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Abstract
Stencil computation is an important computational pattern
widely utilized in various scientific applications, such as im-
age processing, climate forecasting, and fluid dynamics. With
the increasing demands for higher precision by scientific
applications, stencil computations have become complex,
containing a set of dependent stencil operators that may
process multiple input grids. These stencils are referred to
as complex stencils. For complex stencils, optimizing individ-
ual stencil operators is insufficient, and there is significant
interest in developing optimization approaches across sten-
cil operators. Existing stencil optimizations or compilers
adopt the producer-consumer fusion of stencil operators to
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eliminate intermediate data access for better performance,
however, neglecting the performance opportunity by ex-
ploiting inter-operator parallelism through parallelism fu-
sion of stencil operators. To address the above limitation, we
propose Plasticine, an adaptive fusion framework for com-
plex stencil computations on GPU. We begin by introducing
parallelism fusion, which enables the fusion of concurrent
stencil operators for improved performance. Then, a novel
multi-level complex stencil representation that effectively
captures the characteristics of stencil programs is designed
and a CNN-GNN-based model is utilized for fusion strate-
gies selection. The experimental results show that our work,
Plasticine, achieves consistently superior performance over
state-of-the-art stencil compilers.
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1 Introduction
Stencil computation is identified as one of the most impor-
tant computational motifs in scientific applications, which
is widely applied across various domains including image
processing [19], climate forecasting [10, 28, 29] and fluid dy-
namics [7, 13]. The data derived from these applications are
regarded as structured grids. A stencil computation traverses
through a grid and updates grid points with fixed neighbor
points. The extent of the neighbors along each dimension is
denoted as stencil order. Temporal iteration is involved in the
update process, where the value of one point at time 𝑡 is a
weighted sum of itself and neighboring points at time 𝑡 − 1.

With the increasing need for higher precision in scien-
tific applications, physical models are becoming more and
more complex. This trend leads to stencils used in these ap-
plications exhibiting increasingly diverse and complex sten-
cil orders, data accesses, and computing patterns [11, 27].
Specifically, these programs run many different stencil oper-
ators that exhibit complex dependency patterns among them.
Moreover, each stencil operator is also performed at a high
order with data processing from multiple input grids. We
refer to the aforementioned stencil as complex stencil. Due
to the composite dependency relationships and computa-
tional patterns, complex stencils exhibit greater parallelism,
making them highly suitable for acceleration on GPUs.

In complex stencil programs, optimizing individual stencil
operators is often insufficient. Instead, it’s more effective to
optimize dependent stencil operators or the entire stencil
program as a whole. Kernel fusion [9, 19, 26, 34] is a popular
and effective technique, which combines two or more op-
erators into one large but equivalent kernel to potentially
enhance the execution performance. The standard kernel
fusion in the stencil framework combines stencil operators
based on producer-consumer relations repeatedly that re-
place all accesses to producer results by inlining computation.
Therefore, such fusion strategy is also known as producer-
consumer fusion (Figure 1(b)). The fused kernel maintains the
same thread parallelism as the original kernels. Each thread
within the fused kernel sequentially integrates the instruc-
tions from the corresponding threads of the original kernels.
The potential performance advantage of producer-consumer
fusion comes from the reduced memory accesses to the inter-
mediate results. However, it fails to exploit the parallelism
among stencil operators and results in the underutilization
of GPU computational resources.

This paper seeks answers to the following two questions:

stencil nodeconst node
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CN1 CN2

SN2

SN3 SN4

SN1
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SN2

SN3 SN4

CN1 CN2
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SN1

CN1 CN2

SN2
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Complex Stencil DAG

（b）Producer-consumer Fusion

(a) Parallelism Fusion

SN4

Figure 1: The complex stencil DAG (Section 3.2) and fu-
sion strategies. The const node represents the memory
container for constants and the stencil node represents
the execution process of a stencil operator.

• Can a novel fusion strategy efficiently exploit the paral-
lelism opportunities that existing methods overlooked
and accelerate the execution?

• Can an approach accurately enable optimal fusion
strategy selection for a specific complex stencil pro-
gram?

(1) Novel fusion strategy. Inter-operator parallelism,
referred to as parallelism fusion (Figure 1(a)), fuses indepen-
dent operators and aims to execute these operators concur-
rently. The fused operators can better utilize GPU resources
and have gained significant performance speedup in sev-
eral domains such as deep learning compilation optimiza-
tion [14, 17]. However, existing stencil optimization frame-
works have not yet supported parallelism fusion for complex
stencil programs [5, 9]. On one hand, unlike the deep learning
domain that provides effective operator depiction of the re-
quired computation and corresponding dependencies using
the compute graph, complex stencil programs currently lack
a data structure that explicitly presents the inter-operator
dependency relationships among them. On the other hand,
unlike producer-consumer fusion that fuses sequential stencil
computations where thread parallelism remains unchanged,
parallelism fusion attempts to fuse concurrent stencil com-
putations where a new mechanism needs to be designed for
achieving parallel execution.

(2) Optimal fusion strategy selection. Even with paral-
lelism fusion enabled, another challenge arises in determining
the optimal fusion strategy between parallelism fusion and
producer-consumer fusion. Due to the varied characteristics
of complex stencil programs, no single fusion strategy consis-
tently outperforms the others. For example, a complex stencil
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program containing a number of concurrent stencil operators
with a light workload can benefit more from parallelism fu-
sion. Whereas, a complex stencil program containing stencil
operators with intensive data round trips to the GPU mem-
ory can achieve better performance from producer-consumer
fusion. In addition, as parallelism fusion typically results in
costly kernel tuning, simply evaluating two fusion strategies
will lead to prohibitive trial-and-error overhead.

However, determining the fusion strategy is challenging
due to the complicated feature space of complex stencil pro-
grams. The feature space depicts intricate dependencies be-
tween operators and various attributes of the stencil opera-
tor such as neighbor count (denote computational complex-
ity), neighbor density and position (denote data locality),
etc. Accurate decision-making requires extracting essential
information about computation patterns, memory access be-
haviors, and inter-operator dependencies, as well as learning
the correlations between features and performance.
Fortunately, we argue that determining the better fusion

strategy for complex stencil programs can be viewed as a clas-
sification problem (e.g., whether producer-consumer fusion or
parallelism fusion should be applied). The fundamental ad-
vantage of the above transformation is that, it enables a new
exploration approach by extracting the effective features of
complex stencil programs and building an accurate model to
determine the better fusion strategy for complex stencils.
In this paper, we propose Plasticine, an adaptive fusion

framework that determines the better fusion strategy for
complex stencil programs on GPU. Plasticine identifies the
performance potential of fusing concurrent stencil opera-
tors in complex stencil programs and introduces parallelism
fusion to facilitate the efficient execution of these fused op-
erators. Additionally, Plasticine introduces multi-level com-
plex stencil representations providing a concise and effective
description of the complex stencil programs. Leveraging
such representations, Plasticine builds an accurate prediction
model to select the better fusion strategy of stencil opera-
tors using a combination of Convolutional Neural Network
(CNN) and Graph Neural Network (GNN).

The key contributions of the paper are as follows:

• We identify the performance opportunities for fus-
ing concurrent stencil operators within complex sten-
cil programs and propose parallelism fusion to realize
higher execution efficiency on GPU.

• We present novel multi-level complex stencil repre-
sentations that model complex stencil programs using
binary tensors and adjacency matrices. Furthermore,
we design a random complex stencil generator that
automatically creates a diverse set of valid stencil pro-
grams, which are utilized to train the prediction model
for optimizing fusion strategies.

• Webuild an effective CNN-GNN-based predictionmodel
for determining the better fusion strategy. Specifically,
we use the CNN model to extract features at intra-
operator level and the GNN model for capturing fea-
tures at inter-operator level to generate the determined
fusion strategy.

• Experimental results demonstrate that Plasticine deliv-
ers substantial performance improvements in through-
put and hardware utilization compared to existing sten-
cil compilers.

2 Background
2.1 Stencil and Complex Stencil
Stencil is one of the thirteen Berkeley motifs [2] and arises as
a principal class of floating-point kernels in high-performance
computing. The grid dimensions (1D, 2D, etc.), shapes (box,
star, etc.), orders (3-point, 5-point, etc.), and dependency
types (Jacobi, Gauss-Seidel, etc.) are among the most criti-
cal attributes in stencil computations. Algorithm 1 shows a
2D 9-point box stencil, where the central point is updated
using itself and eight neighboring points. Recently, sten-
cil computations have become more diverse in real-world
applications [6, 30]. Each stencil program consists of mul-
tiple stencil operators with direct or indirect dependency
relationships. Moreover, each stencil operator exhibits more
composite computing and data access patterns at a higher
order with data processing from multiple input grids. We
refer to the aforementioned stencil as complex stencil.

Algorithm 1: 2D 9-point Box Stencil
Input: input grid 𝐼 , coefficient 𝑐1 𝑐9.
Output: output grid 𝑂 .

1 foreach point in inner region do
2 𝑂 [𝑖] [ 𝑗] =

𝑐1×𝐼 [𝑖−1] [ 𝑗−1]+𝑐2×𝐼 [𝑖−1] [ 𝑗]+𝑐3×𝐼 [𝑖−1] [ 𝑗+1]
+ 𝑐4 × 𝐼 [𝑖] [ 𝑗 − 1] + 𝑐5 × 𝐼 [𝑖] [ 𝑗] + 𝑐6 × 𝐼 [𝑖] [ 𝑗 + 1]
+𝑐7×𝐼 [𝑖+1] [ 𝑗−1]+𝑐8×𝐼 [𝑖+1] [ 𝑗]+𝑐9×𝐼 [𝑖+1] [ 𝑗+1]

Algorithm 2 represents a snippet of the real-world com-
plex stencil p_grad_c from the Finite-Volume Cubed-Sphere
Dynamical Core (FV3) [6]. FV3 is the dynamical core of the
CM4 and GEOS-5 global climate models and is capable of
both hydrostatic and non-hydrostatic atmospheric simula-
tions. Due to the complexity of the physical system, most of
the stencils used in these models are complex stencils. As
shown in Algorithm 2, each loop represents a stencil oper-
ator, and the entire algorithm consists of multiple stencil
operators with dependencies. For example, the output of the
first operator (i.e., wk) is one of the inputs of the second and
third stencil operators. Moreover, each stencil operator can
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involve computations of multiple grids. For example, in the
second stencil operator, the computation is applied on two
grids, namely rdxc and wk.

Algorithm 2: Partial p_grad_c Stencil
Input: input grid 𝑑𝑒𝑙𝑝𝑐 , 𝑟𝑑𝑥𝑐 , 𝑟𝑑𝑦𝑐 ...
Output: output grid 𝑢𝑜𝑢𝑡 , 𝑣𝑜𝑢𝑡 ...

1 foreach point in inner region do
2 𝑤𝑘 [𝑖] [ 𝑗] [𝑘] = 𝑑𝑒𝑙𝑝𝑐 [𝑖] [ 𝑗] [𝑘]
3 foreach point in inner region do
4 𝑢𝑜𝑢𝑡 [𝑖] [ 𝑗] [𝑘] = 𝑟𝑑𝑥𝑐 [𝑖] [ 𝑗] [𝑘]/

(𝑤𝑘 [𝑖 − 1] [ 𝑗] [𝑘] +𝑤𝑘 [𝑖] [ 𝑗] [𝑘])...
5 foreach point in inner region do
6 𝑣𝑜𝑢𝑡 [𝑖] [ 𝑗] [𝑘] = 𝑟𝑑𝑦𝑐 [𝑖] [ 𝑗] [𝑘]/

(𝑤𝑘 [𝑖] [ 𝑗 − 1] [𝑘] +𝑤𝑘 [𝑖] [ 𝑗] [𝑘])...
7 ...

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) have emerged to stand on
the frontline for addressing graph-based tasks [12, 15, 33, 37].
The main objective of GNNs is to learn the node and graph
representation for predicting the attributes of nodes or the
entire graph. GNN takes graph-structured data as inputs,
including the adjacent matrix 𝐴 of the graph and feature
matrix 𝑋 . Each row of 𝑋 represents the feature vector 𝑥𝑣 of
node 𝑣 in the graph. GNN then learns the feature vectors via
a two-step process including neighbor aggragation and node
update, which can be formulated as:

𝑎
(𝑘 )
𝑣 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑘 ) (ℎ (𝑘−1)

𝑢 |𝑢 ∈ 𝑁 (𝑣))

ℎ
(𝑘 )
𝑣 = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑘 ) (𝑎 (𝑘 )𝑣 , ℎ

(𝑘−1)
𝑣 )

(1)

where ℎ (𝑘 )
𝑣 represents the embedding vector of node 𝑣 at the

𝑘-th layer and ℎ0𝑣 = 𝑥𝑣 , 𝑎 (𝑘 )𝑣 is the intermediate aggregated
feature through collecting the information of neighbors, and
𝑁 (𝑣) is the neighbor set of node 𝑣 which is obtained from
𝐴. In the 𝑘-th layer, node 𝑣 gathers its neighbors’ states to
an aggregation through aggregate function. The aggregated
state is then combined with the previous state of node 𝑣 (e.g.,
ℎ
(𝑘−1)
𝑣 ) through the update function.
The aggregate function and update function may vary

across different GNNs. For example, Graph Convolutional
Network (GCN) [15] stands out as one of the most success-
ful networks for graph learning, efficiently alleviating the
issue of overfitting on local neighborhood structures for
graphs. It uses a weighted average aggregator for the aggre-
gate function and a single-layer perceptron for the update
function. Furthermore, we choose it to predict the optimal

fusion strategy due to its outstanding performance in classi-
fication tasks [36, 38] (details in Section 3.4).

3 Methodology and Implementation
3.1 Design Overview
In this section, we propose an adaptive fusion framework
Plasticine that can determine the better fusion strategy for
complex stencil programs. As shown in Figure 2, the Plas-
ticine consists of four important components including par-
allelism fusion (Section 3.2), multi-level complex stencil rep-
resentation (Section 3.3), CNN-GNN-based prediction model
(Section 3.4), and random complex stencil generator (Sec-
tion 3.5). Parallelism fusion is a novel optimization for ac-
celerating complex stencil computation, which efficiently
exploits the performance opportunities from inter-operator
parallelism. Nevertheless, its optimization potential closely
relies on features of the complex stencil program.

To better identify the optimal fusion strategy for various
complex stencil programs, we propose an accurate prediction
approach. The multi-level complex stencil representation
transforms complex stencil programs into assigned tensors
and adjacency matrices. With the transformed representa-
tions as inputs, a novel CNN-GNN-based prediction model is
used to explore the optimal fusion strategy. The CNN extracts
features of complex stencil programs related to computation
and memory access and GNN utilizes dependency relation to
further determine the fusion opportunity. Moreover, the ran-
dom complex stencil generator produces a variety of complex
stencil programs for training data collection.

Figure 2 illustrates the holistic pipeline of Plasticine. Dur-
ing the training process of the prediction model, the random
complex stencil generator initially creates multiple complex
stencil programs. The neighbor access, multi-grid computa-
tion, and dependency information of each generated stencil
are transformed into binary sparse tensors and adjacency
matrix through the proposed complex stencil representation
for subsequent model training. For any given new complex
stencil program, Plasticine converts them to internal repre-
sentations as described above and accurately determines the
optimal fusion strategy. If parallelism fusion is selected, Plas-
ticine launches concurrent execution through a paralleled
thread-block-level task and generates the high-performance
program (details in Section 3.2). Otherwise, Plasticine adopts
producer-consumer fusion leveraging the existing state-of-
the-art implementation [9].

3.2 Parallelism Fusion
To fully exploit the opportunities for parallelism among sten-
cil operators to accelerate the execution of the complex sten-
cil program, we introduce a new stencil fusion technique
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Figure 2: Design overview of Plasticine.
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…
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Complex Stencil Program

CN1

Figure 3: The illustration of the relationship among
the stencil operator (i.e., SN ), bucket, andmTask.

called parallelism fusion. Initially, we transform complex sten-
cil programs into complex stencil Directed Acyclic Graphs
(DAGs) to represent the dependencies among stencil oper-
ators explicitly. Subsequently, as shown in Figure 3, by uti-
lizing the DAG, we analyze these dependencies, and group
independent stencil operators (i.e., SN in Figure 3) to form
multiple buckets. Finally, to enable stencil operators within
a bucket to execute concurrently on GPU streaming mul-
tiprocessors (SMs), we introduce a thread-block-level task
abstraction termed mTask (i.e., micro task). The detailed
methodology is described as follows.
We define mTask as a fine-grained schedulable unit that

enables the concurrent execution of multiple stencil oper-
ators. Each mTask is a thread-block-level task running on
SMs. Through loop tiling and unrolling, we decompose the
computation of a stencil operator on the entire grid into
computations on individual tiles as mTask. Since there are
no dependencies between mTasks, they can be executed con-
currently and safely. The entire complex stencil program
is thus transformed into a combination of multiple mTasks.
By analyzing dependencies among stencil operators, we can
schedule independent mTasks in parallel, maximizing GPU
resource utilization.
To obtain the dependencies among various stencil oper-

ators within a complex stencil program, we introduce the
complex stencil DAG. As depicted in Figure 4, the DAG com-
prises two types of node: const node and stencil node. The
const node serves as a memory container for constants with

a defined shape and initialized data, containing attributes
including data type, domain size, and value. On the other
hand, a stencil node represents the execution process of a
stencil operator on the specified computational domain, with
attributes including data type, computational domain size,
and expression. We use Algorithm 2 as an example, const
nodes are data objects such as wgtfac, ppuv in the computa-
tion statement at line 2; and stencil nodes are computation
procedures of calculating ppgk and ppgc at line 2 and line 4.

stencil nodeconst node

SN1

CN1 CN2

SN2

SN3 SN4

CN3

CN4

CN5

SN5 SN6

CN6 CN9

CN7

CN8 CN11

CN10

Figure 4: The illustration of complex stencil DAG.

Moreover, the directed edges connecting different nodes
signify dependency relationships between operators within
the complex stencil program. Each stencil node receives one
or more inputs, which are either derived from const nodes or
provided by the outcomes of other stencil nodes. For example,
in Figure 4, inputs of stencil node SN4 are the const node CN3
and the output of stencil node SN2. By utilizing the DAG,
we can represent the data dependencies in complex stencil
programs while maintaining the original program semantics,
allowing for further analysis based on this structure.
After extracting the DAG from the complex stencil pro-

gram, we identify combinations of stencil operators that can
be executed in parallel, with each combination referred to
as a bucket. Specifically, as shown in Figure 5, we initially
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remove the const nodes from the DAG to obtain the S-DAG.
In S-DAG, the in-degree of a stencil node indicates the num-
ber of stencil operators it depends on. Nodes with a zero
in-degree indicate that they can be executed safely and inde-
pendently of one another, and thus, they are placed into a
bucket. We remove the nodes placed in the bucket along with
their outgoing edges from the S-DAG and then continue to
search for the next bucket until the S-DAG is emptied. The
process is iterative, and eventually, all stencil operators in the
complex stencil program are grouped into multiple buckets.

SN1

SN2

SN3 SN4

SN5 SN6

S-DAG

SN1

SN2

bucket 1

bucket 2

SN4

bucket 3

SN6

bucket 4

SN3

SN5

STEP1 STEP2

…

SN2

SN3 SN4

SN5 SN6

SN3 SN4

SN5 SN6

Figure 5: The illustration of buckets generation.

Stencil operators within each bucket operate indepen-
dently, and likewise, themTasks within each stencil operator
are also independent. Therefore, allmTasks within the bucket
can be executed in parallel. We consider hardware resource
capacity, such as the number of threads and shared mem-
ory allocation, when scheduling and mapping mTasks on
GPU SMs. This ensures efficient parallel execution ofmTasks
within buckets without violating resource constraints. To effi-
ciently parallelize mTasks within the bucket, we leverage the
backend implementation of Rammer [17]. Rammer abstracts
the GPU as a virtualized parallel device, consisting of multi-
ple virtualized execution units. Each virtualized execution
unit corresponds to a physical execution unit in the GPU
that performs the actual computation. We bind mTasks to
the virtualized execution unit and achieve parallel execution
among independent mTasks in the bucket.

3.3 Multi-level Complex Stencil
Representation

To capture the key features of a complex stencil program and
present them more concisely, we propose a new multi-level
complex stencil representation.
Analysis of Complex Stencil Programs.We model the

complex stencil program into three hierarchical levels of rep-
resentations. First, the complex stencil program is composed
of multiple stencil operators. In real-world applications, due
to the complexity of physical systems, the number of stencil
operators is typically more than three. These stencil opera-
tors exhibit static and acyclic dependencies between them.
We encode the relationships between stencil operators within
complex stencil programs as dependency representation.

Second, each stencil operator involves computations on
multiple grids [27, 30], which define the computation and
memory access pattern of the stencil operator. We describe
computations within a stencil operator across multiple grid
inputs as multi-grid computation representation.

Lastly, computations on a single grid require sweeping the
grid and processing the fixed neighbors around each point
to update values. Therefore, the position of neighbors affects
the grid computation. We extract the computation informa-
tion on a single grid as neighbor access representation.

In summary, a complex stencil program (CSP) can be rep-
resented as follows:

𝐶𝑆𝑃 := (𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑆𝑡𝑒𝑛𝑐𝑖𝑙 𝐷𝐴𝐺, 𝑆𝑡𝑒𝑛𝑐𝑖𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠)
𝑆𝑡𝑒𝑛𝑐𝑖𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 := {𝐺𝑟𝑖𝑑 𝐴𝑐𝑐𝑒𝑠𝑠1 ∪ . . . ∪𝐺𝑟𝑖𝑑 𝐴𝑐𝑐𝑒𝑠𝑠𝑛}

(2)

where Complex Stencil DAG can be encoded as dependency
representation, the cross grid computations within Stencil
Operator can be encoded as multi-grid computation represen-
tation, and the Grid Access can be encoded as neighbor access
representation.

...
foreach point in inner region do

ppgu[i][j][k] = ......

foreach point in inner region do

ppgv[i][j][k] = ......

foreach point in inner region do

uout[i][j][k] = uin[i][j][k] + dt * (utens[i][j][k]      

- ppgu[i][j][k] * (2*fx[j] / (rho[i+1][j][k]       

+ rho[i][j][k]));

foreach point in inner region do

vout[i][j][k] = vin[i][j][k] + dt * (vtens[i][j][k]

       - ppgv[i][j][k] * 2 * edadlat / (rho[i+1][j][k]       

+rho[i][j][k]));

  neighbor access

  multi-grid computation

 dependency

rho

voutuout uin

ppgv

 vin

utens vtens

ppgu
...

Figure 6: An example of neighbor access representa-
tion, multi-grid computation representation, and de-
pendency representation.

Figure 6 shows an example of representations. For neigh-
bor access, rho accesses the central point and its neighboring
points. In rho’s tensor representation, these points are set to 1,
whereas other points are set to 0. Formulti-grid computation,
the computation of uout is represented by the concatenation
of tensors that represent uin, utens, ppgu, fx and rho. For
dependency, the dependency between ppgu and uout is rep-
resented with the corresponding positions in the adjacency
matrix setting to 1. The detailed representations are shown
as follows.

Neighbor Access Representation.We show the represen-
tation of a single grid computationwithin the complex stencil
operator here. Motivated by [4] and [32], we represent the
access information of computations on each grid, regardless
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of order or shape, as a binary sparse tensor. In this represen-
tation, the central point and the accessed neighboring points
are assigned a value of 1, while the remaining points are as-
signed a value of 0. The representation of the binary sparse
tensor can efficiently capture the distribution of neighbors
accessed and their Euclidean distances. This information
governs the load characteristics of memory-intensive stencil
computations, which significantly impact the performance
of stencil computations under different fusion strategies.
Muti-Grid Computation Representation. A complex

stencil operator is composed of computations on multiple
grids. Building upon the neighbor access information from
individual grids as described above, we further model these
representations. Initially, we collect all computations on each
grid contained within the stencil operator and obtain several
binary sparse tensors. Given that computations on different
grids within a stencil operator are independent of each other,
we concatenate these binary sparse tensors directly to obtain
a high-dimensional tensor that characterizes the number
of grids and the load characteristics on each grid within
the entire stencil operator. This information, closely tied to
the computation and memory access of the stencil operator,
influences the efficiency of different fusion strategies.

Dependency Representation. The computation of a com-
plex stencil program is composed of multiple stencil opera-
tors that have dependency relationships. We further model
the dependencies between these stencil operators. As illus-
trated in Section 3.2, the computation of a complex stencil
program can be transformed into a complex stencil DAG.
Therefore, leveraging the graph structure inherent in the
complex stencil program, we represent the stencil operator
dependencies as an adjacency matrix, denoted as 𝐴, of size
[𝑛𝑢𝑚(𝑐𝑜𝑛𝑠𝑡 𝑛𝑜𝑑𝑒)+𝑛𝑢𝑚(𝑠𝑡𝑒𝑛𝑐𝑖𝑙 𝑛𝑜𝑑𝑒)]×[𝑛𝑢𝑚(𝑐𝑜𝑛𝑠𝑡 𝑛𝑜𝑑𝑒)+
𝑛𝑢𝑚(𝑠𝑡𝑒𝑛𝑐𝑖𝑙 𝑛𝑜𝑑𝑒)]. If a node 𝑖 (const or stencil) has a rela-
tionship with another stencil node 𝑗 , the value at the cor-
responding points (𝐴𝑖 𝑗 ) in the adjacency matrix is set to 1;
otherwise, it is set to 0. We convert this adjacency matrix
into a two-dimensional tensor for storage.

3.4 CNN-GNN-based Prediction Model
The deep learning models that process data modeled as
graphs have been widely applied in learning node repre-
sentations and relationships between nodes, which exhibits
exceptional performance. Motivated by these advances, our
approach models the fusion strategy selection problem as a
graph classification task. Driven by the complicated feature
space of complex stencil programs, we propose a CNN-GNN-
based prediction model to guide the selection of strategies.
Both the CNN and GNN models play a pivotal role by ex-
tracting essential information about computation patterns,
memory access behaviors, and inter-operator dependencies.

The CNN component is utilized to capture the influencing
features at the intra-operator level, while the GNN compo-
nent further extracts graph-level dependencies at the inter-
operator level to predict effective fusion strategies. We dis-
cuss our design in detail as follows.
Model Design of CNN. The CNN component is utilized

for exploring intricate features related to memory access and
computation in stencil computation. As shown in Figure 7,
we propose a lightweight network architecture. The model’s
input is the representation of the stencil operators and CNN
produces a feature vector that represents the patterns of grid
computations within the complex stencil operators.
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Figure 7: The model design of CNN.

Model Design ofGNN.TheGNN component obtains inter-
operator dependencies and integrates the intra-operator fea-
tures from CNN to make the prediction. We model the fusion
strategy selection as a classification task on learned graph
representations. There are amount of work focused on graph-
based learning, and we choose the graph convolutional net-
work (GCN) [36] as it is the most suitable network for our
scenario. As shown in Figure 8, the inputs of the model are
feature vectors of each stencil operator along with the adja-
cency matrix that represents the relationship between stencil
operators. The output of the model is the probability of the
complex stencil program selecting producer-consumer fu-
sion and parallelism fusion. The model first consists of four
GCNConv layers, each along with a tanh as the activation
function. After passing the initial node embeddings (i.e., fea-
ture vectors) through GCNConv layers, we leverage resulting
embeddings to learn a representation for the entire graph.
Specifically, we select the global_add_pool operation, which
involves adding the node embeddings. The consolidated fea-
ture vector produced by this pooling operation is regarded
as the final output.

G
C

N
C

on
v

ta
nh

G
C

N
C

on
v

ta
nh...

gl
ob

al
 a

dd
 p

oo
l

Probability

feature
vectors

adjacency 
matrix

Figure 8: The model design of GNN.

CNN-GNN-basedCo-design. Figure 9 represents the CNN-
GNN-based prediction model and shows the workflow of
processing a complex stencil program for each iteration. The
model inputs consist of multi-grid computations of stencil
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CNN model

. . .

   grid size

feature vectors

GNN model

① ② ③

④

⑤⑥⑦
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adjacency 
matrix

...
  Multi-grid computation

  neighbor access

...
...

... ...

...
...

  
    

  
feature vectors containing
neighbor access patterns feature vectors containing

multi-grid computation
patterns

Figure 9: The design of CNN-GNN-based prediction model.

operators and the dependencies (i.e., adjacency matrix) repre-
senting the inter-operator relationships. The returns of the
model are the probabilities of selecting producer-consumer
fusion and parallelism fusion.

As shown in Figure 9, the CNN part takes multi-grid com-
putations as inputs, processing each included neighbor access
individually (①). These neighbor accesses are binary tensors
and outputs of CNN aremultiple feature vectors representing
the neighbor access patterns (②). To obtain feature extrac-
tion of stencil operators, we further concatenate the above
vectors associated with the same stencil operator (③) and
obtain feature vectors representing multi-grid computation
patterns. Moreover, we incorporate the 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 of stencil
operators to the end of each feature vector (④). These feature
vectors serve as partial inputs required for GNN inference
(⑤), and each vector represents the computation and mem-
ory access patterns of the stencil operator. Combining the
adjacency matrix which represents the inter-operator de-
pendencies, we feed both feature vectors and the adjacency
matrix to the GNN model (⑥). The GNN model, after under-
going the analysis in the GCN layer, outputs the probabilities
of selecting each fusion strategy (⑦).

3.5 Random Complex Stencil Generator
The random complex stencil generator aims to output var-
ious complex stencil programs for training data collection.
We adhere to Section 3.3 to generate each level represen-
tation and leverage these representations as training data.
Specifically, we randomly generate valid neighbor accesses
and use them to createmulti-grid computations. Both of them
are represented as sparse tensors for each randomly sampled
stencil operator and serve as partial input training data. With
tensors generated in the first two steps, we can represent
various types of stencil operators. Additionally, to gener-
ate complex stencil programs, we mimic the topologies of

real-world complex stencil programs to create random de-
pendencies. The random dependencies are stored in adjacency
matrices which eventually are used as training data as well.
Neighbor Access Generation. As discussed above, the

neighbor accesses are represented as binary sparse tensors
where the central point and neighbor points accessed are
assigned a value of 1. According to our observations, in real-
world applications, the majority involve 3D complex stencils
with an order (the range from neighbor points to center
point) not exceeding 3. Therefore, we set the dimensions of
the generated tensor to 7× 7× 7 (7 = 3+ 1+ 3) where the two
’3’s represent the order of the left and right parts respectively,
with ’1’ representing the central point. The neighbor accesses
are generated by random sampling in this tensor space. We
first determine the maximum order of the neighbor access
based on a certain probability distribution. Once the order
is selected, we traverse each layer within the range of the
selected order starting from the central point. At each layer,
we randomly determine the neighbor points of the central
point. These newly selected neighbor points then serve as
the central points to continue selecting points for outward
expansion towards the outer layers. Ultimately, we remove
duplicates to ensure the diversity of the neighbor accesses.
Muti-Grid Computation Generation. The multi-grid

computations are represented as high-dimensional tensors
constructed by concatenating binary tensors representing
neighbor accesses. We further generate multi-grid computa-
tions based on the obtained neighbor accesses. First, we deter-
mine the number of neighbor accesses within the multi-grid
computation through random sampling. We then concatenate
compatible neighbor accesses randomly and form the multi-
grid computation. Given the finite number of neighbor point
accesses in the real-world stencils due to their physical char-
acteristics, we also impose restrictions on the total number
of neighbor points accessed by the multi-grid computations.
If this limit is exceeded, regeneration is performed until the
requirements are met.
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Figure 10: The overall performance comparison of different stencil compilers/frameworks on V100 GPU.

Dependency Generation. We generate dependencies to
present the relations of stencil operators within a complex
stencil program represented as adjacency matrices. To cre-
ate meaningful random programs, we conduct research and
analysis on the stencil topology structures in real-world
stencils, extracting multiple common sub-topological chains.
These sub-topological chains are randomly selected and con-
catenated to form dependencies. We validate the generated
dependencies to ensure the validity of generating complex
stencil programs. This process involved detecting cycles in
the graph structure corresponding to the dependency and
ensuring the graph is connected.

Each entry of input training data contains the above gen-
erated data and a selected fusion strategy. We evaluate fusion
strategies among random complex stencil programs in the
training data and select the best fusion strategy served as
the label for it.

4 Evaluation
4.1 Experiment Setup
We run our evaluation on NVIDIA 32GB V100 GPU and
NVIDIA 80GB A800 GPU. The V100 GPU is equipped with
two Intel Xeon Gold 6330 CPUs and A800 GPU is equipped
with two Intel XeonGold 6348 CPUs. To accurately obtain the
performance of complex stencil programs, we use cudaEvent
API to record the execution time and use the median timing
from 10 runs.

We evaluate both synthetic and real-world complex stencil
programs. For synthetic complex stencil programs, inspired
by [16], we construct 12 complex stencil programs consistent
with the observation of real-world applications [1, 5, 6, 27,
30]. Specifically, the DAG of the complex stencil program
is derived from the real-world complex stencils, with the
number of stencil nodes ranging from 3 to 6, and const nodes

ranging from 4 to 8. For each stencil operator, we focus
on 3D stencils and the number of computation grids is less
than 6. Moreover, consistent with existing work on complex
stencils [9], we set the grid size of 3D stencils to 128 and
256. We use the notation cs1_k3_i4_e9-128 to represent a
specific complex stencil program whose id is 1, the grid size
is 128 and has 3 stencil nodes, 4 const nodes, and 9 edges. For
real-world complex stencil programs, we evaluate Plasticine
on stencil program p_grad_c from the FV3 application [6],
which computes the three-dimensional pressure gradient.

We compare Plasticine with the sequential execution (De-
fault) and state-of-the-art stencil compilers including the
Artemis Compiler [27](Artemis) and the Open Earth Com-
piler [9](OpenEarth). Specifically, Artemis focuses on opti-
mizing individual stencil operators such as tiling, stream-
ing, prefetching, unrolling, and register optimization. Open-
Earth fuses producer-consumer stencil operators for complex
stencil programs. Moreover, we compare Plasticine with the
implementation using parallelism fusion (ParallelismFusion)
across all cases to highlight the performance advantages
gained through the optimal strategy selection.

4.2 End-to-end Performance
Experimental Results. Figure 10 and Figure 11 shows the
overall performance of Plasticine compared to different sten-
cil compilers on V100 GPU and A800 GPU, respectively. The
sequential execution (Default) performance is used as the
baseline. Plasticine achieves better performance than De-
fault,OpenEarth, and Artemis. Table 1 shows the max and
average speedup of Plasticine compared to others. Plasticine
can achieve a max speedup of 5.66× and 8.90× on V100 GPU
and A800 GPU, respectively. Due to the increased computa-
tional power brought by A800 GPU, Plasticine has greater
parallel opportunities, resulting in higher performance gains.
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Figure 11: The overall performance comparison of different stencil compilers/frameworks on A800 GPU.

The significant performance speedup of Plasticine in differ-
ent types of GPUs also proves its high scalability for various
complex stencil programs and GPU architectures.

Table 1: Max and average speedup of Plasticine com-
pared to Default, OpenEarth, Artemis, and Parallelism-
Fusion (Para-Fusion) respectively.

Default Open-
Earth Artemis Para-

Fusion

V100 Max 5.66× 3.87× 4.68× 3.02×
Avg. 2.49× 1.65× 2.39× 1.22×

A800 Max 7.46× 6.10× 8.90× 1.23×
Avg. 4.06× 2.27× 3.86× 1.02×

Performance Analysis. Plasticine performs better than
others for the following reasons. First, Plasticine proposes
parallelism fusion, which can fully exploit the parallelism op-
portunities among stencil operators (Section 3.2). Moreover,
Plasticine proposes the multi-level complex stencil represen-
tations to extract the compute and memory access features
of complex stencil programs (Section 3.3). Using these repre-
sentations, Plasticine proposes a CNN-GNN-based prediction
model to determine the better fusion strategy of stencil op-
erators (Section 3.4), and Table 2 shows the selection results.
In addition, Plasticine also proposes a random complex sten-
cil generator to generate various complex stencil programs
for training data collection (Section 3.5). Accurate represen-
tations, thoughtful model design, and ample training data
have led to the prediction model achieving a high accuracy.
With the novel parallelism fusion and the ability to select
appropriate fusion strategies for various stencils, Plasticine
achieves significant performance speedup. For certain sten-
cils like cs1_k3_i4_e9-128, Plasticine performs comparably to
OpenEarth. This is because these stencils are better suited for

producer-consumer fusion, and Plasticine accurately selects
the better fusion strategy for them. Moreover, the speedup
compared to ParallelismFusion demonstrates the importance
of accurate fusion strategy selection.
For certain stencils such as cs8_k5_i4_e14-256 and

c11_k6_i7_e18-256, the performance of OpenEarth is slightly
inferior. This is because OpenEarth primarily relies on the
producer-consumer pattern to fuse multiple stencil operators.
Although the producer-consumer fusion can reduce memory
moving by reusing intermediate results, bringing perfor-
mance gain, it also increases the pressure on registers and L2
cache, which may result in register spilling and increased L2
cache misses. Therefore, simply using producer-consumer
fusion is unsuitable for all complex stencil programs. In some
cases, it fails to deliver performance improvements and may
even lead to negative optimizations.
As for Artemis, it focuses on optimizing individual sten-

cil operators and conducts auto-tuning based on the reg-
ister analysis of operators, while fails on complex stencil
programs due to the lack of high-level information such
as inter-operator dependencies. Therefore, Artemis always
tends to utilize complex and potentially unsuitable operator
optimization strategies. For example, it selects the streaming
optimization for complex stencil programs with a large num-
ber of stencil operators or a high order, leading to serious
register spilling issues and ultimately resulting in perfor-
mance degradation.

4.3 GPU Utilization
Plasticine efficiently exploits the computational resources
of GPU by leveraging parallelism fusion. We evaluate the
GPU utilization improvement by Plasticine through com-
paring it with Default. Specifically, we use the metric
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 to measure the GPU utilization, which
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Table 2: Fusion strategy selection results of 13 complex stencil programs in the benchmark (pc refers to producer-
consumer fusion and pf refers to parallelism fusion).

cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10 cs11 cs12 p_grad_c

V100 128 pc pf pf pc pf pc pf pf pf pc pf pc pf
256 pc pf pf pc pf pf pf pf pf pc pf pc pc

A800 128 pc pf pf pf pf pf pf pf pf pf pf pc pf
256 pc pf pf pf pf pf pf pf pf pc pf pc pc

indicates how many warps can be active at once per SMs.
Higher 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 means fewer idle CUDA cores
and thus better GPU utilization efficiency. We evaluate the
complex stencil programs that employ parallelism fusion,
showcasing GPU utilization results of stencils under dif-
ferent grid sizes and varying numbers of stencil operators.
As shown in Figure 12, compared to the Default, Plasticine
can improve the GPU utilization by up to 1.48× and 1.36×
with grid size 128 and 256, respectively. This indicates that a
single stencil operator cannot always fully utilize GPU re-
sources, and the improvement comes from the capability to
concurrently execute multiple operators by using parallelism
fusion.
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Figure 12: GPUutilization of complex stencil programs.

4.4 Prediction Accuracy
We show the prediction accuracy of our CNN-GNN-based
prediction model here. Specifically, we randomly generate
3000 complex stencil programs using Plasticine and select
2700 as the training set, with the remaining stencils used
for the test set. This is consistent with the training dataset
used for the prediction model in Plasticine. The prediction
accuracy of the prediction model on V100 and A800 GPU is
98.7% and 99.0%, respectively. This proves the practicality
of representing complex stencil programs as binary tensors
and adjacency matrix. Moreover, the compute and memory
access characteristics of complex stencil programs can be
effectively captured by convolution operations and graph
operations for classification tasks.

Moreover, we have evaluated with simple models such as
MLP and decision tree on a set of features such as the num-
ber of dependencies and dependence depths. The prediction

accuracy drops to 66.0%/67.0% and 67.3%/66.5% on A800 and
V100 GPU respectively. The above results demonstrate that
simple models are inadequate for representing the charac-
teristics of complex stencils, and thus difficult to identify
optimal fusion strategies.

4.5 Network Designs
To better understand how the network design affects the pre-
diction accuracy of the CNN-GNN-based prediction model,
we first conduct a sensitivity study on the hyperparameters
of the network. The variations include the hidden size of the
CNN part(i.e., the final output channel) and the hidden size of
the GNN part. Figure 13 shows the accuracy of the prediction
model with different configurations on V100 GPU and A800
GPU.Models with different configurations are trained for 200
epochs, which is consistent with the number of epochs used
in Plasticine. As shown in Figure 13, the proposed prediction
model achieves high accuracy under different configurations
and hardware architectures, and the difference in accuracy is
less than 5.3%. This result indicates that our model exhibits
low sensitivity to hyperparameter selection, allowing users
to effortlessly choose configurations without the need for
expert experience. In Plasticine, we select 6 as the hidden
size of the CNN part and 8 as the hidden size of the GNN
part for both the V100 GPU and A800 GPU.
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Figure 13: The accuracy of the proposed CNN-GNN-
based prediction model.

To gain a better understanding of the core reasons behind
the efficiency of the network, we conduct a breakdown study
of the network design. We firstly disregard the GNN part
of the network and solely rely on the CNN part with intra-
operator features as inputs. The accuracy drops to 71.3%
and 73.6% on the A800 GPU and V100 GPU, respectively.
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Conversely, we disregard the CNN part of the network, and
only preserve the inter-operator dependencies with GNN for
model prediction. The accuracy also experienced a signifi-
cant drop, reaching only 68.7% and 69.0% on the A800 GPU
and V100 GPU, respectively. The experimental results show
that the removal of either the CNN or GNN part severely
impacts the prediction accuracy. The reason is that both
intra-operator and inter-operator information are critical to
represent the stencil program and affect the fusion strategy,
which leads to the final choice of the network structure.

In summary, the correct model structure (e.g., the combi-
nation of CNN and GNN) plays a more important role than
the structure of individual models (e.g., hidden size).

4.6 Discussion
Jointly Applying Parallelism Fusion and Producer-
consumer Fusion - Currently, Plasticine treats the fusion
optimization as a binary classification between parallelism
fusion and producer-consumer fusion and thus misses the
opportunities to apply hybrid fusion within a complex stencil
program. We have observed the above optimization poten-
tials exist in more complex stencils (e.g., stencils contain
more than ten operators such as horizontal diffusion [5]). We
will leave the above optimizations for future work.

5 Related Work
5.1 Performance Optimizations on Stencil
There are various works dedicated to optimizing stencil com-
putation on GPU [18, 20, 27, 31, 39, 41]. AN5D [18] uses
shared memory to cache the intermediate variables based on
temporary blocking. Artemis [27] focuses on stencils with
high orders and incorporates several optimizations, profiling,
bottleneck analysis, and autotuning to realize high perfor-
mance. These works mainly focus on optimizing single sten-
cil operators and fail on complex stencils due to the lack of
high-level information such as inter-operator dependencies.
There are also several frameworks and compilers that

optimize complex stencils [5, 9]. Open Earth Compiler [9]
designs stencil- and GPU-specific dialects to describe and
optimize the complex stencils. However, it mainly focuses on
fusing stencil operators with producer-consumer dependen-
cies while overlooking the parallelism opportunities among
stencil operators. StencilFlow [5] proposes a high-level input
DSL and efficiently maps the stencil computations to multi-
ple FPGAs. GridTools [1] is a set of libraries and utilities for
applications with complex stencil computatißns at their core.
However, it focuses on improving the efficiency of applica-
tion development rather than optimizing code performance.
There are also other image processing frameworks such

as PolyMage [19], Pluto [3], and Halide [25] support stencil
computations with multiple stencil operators. However, they

focus on the stencils in image processing pipelines, where
individual operators exhibit dependencies in a chain-like
structure, necessitating sequential processing in order. Thus,
it is challenging for them to handle complex stencil programs
with complicated dependencies. Plasticine efficiently exploits
the inter-operator parallelism in complex stencil programs
and achieves significant performance.

5.2 Horizontal Fusion in Deep Learning
Horizontal fusion is widely proposed to improve the perfor-
mance of deep learning model workloads by exploiting the
parallelism among operators [14, 17, 21, 40, 42]. Apollo [40]
proposes the optimization of multi-level unified fusion, effi-
ciently exploiting the parallelism between independent ten-
sor operators. Astitch [42] optimizes ML computing from
the aspects of dependency characteristics and memory hi-
erarchy to maximize hardware utilization and parallelism.
Rammer [17] proposes a fine-grained scheduling method
to achieve efficient inter-operator and intra-operator paral-
lelism. TASO [14] automatically generates graph substitu-
tions, which pack independent operators into a single kernel
and execute them concurrently.
However, the parallelism fusion of stencil operators is

a more complex horizontal fusion of deep learning opera-
tors. The effectiveness of horizontal fusion for deep learning
works can be confirmed through early profiling or domain
knowledge, which is not applicable for complex stencil com-
putation with intricate and variable characteristics.

5.3 Concurrent Kernel Execution
Previous works have proposed several techniques to support
concurrent execution of kernels [8, 22–24, 35]. NVIDIA has
developed Multi-Process Server(MPS) [22], which enables
multiple CUDA processes to share one GPU by resource par-
titioning. Multi-Instance GPU(MIG) [23] has been featured
since Ampere architecture GPUs, which further provides
physical partitioning with multi-GPU abstraction to support
concurrent execution. It partitions memory capacity, mem-
ory bandwidth, and caches in thememory system, preventing
the concurrent processes from interfering with each other.
However, MPS and MIG function as blind-box controllers
and are unable to regulate the scheduling policies of kernels.
Elastic kernel [24] identifies the lack of control over resource
allocation to kernels as the major limitation of current CUDA
concurrency implementation and permits fine-grained con-
trol over the resource usage of kernels. However, it statically
fuses parallelizable kernels and cannot accommodate the
complex stencils having various workloads.
In summary, simply utilizing existing concurrent execu-

tion approaches is insufficient to produce the optimal exe-
cution schedule and hard to accommodate complex stencil
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workloads. Driven by the property of stencil workloads, we
propose a fine-grained schedule abstraction(mTask), identi-
fying stencil computations that can be executed in parallel,
and efficiently scheduling them on the hardware. Our ap-
proach is general and can integrate with existing concurrent
execution approaches.

6 Conclusion
Generating efficient fused code for complex stencil programs
is challenging. In this paper, we present Plasticine, an adap-
tive fusion framework designed to determine the optimal
fusion strategy for complex stencil programs. Specifically,
Plasticine proposes parallelism fusion to leverage the con-
current execution opportunities among operators. Moreover,
Plasticine provides the first evidence (to our knowledge) that
a novel multi-level complex stencil representation, combined
with a CNN-GNN-based prediction model, can effectively
generate high-performance fusion strategies for complex
stencil programs. The experimental results show that Plas-
ticine can outperform the state-of-the-art stencil compilers
with higher throughput and better hardware utilization.
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