisIO
WisIO is an automated I/O bottleneck detection tool to pin-
point I/O behaviors that cause bottlenecks and heuristically
identify their root causes in large-scale HPC workflows.
Operating offline, WisIO analyzes trace data captured by
I/O tracers (e.g., Recorder [42], DFTracer [11]), enabling
bottleneck detection without adding overhead to workloads.
It utilizes three main stages, namely multi-perspective
views, a metric-driven bottleneck classification algorithm,
and an extensible rule engine to detect bottlenecks within
workflows (Figure 2).

First, constructing multi-perspective views depending
on the user-specified perspectives allows users to look
at the same trace data from different angles (Section 4.1).
For instance, a function name perspective allows WisIO
to create a view for examining behaviors across different
I/O functions. In contrast, an interface name perspective
allows WisIO to generate a view for examining different
behaviors across interfaces. By default, WisIO uses the
process name, file name, and timeline perspectives. Second,



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

identifying behaviors within perspectives using a classifi-
cation algorithm that replaces behavior-specific heuristics
with metric-driven bottleneck selection (Section 4.2). This
allows WisIO to classify previously unseen bottlenecks,
enabling the discovery of new patterns that emerge in
evolving HPC workloads. Third, associating heuristic-driven
reasons for the classified bottlenecks using an extensible
rule engine that can map one or more behavioral reasons
to bottlenecks (Section 4.3). These behavioral reasons are
extracted from an enriched trace data to accommodate rules
and reasoning conditions within WisIO. All these stages are
designed as a composable task graph for efficient pipelining
and parallelization across distributed resources. The output
of these stages is the reasoned bottlenecks that are available
for further investigation and optimization efforts.

4.1 Multi-Perspective Views
I/O profilers record I/O performance data on a per-file
basis [33, 47]. Current bottleneck detection solutions identify
bottlenecks using this per-file performance data. However,
analyzing only per-file performance data may not provide
a complete understanding of I/O behavior (see Figure 1b in
Section 3). To overcome this limitation, we introduce multi-
perspective views that increases the bottleneck classification
coverage by utilizing the detailed trace data from I/O tracers
to dynamically construct user-specified perspectives from
the same trace data, instead of relying solely on per-file
performance data. However, trace data contains millions of
I/O operations and is not aggregated like the performance
data from I/O profilers. Therefore, aggregating the trace data
into view-specific performance data is essential for retaining
only relevant I/O behavior and metrics for each perspective.

Multi-perspective views within WisIO are of three types:
primary, logical, and secondary views. The primary view
is the foundational perspective directly constructed from
the trace data to spotlight specific I/O behavior relevant
to a chosen perspective. The logical views are constructed
from the derived columns of the trace data that represent
a new characteristic of the I/O behavior. For instance, a file
directory logical view, derived from the file name column,
would show specific I/O behavior to file directories as
compared to individual files. These views allow users to
choose domain-driven perspectives for bottleneck analysis.
Finally, the secondary view is a combination of multiple

primary and logical views in a specified order to identify I/O
behavior specific to the relationship between these primary
views (e.g., combining process name and file name perspec-
tives to see how specific processes interact with files). In
total, a total of

∑𝑛
𝑟=1

𝑛!
(𝑛−𝑟 )! secondary views are constructed

for a given set of 𝑛 primary and logical views. For instance,
the initial set of process name and file name perspectives

app_name file_name time
pegasus-kickstart dira/individuals 3.3367
mutation_overlap dirb/chr4.HG00158 4.5129
mutation_overlap dira/chr6.HG02178 0.7473
mutation_overlap dira/chr6.HG02178 0.6730

view id count time metric
mutation_overlap 3 5.9332 1.1717
pegasus-kickstart 1 3.3367 0.6945

dirb/chr4.HG00158 1 4.5129 0.5135
dira/individuals 1 3.3367 0.6945
dira/chr6.HG02178 2 1.4203 3.2633

Tr
ac

e

Ap
p 

Vi
ew

Fi
le

 V
ie

w

dira/ 3 4.7571 1.4615
dirb/ 1 4.5129 0.5135Fi

le
 D

ir

app_name str
file_name str
time float

view_id str
count int
time float

Tr
ac

e
Vi

ew
s

Perspective fields

Metric components

(b)

(a)

(c)
Secondary

Primary
Aggregate 
metrics
per view

Different 
metrics
observed 
per view

(+41 fields)

Trace

6 
secondary 

views

Logical

Figure 3: (a) Focused primary and logical views. (b) Data
types of perspective fields and metric components. (c)
Different metrics are observed per view.

(i.e., 𝑛 = 2) would yield a total of four views. All these views
contain multiple records with view id as their identifier for
aggregation and metric as their value. Some examples of met-
rics are I/O time, I/O operations per second (IOPS), and I/O
bandwidth (BW). The I/O time metric can be maintained and
calculated easily during aggregation. In contrast, the IOPS
and BW metrics need to be calculated by aggregating their
components correctly. For instance, we need to aggregate
I/O time and number of operations for every perspective
record to compute IOPS. Therefore, WisIO’s view contains
the identifier view id and the metric components as values
for each perspective record in a Dask DataFrame.
To demonstrate how different I/O behaviors emerge

through multi-perspective view analysis, we present an
example in Figure 3. As shown in the figure, the trace data
consists of 44 fields, with the app_name, file_name, and
time fields explicitly displayed, while other 41 fields, such
as the I/O category (read, write, and metadata), are omitted
for brevity (Figure 3c). We begin by aggregating the trace
data into two primary views (application name and file
name perspectives) and one logical view (file directory
perspective) using the app_name, file_name, and file_dir
fields, respectively. For this example, we use IOPS as our
metric, calculated from I/O time and I/O operations (shown
as time and count fields in the figure). We then combine
these views to form six secondary views based on our
formula described above. Throughout all views, we maintain
the metric components for IOPS, namely I/O time and
number of operations. As demonstrated in the figure, the
aggregation results differ across views. For instance, while
directory dira has the highest IOPS in the file directory view,
the file name view reveals that only one file in that directory
(dira/chr6.HG02178) actually contributes to the high IOPS.
This demonstrates how analyzing trace data from multiple
perspectives can uncover distinct workload characteristics
that might be hidden in a single view.



WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

%
 o

f I
/O

 T
im

e

% of I/O Operations

Critical
Very High
High
Medium
Low
Very Low
Trivial
None

45°

30°

15°

Bo
un

da
rie

s

60°75°

Figure 4: In the case of the I/O operations per second
(IOPS) metric, lower metrics indicate higher severity.
Notably, > 75° indicates critical bottlenecks.

4.2 Metric-Driven Bottleneck Classification
Existing bottleneck detection solutions utilize behavioral
heuristics to identify bottlenecks within the trace data
(see Section 2). These heuristics result in a tight coupling
between the workload behaviors and the identified bottle-
necks. However, this tight coupling cannot detect previously
unseen bottlenecks from the growing diversification of
workloads [9, 12] and system behaviors. For instance,
random accesses on disk-based parallel file system is a
bigger problem than on flash-based node-local burst buffers.
Another instance, I/O bottlenecks on simulations with bulk
synchronous operations are behaviorally different from
independent I/O on AI workloads [12] and therefore may
or may not be a bottleneck on the HPC system. Additionally,
manually creating heuristics for all possible bottlenecks for
existing and future workloads is an insurmountable task.
In the literature, metrics such as I/O bandwidth and I/O

time have been widely used in analysis to manually detect
I/O bottlenecks [1, 21, 28, 45, 46, 49, 50]. These metrics do not
depend on behavioral aspects on the workload and can be
used independently of the workload characteristics to detect
bottleneck. However, doing this manually, especially for the
combinatorial set of perspectives, is extremely expensive.
This dictates the need for an automated metric-driven
bottleneck identification algorithm that is decoupled from
workload’s behavioral heuristics and can be efficiently
applied to multiple perspectives.
We introduce a novel classification algorithm that lever-

ages the severity parameter to identify “how severe a metric
is for a given perspective record?”. The severity parameter
within the classification algorithm has two properties:
monotonically increasing and relativistic. The first property
allows the algorithm to classify the perspective records
independently. The second property compares the relative
performance of perspective records. In the context of I/O
bottleneck classification, we use I/O metrics such as I/O time,
IOPS, and I/O bandwidth to define severity for the algorithm.
As these metrics may satisfy the properties, we apply

view id metric
mutation_overlap 1.1717
pegasus-kickstart 0.6945

dirb/chr4.HG00158 0.5135
dira/individuals 0.6945
dira/chr6.HG02178 3.2633

Ap
p 

Vi
ew

Fi
le

 V
ie

w

dira/ 1.4615
dirb/ 0.5135Fi

le
 D

ir

severity

S(b)

40°
55°

63°
55°
17°

62°
34°

LogicalPhysical
Classify bottlenecks 
via threshold 𝛳=45°

severity

＞45°

40°
55°

63°
55°
17°

62°
34°

Figure 5: Different behaviors are classified as bottle-
necks depending on the perspective. e.g., the App View
indicates the pegasus-kickstart application exhibits a
bottleneck, while the mutation_overlap does not.

transformations on these metrics to ensure they satisfy the
severity parameter. In this work, we choose IOPS as our met-
ric. To quantify the severity of each perspective record using
IOPS, we employ the formula 𝑆 (𝑏) = tan % of I/O time

% of I/O operations .
Here, IOPS metric has been inverted to fit the definition of
the severity parameter. Additionally, we calculate the slope
of the perspective record (i.e., tan) to intuitively bound the
severity parameter between 0° and 90°. In this formula, a
smaller value of the severity parameter signifies a smaller
bottleneck and vice-versa. After calculating the severity 𝑆 (𝑏),
the algorithm proceeds to classify bottlenecks by comparing
the calculated severities against a threshold degree. The
threshold value for the severity parameter depends on the
underlying metric. For the IOPS metric, we set the default
threshold angle 𝜃 at 45° (𝜋4 or 𝑡𝑎𝑛(𝜃 ) = 1). This choice of 45
degrees represents the point where the percentage of I/O op-
erations attributed to a record equals the percentage of total
I/O time, with higher degrees indicating increased severity of
the bottleneck due to the higher proportion of I/O operations
relative to the record’s I/O time. By applying this threshold,
the algorithm classifies certain perspective records as
bottlenecks (𝑆 (𝑏) > 𝜃 ) or non-bottlenecks (𝑆 (𝑏) <= 𝜃 ).
We demonstrate the classification algorithm’s output for

a microbenchmark to illustrate an example of this threshold
for IOPS (Figure 4). In the example, the perspective records
are classified based on the value of the severity parameter.
Here, a smaller severity parameter signifies a higher IOPS
value (white to green) and vice versa (red to orange).
Therefore, for a threshold greater than 45°, we will classify
all perspective records as bottlenecks where the I/O time
is greater than the number of operations. The boundaries
of the severity parameter are mapped to user-facing labels
that improve the presentation of bottlenecks for WisIO. In
the context of IOPS, the “critical” label is mapped to > 75°,
the “very high” label is > 60°, the “high” label is > 45°, and
the rest are labeled as medium and low bottlenecks.

To illustrate a working example of the algorithm, we con-
tinue our example from the previous section. In the previous



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

section, we had calculated the IOPSmetric for the perspective
records. Now, we are applying our classification algorithm on
the three views: two primary and one logical (Figure 5). For
calculating the severity parameter, we invert the IOPS metric
and then calculate the slope of the line using the tangent
function. This gives us a severity parameter between 0° and
90°. In the figure, the File View has three files with different
severity parameters. The severity parameters for the files
dirb/chr4.HG00158, dira/individuals, and dira/chr6.HG02178
are 63°, 55°, and 17°. This indicates that dirb/chr4.HG00158
has a bigger bottleneck than the other two files when consid-
ering the IOPSmetric. With this applied to all the perspective
records, we see that out of seven perspective records, four
of them are classified as bottlenecks by the algorithm.
This illustration shows that the perspective records can be
classified independently and thus be parallelized efficiently
across multiple analysis workers for large-scale trace data.

4.3 Rule-Based Bottleneck Reasoning
After the bottlenecks are classified, WisIO aims to analyze
the root cause of the bottlenecks by mapping the bottlenecks
with the workload’s I/O behavior. This mapping is performed
by using a rule engine that utilizes workload behaviors to
reason about the identified bottlenecks. This rule engine is
backed by a database of heuristic rules with workload behav-
iors as variables to find reasons for the classified bottlenecks.
A rule is defined as a typed expression language with a cus-
tom grammar for creating boolean conditions that match a
reason based on workload behavior. Each rule is defined by a
key, a name, and a condition. The key is used to identify, and
if needed override, the rule. The name is used for presenta-
tion. The condition is written as a boolean expression using
the field names in the trace data. A sample rule definition
for the small imbalance rule is presented in Listing 1.

size_imbalance:
name: "Size imbalance"
condition: "(abs(write_size - read_size) / size) > 0.1"
reasons:

- condition: "read_size > write_size"
message: "'read ' size is {{ read_size }} which ..."

Listing 1: Sample definition of the size imbalance rule.

Furthermore, each rule has their own reasoning, defined
by a condition and a message. For example in Listing 1, the
size imbalance rule examines whether read or write size
exceeds the other by 10%. If this condition is met, then
the rule investigates the reasoning conditions to identify
the specific reason behind the bottleneck. These rules are
created from a literature review of analysis tools that provide
a collection of behaviors known to be bottlenecks for specific
HPC systems [3, 9, 26, 44] and are presented in Table 1.

Table 1: Rules and conditions implemented in WisIO.

Rule Condition

Small reads Over 50% of I/O time is spent on
small (<1 MiB) read operations

Small writes Over 50% of I/O time is spent on
small (<1 MiB) write operations

Excessive metadata access Over 50% of I/O time is spent on
metadata operations

Operation imbalance Read or write operations exceeds
the other by 10%

Size imbalance Read or write size exceeds the
other by 10%

Attaching rules to classified bottlenecks involves the
matching of rules, which is a cross-product of the number
of rules, the number of reasons per rule, and the classified
bottlenecks. This combinatorial space of matching results
in an expensive rule engine that requires a lot of resources
to compute this cross-product. Additionally, the rule engine
needs to access the enriched trace data to apply these rules
on different perspective records. To optimize this process,
the rule engine performs these matches in parallel using
the Dask task graph and the enriched trace data is persisted
in distributed memory using Dask DataFrames. Essentially,
the rule engine can execute every combination of the
cross-product independently of each other and access the
enriched data concurrently from these independent tasks.
Enriched data plays a critical role in attaching rules to

classified bottlenecks. It is derived from the original trace
data with the goal of capturing workload behaviors relevant
to the perspectives selected by the user. Since the rules rely
on workload behaviors as variables, the enriched data must
encompass all the necessary behaviors for the rule engine to
effectively apply its rules and reasoning.

view_id severity
pegasus-kickstart

dirb/chr4.HG00158
dira/individuals

Ap
p

Fi
le

 

dirb/

Fi
le

 D
ir

small_imbalance
rule abs(write_size - read_size) / size > 0.1
reasoning 1 read_size > write_size
reasoning 2 write_size > read_size

Logical
Primary

excessive_metadata_access
rule metadata_time / time >= 0.5
reasoning 1 open_time > close_time & seek_time
… …

Ri
ch

 
Tr

ac
e

Query rich trace data with 
view_id to retrieve rule fields

Evaluate each rule and its reasoning for each view and 
its records using rule fields from rich trace data

Rich Trace

62°

63°
55°

55°

Figure 6: Full diagnosis of classified bottlenecks
through reasoning conditions.

To illustrate this approach, we continue our example from
the previous section in Figure 6. After classifying four per-
spective records as bottlenecks, we extract the corresponding
workload behaviors from the enriched trace data (labeled as
"Rich Trace" in the figure). For instance, the metadata_time



WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

defined in the excessive_metadata_access rule is derived
from the original trace data during the enrichment process by
using the I/O category field (read, write, or metadata) and the
associated time for each category. The identified bottlenecks
and enriched trace data are then sent to the rule engine,
which applies its rules based on the workload behaviors of
the enriched data. For instance, for classified bottleneck dirb,
the enriched data showed that the percentage of metadata
access on the directory was 73%, out of which the metadata
time was dominated by the open operation. This triggered
the excessive_metadata_access rule, and that got attached
to the bottleneck. Similarly, other rules will be executed
with the trace data and potential reasons will be attached
to the classified bottlenecks. This example demonstrates
the capability of the rule engine to associate reasons as root
causes for the classified bottlenecks within WisIO.

4.4 Implementation & APIs
The WisIO tool1 is implemented in Python for version 3.9
and above. It comprises a core library and two user-facing
interfaces. The core library is implemented using the Dask
parallel computing library [34] to build a distributed work-
flow to detect bottlenecks in large-scale performance data.
The current implementation can detect I/O bottlenecks from
trace data collected using Darshan DXT [47], DFTracer [11],
and Recorder [42]. WisIO offers a command-line interface
(CLI) and a Python API. The CLI, installable via pip, uses the
Hydra configuration framework [35] to configure analysis
parameters such as different types of perspectives and the
classification threshold. The Python API can be imported
into a Jupyter Notebook for interactive workload analysis.
The core library is composed of a task graph which is

implemented using Dask DataFrames and Delayed APIs to
pipeline and parallelize the tasks across distributed workers.
Also, we map partitions of the distributed DataFrame to
custom operators that parallelly execute our workflow on
the Dask DataFrame. We use memory snapshots of the
data structures used within the analysis to improve parallel
access across the distributed cluster. This operation applies
transformations asynchronously and persists the Dask
DataFrame in the distributed memory for future accesses.
Finally, we implemented a checkpointing infrastructure
to store intermediate stages of our workflow to ensure the
recovery and reproducibility of the analysis.

The WisIO tool provides a paginated and human-readable
output of all bottlenecks found within the workload. An
example of this output is shown in Figure 7. The output has
two sections: the workload behavior and the classified bottle-
necks with their reasons. The workload behavior provides a

1The WisIO tool is open-sourced at https://github.com/grc-iit/wisio. The
repository includes usage examples.

WisIO

╭─────────────────────── CM1 I/O Characteristics ───────────────────────╮
│ │
│ Runtime         667.81 s                                    │
│ I/O Time        4.12 s - R: 0.05% - W: 14.08% - M: 85.89%   │
│ I/O Operations  27.5K ops - R: 4.67% - W: 8.39% - M: 86.95% │
│ I/O Size        21.18 GiB - R: 94.59% - W: 5.41%            │
│ Read Requests   4 MiB-16 MiB                                │
│ Write Requests  4 kiB-16 MiB                                │
│ Processes/Ranks 1,280 processes                             │
│ Files           775 files - Shared: 4.90% - FPP: 95.10%     │
│ Time Periods    393 time periods                            │
│ Access Pattern  Sequential: 100.00% - Random: 0.00%         │
│ │
╰─ R: Read - W: Write - M: Metadata  ───────────────────────────────────╯

╭───────────────── 75 I/O Bottlenecks with 176 Reasons ─────────────────╮
│ │
│ Time View (23 bottlenecks with 53 reasons)                          │
│ ├── [CR1] 32 processes access 2 files within 1 time period (5)  │
│ │   across 32 I/O operations and have an I/O time of 2.19 seconds  │
│ │   which is 53.26% of overall I/O time of the workload. │
│ │   └── [Excessive metadata access] Overall 100.00% (2.19 seconds)  │
│ │    of I/O time is spent on metadata access, specifically  │
│ │    100.00% (2.19 seconds) on the 'open' operation. │
│ └── (22 more)                                                       │
│ Process View (24 bottlenecks with 48 reasons)                       │
│ ├── [CR24] 1 process (app1#localhost#600#35184372411024) accesses  │
│ │   38 files within 18 time periods across 162 I/O operations and  │
│ │   has an I/O time of 3.44 seconds which is 83.66% of overall I/O  │
│ │   time of the workload. │
│ │   ├── [Excessive metadata access] Overall 100.00% (3.44 seconds)  │
│ │   │   of I/O time is spent on metadata access, specifically  │
│ │   │   99.98% (3.44 seconds) on the 'open' operation. │
│ │   └── [Size imbalance] 'read' size is 100.00% (16.00 MiB) of  │
│ │    total I/O size. │
│ └── (23 more)                                                       │
│ File View (28 bottlenecks with 75 reasons)                          │
│ ├── [CR48] 7 processes access 7 files within 7 time periods across  │
│ │   6 I/O operations and have an I/O time of 0.07 seconds which is  │
│ │   1.67% of overall I/O time of the workload. │
│ │   ├── [Excessive metadata access] Overall 99.86% (0.07 seconds)  │
│ │   │   of I/O time is spent on metadata access, specifically  │
│ │   │   99.79% (0.07 seconds) on the 'open' operation. │
│ │   ├── [Operation imbalance] 'write' operations are 16.67% (1  │
│ │   │   operations) of total I/O operations. │
│ │   └── [Size imbalance] 'write' size is 100.00% (47.26 kiB) of  │
│ │    total I/O size. │
│ └── (27 more)                                                       │
│ │
╰───────────────────────────────────────────────────────────────────────╯

Figure 7: The output produced by WisIO for CM1. I/O
characteristics are presented in compactmode. Combi-
natorial views are excluded for brevity.

quick overview of key characteristics like runtime, I/O time,
and operation count, offering insight into the workload’s
core behavior. The bottleneck classification section lists
the top 𝑛 bottlenecks, each with one or more reasons. This
example shows the utility and user-driven design of WisIO
for application developers and system researchers.

4.5 Enabled Practical Optimizations
WisIO’s multi-perspective views detect I/O bottlenecks from
different perspectives of the same trace data. This enables
holistic optimizations of the workload as it effectively finds
critical I/O behavior in different parts of the trace data.
For instance, WisIO detects the most problematic files
via its per-file perspective. If WisIO reasons that many
processes accessing a particular file is a bottleneck, this can
be addressed with data layout transformations to make it
more amenable to parallel access [2, 9]. If WisIO deems that
a small number of files are heavily accessed, it might make
sense to cache these files in a burst buffer or node-local



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

Table 2: Number of I/O operations, files, and processes,
and trace size of workloads used in the evaluation.

Workload Number of Trace SizeOps. Files Proc.
CM1 27.5K 775 1,2K 7.8 MB
Flash 2.5M 1.6K 1K 481 MB
HACC 72.9K 2.5K 1.2K 27.4 MB
Jag (LBANN) 635K 4 5.2K 72.8 GB
Montage (Pegasus) 12.3M 19.6K 11.4K 727 MB
MuMMI (WEMUL) 38.4M 80 74.5K 59.5 GB
CosmoFlow (LBANN) 10.4M 49.5K 652 53.6 GB
1000 Genomes (Pegasus) 646M 21.2M 2.7K 404 GB

storage [39]. For example, the Hermes middleware’s
"hot-data" policy can be used to place frequently accessed
data in faster layers of the hierarchy [10, 24].
Similarly, WisIO can show how different processes

contribute to I/O bottlenecks via its per-process perspective.
For instance, if WisIO detects that a small number of
processes are performing the bulk of the I/O operations,
one can implement collective I/O operations to reduce
the number of requests sent to the storage system [4, 45].
Similarly, if processes are performing small, non-contiguous
I/O operations, one can configure UnifyFS to use different
write modes to avoid such overhead [5].

Finally, WisIO can reveal patterns or phases of I/O activity
via its timeline perspective. For example, if WisIO detects
a phase of intensive I/O, one can apply collective I/O or data
sieving, whereas phases write only small amounts of data
might require different tuning [9, 10, 24]. Similarly, if WisIO
detects metadata operations are causing a bottleneck given
a specific time interval, one can explore techniques to dis-
tribute metadata operations across multiple servers [16, 25].

5 Evaluation
In this section, we evaluate WisIO’s internal components’s
effectiveness and performance. Then, we compare WisIO
against Dristhi. Finally, we employ WisIO to detect bottle-
necks for five scientific workloads and present the results.

5.1 Methodology
5.1.1 Testbed. We run the experiments on the Lassen clus-
ter at Lawrence Livermore National Laboratory (LLNL) [18],
comprising 795 nodes with two IBM POWER9 CPUs (IBM
AC922 servers) and 256GB of system memory.

5.1.2 Software. We chose Recorder [43] to collect I/O traces
because it captures metadata operations essential for our
bottleneck detection rules.

5.1.3 Scientific Workloads. We evaluate WisIO against real-
world HPC workloads with diverse I/O behaviors including
deep learning applications and workflows with complex

0

2

4

6

8

0%

25%

50%

75%

100%

1 2 3 1 2 3 1 2 3 1 2 3

CM1 Flash HACC Jag

C
la

ss
ifi

ca
tio

n 
Ti

m
e 

(s
)

%
 o

f B
ot

tle
ne

ck
s

Workloads

Critical Very High High Medium Low Class.Time

# of Views

3.8x 3.7x 2.4x 1.06x

Figure 8: For low-variability workloads, three views
yields up to 3.8× more bottlenecks than a single view.

455

0

2

4

6

8

0%

25%

50%

75%

100%

1 2 3 1 2 3 1 2 3 1 2 3

Montage MuMMI Cosmoflow 1000 Genomes

C
la

ss
ifi

ca
tio

n 
Ti

m
e 

(s
)

%
 o

f B
ot

tle
ne

ck
s

Workloads

Critical Very High High Medium Low Class.Time

# of Views

3x
1812x

1794x

7033x

Figure 9: For high-variability workloads, three views
yields up to 7033×more bottlenecks than a single view.

data dependencies. These include CM1 [38], Flash [6] (an
open radiation MHD simulation code for plasma physics
and astrophysics), HACC [17] (a cosmology workload),
Jag [37] (a semianalytic AI model of ICF implosions in
3D), Montage [20] (a mosaics-building tool employed in
astrophysics), MuMMI [13] (a multi-scale machine-learned
modeling infrastructure), CosmoFlow [32] (a deep learning
tool for cosmology data analysis), and 1000 Genomes [41].
Table 2 shows the summary of these workloads, including
the number of I/O operations, files, and processes found in
the I/O traces of the workloads.

5.1.4 Experiment Setup. Each WisIO experiment is
conducted across eight distributed nodes using all three
views (per-file, per-process, and timeline) with the default
threshold value of 45°, unless stated otherwise.

5.2 Internal Evaluation
In this section, we demonstrate the effectiveness and
performance of WisIO’s internal components. We conducted
our evaluations against the workloads listed in Table 2.

5.2.1 Multi-Perspective Views. To understand the impact
of multiple perspectives in increasing the bottleneck
classification coverage, we run WisIO for IOPS using the
45° threshold with an increasing number of views, from
one to three. Specifically, with one view, we focus on the
process name perspective. We start with the process name
perspective because load imbalance in I/O is a common issue
in scientific workflows, and this approach effectively filters
out non-problematic data [9]. With two views, we combine



WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0

2

4

6

8

0

25

50

75

100

75° 60° 45° 30° 15° 75° 60° 45° 30° 15° 75° 60° 45° 30° 15° 75° 60° 45° 30° 15°

CM1 Flash HACC Jag

C
la

ss
ifi

ca
tio

n 
Ti

m
e 

(s
)

%
 o

f B
ot

tle
ne

ck
s

Workloads

Critical Very High High Medium Low Very Low Trivial Class.Time

Threshold

Figure 10: Low-variability workloads exhibit a constant
classification time.

352 363

456 685 714

0

2

4

6

8

0

25

50

75

100

75° 60° 45° 30° 15° 75° 60° 45° 30° 15° 75° 60° 45° 30° 15° 75° 60° 45° 30° 15°

Montage MuMMI Cosmoflow 1000 Genomes
C

la
ss

ifi
ca

tio
n 

Ti
m

e 
(s

)

%
 o

f B
ot

tle
ne

ck
s

Workloads

Critical Very High High Medium Low Very Low Trivial Class.Time

Threshold

Figure 11: High-variability workloads average a 9% in-
crease in classification time per threshold increase.

the process name and timeline perspectives. Finally, with
three views, we incorporate the process name, file name,
and timeline perspectives. Throughout our evaluations,
we refer to these views as Process, Time, and File View,
respectively. We separate the workloads into low- and
high-variability workloads due to their unique behavior.
Variability refers to the skewness of the number of I/O
characteristics per view in the performance data. The
results are presented in Figures 8 and 9. In the figures, the
x-axis shows the workloads, the primary y-axis shows the
percentage of bottlenecks in different classifications, and the
secondary y-axis shows the classification time in seconds.
The percentage of bottlenecks is based on the maximum
number of bottlenecks detected using all three views.
In Figures 8 and 9, we observe that using all three views

results in an average of 805× more bottlenecks being classi-
fied. Specifically, low-variability workloads show an increase
of 1.06–3.8×, while high-variability workloads exhibit a
3–7033× increase compared to using a single view. Adding
multiple perspectives for the same trace data improves the
bottleneck classification coverage more than the increase in
classification time. The trend suggests that as we add more
perspective, more behavior will be covered, increasing our
bottleneck coverage as well as the cost of analysis.

5.2.2 Impact of Thresholds on Bottleneck Classification. To
illustrate the impact of severity parameter thresholds on
bottleneck classification, we run WisIO for IOPS with five
different threshold values: 15°, 30°, 45°, 60°, and 75°.
The results are presented in Figures 10 and 11. In the

figures, the x-axis shows the workloads, the primary y-axis

99.76% 99.97% 99.99% 99.87%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

CM1 Flash HACC Jag Montage MuMMI Cosmo-
flow

1000
Geno-
mes

R
ea

so
ni

ng
 C

ov
er

ag
e

%
 o

f R
ul

es

Workloads

Small reads Small writes Excessive metadata access
Operation imbalance Size imbalance Reasoning coverage

Figure 12: The default rules can reason at least 99.76%
of bottlenecks classified.

shows the percentage of bottlenecks in different classifica-
tions, and the secondary y-axis shows the classification time
in seconds. In Figures 10 and 11, we observe that decreasing
the threshold increases the percentage of bottlenecks
classified. A threshold of 75° only classifies critical and very
high bottlenecks, whereas a threshold of 15° includes even
trivial ones. The percentage of bottlenecks is based on the
maximum number of bottlenecks detected using the smallest
threshold value of 15°. The result shows that lowering the
threshold beyond 45° only increases the number of unimpor-
tant bottlenecks (low, very low, and trivial). This suggests
that although decreasing the threshold detects more bottle-
necks, they are generally less critical and lead to longer classi-
fication times, indicating a potentially unfavorable trade-off.

5.2.3 Bottleneck Reasoning Coverage. To demonstrate the
coverage of our default reasoning rules, we assess the
proportion of these rules utilized in identifying the classified
bottlenecks, as well as their overall effectiveness in covering
all classified bottlenecks. Unlike traditional bottleneck detec-
tion tools, our classification algorithm classifies bottlenecks
and their severities independently of the reasoning rules
(heuristics). Therefore, the reasoning coverage metric specif-
ically measures how well the rules can assign reasons to the
already classified bottlenecks, rather than validating root
causes. The results are presented in Figure 12. In the figure,
the x-axis shows the workloads, the primary y-axis shows
the percentage of rules, and the secondary y-axis shows the
percentage of reasoning coverage. We observe that WisIO’s
default rules can reason at least 99.76% of classified bottle-
necks. While these results suggest that our five default rules
are highly effective in covering most bottlenecks, a small
portion remains uncovered. This aligns with our design,
as WisIO’s metric-driven classification algorithm, being
decoupled from heuristics, can classify bottlenecks even
when current rules don’t provide reasons for edge cases.

5.2.4 Bottleneck Reasoning Performance. To demonstrate
the performance of bottleneck reasoning, we evaluate the
reasoning throughput against the number of bottlenecks
reasoned. The results is presented in Figure 13. In the figure,
the x-axis shows the workloads, the primary y-axis shows



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

75 296 794 19 495

3K

10K

0

10K

20K

30K

40K

0

3K

6K

9K

12K

CM1 Flash HACC Jag Montage MuMMI Cosmo-
flow

1000
Geno-
mes

R
ea

so
ni

ng
 T

hr
ou

gh
pu

t

# 
of

 B
ot

. R
ea

so
ne

d

Workloads
Reasoned Bottlenecks
Reasoning Throughput

430K

Figure 13: WisIO’s bottleneck reasoning can reason
430K bottlenecks with a 35K bottlenecks per second
(BPS) throughput, averaging around 8.4K BPS.

the number of bottlenecks reasoned, and the secondary
y-axis shows the throughput in bottlenecks per second
(BPS). We observe that the reasoning throughput averages
around 8.4K BPS. The throughput peaks for 1000 Genomes
at 35K BPS. The trend suggests that the reasoning scales
well depending on the number of classified bottlenecks.

5.3 Comparison with State-of-the-art Tool
We compare WisIO against Drishti (version 0.6) to study the
differences in their performance and coverage. As of writing,
Drishti is the only comparable HPC tool due to its similar
functionality. We run a microbenchmark that simulates the
behavior of an AI application and involves 320 ranks perform-
ing 1K read operations (64-256 KB) and one write operation
(256 KB to 1 MB) each, resulting in a total data exchange
of 39 GB over 7 seconds. Drishti utilizes Darshan’s per-file
perspective and focuses only on critical bottlenecks. For a
fair comparison, we run WisIO with only File View enabled
and set the threshold to 75° to detect only critical bottlenecks.
Both take around 2 seconds to complete the analysis.

The results are presented in Figures 14 and 15. Drishti iden-
tifies two critical bottlenecks: a high number of small read
requests (P06 in Figure 14) and data transfer imbalance while
accessing a shared file (P18 in Figure 14). In contrast, WisIO
detects only one bottleneck: the same shared file dominates
I/O time, accounting for 82.68% of the overall I/O time (CR1
in Figure 15). WisIO identifies three reasons for this bottle-
neck. First, there is a high number of read accesses to this file.
This is similar to Drishti’s P06, but not quite the same, as Dr-
ishti examines the entire application’s read operations, while
WisIO focuses on the performance of this single file. Second,
write operations consume a substantial I/O time. Third, write
operations are small (under 1 MB) on average. These findings
demonstrate that having a high number of read operations
does not automatically translate to a bottleneck, underlining
the need for decoupled bottleneck detection.

5.4 Use Cases
To assess WisIO’s effectiveness, we test it against eight real-
world HPC workloads, using a default 45° threshold across

▶ [P06] Application issues a high number (320000) of small read 
requests (i.e., < 1MB) which represents 100.00% of all read 
requests
▶ [P18] Detected data transfer imbalance caused by stragglers 
when accessing 1 shared file.

↪ Load imbalance of 50.00% detected while accessing 
"file_0-320.bat"

Figure 14: Bottlenecks detected by Drishti demonstrate
one-to-one mapping between rules and reasons.

╭─────────────────── 1 I/O Bottleneck with 3 Reasons ───────────────────╮
│ │
│ File View (1 bottleneck with 3 reasons)                             │
│ └── [CR1] 1 file (file_0-320.bat) has an I/O time of 42.70 seconds  │
│ across 1320 I/O operations which is 82.68% of overall I/O time  │
│ of the workload. │
│ ├── [Operation imbalance] 'read' operations are 75.76% (1,000  │
│ │   operations) of total I/O operations. │
│ ├── [Small writes] 'write' time is 99.91% (42.67 seconds) of  │
│ │   I/O time. │
│ └── [Small writes] Average 'write's are 96.97 kiB, which is  │
│ smaller than 1.00 MiB. │
│ │
╰───────────────────────────────────────────────────────────────────────╯

Figure 15: Bottlenecks detected by WisIO demonstrate
decoupled bottleneck detection and reasoning, with
each bottleneck having multiple root causes.

75 296 794 19 495
3K

10K

430K

0

3K

6K

9K

12K

0

500

1000

1500

2000

CM1 Flash HACC Jag Montage MuMMI Cosmo-
flow

1000
Geno-
mes

# 
of

 B
ot

. D
et

ec
te

d

A
na

ly
si

s 
Ti

m
e 

(s
)

Workloads

Multiple-Perspective Views Bottleneck Detection Detected Bottlenecks

Figure 16: Overall analysis time is dominated by the
computation of multi-perspective views, while issue
diagnosis takes a fraction of the analysis time.

Process, File, and Time Views. We record I/O characteristics
and detected bottlenecks (Figure 7 shows the output for-
mat). For brevity, we gather the important I/O characteristics
WisIO reports for all the workloads in Table 3. For the same
reason, we only present critical and interesting bottlenecks
for five workloads. The analysis time and the number of
bottlenecks detected are presented in Figure 16. Notably, the
detected bottlenecks represent about 0.2% of the total I/O
events across workloads. The distribution of bottleneck rea-
sons and the reasoning coverage are presented in Figure 12.

5.4.1 CM1. simulates atmospheric phenomena like thun-
derstorms and tornadoes across 193 steps. It uses 16MB con-
figuration files to generate over 750 files, each totaling about
128MB per step. WisIO detects 75 bottlenecks for CM1 and
finds 176 reasons for these bottlenecks in 17 seconds with
100% root cause coverage.

We identify four key bottlenecks for CM1. First, 86% of
the I/O time is spent on metadata operations. The I/O char-
acteristics panel in Figure 7 shows specifically how much



WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 3: The I/O characteristics WisIO reports for the selected workloads.

Workload Runtime I/O Time I/O Time (%) I/O Ops. I/O Ops. (%) I/O Size I/O Size (%)
R W M R W M R W

CM1 12 m 4.12 s 0.05 14.08 85.89 27.5K 4.67 8.39 86.95 21.2 GB 94.59 5.41
HACC 32 s 10.37 s 13.48 28.74 57.78 72.9K 17.55 17.55 64.9 1.5 TB 98.04 1.96
Montage (Pegasus) 7 m 3.74 s 83.17 14.56 2.27 12.3M 54.14 44.18 1.68 153.2 GB 74.85 25.15
CosmoFlow (LBANN) 59 m 2.2 m 98.66 0.11 1.36 10.4M 19.87 0.36 79.77 1.4 TB ∼100 ∼0
1000 Genomes (Pegasus) 54 m 22.6 m 1.43 4.53 94.04 646M 81.51 1.66 16.83 71 TB 99.86 0.14

I/O time is spent on metadata operations. Second, every
first rank per node (i.e., 32 ranks) reads configuration files
during the initialization of the application. Before reading
the files, all ranks issue “open” calls concurrently, which
causes stagnation on the parallel file system. This bottleneck
appears in the Time View section of the Bottlenecks panel
in Figure 7. Third, 31 ranks except the rank 0 only issue
“read” calls. The size imbalance rule accurately detects that
these ranks are 100% “read” intensive (see CR24 in Figure 7).
Finally, while simulation files are written via small writes
(averaging 48 kiB), these small writes do not seem to be the
primary issue. Metadata accesses still dominate the total I/O
time spent on these files. Specifically, 99.95% of the I/O time
is spent on “open” calls (see CR48 in Figure 7).

╭───────────────────────────────────────────────────────────────────────╮
│ │
│ Time View (14 bottlenecks with 36 reasons)                          │
│ ├── [CR1] 164 processes access 164 files within 1 time period (7)  │
│ │   across 286 I/O operations and have an I/O time of 4.15 seconds  │
│ │   which is 40.04% of overall I/O time of the workload. │
│ │   ├── [Excessive metadata access] Overall 100.00% (4.15 seconds)  │
│ │   │   of I/O time is spent on metadata access, specifically  │
│ │   │   100.00% (4.15 seconds) on the 'open' operation. │
│ │   ├── [Operation imbalance] 'write' operations are 11.54% (33  │
│ │   │   operations) of total I/O operations. │
│ │   └── [Size imbalance] 'write' size is 36.44% (1.01 GiB) of total │
│ │    I/O size. │
│ ├── [CR2] 441 processes access 441 files within 1 time period (9)  │
│ │   across 677 I/O operations and have an I/O time of 8.44 seconds  │
│ │   which is 81.45% of overall I/O time of the workload. │
│ │   ├── [Excessive metadata access] Overall 100.00% (8.44 seconds)  │
│ │   │   of I/O time is spent on metadata access, specifically  │
│ │   │   100.00% (8.44 seconds) on the 'open' operation. │
│ │   └── [Size imbalance] 'read' size is 100.00% (912.00 MiB) of  │
│ │    total I/O size. │
│ └── (12 more)                                                       │
│ │
╰───────────────────────────────────────────────────────────────────────╯

Figure 17: Time View reveals bottlenecks within HACC
at the 7th and 9th seconds due to checkpoint/restart.

5.4.2 HACC. simulates the universe’s evolution using
particle-mesh techniques. With 16M input particles, each
process writes nine variables, totaling 632 MB per process.
The benchmark generates 790GB of data, simulating
checkpointing and restart. WisIO detects 794 bottlenecks
for HACC and finds 1050 reasons in 17 seconds with 100%
root cause coverage.

We identify four key bottlenecks for HACC. First, 58% of
the I/O time is spent on metadata operations (see HACC in
Table 3). Second, there are 4 times more metadata operations
than read and write operations (see HACC in Table 3). Third,

164 processes access 164 files during the 7th second across
286 I/O operations and have an I/O time of 4.15 seconds
which is 40% of overall I/O time of the workload. This is the
moment when the application checkpoints simulation data
for the first time. Although this time period is write-intensive,
the I/O time is dominated by open operations (see CR1 in Fig-
ure 17). Finally, 441 processes access 441 files within during
9th second across 677 I/O operations and have an I/O time of
8.44 seconds which is 81% of overall I/O time of the workload.
This is when the application reads back the checkpointed
data. Although this time period is read-intensive, the I/O
time is dominated by open operations (see CR2 in Figure 17).

╭───────────────────────────────────────────────────────────────────────╮
│ │
│ Process>App View (7 bottlenecks with 18 reasons)                    │
│ ├── [CR1580] 1 app (mImgtbl) accesses 208 files within 9 time  │
│ │   periods across 7,224 I/O operations and has an I/O time of 0.43 │
│ │   seconds which is 11.54% of overall I/O time of the workload. │
│ │   ├── [Size imbalance] 'read' size is 99.54% (540.38 kiB) of  │
│ │   │   total I/O size. │
│ │   ├── [Small reads] 'read' time is 96.76% (0.42 seconds) of I/O  │
│ │   │   time. │
│ │   └── [Small reads] Average 'read's are 76.59800664451828 B,  │
│ │    which is smaller than 1.00 MiB. │
│ └── (6 more)                                                        │
│ │
╰───────────────────────────────────────────────────────────────────────╯

Figure 18: App View reveals bottlenecks within the
Montage workflow, where seven applications spend
most of their I/O time on read operations.

5.4.3 Montage (Pegasus). converts sky-survey data from
FITS to PNG for survey NGC 3372. It’s a six-stage workflow
featuring data-parallel mosaic building via 10 cooperating
applications. 1024 FITS files are distributed among 32
nodes, each handling 16 files. The top three I/O-intensive
applications are mDiff, mBackground, and mProject. WisIO
detects 495 bottlenecks for the Montage workflow and finds
1735 reasons in 48 seconds with 99.97% root cause coverage.

We identify two key bottlenecks for Montage. First, the
workflow accesses data with a small request size (less than
1 MB). WisIO’s I/O characteristics reports that 85.73% read
operations are smaller than 4 KB. Second, WisIO’s App View
shows that seven applications within the workflow exhibit
this behavior. For instance, CR1580 in Figure 18 shows
that the average read operations are 76 B which constitute
96.76% I/O time for the mImgtbl application.



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

╭───────────────────────────────────────────────────────────────────────╮
│ │
│ File>File Pattern View (2 bottlenecks with 2 reasons)               │
│ ├── [CR38346] 1 process accesses 1 file pattern  │
│ │   (sgd.testing.epoch.[0-9].step.[0-9]_layer[0-9]_output[0-9].csv) │
│ │   within 141 time periods across 420 I/O operations and has an  │
│ │   I/O time of 0.63 seconds which is 0.47% of overall I/O time of  │
│ │   the workload. │
│ │   └── [Excessive metadata access] Overall 100.00% (0.63 seconds)  │
│ │    of I/O time is spent on metadata access, specifically  │
│ │    86.43% (0.54 seconds) on the 'open' operation. │
│ └── [CR38347] 1 process accesses 1 file pattern  │
│ (sgd.testing.epoch.[0-9].step.[0-9]_cosmoflow_module[0-9]_fc[0… │
│ within 140 time periods across 420 I/O operations and has an  │
│ I/O time of 0.37 seconds which is 0.28% of overall I/O time of  │
│ the workload. │
│ └── [Excessive metadata access] Overall 100.00% (0.37 seconds)  │
│ of I/O time is spent on metadata access, specifically  │
│ 75.36% (0.28 seconds) on the 'open' operation. │
│ │
╰───────────────────────────────────────────────────────────────────────╯

Figure 19: File Pattern View shows two file patterns are
dominated bymetadata operations within CosmoFlow.

5.4.4 CosmoFlow (LBANN). utilizes deep learning to esti-
mate critical cosmological parameters from 3D simulations.
It deals with a dataset consisting of 10K simulated universes
with four redshifts and 5123 voxels, stored as 16-bit integers.
The dataset, totaling 1.5TB, comprises 50K samples of 32MB
each in HDF5 format. WisIO detects 10K bottlenecks for
CosmoFlow and finds 39K reasons for these bottlenecks in
12 minutes with 100% root cause coverage.

We identify two key bottlenecks for CosmoFlow. First,
the application’s I/O time is dominated by read operations
(see CosmoFlow in Table 3). Second, WisIO’s File Pattern
View shows that the I/O time for two file patterns across
420 I/O operations are dominated by metadata operations
(CR38346 and CR38347 in Figure 19).

5.4.5 1000 Genomes (Pegasus). is a data-intensive bioinfor-
matics workflow that computes human genome mutation
overlaps and processes a specified number of chromosomes
in parallel [14]. WisIO reports that the workflow has 7
cooperation applications. The top three I/O-intensive ap-
plications are individuals, frequency, and individuals_merge.
WisIO detects 430K bottlenecks for the 1000 Genomes
workflow and finds 560K reasons for these bottlenecks in
24 minutes with 99.87% root cause coverage.
We identify three key bottlenecks for 1000 Genomes.

First, the individuals application with the workflow spends
significant time performing I/O operations [14]. WisIO’s
I/O characteristics reports that this application reads 65 TB
data and writes 5 GB data via 556M I/O operations (86% of
total I/O operations). Second, the pegasus-kickstart spends
significant time performing metadata operations (CR858 in
Figure 20). However, initially it can’t find a specific reason
for this particular bottleneck. Further investigation via the
bottleneck inspect command shows that the application
performs access operations during the initialization of the
workflow, causing the issue. By default, the access operations
are not covered by WisIO’s default rules. We resolve this
by including a rule that considers access_time via WisIO’s

╭───────────────────────────────────────────────────────────────────────╮
│ │
│ Process>App View (4 bottlenecks with 9 reasons)                     │
│ ├── [CR858] 1 app (pegasus-kickstart) has an I/O time of 8.34  │
│ │   seconds across 46 I/O operations which is 0.61% of overall I/O  │
│ │   time of the workload. │
│ │   └── [Excessive metadata access] No reason found, investigation  │
│ │    needed! │
│ ├── [CR859] 1 app (mutation_overlap) has an I/O time of 69.29  │
│ │   seconds across 1,255,334 I/O operations which is 5.10% of  │
│ │   overall I/O time of the workload. │
│ │   ├── [Excessive metadata access] Overall 63.95% (44.31 seconds)  │
│ │   │   of I/O time is spent on metadata access, specifically  │
│ │   │   62.71% (43.45 seconds) on the 'open' operation. │
│ │   ├── [Small writes] 'write' time is 65.72% (45.53 seconds) of  │
│ │   │   I/O time. │
│ │   └── [Small writes] Average 'write's are 32.70 kiB, which is  │
│ │    smaller than 1.00 MiB. │
│ └── (2 more)                                                        │
│ │
╰───────────────────────────────────────────────────────────────────────╯

Figure 20: App View reveals unseen behavior within
the 1000 Genomes workflow, showcasing WisIO’s de-
coupled classification ability.

rule_definitions configuration. Finally, the mutation_overlap
application performs 1.2M I/O operations which constitute
5.1% of overall I/O time. These operations take 70 seconds
in total and 63% of this time is spent on open operations.
Additionally, the application mostly performs small writes,
averaging around 32 KB (CR859 in Figure 20).

6 Conclusion
WisIO offers an automated bottleneck detection tool for large-
scale HPC workflows. WisIO enables parallel and distributed
analysis of multi-terabyte-scale performance data, examines
it from multiple perspectives, uses metric-driven bottleneck
classification, and allows extensible mapping of bottlenecks
to root causes. WisIO’s multi-perspective approach detects
up to 805× more bottlenecks compared to analyzing perfor-
mance data from only one perspective. WisIO’s decoupled
and metric-driven classification algorithm can identify un-
seen bottlenecks in HPC workflows with the throughput of
340K bottlenecks per second. WisIO’s reasoning engine uti-
lizes heuristics to map workflow behaviors to classified bot-
tlenecks with the throughput of 35K bottlenecks per second.
Finally, we validate WisIO’s effectiveness with large-scale
performance data from real-world HPC workflows against
state-of-the-art solutions and show its 11× faster perfor-
mance and ability to detect up to 144× more bottlenecks.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This material
is based upon work supported by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Comput-
ing Research under the DOE Early Career Research Program
(LLNL-CONF-862440). Also, this research is supported in
part by the National Science Foundation (NSF) under Grants
OAC-2104013, OAC-2313154, and OAC-2411318.



WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

References
[1] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir. 2018. Opti-

mizing I/O Performance of HPC Applications with Autotuning. ACM
Transactions on Parallel Computing 5, 4 (Dec. 2018), 1–27. https:
//doi.org/10.1145/3309205

[2] Jean Luca Bez, Suren Byna, and Shadi Ibrahim. 2024. I/O Access
Patterns in HPC Applications: A 360-Degree Survey. Comput. Surveys
56, 2 (Feb. 2024), 1–41. https://doi.org/10.1145/3611007

[3] Jean Luca Bez, Lawrence Berkeley National Laboratory, Hammad
Ather, Lawrence Berkeley National Laboratory, Suren Byna, and
Lawrence Berkeley National Laboratory. 2022. Drishti: Guiding End-
Users in the I/O Optimization Journey. (2022).

[4] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob
Latham, Rob Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck
Detection and Tuning: Connecting the Dots using Interactive Log
Analysis. In 2021 IEEE/ACM Sixth International Parallel Data Systems
Workshop (PDSW). IEEE, St. Louis, MO, USA, 15–22. https://doi.org/
10.1109/PDSW54622.2021.00008

[5] Michael J. Brim, Adam T. Moody, Seung-Hwan Lim, Ross Miller, Swen
Boehm, Cameron Stanavige, Kathryn M. Mohror, and Sarp Oral. 2023.
UnifyFS: A User-level Shared File System for Unified Access to Dis-
tributed Local Storage. In 2023 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, St. Petersburg, FL, USA,
290–300. https://doi.org/10.1109/IPDPS54959.2023.00037

[6] A.C. Calder, B.C. Curts, L.J. Dursi, B. Fryxell, G. Henry, P. MacNece, K.
Olson, P. Ricker, R. Rosner, F.X. Timmes, H.M. Tufo, J.W. Truran, and
M. Zingale. 2000. High-Performance Reactive Fluid Flow Simulations
Using Adaptive Mesh Refinement on Thousands of Processors. In
ACM/IEEE SC 2000 Conference (SC’00). IEEE, Dallas, TX, USA, 56–56.
https://doi.org/10.1109/SC.2000.10010

[7] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang,
and Katherine Riley. 2009. 24/7 Characterization of petascale I/O
workloads. In 2009 IEEE International Conference on Cluster Computing
and Workshops. IEEE, New Orleans, LA, USA, 1–10. https://doi.org/
10.1109/CLUSTR.2009.5289150

[8] Fahim Chowdhury, Yue Zhu, Francesco Di Natale, Adam Moody, Elsa
Gonsiorowski, Kathryn Mohror, and Weikuan Yu. 2020. Emulating I/O
Behavior in Scientific Workflows on High Performance Computing
Systems. In 2020 IEEE/ACM Fifth International Parallel Data Systems
Workshop (PDSW). IEEE, GA, USA, 34–39. https://doi.org/10.1109/
PDSW51947.2020.00011

[9] Hariharan Devarajan and Kathryn Mohror. 2022. Extracting and char-
acterizing I/O behavior of HPC workloads. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, Heidelberg, Ger-
many, 243–255. https://doi.org/10.1109/CLUSTER51413.2022.00037

[10] Hariharan Devarajan and KathrynMohror. 2023. Mimir: Extending I/O
Interfaces to Express User Intent for Complex Workloads in HPC. In
2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, St. Petersburg, FL, USA, 178–188. https://doi.org/10.
1109/IPDPS54959.2023.00027

[11] Hariharan Devarajan, Loïc Pottier, Kaushik Velusamy, Huihuo Zheng,
Izzet Yildirim, Olga Kogiou, Weikuan Yu, Anthony Kougkas, Xian-
He Sun, Jae Seung Yeom, and Kathryn Mohror. 2024. DFTracer: An
Analysis-Friendly Data Flow Tracer for AI-Driven Workflows. In SC24:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, Atlanta, GA, USA, 1–24. https://doi.org/
10.1109/SC41406.2024.00023

[12] Hariharan Devarajan, Huihuo Zheng, Anthony Kougkas, Xian-He
Sun, and Venkatram Vishwanath. 2021. DLIO: A Data-Centric Bench-
mark for Scientific Deep Learning Applications. In 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing

(CCGrid). IEEE, Melbourne, Australia, 81–91. https://doi.org/10.1109/
CCGrid51090.2021.00018

[13] Francesco Di Natale, Harsh Bhatia, Timothy S. Carpenter, Chris Neale,
Sara Kokkila-Schumacher, Tomas Oppelstrup, Liam Stanton, Xiao-
hua Zhang, Shiv Sundram, Thomas R. W. Scogland, Gautham Dharu-
man, Michael P. Surh, Yue Yang, Claudia Misale, Lars Schneiden-
bach, Carlos Costa, Changhoan Kim, Bruce D’Amora, Sandrasegaram
Gnanakaran, Dwight V. Nissley, Fred Streitz, Felice C. Lightstone,
Peer-Timo Bremer, James N. Glosli, and Helgi I. Ingólfsson. 2019.
A massively parallel infrastructure for adaptive multiscale simula-
tions: modeling RAS initiation pathway for cancer. In Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis. ACM, Denver Colorado, 1–16. https:
//doi.org/10.1145/3295500.3356197

[14] Tu Mai Anh Do, Loic Pottier, Orcun Yildiz, Karan Vahi, Patrycja
Krawczuk, Tom Peterka, and Ewa Deelman. 2022. Accelerating Sci-
entific Workflows on HPC Platforms with In Situ Processing. In 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet Com-
puting (CCGrid). IEEE, Taormina, Italy, 1–10. https://doi.org/10.1109/
CCGrid54584.2022.00009

[15] Bin Dong, Jean Luca Bez, and Suren Byna. 2023. AIIO: Using Artificial
Intelligence for Job-Level and Automatic I/O Performance Bottleneck
Diagnosis. In Proceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing. ACM, Orlando FL
USA, 155–167. https://doi.org/10.1145/3588195.3592986

[16] Peter Harrington. 2018. Diagnosing Parallel I/O Bottlenecks inHPCAp-
plications. (2018). https://api.semanticscholar.org/CorpusID:52256719

[17] Katrin Heitmann, Thomas D. Uram, Hal Finkel, Nicholas Frontiere,
Salman Habib, Adrian Pope, Esteban Rangel, Joseph Hollowed, Danila
Korytov, Patricia Larsen, Benjamin S. Allen, Kyle Chard, and Ian
Foster. 2019. HACC Cosmological Simulations: First Data Release.
The Astrophysical Journal Supplement Series 244, 1 (Sept. 2019), 17.
https://doi.org/10.3847/1538-4365/ab3724

[18] HPC @ LLNL. [n. d.]. Lassen. https://hpc.llnl.gov/hardware/compute-
platforms/lassen

[19] Mihailo Isakov, Eliakin Del Rosario, Sandeep Madireddy, Prasanna
Balaprakash, Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020.
HPC I/O Throughput Bottleneck Analysis with Explainable Local
Models. In SC20: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, Atlanta, GA, USA, 1–13.
https://doi.org/10.1109/SC41405.2020.00037

[20] Joseph C. Jacob, Daniel S. Katz, G. Bruce Berriman, John C. Good, Anas-
tasia C. Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei Hui
Su, Thomas A. Prince, and Roy Williams. 2009. Montage: a grid portal
and software toolkit for science-grade astronomical image mosaicking.
International Journal of Computational Science and Engineering 4, 2
(2009), 73. https://doi.org/10.1504/IJCSE.2009.026999

[21] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, and Yongseok
Son. 2023. Design and implementation of I/O performance prediction
scheme onHPC systems through large-scale log analysis. Journal of Big
Data 10, 1 (May 2023), 65. https://doi.org/10.1186/s40537-023-00741-4

[22] Andreas Knüpfer, Christian Rössel, Dieter An Mey, Scott Biersdorff,
Kai Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt,
Daniel Lorenz, Allen Malony, Wolfgang E. Nagel, Yury Oleynik, Pe-
ter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny
Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. 2012. Score-
P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope, Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel,
and Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 79–91. https://doi.org/10.1007/978-3-642-31476-6_7

https://doi.org/10.1145/3309205
https://doi.org/10.1145/3309205
https://doi.org/10.1145/3611007
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/IPDPS54959.2023.00037
https://doi.org/10.1109/SC.2000.10010
https://doi.org/10.1109/CLUSTR.2009.5289150
https://doi.org/10.1109/CLUSTR.2009.5289150
https://doi.org/10.1109/PDSW51947.2020.00011
https://doi.org/10.1109/PDSW51947.2020.00011
https://doi.org/10.1109/CLUSTER51413.2022.00037
https://doi.org/10.1109/IPDPS54959.2023.00027
https://doi.org/10.1109/IPDPS54959.2023.00027
https://doi.org/10.1109/SC41406.2024.00023
https://doi.org/10.1109/SC41406.2024.00023
https://doi.org/10.1109/CCGrid51090.2021.00018
https://doi.org/10.1109/CCGrid51090.2021.00018
https://doi.org/10.1145/3295500.3356197
https://doi.org/10.1145/3295500.3356197
https://doi.org/10.1109/CCGrid54584.2022.00009
https://doi.org/10.1109/CCGrid54584.2022.00009
https://doi.org/10.1145/3588195.3592986
https://api.semanticscholar.org/CorpusID:52256719
https://doi.org/10.3847/1538-4365/ab3724
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://doi.org/10.1109/SC41405.2020.00037
https://doi.org/10.1504/IJCSE.2009.026999
https://doi.org/10.1186/s40537-023-00741-4
https://doi.org/10.1007/978-3-642-31476-6_7


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yildirim et al.

[23] Olga Kogiou, Hariharan Devarajan, Chen Wang, Weikuan Yu, and
Kathryn Mohror. 2023. I/O characterization and performance eval-
uation of large-scale storage architectures for heterogeneous work-
loads. In 2023 IEEE International Conference on Cluster Computing
Workshops (CLUSTER Workshops). IEEE, Santa Fe, NM, USA, 44–45.
https://doi.org/10.1109/CLUSTERWorkshops61457.2023.00017

[24] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Her-
mes: a heterogeneous-aware multi-tiered distributed I/O buffering
system. In Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing. ACM, Tempe Arizona,
219–230. https://doi.org/10.1145/3208040.3208059

[25] Samuel Lang, Philip Carns, Robert Latham, Robert Ross, Kevin Harms,
and William Allcock. 2009. I/O performance challenges at leadership
scale. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. ACM, Portland Oregon, 1–12. https:
//doi.org/10.1145/1654059.1654100

[26] Glenn K. Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip
Carns, and Nicholas J. Wright. 2018. A Year in the Life of a Parallel
File System. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, Dallas, TX, USA,
931–943. https://doi.org/10.1109/SC.2018.00077

[27] Glenn K Lockwood, Nicholas J Wright, Shane Snyder, Philip Carns,
George Brown, and Kevin Harms. 2018. TOKIO on ClusterStor: Con-
necting Standard Tools to Enable Holistic I/O Performance Analysis.
Proceedings of the 2018 Cray User Group (2018).

[28] Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright,
Shane Snyder, Kevin Harms, Zachary Nault, and Philip Carns. 2017.
UMAMI: a recipe for generating meaningful metrics through holistic
I/O performance analysis. In Proceedings of the 2nd Joint International
Workshop on Parallel Data Storage & Data Intensive Scalable Computing
Systems - PDSW-DISCS ’17. ACMPress, Denver, Colorado, 55–60. https:
//doi.org/10.1145/3149393.3149395

[29] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd
Kordenbrock, Karsten Schwan, and Matthew Wolf. 2010. Managing
Variability in the IO Performance of Petascale Storage Systems. In 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, 1–12.
https://doi.org/10.1109/SC.2010.32

[30] Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. 2013.
A multi-level approach for understanding I/O activity in HPC appli-
cations. In 2013 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, Indianapolis, IN, USA, 1–5. https://doi.org/10.1109/
CLUSTER.2013.6702690

[31] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip
Carns, Kevin Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A
Multiplatform Study of I/O Behavior on Petascale Supercomputers. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, Portland Oregon USA, 33–44.
https://doi.org/10.1145/2749246.2749269

[32] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Mead-
ows, James Arnemann, Lei Shao, Siyu He, Tuomas Karna, Diana Moise,
Simon J. Pennycook, Kristyn Maschhoff, Jason Sewall, Nalini Kumar,
Shirley Ho, Michael F. Ringenburg, Prabhat Prabhat, and Victor Lee.
2018. CosmoFlow: Using Deep Learning to Learn the Universe at
Scale. In SC18: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. IEEE, Dallas, TX, USA, 819–829.
https://doi.org/10.1109/SC.2018.00068

[33] Open-source. 2015. Darshan-util. https://www.mcs.anl.gov/research/
projects/darshan/docs/darshan-util.html

[34] Open-source. 2015. Dask. https://www.dask.org/
[35] Open-source. 2019. Hydra. https://hydra.cc/

[36] Arnab K. Paul, Olaf Faaland, AdamMoody, Elsa Gonsiorowski, Kathryn
Mohror, and Ali R. Butt. 2020. Understanding HPC Application I/O
Behavior Using System Level Statistics. In 2020 IEEE 27th International
Conference on High Performance Computing, Data, and Analytics (HiPC).
IEEE, Pune, India, 202–211. https://doi.org/10.1109/HiPC50609.2020.
00034

[37] J. Luc Peterson, Ben Bay, Joe Koning, Peter Robinson, Jessica Sem-
ler, Jeremy White, Rushil Anirudh, Kevin Athey, Peer-Timo Bre-
mer, Francesco Di Natale, David Fox, Jim A. Gaffney, Sam A. Ja-
cobs, Bhavya Kailkhura, Bogdan Kustowski, Steven Langer, Brian
Spears, Jayaraman Thiagarajan, Brian Van Essen, and Jae-Seung Yeom.
2022. Enabling machine learning-ready HPC ensembles with Mer-
lin. Future Generation Computer Systems 131 (June 2022), 255–268.
https://doi.org/10.1016/j.future.2022.01.024

[38] Hafizur Rahman, Michel M. Verstraete, and Bernard Pinty. 1993. Cou-
pled surface-atmosphere reflectance (CSAR) model: 1. Model descrip-
tion and inversion on synthetic data. Journal of Geophysical Research
98, D11 (1993), 20779. https://doi.org/10.1029/93JD02071

[39] Robert Ross, Lee Ward, Philip Carns, Gary Grider, Scott Klasky,
Quincey Koziol, Glenn K. Lockwood, Kathryn Mohror, Bradley Set-
tlemyer, and Matthew Wolf. 2018. Storage Systems and Input/Out-
put: Organizing, Storing, and Accessing Data for Scientific Discov-
ery. Report for the DOE ASCR Workshop on Storage Systems and I/O.
[Full Workshop Report]. Technical Report 1491994. 1491994 pages.
https://doi.org/10.2172/1491994

[40] Frank Schmuck and Roger Haskin. 2002. GPFS: A Shared-Disk file
system for large computing clusters. In Conference on file and storage
technologies (FAST 02).

[41] The 1000 Genomes Project Consortium. 2010. Amap of human genome
variation from population-scale sequencing. Nature 467, 7319 (Oct.
2010), 1061–1073. https://doi.org/10.1038/nature09534

[42] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gon-
siorowski. 2020. Recorder 2.0: Efficient Parallel I/O Tracing and Anal-
ysis. In 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, New Orleans, LA, USA, 1–
8. https://doi.org/10.1109/IPDPSW50202.2020.00176

[43] Chen Wang, Izzet Yildirim, Hariharan Devarajan, Kathryn Mohror,
and Marc Snir. 2025. Recorder: Comprehensive Parallel I/O Tracing
and Analysis. arXiv preprint arXiv:2501.04654 (2025). https://doi.org/
10.48550/ARXIV.2501.04654

[44] Teng Wang, Suren Byna, Glenn K. Lockwood, Shane Snyder, Philip
Carns, Sunggon Kim, andNicholas J.Wright. 2019. A Zoom-in Analysis
of I/O Logs to Detect Root Causes of I/O Performance Bottlenecks. In
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, Larnaca, Cyprus, 102–111. https:
//doi.org/10.1109/CCGRID.2019.00021

[45] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas
Wright, and Suren Byna. 2018. IOMiner: Large-Scale Analytics Frame-
work for Gaining Knowledge from I/O Logs. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, Belfast, 466–476.
https://doi.org/10.1109/CLUSTER.2018.00062

[46] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp
Oral, and Norbert Podhorszki. 2012. Characterizing output bottlenecks
in a supercomputer. In 2012 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, Salt Lake
City, UT, 1–11. https://doi.org/10.1109/SC.2012.28

[47] Cong Xu, Shane Snyder, Omkar Kulkarni, Vishwanath Venkatesan,
Philip Carns, Suren Byna, Robert Sisneros, and Kalyana Chadalavada.
2017. DXT: Darshan eXtended Tracing. (2017).

https://doi.org/10.1109/CLUSTERWorkshops61457.2023.00017
https://doi.org/10.1145/3208040.3208059
https://doi.org/10.1145/1654059.1654100
https://doi.org/10.1145/1654059.1654100
https://doi.org/10.1109/SC.2018.00077
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.1109/SC.2010.32
https://doi.org/10.1109/CLUSTER.2013.6702690
https://doi.org/10.1109/CLUSTER.2013.6702690
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1109/SC.2018.00068
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.dask.org/
https://hydra.cc/
https://doi.org/10.1109/HiPC50609.2020.00034
https://doi.org/10.1109/HiPC50609.2020.00034
https://doi.org/10.1016/j.future.2022.01.024
https://doi.org/10.1029/93JD02071
https://doi.org/10.2172/1491994
https://doi.org/10.1038/nature09534
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.48550/ARXIV.2501.04654
https://doi.org/10.48550/ARXIV.2501.04654
https://doi.org/10.1109/CCGRID.2019.00021
https://doi.org/10.1109/CCGRID.2019.00021
https://doi.org/10.1109/CLUSTER.2018.00062
https://doi.org/10.1109/SC.2012.28


WisIO: Automated I/O Bottleneck Detection with Multi-Perspective Views for HPC Workflows ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[48] Izzet Yildirim, Hariharan Devarajan, Anthony Kougkas, Xian-He Sun,
and Kathryn Mohror. 2023. IOMax: Maximizing Out-of-Core I/O Anal-
ysis Performance on HPC Systems. In Proceedings of the SC ’23 Work-
shops of The International Conference on High Performance Computing,
Network, Storage, and Analysis. ACM, Denver CO USA, 1209–1215.
https://doi.org/10.1145/3624062.3624191

[49] Zhaobin Zhu, Niklas Bartelheimer, and Sarah Neuwirth. 2023. An
Empirical Roofline Model for Extreme-Scale I/OWorkload Analysis. In

2023 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, St. Petersburg, FL, USA, 622–627. https:
//doi.org/10.1109/IPDPSW59300.2023.00106

[50] Zhaobin Zhu and Sarah Neuwirth. 2023. Characterization of Large-
scale HPC Workloads with non-naïve I/O Roofline Modeling and Scor-
ing. In 2023 IEEE 29th International Conference on Parallel and Dis-
tributed Systems (ICPADS). IEEE, Ocean Flower Island, China, 737–744.
https://doi.org/10.1109/ICPADS60453.2023.00112

https://doi.org/10.1145/3624062.3624191
https://doi.org/10.1109/IPDPSW59300.2023.00106
https://doi.org/10.1109/IPDPSW59300.2023.00106
https://doi.org/10.1109/ICPADS60453.2023.00112

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Motivation
	4 WisIO
	4.1 Multi-Perspective Views
	4.2 Metric-Driven Bottleneck Classification
	4.3 Rule-Based Bottleneck Reasoning
	4.4 Implementation & APIs
	4.5 Enabled Practical Optimizations

	5 Evaluation
	5.1 Methodology
	5.2 Internal Evaluation
	5.3 Comparison with State-of-the-art Tool
	5.4 Use Cases

	6 Conclusion
	Acknowledgments
	References

