DIV: An Index & Value compression method for SpMV on large
matrices

Dimitrios Galanopoulos
Department of Computer Science
National Technical University of

Athens
Athens, Greece
dgal@cslab.ece.ntua.gr

Nectarios Koziris
Department of Computer Science
National Technical University of

Athens
Athens, Greece
nkoziris@cslab.ece.ntua.gr

Abstract

SpMYV on large matrices is a heavily memory-bound kernel, a char-
acteristic attributed to its extremely low computational intensity.
To address this, research has mainly focused on compressing the
matrix indices. Nevertheless, the values of a matrix usually occupy
up to two thirds of the total size. Research on value compression,
on the other hand, has been limited to specific matrix types. In
this paper, we propose DIV, a combined index and value lossless
compression scheme, based on variations of delta and run-length
encoding, that achieves substantially improved SpMV performance
for large matrices, i.e., those that exceed the CPU cache. We evaluate
its performance against other state-of-the-art matrix formats, on an
Intel Xeon and an AMD EPYC platform. Our format achieves 77%
and 115% geometric mean speedup respectively versus the Intel
MKL library. We finally demonstrate the applicability of DIV on
a Biconjugate Gradient Stabilized solver, where we also achieve
significant speedups.
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1 Introduction

Sparse Matrix-Vector (SpMV) multiplication is encountered in
many fields including scientific computing and machine learning. It
performs the product of a sparse matrix with a dense input vector
and returns a dense output vector. SpMV is one of the lowest-
performing kernels, a fact that can be attributed to many potential
performance issues, like its extremely low operational intensity
(memory bandwidth bound), irregular memory accesses to the input
vector (memory latency bound), load imbalance and low instruction-
level parallelism (ILP) [5, 10-12, 24, 31, 34].

Although much work has been done to mitigate these problems
[2, 4, 7, 8, 18, 22, 23, 28, 30], as matrices grow larger and the
gap between computational power and memory speed widens,
the memory bandwidth bottleneck remains the most important
obstacle to high performance [31]. The case of large matrices
specifically is indeed significant, as they represent contemporary
and challenging real problems. For example, the configuration of the
HPCG benchmark! states that data arrays should not fit inside the
cache (remarked as “unrealistic in a real application setting”), but
on the contrary occupy a significant portion of the main memory
(at least 1/4).

Focusing on the case of SpMV on large matrices in CPUs, the
kernel is memory bandwidth bound and all other bottlenecks have
a minor impact on performance. To showcase this, we present in
Figure 1 an evaluation of SpMV performance on an AMD EPYC CPU,
for a dataset of 29 large matrices, i.e., substantially larger (2x) than
the CPU Last Level Cache - LLC, from the SuiteSparse matrix collec-
tion [3] (see Section 5 for details on the setup and dataset). We apply
matrix formats designed to address each bottleneck, and compare
with the standard CSR (with simple row-granularity balancing) as
the baseline and the Intel MKL library as a state-of-practice format.
Specifically, we test: a) vectorization, as a prominent computational
optimization for ILP, b) CSR5 [28], which breaks short rows and
tackles low ILP and imbalance, c¢) Merge [30], which tackles load
imbalance, d) MKL_col_0, an erroneous version of MKL SpMV that
zeros out the column index array of the CSR format and thus leads to
perfect access to the input vector (as an indicator of the upper bound
of any optimization that would target the irregular memory accesses

!https://hpcg-benchmark.org/fag/index.html
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Figure 1: Evaluation of approaches targeting the various
SpMV bottlenecks, for a dataset of large matrices (i.e., sub-
stantially larger than the CPU cache) on an AMD EPYC 64-
core CPU.

to the input vector), e) LCM [2], a format that searches for strided
substructures in the matrix and generates an optimized codelet for
each one, therefore targeting ILP and memory bandwidth, and f)
SparseX [8], a format that aggressively tries to reduce the size of
the structural metadata of sparse matrices (i.e., indices), addressing
the memory bandwidth bottleneck. Interestingly, mainly SparseX is
able to reliably speedup SpMV for large matrices (median speedup
of 13%, geometric mean speedup of 7.7%), while LCM also has some
advantageous cases but is a lot more irregular, (median speedup
of 9.5%, geometric mean speedup of —12%, i.e., slowdown). This
implies that, for the case of large matrices, optimizations should be
directed to mitigating the memory bandwidth bottleneck, and that
the other bottlenecks are not dominant.

Data compression emerges as a natural solution to address the
memory bandwidth bottleneck of SpMV. Compression sacrifices
unused processing power to reduce the memory footprint and,
consequently, the required bandwidth. Most of the research effort
so far has focused on compressing the redundancy in the structure
of the matrix, i.e., reducing the indexing footprint of sparse matrices
[2, 20, 21, 36, 37]. In the generic sparse representation format CSR,
indexing metadata include approximately (m+ nnz) 32-bit integers,
where m and nnz are the number of rows and nonzero elements of
the matrix respectively. Many applications however, require double
precision arithmetic, which means that the memory footprint of
the actual values of the matrix is nnz 64-bit floats, i.e., almost 2/3
of the total matrix footprint. Clearly, matrix values are an excellent
target for compression.

Compression of floating-point numbers is a field that has been
broadly explored. Some efforts focus on complicated and compute-
intensive lossless implementations [1, 9, 26, 32], while others
focus on heavy compression using lossy methods [25]. Most of
these schemes, though, are incompatible with the extremely low
computational intensity of SpMV, since the compute overhead they
introduce outweighs the execution time of the kernel itself. This is
because they usually target reducing disk I/O access times, and not
memory access times. Other schemes target specific applications
that do not require high precision arithmetic [25], or assume
very smooth variations in the values in order to be effective and
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accurate [9]. For the specific case of SpMV, the most common
compression scheme that has been proposed is dictionary-based,
and tries to reduce the replication of the unique values of the matrix
[13, 20, 33, 38, 39]. This method though, is highly sensitive to the
number of the unique values, and rapidly loses its compression
effectiveness as this number increases.

In this paper we aim to aggressively compress the memory
footprint of a sparse matrix and thus we target both its metadata
(indexing structure) and actual data. To that end, we propose DIV,
a combined index and value compression scheme. Our approach
is currently applied to CPUs and is designed to be effective for
large-scale matrices that exceed the size of the LLC, where the
memory bandwidth limitation is much more severe. DIV combines
index and value compression techniques to effectively reduce
the matrix memory footprint (Sections 3,4). It achieves lossless
matrix compression and is capable of drastically improving the
SpMV performance of large matrices. The compression process
has a rather low overhead, in the order of a few dozens of SpMV
operations on average, making it effective both for offline and
online processing, (e.g., in solvers with multiple iterations). In
addition, since exploiting matrix symmetry can also be viewed as a
way to mitigate the memory bandwidth bottleneck, we propose a
symmetric extension of our DIV format.

We evaluate our method on two different platforms, an AMD
EPYC 64-core CPU and an Intel Xeon 56-core CPU, and against
various matrix formats, including formats specialized for sym-
metric matrices (Section 5). Our implementation offers significant
speedups compared to state-of-the-art index and value compression
formats, and on the AMD platform we achieve on average above
single-precision floating-point performance. In particular, against
the best performing state-of-the-art double-precision format tested,
SparseX [8], we achieve speedups of 87% on Intel and 100% on AMD,
while against the state-of-practice MKL format we achieve 77% and
115% respectively. Furthermore, we incorporate DIV into a simple
Biconjugate Gradient Stabilized solver, where it again achieves
notable speedups (Section 5.4). We demonstrate that it has relatively
low preprocessing overhead and more importantly, that there are
no functional or performance shortcomings that would prohibit
its integration in an end-to-end application. Finally (Section 6), we
explore the performance scalability, extended matrix datasets and
showcase that our format remains effective in lower floating point
precisions (32-bit). DIV is distributed under an open-source license
and the code is publicly available?.

2 Background
2.1 Floating-point Arithmetic

In this paper we work with floating-point numbers as defined in the
IEEE 754-2008 standard [17]. The double-precision 64-bit numbers
comprise 1 bit for the sign, 11 bits for the exponent and 52 bits for
the fraction or mantissa, while the single-precision 32-bit numbers
have 1, 8 and 23 bits of the respective parts. The nature of this
representation makes it denser around zero, growing sparser as the
exponent of the number increases.

2GitHub repository: https://github.com/cslab-ntua/SpMV-Research
(relevant folder : benchmark_code/CPU/AMD/spmv_code_bench/DIV)
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// Serial
for (j=0;j<nnz;j++)
y[RowIdx[jJ1] += Values[j] * x[ColIdx[j]]

// Parallel
parallel for (j=0;j<nnz;j++)
y[RowIdx[jl] = atomic_add( y[RowIdx[j1],
Values[j] * x[ColIdx[j1] )

Listing 1: SpMV kernels for the COO format.

// Serial
for (i=0;i<num_rows;i++)
for (j=RowPtr[il;j<RowPtr[i+1];j++)
y[il += Values[j]l * x[ColIdx[j1]

// Parallel
parallel for (i=0;i<num_rows;i++)
for (j=RowPtr[il];j<RowPtr[i+1];j++)
y[il += Values[j]l * x[ColIdx[j1]

Listing 2: SpMV kernels for the CSR format.

2.2 SpMV Kernel and Matrix Formats

The SpMV operation involves the multiplication of a sparse
matrix with a dense input vector, resulting in a dense output vector,
ie., y = A - x. The sparse matrix is stored in an appropriate format
that reduces its memory footprint by keeping only the nonzero
values. Therefore, a sparse matrix format needs to additionally
encode the structure of the nonzeros distribution inside the matrix.
There is a wide variety of formats in literature, but in this paper
we work with the state-of-practice (i.e., those provided by vendors)
and the most relevant state-of-the-art formats discussed next.

2.2.1 Coordinate Format (COO). The COO format is a straightfor-
ward approach that stores both row and column indices for each
nonzero element. COO is very frequently used for file storage of
the matrices. COO’s flat nature makes nonzero reordering easier,
helps with load balancing and avoids the loop overheads of the
double loop of CSR. These benefits, however, come at the cost of
larger memory footprints, while the random accesses to the output
vector make parallelization less efficient, as atomic writes to the
output vector are required. In Listing 1 we show both a serial and a
parallel implementation of the SpMV kernel with the COO format.

2.2.2 Compressed Sparse Row Format (CSR). CSR is the de facto
format and base to many derivatives, due to its solid performance,
ease of implementation and straightforward parallelization. In CSR
the nonzeros are sorted according to their row indices, storing
the values and column indices in two arrays, Values and Colldx
respectively. An additional RowPtr array contains the position of
the first element of each row in the previous two arrays. Likewise,
in Listing 2 we show serial and parallel implementations for CSR.

2.2.3 CSR5 [28]. CSRS5 is a popular format that tackles the load
imbalance of CSR, by dividing rows into subproblems of almost
equal size. This modification is particularly tailored for GPUs and
in general devices with large core counts, where conventional CSR
fails to distribute workload effectively among processing elements.

2.24 SparseX [8]. SparseX partitions the original matrix into
distinct substructures, in order to minimize the overall memory
footprint. This objective is realized through the identification of
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dense, horizontal, vertical, diagonal or block substructures within
the sparse matrix. We include this format in our evaluation as
a representative of drastic index compression schemes that are
advantageous for larger matrices.

225 LCM [2]. The LCM format is an inspector-executor frame-
work that searches for strided and partially strided regions /
memory accesses in sparse codes (i.e., sparse matrix substructures),
much like SparseX, and generates optimized and vectorized codelets
for each one.

2.2.6 CSR&RV [38]. This format uses a dictionary-based value
compression scheme, one of the most commonly found value
compression techniques in literature, and excels when matrices
have few unique values. However, it cannot be considered a generic
approach, since its performance dramatically drops as the number
of unique values increases.

2.2.7 CFS [6]. This targets SpMV on symmetric matrices. It avoids
both fine-grained synchronization and non-scalable reduction op-
erations by breaking the computation into phases, wherein a subset
of the rows is processed in parallel so that no race conditions during
the update of the output vector occur.

3 Design Considerations

When designing a compression scheme for the SpMV kernel, we
need to adhere to a number of requirements and encounter a variety
of alternative options regarding the algorithm, the granularity of
data and others, that fine tune the selected approaches. In this sec-
tion, we discuss the compression and decompression requirements
in our case, show why existing floating-point compression schemes
that operate at large data granularities are not suitable, and explain
why we need to resort to simpler solutions. We then provide some
more details for each one of them.

3.1 Compression and Decompression Overhead

As in several other research works on the field [2, 6, 8] and in
production libraries like the MKL Inspector-Executor scheme, we
assume that we have the luxury to preprocess the sparse matrix, or,
in other words, that the compression cost is not in the critical path of
the application. This is because in typical scenarios the matrix does
not change, so it can be preprocessed offline once, saved on disk and
reused multiple times in different application executions. In other
cases, the matrix is used in iterative algorithms (like the Krylov
iterative solvers) where the preprocessing cost can be amortized
during the iterative execution. In Section 5.4 we test our scheme for
online compression in the Biconjugate Gradient Stabilized iterative
solver, where we demonstrate that it can be a viable option for
this case as well. The decompression cost, however, needs to meet
much stricter requirements, since decompression takes place every
time the matrix is used in the SpMV operation during application
execution. A heavyweight scheme for decompression is doomed
to fail in the use cases under consideration. Consequently, in our
design, we allow for some tolerance in the cost of compressing the
matrix, but require minimal tolerance in the cost of decompressing
the matrix.
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Figure 2: Performance evaluation of existing compression
schemes applied to SpMV on an AMD EPYC 64-core CPU.

3.2 Existing Compression Methods and
Compression Granularity

The goal of compression for SpMV is to reduce the matrix memory
footprint and in turn alleviate the CPU-memory traffic. To that
end, data should be decompressed in parts that fit inside the CPU
cache, otherwise the approach would induce memory traffic and
cancel any benefits of compression. Our first attempt was to employ
existing floating-point compression techniques that operate at a
coarse-grained, chunk granularity. During execution, we load each
compressed packet from memory to the CPU cache, decompress
it fully inside the cache and then immediately apply the SpMV
operations to the decompressed data. A big advantage of this
method is that it can be combined easily with any pre-existing
compression method.

We implemented a version of this strategy for testing (we
refer to it as CVB - Compressed Value Blocks), by integrating
various lossless algorithms designed to compress floating-point
data (FPC [1], FPZIP [26], ZFP [25]). In Figure 2 we present a
performance evaluation (details about the testbed and dataset are
in Section 5). ‘CVB ID’ is a baseline check, where we do not apply
any compression to the data. Since this matches the performance of
the Intel MKL library, we can assume an efficient implementation
of this baseline. On the other hand, ‘CVB D2F’ is a simple cast
of the double values to floats and back. This is lossy, but it is an
indicator that this strategy could potentially offer performance
benefits. Nevertheless, no other actual compression method that we
tried achieved any speedup over MKL, not even the lossy variant
of ZFP (tolerance le-3).

The primary pain point lies in the overhead associated with
decompression, therefore a design goal of our approach is to mini-
mize the decompression cost. To achieve this, we need to operate
in a more fine-grained manner, even if sacrificing some additional
potential for compression. More specifically, our method works on
single matrix elements in a continuous, streaming manner, and we
resort to simpler approaches to exploit data redundancy, like delta
encoding for adjacent values and run-length encoding for replicated
values. In this way, basic operations (fetch element, decompress
element, compute) may better utilize the micro-architectural char-
acteristics of modern out-of-order (OoO) CPUs. We also implement
a variant of our method that exploits matrix symmetry.
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3.3 Adapting Floating-point Delta Encoding for
SpMV
The main goal of delta encoding is to produce a residual of reduced
significant bits, for example by subtracting two numbers, ‘a’ and
‘D, and getting rid of leading or trailing zero bits. This leads to the
observation that different permutations of the same dataset can
have varying degrees of delta compression effectiveness. Moreover,
due to the nature of floating-point numbers, operations can induce
errors (e.g., a — b+ b = a+ error, if a, b are not close enough) that
increase with the distance of the operands. Sorting data by value
is a permutation that minimizes the distance between consecutive
values and thus seems a viable approach to address both previous
considerations.

At the same time, previous work on floating-point compression
[9, 26, 32] bypasses floating-point errors by handling their bit
representations as integers and applying integer subtraction on
them. We also explored other techniques, like Kahan summa-
tion [19], however these have high decompression overheads.
We thus have two options to consider, straightforward floating-
point subtraction on the values (‘float-delta’ encoding), or integer
subtraction on their bit representations (‘integer-delta’ encoding).
We ultimately selected the integer-delta encoding due to its lossless
properties. In the following paragraphs, we address some complica-
tions of this method. First, note that while floating-point subtraction
creates trailing zero bits, integer subtraction creates leading zero
bits. For example:

x = 0.923486 : 3fed8d32830a0b1c

y = 0.923487 : 3fed8d349be8ff32

y — x = 0.000001 : 3ebdc6f7a0b00000
I(y) — I(x) : 0000000218def416

where with ‘I()’ we denote the integer representation of the bits of
a floating-point number. On top of that, it is a common occurrence
to have values with trailing zero bits in the dataset (e.g., integer or
quantized values). This pairs well with float-deltas, but for integer-
deltas it compels us to track zeros in both directions. This can make
the code somewhat more complex and increase the decompression
overhead:

x = 9.000000 : 4022000000000000

y = 13.000000 : 402a000000000000

y — x = 4.000000 : 4010000000000000

I(y) — I(x) : 0008000000000000

Furthermore, integer-deltas are highly dependent on the order of
the operands. Integer subtraction of a larger absolute value floating-
point number from a smaller one results in a negative integer, with
no leading zeros:

x = —0.923487 : bfed8d349be8ff32

y = —0.923486 : bfed8d32830a0b1c

y —x = 0.000001 : 3eb@c6f7a0b00000

I(y) — I(x) : fffffffde7210bea

but, x—y=-0.000001: beb@c6f7a0b00000
I(x) — I(y) : 0000000218def416

Finally, integer-deltas for values of opposite signs give negative
values, i.e., the first bit is 1:
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Listing 3: Value sorting comparison function for integer-
deltas. - oo T2
S s|0fo|7|s|s[8[8]|2]2[s|0|7|1[8|1|8]5[2|8 extract packet,
sort by value,
S 169]41|6836/93|98|35(91 [49|20[30|69|49|94|22{03| 61|19 |74 51 find min
& col and row
x = 0.923486 : 3fed8d32830a0blc
<« 0.7]2.22.8] 3 [3.203.2[3.33.3}4.5[5.85.8(6.2/6.2/6.5(6.5[8.2[8.2[8.309.7/9.8
y = —0.923487 : bfed8d349be8ff32

y —x = —1.846973 : bffd8d338f798527
I(y) - I(x) : 8000000218def416

By taking into account the previous remarks, we can infer that
an optimal arrangement of the values, for good compression results
using integer-deltas, is to first separate the negative and positive
ones and then sort each part by absolute value. This method can be
expressed with the comparison function shown in Listing 3.

3.4 Exploiting Replicated Values

We aim to combine delta encoding with techniques that take
advantage of the multiplicity of the matrix values. Dictionary
methods, as mentioned in Section 1, are not scaling efficiently with
the matrix size and fail when there is a large number of unique
values. We aim to exploit this form of redundancy with the use of a
form of run-length encoding. We will split the values into groups
of the same multiplicity or ‘replication factor’. For example, each
value of a group with replication factor 3 has two more replicates.
Therefore, for each such group we only need to keep the unique
values, and two more numbers as metadata: the replication factor
and the number of the unique values.

This method is efficient with regard to the extra metadata needed.
The worst case with the maximum metadata is when we have the
maximum possible groups, which means each group would have
only one unique value and the groups would also have the smallest
possible replication factors. Therefore, the worst case is when we
have groups with multiplicities 1, 2, 3, ... with only one element
each. The total number of elements grows with the square of the
number of groups (1-1+2-1+3 - 1+...4+rfmax-1= M)
This means that, in the worst case, the number of groups, and as
a consequence the size of the extra metadata needed, only grows
according to the square root of the total number of elements.

3.5 Adaptation for Vectorization Support

When the matrix size exceeds the size of the CPU cache, vector-
ization generally cannot improve the performance of SpMV (see
Figure 1). Nevertheless, by reducing the memory footprint with
compression and with the additional decompression overhead, we
end up with a more execution-heavy load that can actually take
advantage of vectorization. To adapt the method for vectorization
support, we distribute the sorted values into consecutive parts,
equal in number to the utilized vectorization width. We refer
to these parts as lanes, and each such lane can be processed
independently.

RF | coo [3]
s ] group by
S stolfo]7f|2)s replication
1 1 factor,
o ol
S 150122]]49 |67 20 0 split lanes,

compute deltas

@ J0.7)1.5 802|453

Tane 1 Lane 2 Lane 3 Lane 4 ! Lane 1 Lane 2 Lane 3 Lane 4

S¢S SO
A REs 2
& \%Qdo“"oo\\ \\%&Q (Replication Factors)

&
*F P
Num of Unique
nﬂ Vals per RF

Encoded 51518
Idx 74|79|16

Vallen

Trailing

zero bits

Encoded
Val

Lane 1 Lane2 Lane3 Lane4

Figure 3: Overview of the compression method. The sizes are
simplified for demonstration purposes.

4 Methodology

As discussed in Section 3, we aim to reduce the memory footprint by
employing simple compression algorithms with fast decompression.
More specifically, we utilize delta encoding to compress close
adjacent values and run-length encoding to merge multiple replicas
of the same value. For the matrix indices, we apply a variation
of delta encoding from a local minimum. We also implement a
symmetric variant to further reduce the footprint of symmetric
matrices. We then decompress the matrix on the fly and perform
the required operations to compute the entire SpMV operation. In
this section, we provide an overview and then more details of our
method, called DIV.

4.1 DIV Design and Overview

Figure 3 presents an overview of DIV with the help of a simplified
example. We refer to the respective compression stage numbers
in the text. We assume an input matrix in the CSR format |1|and
describe how the matrix is progressively partitioned to realize our
scheme.
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Figure 4: DIV compression of an individual packet. The steps shown are for one lane, of one replication factor group of the
packet. The same steps are repeated for the rest, until the complete compressed packet is formed.

Thread-level partitioning: To enable parallelization and avoid
the need for synchronization on the output vector we initially split
the matrix into submatrices, consisting of complete consecutive
rows, and distribute each one to a CPU thread. We balance the
workload by distributing as close to the same number of nonzeros
as possible, limited of course by the row granularity.

Packet-level partitioning: 2| The more values we process
together, the more opportunities we have to eliminate redundancy
between them. On the other hand, it also widens the range of the
indices and makes index compression less effective. Therefore, each
thread partitions its designated submatrix into packets of again
consecutive rows (first and last row of each packet can be partial)
and works on each packet independently. It first sorts each packet
by value, as described in Section 3.3 and in Listing 3, in order to
increase the efficiency of delta encoding for the values.

Since the sorted-by-value packets have a random indexing
scheme, we use COO as their representation, which does not
expect any special order of the indices. To mitigate the additional
storage overhead of COO, we employ a delta encoding scheme that
compresses the indices of each packet by subtracting the minimum
respective index in the packet (Section 4.2.1). While there is no
limit in the span of column indices, we can control the span of row
indices by constraining the maximum number of rows in every
packet, and by extension the packet size. This way, the packet size
determines the trade-off between value and index compression
efficiency.

Replication-level partitioning: |3| To take advantage of possi-
ble value replication in the packet, we split the packet into groups
based on their replication factor as described in Section 3.4. This is
referred to as ‘RF’ in Figure 3. For example RF 2 means each value
has 1 more replicate, while RF 1 means all values are unique.

Vectorization-level partitioning: Moreover, to utilize the CPU
vectorization capabilities, we further split each replication factor
group into independent sub-groups, or lanes (Section 3.5), to feed
the vector units of the processor and decrease in this way the
decompression overhead. The number of lanes is equal to the width
of the CPU’s vector units that are utilized.

Finally, we end up with a series of packets per thread, each
one consisting of a header with metadata and its replication factor

groups. Each group contains all the group value and index deltas.
For each value delta only the significant (nonzero) part of its 64-
bit representation is stored, along with its length in bytes (‘Val
len’ in Figure 3) and its number of trailing zeros (Section 3.3). We
note that the numbers shown in Figure 3 are simplified for the
example. The header contains information regarding the number
of bits that are used for the encoding of row and column indices
and the minimum row and column indices. Note that, based on the
way the packets are formed (packet-level partitioning), we typically
need more bits to encode column indices than row indices, like in
our example we need 7 and 4 bits respectively. The header further
contains the number of elements, the number of replication factor
areas, and for each area its RF and the number of unique values. The
header imposes a memory footprint overhead of O(1) for the scalar
metadata plus a worst case of O(+/packet_nonzeros) (as discussed
in Section 3.4) for the replication factor metadata, most commonly
again O(1).

4.2 Packet Compression in Detail

In Figure 4 we present the compression steps for each packet (we
reference each step by its number). The first step of our compression
scheme is to sort the data of the packet as described in Section 3.3 @.
Then we group the sorted values by replication factor (Section 3.4)
@. Lastly, for each such group we split the data into vectorization
lanes (Section 3.5) @) and for each lane we take the following steps.

4.2.1 Steps of index compression. For each packet we find the
minimum row and minimum column index (@), and we encode
the nonzero coordinates as deltas from these minimums (5). We use
a ceiling of 256 rows to keep a maximum of 8 bits for the row delta
values. On the other hand, we cannot control the span of the column
indices, so the column delta sizes are matrix dependent, but usually
still compressible to below 4 bytes. Our experiments also showed
that working at bit granularity (as opposed to byte granularity) is
inducing too high a performance overhead during decompression.
Therefore, we concatenate the row and column delta values pairwise
(©, add padding to the resulting bits to expand to the minimum
required bytes (7) and, if possible, distribute this padding so that
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the row and column delta bits are also at byte granularity ®). We
have implemented optimized code paths for the convenient index
sizes, selected at decompression time (run-time) for each packet.

4.2.2  Steps of value compression. Value compression follows a
similar logic. We calculate the (integer-)deltas between consecutive
values in the sorted vectorization lane (9) and then compress each
value delta individually (10) by discarding the leading and trailing
zero bits. Since there is significant variance in compressibility, one
size cannot fit all values of a packet effectively. For each delta we
have to encode information about both the leading and the trailing
zero bits. Therefore, after expanding the compressed deltas to byte
granularity @ we additionally store 4 bits for the length in bytes
and 4 bits for the trailing zeros, (i.e., a shift at decompression),
concatenated as 1 byte.

4.3 Decompression and Execution

We end up with a compressed packet composed of four parts, as
shown in Figure 3 and Figure 4: a header with metadata, the deltas
of the indices, the deltas of the values and for each one its size and
trailing zero bits. Consecutive packets are distributed to the CPU
threads, ensuring that no two threads share the same matrix row.
Each thread can then sequentially process each packet in a stream-
ing manner: a) decompress a value and its coordinates, b) gather
the respective input/output vector values x[ column] and y[row], c)
execute the SpMV operation y[row| += value * x| column] and d)
proceed to the next value.

4.4 Variant for Symmetric Matrices

We also implement a symmetric extension of DIV. From each packet,
we extract the nonzeros whose symmetric elements belong to the
same owning thread, so that no synchronization between threads
is needed during the SpMV execution. We form an additional new
packet with these nonzeros, following the exact same methodology
as described above, but storing only one nonzero for each symmetric
pair, and expanding to the pair accordingly during decompression.

5 Evaluation

5.1 Experimental Setup

In our evaluation process, we consider three variations of our
format: DIV, DIV_RF and DIV_RF SYM. The difference between
the first two is that in DIV_RF we enable the replication factors
technique, as described in Section 3.4, while in DIV we do not.
Lastly, DIV_RF_SYM is the symmetric extension of DIV_RF, as
described in Section 4.4. For the packets we empirically select a
size of 16K (i.e., 16384) values, which in our tests led to a plateau in
average performance, due to the ceiling we impose of 256 maximum
consecutive rows per packet (Section 4.2.1). The most effective
packet size for each matrix is not always the same, but we leave
further exploration for future work.

We assess the performance of SpMV across two CPU archi-
tectures: an Intel Platinum 8480+ CPU and an AMD EPYC 7763
CPU. More details on the testbed hardware and the utilized for-
mats/libraries can be found in Table 1. The AMD EPYC CPU is
configured as NPS4 (4 NUMA nodes per socket). To ensure optimal
data locality, the threads are consistently pinned to the cores using
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Table 1: Testbed characteristics and formats tested.

Testbed I Testbed II
CPU Intel Xeon Platinum 8480+ AMD EPYC 7763
Cores 56 @ 2.0 GHz 64 @ 2.45 GHz
Memory 256 GB 256 GB

DDR4 180 GB/s DDR4 100 GB/s
LLC 105 MB (L3) 256 MB (L3)
Formats DIV DIV

DIV_RF (64/32-bit) DIV_RF (64/32-bit)

DIV_RF_SYM DIV_RF_SYM

MKL-IE 2023.1 MKL-IE 2023.1

LCM LCM

SparseX SparseX

Dictionary - custom
Dictionary - CSR&RV
CSR symmetric CSR symmetric
CFS CFS

Dictionary - custom

Compiler  gec 13.2.0
-03 -march=native

gee 12.2.0
-03 -march=native

OpenMP environment variables, and the matrices are initialized
in a parallel manner, following the Linux first-touch policy. The
memory bandwidth of each testbed is calculated using the STREAM
benchmark [29].

For the dataset, we form a matrix suite (Table 2) from the
SuiteSparse sparse matrix collection [3], composed of 29 out of
the 31 matrices of the collection that a) include floating point
values and b) are larger than twice the size of the LLC of the AMD
CPU, so that at least half the data reside outside the cache. The
remaining 2 were too large and slowed the testing. The matrices
cover a wide spectrum of sizes and unique value percentages, the
most performance-influential factors for compression. The UV’
column contains the percentages of the unique values for each
matrix, calculated as the ratio of unique values to the total number
of nonzeros. We note that a UV of around 50% is very common,
because many matrices of scientific applications are symmetric. In
the ‘CF’ column we present the compression fraction of DIV_RF
(packet size 16384), i.e., the ratio of the compressed to the original
total matrix in double-precision CSR format. The geometric mean of
the compression fraction we achieve is 49.4%. We can compare this
with the CF of the single-precision CSR, which is approximately
66% (same memory footprint for indices, half for values). We indeed
observe that in most cases we achieve comparable or better total
compression.

We compare DIV against several other formats, namely the
Inspector-Executor CSR of the Intel MKL library, CSR5 [28],
Merge [30], LCM [2], SparseX [8], two dictionary based value
compression methods (CSR&RV [38] and a custom one), a custom
symmetric CSR implementation (CSR sym) and CFS [6]. We also
tested the symmetric version of MKL, which always had the same
or lower performance compared to the general MKL, as well as
the AMD AOCL library, which was significantly worse (harmonic
mean of only 10 GFLOPs on the AMD platform). Consequently, we
exclude them from our following plots and discussion. Moreover,
as discussed in Section 1 and shown in Figure 1, the formats that
do not target the memory bandwidth bottleneck have very similar
performance characteristics for big matrices. Therefore we do not
include detailed results from baseline/vectorized CSR, CSR5 and
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Table 2: Matrix suite used for the evaluation. We include the
matrix symmetry (G/S), the memory footprint of the CSR

format (Size) and the percentage of the unique values (UV).

In CF we show the compression fraction of DIV_RF (packet
size of 16384 values), defined as the ratio of the compressed
to the original total matrix size (e.g., CSR in single-precision
would have a CF of about 66%). Lastly, we compare DIV_RF
(all matrices) and DIV_RF_SYM (symmetric matrices only)
versus the best other competitor double-precision format
(including symmetric formats) on the AMD EPYC 64-core
CPU.

Size UV CF Best Competitor DIV variant

Matrix (GB) (%) (%) Format Gflops _RF _SYM
(G) spal_004 05 6 39.6 SparseX 64.7 37.3

(S) 1door 0.5 47 769 LCM 51.7 62.7 71.7
(S) dielFilterV2real 0.5 51 831 CSRsym 46.1 49.9 57.6
(S) af_shell10 0.6 21 643 CFS 160.6 75.4 77.3
(G) nv2 06 26 67.3 MKL-64 33.8 43.9

(S) boneS10 0.6 7e-5 252 Dict 163.6 150.0 118.3
(G) circuit5M 0.7 7e-2 30.1 Dict 417 64.6

(S) Hook_1498 0.7 19 584 CFS 76.2 80.6 77.9
(S) Geo_1438 0.7 46 623 CFS 74.8 67.9 74.8
(S) Serena 0.7 51 651 CFS 58.3 63.9 73.0
(G) vas_stokes_2M 07 2 414 Dict  40.6 91.6

(S) bone010 0.8 5e-5 252 Dict 1547 1480 122.0
(S) audikw_1 0.9 48 720 CSRsym 45.6 48.7 54.9
(S) Long_Coup_dto0 1.0 41 595 CFS 63.4 64.1 67.6
(S) Long_Coup_dt6 1.0 41 595 CFS 62.6 64.3 72.0
(S) dielFilterV3real 1.0 51 844 CSRsym 447 38.3 41.8
(S) nlpkkt120 1.1 2e-3 331 Dict 63.6 113.7  113.6
(G) cagel5 1.1 5e-4 338 Dict 49.0 83.0

(G) ML_Geer 12 99 69.6 SparseX 39.6 45.4

(S) Flan_1565 1.3 6e-1 304 CFS 67.4 122.7  103.7
(S) Cube_Coup_dto 14 15 426 CFS 59.4 81.4 82.2
(S) Cube_Coup_dt6 1.4 15 427 CFS 58.7 79.9 81.8
(S) Bump_2911 14 51 576 CFS 58.4 56.7 70.8
(G) vas_stokes_4M 1.5 4 449 MKL-64 259 56.6

(S) nlpkkt160 2.6 2e-3 331 Dict 47.7 78.1 78.8
(G) HV15R 32 84 837 SparseX 35.2 35.0

(S) Queen_4147 37 48 629 CSRsym 55.0 43.6 64.9
(G) stokes 3.9 3 46.9 MKL-64 24.1 40.4

(S) nlpkkt200 51 1e-3 33.1 Dict 46.3 65.3 65.1

(all matrices): 51.0  61.1

Harmonic Mean (symmetric only matrices):  62.2 68.1 735

Merge in the following study, and we point the reader to Figure 1 for
a summary of their results. For the Intel platform, we use both the
‘Dictionary’ formats, but for the AMD platform we only consider the
custom implementation, ‘Dictionary(Custom)’, since lack of support
for the AVX512 instruction set prevents us from testing CSR&RV.
For the MKL format we utilize the ‘mkl_sparse_optimize’ library
function that optimizes the kernel before the SpMV iterations.

We observe non-negligible CPU performance fluctuations when
the runtime length is too small. Therefore, in each configuration
(testbed/matrix/format) we run at least 256 SpMV iterations, more if
the runtime length is too small, and record the median performance
in GFLOPs.

5.2 Performance Evaluation of DIV

In Table 2 (rightmost four columns) and Figure 5 we present per
matrix and aggregate performance results respectively for DIV. The
Figure 5a and 5b include the entire dataset of Table 2 for the Intel and
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AMD platforms, while Figure 5c and 5d include only the symmetric
matrices and showcase the performance of the symmetric formats
for these platforms. The speedups reported are calculated as the
geometric mean across the matrices of each case. We also note that
we report results for the maximum number of cores per platform,
as this was found to be the best performing configuration for all
formats (see also Section 6.1).

On the Intel platform, the DIV variants are the best formats
in 28 out of 29 matrices in the general case and 16 out of 20 in
the symmetric. DIV achieves 51% and DIV_RF 77% speedup over
MKL. In the symmetric only case, DIV achieves 56%, DIV_RF 83%
and DIV_RF_SYM 89% speedup versus MKL. Compared to CFS,
a research format targeting symmetric matrices, DIV_RF_SYM
achieves 24% speedup. On the AMD platform, the DIV variants have
the highest performance in 25 out of 29 matrices in the general case
and 17 out of 20 in the symmetric. DIV achieves 91% and DIV_RF
115% speedup over MKL 64-bits, SparseX achieves 7.7%, and MKL
32-bits gains 76% speedup. In the symmetric only case, DIV achieves
102%, DIV_RF 132% and DIV_RF_SYM 143% speedup versus MKL.
Compared to CFS, DIV_RF_SYM achieves 47% speedup.

5.3 Correlation Between Performance and
Unique Values

We conduct an analysis of the performance based on grouping
the matrices by their unique values fractions on the Intel and
AMD platforms, and present the results in Figure 6. Firstly, we
observe that the index compression formats (MKL, LCM, SparseX)
are indeed unaffected by the variance in unique value percentages.
We also notice that, as it is expected, the dictionary methods collapse
when the number of unique values rises. This is because the value
indices for the lookup table need to be able to represent a wider
range of numbers, i.e., more bytes for each index, bigger tables and
increased random access to them. This becomes more common as
the matrix sizes increase, since the same fraction of unique values
actually contains a bigger number of them. Our method on the other
hand, is able to reliably outperform the MKL 64-bit implementation
on average across all ranges of unique values fractions, and on
both platforms, since it is able to take advantage of the similarity
between the values and not just their replication.

5.4 Application to Biconjugate Gradient
Stabilized

In this section we study an end-to-end application of the DIV matrix
format and SpMV kernel in the Biconjugate Gradient Stabilized
(BiCGSTARB) solver. The purpose of this experiment is to assess the
preprocessing overhead of the compression stage of DIV and also
to illustrate that the format can effectively be integrated into a real
application, delivering notable performance improvements.

We tested a basic textbook BICGSTAB implementation with a
simple Jacobi preconditioner and present the results in Figure 7. The
matrix dataset is the same except for spal_004, which is not a square
matrix. We run the solver for a fixed number of iterations: 10, 20, 30,
40, 50, 100, 500 and 1000. As shown in Figure 7b, DIV_RF achieves
an end-to-end speedup (i.e., including the compression time for
the DIV_RF format) of —27%, —5%, 9%, 18%, 25%, 43%, 63% and 66%
respectively (geometric mean) versus MKL 64-bits. The compression
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Figure 5: Performance evaluation of DIV / DIV_RF / DIV_RF_SYM on an Intel (56 cores) and an AMD (64 cores) CPU.
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Figure 6: Performance evaluation of DIV / DIV_RF, grouped by unique values fractions.

time can be amortized in about 20 BICGSTAB iterations. In terms of
equivalent BICGSTARB iterations with the MKL kernel, the DIV_RF

compression time is equal to about 9. This indicates that there are
indeed opportunities for online preprocessing.
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6 Further Topics
6.1 Scalability

In Figure 8 we demonstrate the scaling behavior of DIV and various
other formats on the AMD platform with the same matrix dataset
(strong scaling). We observe that, due to the memory bandwidth
bottleneck, the performance mostly scales with the number of
memory nodes available: 1 for cores 1 to 16, 2 for 32 cores and 4 for
64 cores. Likewise, we see that the formats that employ some type
of compression (i.e., LCM, SparseX and DIV_RF) are able to scale
better. We also note from our measurements that DIV_RF is the
only one that scales close to linearly for 1 to 8 cores, showcasing
the effect of the extra computational load of decompression, until
it too becomes memory-bound.

6.2 Single-precision

Although the main motivation behind DIV was the double-precision
SpMYV case, in this section we show that our format continues to
be effective in lower precision. Specifically, in Figure 9 we present
single-precision performance results on the AMD platform. To
retain memory boundedness, we use a smaller dataset of the 18
largest matrices (13 for the symmetric case) that remain larger than
2x the LLC with the lower precision values. Note that we were not
able to compile LCM and SparseX for single-precision values.
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Speedup (Geometric Mean)
&
1

Speedup (Geometric Mean)

MKL
MKL
MKL
MKL
(32-bits)
CFS
(32-bits)

(32-bits)
(32-bits) T
CSR sym
(32-bits)
DIV_RF
(32-bits)

DIV.RF
DIV_RF
DIV_RF_SYM

(32-bits)

(a) All matrices (b) Symmetric matrices only
Figure 9: Single-precision (formats noted as 32-bits) perfor-
mance results on the AMD EPYC (64 cores).

In the general case (Figure 9a), our format DIV_RF 32-bits gains
76% speedup over MKL 32-bits. It is also noteworthy that our double-
precision DIV_RF method surpasses the performance of the MKL
32-bits variant, while not being burdened by lower accuracy. In the
symmetric only case (Figure 9b) we observe that DIV_RF performs
better than the symmetric variant, DIV_RF_SYM. This indicates
that, due to the smaller value sizes, the problem has become less
memory bound, and the simpler kernel might be a better solution
for some of these matrices. DIV_RF 32-bits achieves 79% speedup
versus MKL 32-bits and 31% versus the CFS 32-bits format.

6.3 Extended Matrix Dataset

Large matrices are rather scarce in public datasets, while the CPU
caches are steadily increasing in size. From the 1718 matrices with
real values in the SuiteSparse sparse matrix collection [3], 951 are
smaller that 1MB in double-precision CSR format, while only 340
are larger than 10MB and 108 are larger than 100MB. In this section
we expand our matrix dataset by enforcing a memory bandwidth
bottleneck on smaller than the CPU cache matrices, which we
achieve by clearing the cache after each SpMV iteration. While
not a perfect solution, in this way we are able to test DIV with
the value distribution of these additional matrices, and also assess
performance for a hypothetical system with a smaller cache, or in
application scenarios where access to other data would pollute the
cache.

In Figure 10 we present performance results on the AMD
platform. The dataset consists of the SuiteSparse real matrices with
memory footprint greater than 10MB. Some of them had to be
omitted, as they caused either the SparseX or the CFS format to
crash at runtime. In the general double-precision case, DIV_RF
with 29.3 GFLOPS geomean performance achieves 58% speedup
over MKL (248 matrices), while for the symmetric only matrices
DIV_RF_SYM with 44.8 GFLOPS achieves 104% (103 matrices). In
the general single-precision case, DIV_RF 32-bits with 41 GFLOPS
achieves 46% speedup over MKL 32-bits (214 matrices), while for the
symmetric only matrices DIV_RF_SYM 32-bits with 61.4 GFLOPS
achieves 86% (91 matrices).
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Figure 10: Performance speedups for an extended matrix
dataset on the AMD EPYC (64 cores).

6.4 GPU Implementation

GPUs offer substantially more computational power and memory
bandwidth than CPUs, and have established popularity in many
scientific fields. At the same time, studies [31] indicate that they also
are heavily memory bound in the SpMV kernel and could therefore
potentially benefit from applying index and value compression
with DIV. Nevertheless, GPUs have very different architectures
from CPUs, with massively more available parallelism, smaller

and distributed caches and different synchronization mechanisms.

In a straightforward porting scenario of DIV to GPUs, we can
assume the GPU thread warp taking the role of the vectorization
lanes and the thread block the role of each thread of our CPU
method. Since we cannot make the packet size too small to retain
compression efficiency, multiple threads (e.g., a thread block) would
have to cooperatively process a packet, which would require
additional synchronization. Applying the above in a way that fully
takes advantage of the GPU capabilities requires non-negligible
adaptation of the current DIV implementation, and is the next step
in our future work.
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7 Related Work
7.1 Floating-point Compression Techniques

Compression of floating-point numbers has a rich research history
[35]. Usually though, the main focus is size reduction and I/O accel-
eration, so the algorithms tend to be more complicated and compute-
intensive, which makes them ill-suited for low compute density
kernels like SpMV. Engelson et al. [9] explain and provide detailed
lossless and lossy variations of delta encoding, the technique also
utilized in our work. Ratanaworabhan et al. [32] use a combination
of xor-based deltas from recent values and table lookups using them
as hashes. FPC [1] compresses floating-point data utilizing xor-
based deltas of each value from predicted values, and leading-zero
compressing the result. Lindstrom et al. in [26] use a similar strategy
with deltas based on integer subtraction from predicted values, and
passing the residuals to entropy encoders. In their work on ZFP [25]
they present a drastic compression lossy scheme, where 3D data
are converted to fixed-point, passed through a 3D orthogonal block
transform with a custom provided kernel to decorrelate the values,
and then compressed.

7.2 SpMYV Data Compression

The implementations of compression schemes on SpMV data are
largely grouped into two categories. The most straightforward is the
use of mixed precision floating-point values, and more generally
truncation or segmentation of the numbers’ bits. Liu et al. [27]
propose converting values within the [—1,1] interval to single
precision when the individual error is within a given tolerance.
Hu et al. [16] combine delta encoding of the exponential part of
the double and truncation of the mantissa to the desired number
of bits. Griitzmacher et al. [14, 15] go a step further and propose
segmenting the mantissa of the values, and storing them such that
the same segments of all values are consecutive in memory. Using
this modular precision scheme they give the option of selecting the
desired accuracy by keeping or ignoring trailing segments.

Another popular method is the dictionary based value com-
pression. The main idea is finding the unique values of a matrix
and then replacing all the values with integer indices to a lookup
table holding the unique only values. Kourtis et al. [20] apply this
principle along with compression of the nonzero indices with delta
encoding. Yoshifuji et al. [39] adds a variant of delta compression
of the value indices to the lookup table and some other very
matrix-specific optimizations. Yan et al. [38] is a more vectorization-
friendly implementation of the dictionary based compression.
Another approach is proposed by Ruiter et al. (VCSC)[33]. They
identify the per-column unique values, sort each column according
to the nonzero values and use a run-length encoding of the values,
instead of value indices to a lookup table. This could alleviate
the increased memory footprint of the dictionary indices when
there are many unique values, but still relies on the fraction of
unique values being small, especially since it needs to replicate
unique values across different columns. Unfortunately we could
not include this format in our evaluation, as they only provide a
serial implementation, most likely a result of using the CSC format
as a base.
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8 Conclusion

Compression is an obvious means to evercome the memory wall,
but for low compute intensity kernels like SpMV, there are practical
limitations to the applicable compression methods. In our work
we describe the DIV sparse matrix format, a combined index and
value compression method for large sparse matrices with double-
precision values, designed for accelerating the SpMV kernel on
CPUs. It utilizes delta encoding and effectively reduces the matrix
memory footprint.

We evaluate our method on an Intel Platinum platform with 56
cores and an AMD EPYC platform with 64 cores, and demonstrate
that it achieves 77% and 115% geometric mean speedup respec-
tively, compared to the state-of-practice Inspector-Executor double-
precision CSR of the Intel MKL library. We show that our method
can achieve performance gains even with reduced precision inputs,
and present an end-to-end study when applied to the Biconjugate
Gradient Stabilized solver, where we achieve notable end-to-end
speedups versus MKL, even while including the preprocessing
overhead.
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