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Abstract

Compilers are crucial in optimizing programs and accel-
erating their execution, particularly for compute-intensive
tasks such as training deep learning models and conducting
physics simulations. However, optimizing programs auto-
matically using compilers is not trivial. Recent work has
attempted to use reinforcement learning (RL) to solve this
problem. It has limitations though. Current methods either
do not support the optimization of general loop nests or
can only be used to optimize loop nests seen during train-
ing. In this paper, we propose Pearl, a novel framework that
uses deep reinforcement learning to automate compiler code
optimization. It uses an RL agent to select the sequence of
code optimizations a compiler should apply to make the in-
put code run faster. This agent can optimize general loop
nests (i.e., it is not domain-specific) and can generalize to
programs unseen during training. To enable the optimization
of general loop nests, we propose a novel representation of
the action space that allows the RL agent to select on which
part of the loop nest a given code optimization should be
applied. One of the main challenges that hinder the devel-
opment of RL agents for optimizing general loop nests is
the fact that this task is data-intensive, with each experi-
ment taking weeks. To avoid this problem and enable fast
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training of the proposed RL agent, we propose two meth-
ods: 1) execution time and legality check memoization; and
2) actor-critic pre-training. We implement our approach in
Tiramisu, a state-of-the-art polyhedral compiler designed
for accelerating compute-intensive programs. Our approach
streamlines the optimization process and offers performance
improvements compared to existing methods. To the best
of our knowledge, Pearl is the first RL-based system to sup-
port general programs composed of loop nests manipulating
tensors while still being able to generalize to programs un-
seen during training. It is also the first to support the class
of polyhedral optimizations, a class of advanced loop nest
optimizations. We evaluate Pearl on a set of benchmarks,
and demonstrate competitive performance improvements
over state-of-the-art compilers. Notably, Pearl achieves a
geometric mean speedup of 2.02X compared to Tiramisu and
3.36x compared to Pluto.
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1 Introduction

Writing fast and efficient code is a challenging task that re-
quires significant expertise. This is especially true for compute-
intensive fields such as deep learning and scientific com-
puting. Optimizing compute-intensive programs can signifi-
cantly reduce execution time, often achieving speedups by
orders of magnitude. However, manual code optimization is
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time-consuming, error-prone, and demands expertise, mak-
ing automated compiler optimizations increasingly crucial.

The most significant part of the execution time of compute-
intensive programs is usually spent in loops. That is why
loop optimization has received considerable attention in the
context of code optimization. State-of-the-art compilers such
as Tiramisu [9], Halide [47], TVM [57], and Pluto [11] all
focus on applying loop transformations to accelerate the ex-
ecution of programs. Nevertheless, the search space of these
transformations is considerably large, hindering the usage
of exhaustive search methods due to their impracticality.

Several techniques have been proposed to solve this chal-
lenge, including the leverage of integer linear programming
(ILP) to find the best code optimizations [11, 12, 55]. Re-
cently, state-of-the-art optimizing compilers have explored
tree-search methods guided by a deep learning cost model,
serving as a fitness function to evaluate code optimization
candidates during search [1, 8, 57]. To shed light on the size
of the search space, let’s take the Tiramisu Autoscheduler [8]
as an example. Its search space has an estimated number of
10'7° candidates of loop optimizations [8], where each can-
didate is a sequence of code optimizations along with their
parameters. This is why the Tiramisu Autoscheduler imposes
restrictions on how the search space is explored. For example,
code optimizations are explored in a fixed order, and many
optimizations are explored only once, which is known to be
sub-optimal. The Tiramisu Autoscheduler uses beam search
to explore the space, limiting its ability to perform global
code optimization. In general, tree-search methods tend to
restrict the search space to enable efficient exploration. For
example, they might explore only a small number of code
optimizations, explore code optimizations in a fixed order,
and limit the number of times certain code optimizations are
explored (e.g., explore them once only).

To avoid the limitations of tree-search methods, recent
state-of-the-art compilers have attempted to use reinforce-
ment learning. HalideRL [43], for example, uses PPO [48] to
select code optimizations for image processing applications.
SuperSonic [30], a framework for automating RL architec-
ture design for code optimization, was also demonstrated
by building an RL agent for the Halide compiler. However,
neither HalideRL nor SuperSonic’s Halide agents are built
to generalize over programs unseen during training. In both
cases, the RL agent is trained to optimize a set of programs,
and then it is deployed to optimize the same programs. This
design choice allows fast training of the RL agent since it
is trained on a single program only, but it prevents its gen-
erality. Additionally, HalideRL has the limitation of being
semi-automatic. It requires the user (developer) to specify
the list of code optimizations and optimization parameters
that will likely help optimize the code. The RL agent then
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discards the optimizations that are not useful from this list
and adjusts the optimization parameters.

Other state-of-the-art systems focus on proposing an en-
vironment for automatic code optimization using reinforce-
ment learning but do not propose an RL agent that automati-
cally optimizes code. PolyGym [14], for example, introduced
an RL environment to search for polyhedral code optimiza-
tions (affine code optimizations). It does not propose an RL
agent though. It rather uses a random policy to demonstrate
the effectiveness of its environment and action space. Such
a random policy has the limitation of being slow as it has to
randomly sample thousands of actions from the search space,
and for each sampled action, it has to compile and run the
optimized program to find the most effective ones. Proposing
an RL agent that efficiently search for code optimizations in
PolyGym was left for future work.

AutoPhase [29] is another example of using RL for code
optimization. It proposes a framework that uses deep re-
inforcement learning to optimize programs for hardware
synthesis (High-Level Synthesis). It only considers the prob-
lem of phase reordering (i.e., choosing the best order for
the compiler passes). Phase ordering is a sub-problem of the
larger problem of automatic code optimization. In automatic
code optimization, the goal is to identify which optimiza-
tions to apply, in which order, on which part of the code
each of them should be applied, and with which parameters.
Chameleon [2] is another example of a compiler that uses
reinforcement learning to find the best compiler transfor-
mations to accelerate the execution time of neural networks
during deployment. However, it is not general. It is limited
to the acceleration of deep learning models and does not
cover the optimization of general loop nests, which limits
its applicability. Optimizing programs with loops is a much
harder problem since general loops can have diverse and
complex structures and code patterns, unlike deep learning
operators which comprise a limited set of operators with
regular shapes and code patterns.

In this paper, we present Pearl, a deep reinforcement
learning-based system for polyhedral code optimization. It
supports the optimization of general loop nests and gener-
alizes to programs unseen during training. Pearl avoids the
limitations of tree-search methods and uses a deep policy
network to predict the sequence of code optimizations to
apply. We also propose a novel representation of the action
space that enables the RL agent to select on which part of
the loop nest a given code optimization should be applied.
Our technique explores a large action space that includes six
loop transformations with their parameters. Unlike existing
work, it supports a set of polyhedral code optimizations, it
can generalize to unseen programs, and can be applied to any
program that can be expressed as a sequence of loop nests
and operates on tensors. Examples of types of computations
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that our RL agent supports include image processing, deep
learning, linear algebra, stencil computations, and tensor
operators.

During the development of the RL agent, one needs to
train the RL agent repeatedly, to test different features and
hypotheses and to fine-tune hyper-prameters. With each
training taking weeks, and with the need for tens of experi-
ments, the development of the RL becomes challenging. We
also propose a set of techniques to mitigate this challenge.
The main idea of our proposed technique is to store any
value computed when training the RL agent, if it can be
reused in a future training. For example, when the RL agent
picks a particular action, it has to check whether it is legal,
and if so, it applies it by compiling the optimized program
and then gets the reward by running the optimized program.
Both of these operations are computationally expensive and
constitute a significant part of the RL training time. We store
the results of these operations (legality and reward of an
action) in a dataset and reuse them in future trainings. In
subsequent trainings, when the RL picks an action, we first
check whether its legality or reward have already been com-
puted in previous trainings. If so, we retrieve them directly,
otherwise we compute them and add them to the dataset.
We call this method execution time and legality check memo-
ization and it helps significantly in accelerating the training.
We also propose another technique where we pre-train the
actor-critic network of the RL agent with data collected in
previous trainings. We call this technique actor-critic pre-
training and it helps also in improving the learning in the
actor-critic neural networks.

Unlike HalideRL and SuperSonic’s Halide agent, Pearl
generalizes to programs unseen during training. The agent
is trained on randomly generated programs and evaluated
on a completely different set of benchmarks. It is also fully
automatic. It does not require input from the user. In con-
trast with PolyGym, which only proposes an environment,
we propose both an environment and a deep RL agent for
that environment. In contrast to AutoPhase, which selects
the best order for compiler passes, our goal is to tackle the
more general problem of automatic code optimization, which
includes selecting optimizations and their parameters, the
order of applying them, and on which part of the code. Un-
like Chameleon, our system is not limited to accelerating
deep neural networks but is general to any program that can
be expressed as a sequence of loop nests and operates on
tensors.

We implement the proposed approach in the Tiramisu
compiler, a state-of-the-art compiler [9], and evaluate it on
a set of benchmarks from the fields of linear algebra, im-
age processing, and scientific computing. We show competi-
tive performance improvements compared to state-of-the-art
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compilers. Notably, our proposed approach achieves an over-
all geometric mean speedup of 2.02x compared to Tiramisu
and 3.36X compared to Pluto. You can find the full imple-
mentation of our method.

In this paper, we make the following contributions:

e We introduce Pearl, a deep reinforcement-learning sys-
tem for polyhedral loop nest optimization.

e We propose a novel representation of the action space
that allows the RL agent to optimize loop nests. It
allows the RL agent to choose the most appropriate
code optimizations for each part of the loop nest.

e To the best of our knowledge, Pearl is the first RL
system that supports the optimization of programs
composed of general loop nests and can still generalize
to programs unseen during training.

e To the best of our knowledge, Pearl is also the first to
propose an RL agent that supports the class of polyhe-
dral optimizations.

e We implement and evaluate Pearl and show that it
outperforms state-of-the-art.

e We release our dataset and make our code publicly
available to the community.

2 Related Work

In this section, we provide an overview of state-of-the-art
methods used by compilers for automatic code optimiza-
tion (auto-scheduling). First, we present compilers that use
a search-based method and a learned performance model
for automatic code optimization. We then present early at-
tempts to use reinforcement learning for automatic code
optimization. Table 1 shows a summarized comparison be-
tween these methods. Finally, we present other methods that
do not rely on machine learning but rather use Integer Linear
Programming (ILP) for automatic code optimization.

Search-based methods with cost models. This method was
widely used due to its efficiency in exploring the large space
of possible candidates. A heuristic search method is guided
by a cost model to locate the best sequences of code opti-
mizations. Tree-search methods were successfully used in
Tiramisu [8, 26, 35, 38, 40], Halide [1], and ProTuner [25].
Other work uses genetic and evolutionary algorithms to ex-
plore the search space [16, 17, 58] but they follow the same
approach. RL-based methods surpass search-based methods
in two ways. First, search-based methods are slower since
they explore a large space of code optimizations and eval-
uate the best candidates within that space. As an example,
Halide [1] evaluates millions of candidates in the search
space, while Tiramisu [8] evaluates thousands of candidates.

ICode available at https://github.com/Modern-Compilers-Lab/GNN_RL_
Pretrain
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Table 1: COMPARISON WITH RL-BASED SYSTEMS.

3
21528
AR
2|2 52 % ES
SN EE: o
Features A R | O [T < O <
RL Environment ViR aArararavars
RL Agent Vx| x|V
Fully Automatic VI ARaEIravars
Support Affine Transformations|/ | v/ | x | x| x | x |x
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Optimize Unseen Programs - - x|V
Auto-scheduling Framework |/ |v |/ |/|x |/ ]|V

In our proposed system, Pearl, the policy network selects the
most appropriate sequence of code optimizations directly,
without the need to explore a large space. Second, many
search-based methods constrain the order of exploring code
optimizations to keep the size of the search space smaller,
which leads to sub-optimal results.

RL-based methods. Recent attempts explored the use of
reinforcement learning to solve the problem of choosing the
right sequence of code transformations. In PolyGym [14]
and CompilerGym [18], the authors propose only RL envi-
ronments without implementing RL agents to optimize code,
their main contribution is to show that their action space
has potentially good optimizations to explore. They leave
the implementation of an RL agent as future work.

Other works such as HalideRL [43], AutoPhase [29] and
SuperSonic [30] propose RL agents to optimize code. Halid-
eRL is not fully automatic. The user has to provide an initial
set of code transformations. The HalideRL agent then dis-
cards transformations that are not useful and keeps only
those that are useful. It then selects the best parameters for
the useful transformations. In addition, HalideRL does not
generalize to programs unseen during training. It is trained
on a given program with multiple random data input sizes.
Then during deployment, it is used to optimize that same
program. This is different from our approach. Our RL agent
is designed to generalize to programs unseen during training.
We first train our RL agent on a large set of random programs.
Once it learns how to optimize them, we then deploy it on
new unseen programs and use it to optimize them.

SuperSonic [30] is a meta-optimizer that targets the prob-
lem of choosing the best RL algorithm and the best repre-
sentation of states and actions, while AutoPhase [29] targets
the problem of phase ordering, i.e., selecting the best order
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for compiler passes. It does not target the problem of auto-
scheduling which we address in this paper. Phase ordering is
only a sub-problem of the larger problem of auto-scheduling.
In addition, AutoPhase targets HLS (High-level Synthesis)
and does not target CPUs which we focus on.

All of the previous approaches, with the exception of Poly-
Gym, are not designed for the class of affine transformations
that we target (a.k.a., polyhedral transformations). Affine
transformations allow advanced code optimizations for im-
proving data locality and parallelism extraction and are hard
to model due to their complexity and diversity. A summa-
rized comparison between our proposed RL and RL-based
compiler frameworks is presented in Table 1.

Graph level optimization for deep learning. Compilers in
this category target the application of code transformations
in the domain of deep learning. With a higher level of abstrac-
tion, these compilers consider graph-level transformations
on the deep learning computation graphs. They focus on
transformations such as data layout transformations [36], op-
erator fusion [16, 59], and auto-batching [37]. Chameleon [2]
uses reinforcement learning to find the best compiler trans-
formations that accelerate the execution time of neural net-
works during deployment. REGAL [42] targets only model
parallelism on computational graphs to minimize execution
time and memory peak usage. X-RLflow [28] addresses the
tensor graph superoptimisation problem using graph neu-
ral networks and reinforcement learning to perform neural
network dataflow graph rewriting, which substitutes a sub-
graph one at a time. Our method is different from these in
the sense that it does not operate on the high-level abstrac-
tion of computation graphs, but rather operates on a lower
level. Because of that, our proposed RL agent is more general
since it is not limited to deep learning computation graphs,
but rather supports any program that can be expressed as
a sequence of loop nests and operates on tensors. Types of
computations that our RL agent supports include image pro-
cessing, deep learning, linear algebra, stencil computations,
tensor operators, etc.

Polyhedral Optimization with ILP. The polyhedral model [21]
is a mathematical model for representing code and code trans-
formations and is used in state-of-the-art compilers to apply
complex code transformations and reason about their correct-
ness [3-7, 9-11, 13, 19, 20, 23, 24, 31, 34, 39, 45, 46, 50, 51, 53,
54, 56]. As a method to solve the code optimization problem,
Integer Linear Programming (ILP) was used by [11, 12, 55] to
explore the search space and find optimal solutions. The lim-
itation of these ILP-based approaches is the lack of a precise
cost model for predicting the performance of code optimiza-
tions. This limitation comes from the use of ILP which limits
the cost function to a simple linear cost function. Because
of this, more recent polyhedral compilers, such as Tiramisu,



Pearl: Automatic Code Optimization Using Deep Reinforcement Learning

have switched to the use of search-based approaches along
with a deep learning cost model for performance prediction.

3 Background

3.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm
where an agent learns from interacting with an environment
to maximize a cumulative reward [49]. In this work, we model
the problem of automatic code optimization as a Markov
Decision Process represented as a tuple M = (S, A, P, R, y).
In this model, S is the set of all states while A is the set
of all actions. P is the transition probability to a state s
given a the state s and action a where P(s'|s,a) = P[S, =
s'|S;—1 = s,A;_1 = a], and R is the reward function that
indicates the expected reward for a given state-action pair
R(s,a) = E[R;|S;—1 = s,A;—1 = a]. The discount rate y €
(0,1) determines the weight of future rewards in the agent’s
decision-making process [49]. As the agent interacts with
the environment, it learns a policy 7 (als) that maximizes
the cumulative reward. We are interested in policy-based
RL algorithms. We train our agent using Proximal Policy
Optimization [48].

3.2 Graph Neural Networks

In our work, we consider undirected attributed graphs G(V, E, X)

where V is the set of nodes, E is the set of edges, and X €
RIVIX4 is an input matrix representing node features. x, € R?
denotes the features of node v € V. Modern GNNs use the
message passing paradigm [22] to update the node features
hz(,k) in an iterative process where hz(,o) = x,. Message Passing
Neural Networks (MPNNs) update hz(,k) as follows

RO = gk (BB yk B (B 1w e ALY,

where N, is the set of neighbors of node v, /¥ is a permuta-
tion invariant function that aggregates the representation of
the neighborhood of the node v into fixed size vector repre-
sentation, and g{)k is the update function that takes the kth
representation of node v with the k*" representation of the
neighborhood to compute hz(,kﬁ). For graph-level prediction,
we compute h(Gk) using another permutation invariant func-
tion that aggregates all node representations at iteration k
into a single vector.

hY) = readout ({h{" o € V})
We use Graph Attention Networks (GATv2) [15], a famous

MPNN model based on the attention mechanism.

3.3 Tiramisu

We implement our method in the Tiramisu compiler [9].
Tiramisu allows the user to express algorithms composed
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of sequences of loop nests and statements that manipulate
scalars and tensors. Such algorithms dominate compute-
intensive domains, including image processing, linear al-
gebra, stencil computations, and deep learning.

Tiramisu provides a compiler and a DSL (Domain-Specific
Language) embedded in C++ to represent code and its trans-
formations. It provides two APIs: (a) an API for developers
to write high-level architecture-independent algorithms, and
(b) a second set of functions to describe how to optimize
the algorithm. This separation enables the compiler to try a
variety of code optimizations on the same algorithm.

In general, every Tiramisu program” can be divided into
two parts. The first part describes the algorithm as a function
with inputs and outputs. Each program comprises a sequence
of computations (a computation is a loop nest with a state-
ment in its body). The second part of a Tiramisu program
is reserved for specifying how the algorithm is optimized
using a specific APL

3.4 Polyhedral Access Relations (Access
Matrices)

In this section, we introduce the concept of polyhedral access
relations, which are used in the polyhedral model to repre-
sent array accesses. These access relations are represented
using matrices called access matrices (in other words, access
matrices are a matrix representation of the access relations).
We pass the access matrices as input to the RL deep learning
models to represent array accesses. In the rest of this section,
we will first explain the concept of access relations and then
show how an access relation is represented using an access
matrix.

Access relations are a set of read, write and may-write
access relations that capture memory locations on which
statements operate. They map statement execution instances
to the array elements that are read or written by those in-
stances.

for (i=1; i<=2; ++1)
for (j=1; j<=2; ++j)
S: Ali,j] = B[i,j];

In the previous example, the set of read-access relations is

Rs = {S[i, j] — Bli jl}
which means that the statement S in iteration i, j reads the
array element B[i, j].
The set of write access relations is

W = {S[i, j1 = Ali. j]

2Also referred to as Tiramisu function.
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The read access relation R can also be represented using
a matrix as follows:

where the matrix

[0 5]

is the matrix representation of the access relation in this
case. We call it, the access matrix. This access matrix is the
representation that we pass as input to the RL deep learning
models.

Figure 2: The process of building hé where @ produces
two vectors, the first vector by summing node features
H®) and the second vector by applying element-wise
maximization. These two vectors are concatenated to
form hék) , representing aggregated graph features after
k message passing steps. The || symbol represents the

final concatenation of vectors h(Gk) to construct h{;.

4 Method Description
4.1 States Representation

Our work targets loop transformations since loops take most
of a program’s execution time. This aligns with the common
practice in state-of-the-art compilers with automatic code
optimization capabilities [1, 2, 9, 11, 41, 47, 54, 55]. To repre-
sent loops written in Tiramisu code, we use an intermediate
representation under the form of a tree known as an Abstract
Syntax Tree (AST). A node i in the tree can be either an iter-
ator® or a computation, and an edge e;; between two nodes i
and j signifies that node i is the parent of node j. Children
nodes can be iterators or computations?, while parent nodes
can only be iterators. Figure 1 illustrates an example of how
the AST is built from a given loop nest®.

3We use the words iterator and loop interchangeably.
4We use the words computation and statement interchangeably.
SLoop nest: set of loops where one loop is contained within another.
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We build the node representation matrix X, and the graph
edges E from the AST. A row in the matrix X represents the
features of a single node in the AST. For the graph edges
(E), we use simple edges with no attributes and keep the
connections between the nodes as they originally existed in
the AST. We map information from the AST nodes into fixed-
size vectors for node features. The entire representation of
nodes is detailed in Section 4.1.1.

As illustrated in Figure 2, we pass X through 2-layers of
message passing using a GATv2 model and aggregate node
representations at each layer using average and max pooling.
Finally, we concatenate the aggregated representations from
each layer of message passing to produce a final feature

vector hé that represents the graph. We refer the reader to
the background section for a more detailed description of
how graph neural networks process their inputs.

4.1.1  Node Feature Representation. There are two types of
nodes in the AST: iterators and computations. To make the
difference between the two types, we use a vector of the
same size to represent both types with different tags and
padding. Using the same example as above, we will depict
the details of each node representation in Figure 3.

As shown in Figure 3, the first column differentiates the
representation of the iterator nodes from the computation
nodes, followed by specific features for each type of node.
For the iterators, the "Focus Tag" tells the agent that we
are targeting this iterator for optimization, so the following
action will potentially include that node. The other tags, like
Parallelization and Reversal, represent whether or not those
actions have transformed the iterator. In addition to the read
and write access matrices (following the concept described
in section 3.4). We stack those vectors to form the input node
representation matrix X.

4.2 Actions and AST branches

In this work, we consider the following loop transformations:
1) loop parallelization (to exploit multicore parallelism); 2)
loop unrolling (which unrolls loop iterations to exploit in-
struction level parallelism); 3) loop tiling (to improve data
locality); 4) loop skewing (which allows the extraction of
outer parallelism and improves data locality); 5) loop inter-
change (which changes the order of loops within a loop nest
to enable better data locality and parallelism); 6) loop rever-
sal (which reverses the order of the loop iterations to enable
better data locality and parallelism). Each of these transfor-
mations is applied to particular loops within a loop nest and
many transformations have parameters. For example, loop
tiling when applied on three loops, has the tuple (T0,T1,T2)
as a parameter where T0,T1, T2 are the tile sizes for each
one of the three loops being tiled. They can take a value
equal to the power of 2 and is between 2 and 256. The size of
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For i in [1 .. 100]:
For j in [1:50]:
For k in [3:60]:

comp 2 : A[i,k] = value

{iterator : j,
lower bound : 1,
upper bound : 50}

________
{computation :
Read and write access matrices,
parent iterators, absolute order
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{iterator : i,
lower bound : 1,
upper bound : 100}

{iterator : k,
lower bound : 3,
upper bound : 60}

1, {computation : 2,
Read and write access matrices,
parent iterators, absolute order

L}

Figure 1: The construction of the Abstract Syntax Tree from a loop nest in a Tiramisu function. The nodes in
the tree with dashed line rectangles represent statements or computations. The nodes with solid line rectangles

represent iterators.

Figure 3: The construction of nodes features.

the search space covered by these transformations and their
parameters is in the range of 10'7° [1, 8].

At each time step ¢, the RL agent must determine the itera-
tors impacted by the action a;, where an action is defined by
the tuple (7,7, C, ¥ ), where 7~ = {Parallelization, Unrolling,
Tiling, Skewing, Interchange, Reversal, Next} is the set of
loop transformations types in addition to "Next" which does
not transform the loops but used to switch between branches,
this action will be described in the next paragraph. The sets
I and C represent the iterators and computations affected by
a;, respectively. Additionally, 7 is the set of transformation-
specific parameters, such as tile sizes for Tiling.

A given loop transformation is usually applied on a par-
ticular iterator within the loop nest. One might create an
action space where each tuple (loop-transformation, AST-
branch®, iterator) becomes an action. This is not possible
though, because the action space required in this case would

YA branch is a path from the root to a leaf in the AST

be vast. This is mainly because ASTs of programs can take
different forms with many branches and depths. To solve
this challenge, the agent traverses the AST progressively,
branch by branch. It starts at the leftmost branch of the tree
as shown in Figure 4, the agent chooses actions that target
the iterators inside that branch and after selecting the "Next"
action, the agent will target the next branch going from left
to right to traverse loops by their order of appearing in the
program. The episode ends when the agent is targeting the
rightmost branch and the action "Next" is chosen.

4.2.1 Detailed Actions Space. The agent’s action space con-
sists of 56 actions, each one represents a loop transformation
with its parameters. Figure 5 illustrates the output of the
policy and the structure of our action space.

e I(i, j) Interchange of loop levels i and j in the targeted
branch.
o R(i) Reversal of the loop level i in the targeted branch.
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Figure 4: The graph at the left has 2 nodes colored in
orange that represent the initial targeted branch. After
applying loop transformations on the selected itera-
tors, the agent uses the "Next" action to switch to the
middle branch, as illustrated by the middle graph. The
graph on the right represents the last branch. Choosing
"Next" from that state will put an end to the episode
and the optimization process.

e S(i, j) Skewing of loop levels i and j in the targeted
branch.

o P(i) Parallelization of loop level i in the targeted branch.

o T(i, j, x,y) Tiling of loop levels i and j with tile sizes x
and y respectively.

e U(x) Unrolling of the innermost loop level with an
unrolling factor x.

o Next: targets the next branch in the AST.

4.3 Rewards

The typical performance evaluation in code optimization is

defined by the speedup’ gained after applying a transfor-

mation. The final speedup 7¢ is calculated by multiplying
n

intermediate speedups 7;, 7y = 1_[ 7;. In reinforcement learn-
i=1

ing, an agent’s goal is to maximize a sum of rewards. To

adapt the product of speedups and use it as the agent’s re-

ward signal, we use the log function to transform the product

n n
into a sum (log(l_[ 7;) = Z log(z;)) given that the logarith-
i=1 i=1

mic function is monotonically increasing. The agent, thus,
receives a reward r; = log(a;) instead of a;. Using the loga-
rithm also scales down high values that can increase variance
and impact the training’s stability.

4.4 Actor Critic Network

After extracting the graph-level features , we feed it
as input to a feed forward network that is divided into a
policy to predict the action probabilities, and a state-value
approximator. Figure 6 illustrates the overall architecture of
the model. The presented architecture was selected based on
a series of experimental evaluations (section 6.4).

The GAT layers have 4 attention heads, each with a hidden
size of 128. We use a linear function for each layer to project

final
hG

7Speedup: original execution time divided by the execution time of trans-
formed code.
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its expanded hidden size multiplied by the number of heads
into its original size. After concatenating and getting h’;mal,
we pass it through a 2-layer MLP and use the scaled expo-
nential linear unit (SELU) [33] as the activation function. We
then separate the network into two heads: a policy head and
a state-value head. Both heads have the same architecture,
with only the output layer size different. Both are a 3-layer
MLP with sizes (128, 128, 56) for the policy head where 56
is the number of actions and (128, 128, 1) for the state-value

head.

7o (als)

e
AN

final
tha

%)

|

<
2-layers GNN
FeedForward

Vo(s)

Figure 6: The architecture of our actor-critic agent. The
backbone of this model processes the graph input and
produces a vector hémul summarizing the graph’s char-
acteristics. Followed by feedforward layers, it is then

divided into the policy and value heads.

4.5 Training the Agent

To train our agent, we use PPO [48]. When our agent applies
an action, the Tiramisu environment tests the legality8 of the
action before executing it. We use classical polyhedral depen-
dence analysis and legality checking [20, 52] to guarantee
the correctness of transformations. As mentioned, we trans-
form speedups using the logarithmic function with a base of
4 to increase the training stability. We assign a speedup of
1 for illegal actions and do not apply them on the original
program; we leave it up to the agent to learn what valuable
transformations to apply.

4.6 Training Dataset

To train the RL agent we used 2,500 randomly generated
tiramisu programs. We used the same methodology defined
by Baghdadi et al. [8] to generate these programs. The agent
explored a considerable number of schedules (sequences
of code optimizations) for each program. Overall, the total
number of unique schedules that the agent was trained on
has reached ~ 45,000.

8In code optimization, a transformation is deemed legal if its application
does not violate the program’s data dependencies.
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Figure 5: The action space

5 Accelerating the Training of the RL Agent

During training, when the RL agent picks an action (a code
optimization), it first checks the legality of that action (using
classical polyhedral legality check provided in the Tiramisu
compiler[9]). If the action is legal, the agent then computes
its reward. To do that, it applies the code optimization and
compiles the optimized program and runs it on the target
hardware and then computes the execution time of the opti-
mized program and use that to compute the reward. These
three steps: checking legality, compiling code and running
code on the target hardware are time consuming. For exam-
ple, checking the legality of code optimizations takes about
30% of the training time in our RL system, while compiling
and running code takes the majority of the remaining time.
Because these steps are time consuming, a single training
of the RL agent takes weeks. During the development phase
of the RL system, one needs to train the RL system many
times, to test different features, ideas, and to fine-tune the
hyper-parameters. Since every training takes weeks, the de-
velopment of the RL system becomes challenging. In this
section, we propose methods to mitigate this issue.

5.1 Execution Time and Legality Check
Memoization

The main idea for this method is to store the result of the
legality check and execution times for the actions explored
by the agent during a given training, and reuse them in future
trainings.

We construct a dataset, where we store the result of the
legality check and execution time obtained for each action
chosen by the RL agent. The dataset has the following com-
ponents:

(1) Programs: the list of all the randomly generated pro-
grams used to train the RL agent.

(2) Schedules: the list of schedules explored by the RL
agent for each program (a schedule is a sequence of
code optimizations).

(3) Schedule legality: for each pair of (program, sched-
ule) in the dataset, we store the legality of the schedule,
as a boolean value.

(4) Execution times: for each pair of (program, schedule)
in the dataset, we store the execution time of the pro-
gram when optimized using the schedule. The reward
can be easily derived from this execution time.

In subsequent trainings, when the RL agent picks an ac-
tion, it first queries the dataset to check if the corresponding
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program and schedule exist. If found, the legality check and
execution times stored in the dataset are retrieved, bypassing
the need for the legality check, compilation, and execution.
This significantly reduces redundant computations. If the
legality check and execution times are not found, the agent
performs the legality check, compiles and executes the op-
timized program and updates the dataset, enriching it for
future use. Initially, when the dataset is empty, the training is
slow. Once an initial training is performed, future trainings
are likely to be faster. This is particularly true because RL
agents, when they converge, tend to pick the same actions,
and therefore the probability of picking an action that has
been explored in previous trainings is high.

5.2 Actor-Critic Pre-training

The goal of this technique is to enable better learning in
the actor-critic neural networks. That would translate in
either faster convergence, or to a convergence to a higher
average reward. We improve the learning in the actor-critic
neural networks by initializing the weights of the actor-critic
neural networks through actor-critic pre-training (i.e., by
pre-training the actor-critic neural networks).

The GNN layers, the feed forward, and the value network
Vo (s) (mentioned in Figure 6) are trained, before training the
RL agent, on a surrogate task: predicting the execution times
of unoptimized programs from their graph representation.
The weight of these layers are then used as an initialization
for the corresponding layers in the RL agent. Predicting the
execution times of programs aligns well with the goals of pre-
training the actor-critic agent because it is a complex task
that provides a substantial amount of knowledge about the
differences between programs. While a more targeted pre-
training, such as using data in the format (program, schedule,
speedup), could potentially be better, the lack of sufficient
data and the significant time required to generate a large
dataset directed our choice toward execution time prediction.
Our goal was not to create a highly accurate execution time
prediction model but to provide the agent with reasonable
initial weights. We believe that the current approach is suf-
ficient to achieve that. We plan to extend our work in the
future to pre-train on data of the format (program, schedule,
speedup).

Note that even if we train the RL agent with higher quality
data, we do not have guarantees on faster convergence. This
is mainly because even if we pre-train the actor-critic with
such data, the RL agent would still need to explore actions
initially with a certain degree of randomness, due to the use
the epsilon greedy algorithm [49] in training the RL agent, a
common method for balancing exploration and exploitation
in training reinforcement learning agents. In epsilon greedy,
an entropy coeflicient is set to a high value initially and then
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decays over time to reach zero. Higher values of the entropy
coefficient force the RL agent to explore actions more initially,
and over time during training, the entropy becomes smaller,
allowing the RL agent to converge. Because the agent has
to explore actions with a degree of randomness in its initial
phase of training (while the entropy coefficient is high), it
will continue exploring (with a degree of randomness) even
if it converges earlier, making the training last for longer.

We pre-trained the layers (GNN layers, feedforward layers
and the value network) on 26,000 data points. The model in-
put is the graph representation of a program, and the output
is the execution time of the program (unoptimized program).
We use the MSE (Mean Squared Error) Loss and train for
1500 epochs with a 10~* learning rate. The resulting weights
are then used to initialize the GNN layers, feedforward layers
and the value network layers.

6 Experiments and Evaluation
6.1 Experimental Setup

To train our reinforcement learning agent, we used a cluster
where each node is a 28-core Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz, 4 GB of RAM per core. The OS installed on
the nodes is CentOS Linux version 8. We used distributed
learning to train the model using 4 nodes of the cluster in
all the upcoming evaluations.

6.2 Training Details

To train the GNN with PPO we used the following set of
hyperparameters as specified in Table 2.

Table 2: Parameters of training the agent.

Parameters (PPO) Value
€cl ip 0.3

Y 0.99

A 0.95
Value coefficient 2
Entropy coefficient (decaying) | 107! — 0
Batch size 512
Num epochs 5
Mini-Batch size 64
Learning rate 1074
Parameters (GNN)

Type GATv2 [15]
Num layers 2
Num of attention heads 4
Hidden layers size 128

6.3 Evaluation on a Benchmark Suite

In this section, we evaluate how effective is our RL agent
in optimizing real-world benchmarks. For this evaluation,
we use the same benchmark suite used by Baghdadi et al.
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[8], a set of benchmarks including image processing, deep
learning, and linear algebra programs. For each benchmark,
we execute the schedule obtained by the RL agent 30 times
before taking the minimum to reduce the effect of noise on
the results. The following are descriptions of the benchmarks
used:

e blur: an image processing filter to blur images.

e cvtcolor: an image processing filter for converting the
colors of an input image from RGB to grayscale.

e doitgen: a kernel from the multiresolution adaptive
numerical scientific simulation [44].

e heat2d: Heat equation over 2D data domain.

e heat3d: Heat equation over 3D data domain.

e jacobi2d: a jacobi-style stencil computation over 2D
data with 5-point stencil pattern.

e mvt: matrix-vector multiplication composed with an-
other matrix-vector multiplication but with a trans-
posed matrix.

o seidel-2d: two dimensional Seidel stencil computa-
tion.

We compare the speedups we get using our proposed
system to those produced by the Tiramisu autoscheduler [8]
(Tiramisu’s search-based automatic code optimization). The
speedup of an optimized program is defined as follows:

exec_time_unoptimized_program

speedup = (1)

exec_time_optimized_program
Speedups higher than 1 indicate that the optimized program
is faster than the original one. The baseline of computing
the speedups in these experiments is the execution time of
the unoptimized program.

We also compare the speedups of our proposed system to
Pluto, a state-of-the-art polyhedral compiler that does not
use machine learning (it uses Integer Linear Programming).
Pluto, being a polyhedral compiler like Tiramisu, supports
a large space of complex code transformations (we used
Pluto with the —parallel —tile options to enable parallelism
and tiling). We also compare to HalideRL, a state-of-the-
art compiler that uses reinforcement learning for automatic
code optimization, and that we consider to be the closest
to our work. HalideRL trains the RL on each one of the
benchmarks. We perform the training on our target machine
(i.e., on our cluster nodes) and leave it until it converges. We
do not compare with PolyGym in this experiment because
PolyGym focuses mainly on proposing an RL environment
and does not propose a deep RL agent for the environment.

The performance of our proposed system, compared to the
state-of-the-art, is presented in Table 3. Our agent predicts
code optimizations that lead to a geometric mean speedup
reaching 3.16X over unoptimized code. It also has a geometric
mean speedup higher than the Tiramisu autoscheduler, Pluto
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and HalideRL, with a geometric mean speedup of 2.02X over
the Tiramisu autoscheduler. HalideRL crashed for 3 bench-
marks (blur, doitgen, and jacobi2d), and therefore we did not
report speedups for those.

Our system is the only one where the agent found only
useful code optimizations. In other words, it did not choose
optimizations that led to a slowdown compared to the origi-
nal unoptimized program (all the speedups are >= 1).

Table 3: Summary of results regarding execution time
speedup achieved by each method. The baseline of com-
puting the speedups is the original execution time of
the functions without any transformation applied.

Benchmark Tiramisu Pluto | HalideRL | Pearl
Autoscheduler
blur 0.27 1.01 / 4.27
cvtcolor 1.12 0.90 0.14 1
doitgen 2.66 0.74 / 11.37
heat2d 1.86 0.98 1.15 2.39
heat3d 0.82 1.01 3.1073 2.36
jacobi2d 1.66 1 / 1
mvt 4.14 0.97 0.27 6.1
seidel2d 4.24 0.99 5.57 6.03
geo mean 1.56 0.94 0.23 3.16

High speedups in benchmarks such as doitgen, mvt, sei-
del2d, blur, heat2d, and heat3d are due to the application of
parallelization and tiling which improves data locality. The
agent refrained from parallelizing code in cases where paral-
lelization leads to a decrease in performance (if the overhead
of parallelization is higher than its benefit). This was the
case for cvtcolor, for example, where the outer loop is the
color channel and has only 3 iterations. Parallelizing such a
loop leads to high overhead with little benefit. The Tiramisu
autoscheduler could obtain better speedups than our agent
in this case because it applied another transformation (loop
interchange) that interchanged one of the inner loops (which
represents the image height) to become the outer loop and
then parallelized that loop. Since the new outer loop has
a high number of iterations, parallelization was beneficial
and therefore the Tiramisu autoscheduler obtained a higher
speedup.

In summary, the evaluation shows that our proposed agent
was able to outperform three state-of-the-art compilers. The
first uses a search-based method (Tiramisu autoscheduler),
the second uses integer linear programming (Pluto), while
the third uses RL (HalideRL). Among these three, the Tiramisu
autoscheduler achieved the best speedups, but our proposed
RL ouperformed the Tiramisu autoscheduler by 2.02x , high-
lighting the benefit of an RL-based approach.
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Figure 7: The performance of three agents using dif-
ferent GNN layers, the y-axis represents the average
logs of the episodes speedups collected in a single PPO
iteration. The x-axis represents the number of actions
taken in total.
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Figure 8: Reward Averages Across Different Experi-
ments over Training Steps

6.4 Model Architecture Design Choices

6.4.1  Evaluating Different GNN Models. Alongside the GAT
architecture that we use in this work, we evaluated other
prominent GNN models such as Graph Convolutional Net-
works (GCN) [32] and GraphSAGE [27]. Figure 7 depicts the
comparison between training the three agents with PPO.

For the three agents, we use the same architecture de-
scribed in 4.4 except for the GNN layer type we want to test.
We notice a slightly better performance of the GAT agent
over GCN and GraphSage. Note that we did this experiment
early in the lifetime of the project, on a subset of our training
dataset. We believe that the results would generalize to the
whole dataset though.

6.4.2  Number of GAT and MLP Layers. In this section, we
evaluate different variants of our proposed model. Our focus
in these experiments was on the number of layers of GATs,
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MLPs, and the size of the hidden layers, as these affect the
ability of the model to learn complex patterns and relations
in the data. The best-performing agent uses 2 GAT layers,
3 MLP layers and a size of the hidden layers equal to 128.
We tried out different other configurations that presented in
Figure 8.

6.5 Evaluating the Execution Time and
Legality Check Memoization Method

To analyze the efficiency of the memoization technique, we
evaluated the training time of our proposed RL agent with
and without memoization. Figure 9 shows a significant reduc-
tion in convergence time for the agent that uses memoization.
It converges to the best average reward in 45 hours.

To further evaluate the technique of memoization, we
recorded the total number of hits while training our RL agent.
A hit in this case indicates that a schedule (with its legality
and execution time) is already present in the dataset. Fig-
ure 10 shows how the total number of hits increases as the
training progresses, which in turn indicates that the stored
values are indeed being used during the RL training.

m/\\M

— RL agent without Execution Time and Legality Check Memoization
RL agent with Execution Time and Legality Check Memoization

Reward Average

20 a0 100 120 120

(:Io'ime (hourD;)
Figure 9: Reward Averages of our Agents With and
Without Execution Time and Legality Check Memo-
ization

6.6 Evaluating the Actor-Critic Pre-training

To evaluate the actor-critic pre-training technique, we trained
two agents: the first, without pre-training, while the second
uses the pre-training technique mentioned in Section 5.2. In
these experiments, we use the memoization technique as we
have already demonstrated its effectiveness. We recorded
the average reward during training, the training time, and
then evaluated the trained RL agents on the benchmark suite
used in section 6.3.
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Figure 10: Number of hits during the training of the
RL agent.

Figure 11 shows the average reward of the two RL agents.
The RL agent that used pre-training managed to obtain a
much higher average reward, compared to the agent that
did not. This difference in the average reward is significant
though, since the reward is the log of the speedup, and there-
fore a small difference in the average reward translates to
much larger difference in speedups. Table 4 shows an evalu-
ation of the two RL agents on the benchmark. The RL that
used the pre-training method obtained significantly better
speedups on the benchmarks with nearly the same training
times (Figure 11). The agent without pre-training failed to
optimize the Heat2d benchmark. In the case of seidel2d it un-
rolled the second loop instead of parallelizing the outermost
loop and then applying tiling. We clearly observe that this
agent did not learn the importance of parallelizing outermost
loops, among other patterns.

In this experiment, we did not notice faster convergence
of the RL agent because of the high initial entropy used in
this training. This high entropy is important for the agent to
learn useful code optimizations though, and lower entropy
values would lead to a lower average reward. The actor-critic
pre-training method was useful in allowing the actor-critic
neural networks to better learn though, and this translates
in obtaining a better average reward.

6.7 Search Space Exploration Time
Comparison

Our RL system not only has better performance compared
to the existing Tiramisu auto-scheduler, but it also does so
significantly faster, which is one of the key contributions
of this work. Reinforcement learning has the advantage of
learning a policy network (actor) that directly predicts the
sequence of code optimizations to apply to obtain the best
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Figure 11: Reward Averages of our Agents With and
Without Actor-Critic Pre-training

Table 4: Speedups achieved by Pearl with and without
Actor-Critic Pre-training

Benchmark Pearl Pearl
with Pre-Training | without Pre-Training

blur 4.27 4.17
cvtcolor 1 1
doitgen 11.37 12.09
heat2d 2.39 1
heat3d 2.36 2.39
jacobi2d 1 1
mvt 6.1 5.98
seidel2d 6.03 0.65
geo mean 3.16 2.15

performance. This is in contrast to current state-of-the-art
methods that use tree-search methods to explore the search
space using a tree-search method (e.g., beam-search). Tree-
search methods are time-consuming compared to a policy
network learned through reinforcement learning. On the
reported benchmarks, the RL system identified the sequence
of cost optimizations to use in 33.36 milliseconds on average,
which is 563.67X faster than the Tiramisu scheduler [8].

7 Discussion and Future Work

In its current state, our proposed system supports six types
of loop transformations. These transformations, along with
their parameters and the choices of which loops they apply to,
constitute a large search space reaching 10'7° candidates [1,
8]. Although this search space is already large, we plan to
support a wider set of loops and data layout transformations.
We also plan to explore the effect of applying RL on raw text
data instead of encoding the states.
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8 Conclusion

This paper introduces a deep-reinforcement learning-based
autoscheduler for the Tiramisu compiler. We train an RL
agent on a dataset of synthetic Tiramisu programs.

During training, the policy network of the agent converges
into a heuristic that we use to infer schedules for unseen
programs. By evaluating our proposed system on standard
benchmarks, we show its competitiveness with state-of-the-
art autoschedulers. Compared to Tiramisu, our RL-based
agent achieves an overall geometric mean speedup of 2.02x .
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